
Tutorial

Hybrid Mixed-Integer Programming

and Constraint Programing Methods

John Hooker
Carnegie Mellon University

CIMI, Toulouse
June 2018

Why Integrate CP and MIP?

Complementary Strengths

Outline of the Tutorial

2

Complementary Strengths

• CP:

– Inference methods

– Modeling

– Exploits local structure

• MIP:

– Relaxation methods

– Duality theory

– Exploits global structure

Let’s bring them

together!

3

Comparison

CP vs. MIP

CP MIP

Logic processing Numerical calculation

Inference (filtering,

constraint propagation)

Relaxation

High-level modeling

(global constraints)

Atomistic modeling

(linear inequalities)

Branching Branching

Constraint-based

processing

Independence of model

And algorithm

4

Programming  programming

• In constraint programming:

• programming = a form of computer programming

(constraint-based processing)

• In mathematical programming:

• programming = logistics planning (historically)

5

CP vs. MIP

• In MIP, equations (constraints) describe the problem but

don’t tell how to solve it.

• In CP, each constraint invokes a procedure that screens

out unacceptable solutions.

• Much as each line of a computer program invokes

an operation.

6

Advantages of CP

• Better at sequencing and scheduling

• …where MP methods have weak relaxations.

• Adding messy constraints makes the problem easier.

• The more constraints, the better.

• More powerful modeling language.

• Global constraints lead to succinct models.

• Constraints convey problem structure to the solver.

• “Better at highly-constrained problems”

• Misleading – better when constraints propagate well, or

when constraints have few variables.

7

Advantages of MIP

• Deals naturally with continuous variables.

• Continuous relaxation, numerical techniques

• Handles constraints with many variables.

• These constraints don’t propagate well in CP.

• Good at finding optimal (as opposed to feasible) solutions.

• Sophisticated relaxation technology provides bounds.

• Scales up

• Decades of engineering, orders of magnitude speedup

8

Obvious solution…

• Integrate CP and MIP.

9

Obvious solution…

• Integrate CP and MIP.

10

Two basic strategies…

• Combine CP and MIP in a single solution method.

• Link CP and MIP solvers in a principled way.

Outline of the Tutorial

• Why Integrate OR and CP?

• Combine CP and MIP in a single solution method

– Designing an Integrated Solver

– Linear Relaxation and Duality

– Mixed Integer/Linear Modeling

– Cutting Planes

– Lagrangean Relaxation and CP

• Link CP and MIP solvers

– Constraint Programming Concepts

– CP Filtering Algorithms

– CP-based Branch and Price

– Benders Decomposition

• Software

11

Hybrid methods I am leaving out

• CP and dynamic programming

• OR-based filtering methods (e.g. flow models, edge finding)

• Decision diagrams (to be presented by W-J van Hoeve)

• CP and local search (to be presented by Paul Shaw)

12

Background Reading

• J. N. Hooker and W.-J. van Hoeve, Constraint

programming and operations research, Constraints 23

(2018) 172-195. Contains many references.

• J. N. Hooker, Integrated Methods for Optimization, 2nd ed.,

Springer (2012). Contains many exercises.

13

http://public.tepper.cmu.edu/jnh/CPandOR2post.pdf

Initial Example:

Designing an Integrated Solver

Freight Transfer

Bounds Propagation

Cutting Planes

Branch-infer-and-relax Tree

14

Example: Freight Transfer

• Transport 42 tons of freight using 8 trucks, which come in

4 sizes…

Truck

size

Number

available

Capacity

(tons)

Cost

per

truck

1 3 7 90

2 3 5 60

3 3 4 50

4 3 3 40
15

Truck

type

Number

available

Capacity

(tons)

Cost

per

truck

1 3 7 90

2 3 5 60

3 3 4 50

4 3 3 40

  

   

   



1 2 3 4

1 2 3 4

1 2 3 4

min 90 60 50 40

7 5 4 3 42

8

{0,1,2,3}i

x x x x

x x x x

x x x x

x

Number of trucks of type 1

Knapsack

covering

constraint
Knapsack

packing

constraint

16

  

   

   



1 2 3 4

1 2 3 4

1 2 3 4

min 90 60 50 40

7 5 4 3 42

8

{0,1,2,3}i

x x x x

x x x x

x x x x

x

Bounds propagation

      
 
  

1

42 5 3 4 3 3 3
1

7
x

17

  

   

   

 

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

min 90 60 50 40

7 5 4 3 42

8

{1,2,3}, , , {0,1,2,3}

x x x x

x x x x

x x x x

x x x x

Bounds propagation

      
 
  

1

42 5 3 4 3 3 3
1

7
x

Reduced

domain

18

• Let {Lj, …, Uj} be the domain of xj

• A constraint set is bounds consistent if for each j :

• xj = Lj in some feasible solution and

• xj = Uj in some feasible solution.

• Bounds consistency  we will not set xj to any infeasible

values during branching.

• Bounds propagation achieves bounds consistency for a

single inequality.

• 7x1 + 5x2 + 4x3 + 3x4  42 is bounds consistent when the

domains are x1  {1,2,3} and x2, x3, x4  {0,1,2,3}.

• But not necessarily for a set of inequalities.

Bounds consistency

19

 Bounds propagation may not achieve bounds consistency

for a set of constraints.

 Consider set of inequalities

with domains x1, x2  {0,1}, solutions (x1,x2) = (1,0), (1,1).

 Bounds propagation has no effect on the domains.

 But constraint set is not bounds consistent because x1 = 0

in no feasible solution.

Bounds consistency

1 2

1 2

1

0

x x

x x

 

 

20

  

   

   

  

1 2 3 4

1 2 3 4

1 2 3 4

1

min 90 60 50 40

7 5 4 3 42

8

0 3, 1i

x x x x

x x x x

x x x x

x x

Cutting Planes

Begin with continuous relaxation

Replace domains

with bounds

This is a linear programming problem, which is easy to

solve.

Its optimal value provides a lower bound on optimal

value of original problem.

21

  

   

   

  

1 2 3 4

1 2 3 4

1 2 3 4

1

min 90 60 50 40

7 5 4 3 42

8

0 3, 1i

x x x x

x x x x

x x x x

x x

Cutting planes (valid inequalities)

We can create a tighter relaxation (larger minimum

value) with the addition of cutting planes.

22

  

   

   

  

1 2 3 4

1 2 3 4

1 2 3 4

1

min 90 60 50 40

7 5 4 3 42

8

0 3, 1i

x x x x

x x x x

x x x x

x x

Cutting planes (valid inequalities)

All feasible solutions of the

original problem satisfy a

cutting plane (i.e., it is valid).

But a cutting plane may

exclude (“cut off”) solutions of

the continuous relaxation.

Cutting

plane

Feasible solutions

Continuous

relaxation

23

  

   

   

  

1 2 3 4

1 2 3 4

1 2 3 4

1

min 90 60 50 40

7 5 4 3 42

8

0 3, 1i

x x x x

x x x x

x x x x

x x

Cutting planes (valid inequalities)

{1,2} is a packing

…because 7x1 + 5x2 alone cannot satisfy the inequality,

even with x1 = x2 = 3.

24

  

   

   

  

1 2 3 4

1 2 3 4

1 2 3 4

1

min 90 60 50 40

7 5 4 3 42

8

0 3, 1i

x x x x

x x x x

x x x x

x x

Cutting planes (valid inequalities)

{1,2} is a packing

 

    
   

 
3 4

42 (7 3 5 3)
2

max 4,3
x x

So,      3 44 3 42 (7 3 5 3)x x

which implies

Knapsack cut

25

Cutting planes (valid inequalities)

Let xi have domain [Li,Ui] and let a  0.

In general, a packing P for ax  a0 satisfies

 

  0i i i i

i P i P

a x a aU

and generates a knapsack cut

 






 
 
 
  




0

max

i i

i P
i

i P i
i P

a aU

x
a

26

  

   

   

  

1 2 3 4

1 2 3 4

1 2 3 4

1

min 90 60 50 40

7 5 4 3 42

8

0 3, 1i

x x x x

x x x x

x x x x

x x

Cutting planes (valid inequalities)

Maximal Packings Knapsack cuts

{1,2} x3 + x4  2

{1,3} x2 + x4  2

{1,4} x2 + x3  3

Knapsack cuts corresponding to nonmaximal

packings can be nonredundant.
27

  

   



 

 

 

  

  

1 2 3 4

1 2 3 4

1

3 4

2 3

2

1

2 3

4

4

min 90 60 50 40

7 5 4 3 42

8

0 3, 1

2

2

3

i

x x x x

x x x x

x x x

x x

x x

x x

x

x x

Continuous relaxation with cuts

Optimal value of 523.3 is a lower bound on optimal value

of original problem.

Knapsack cuts

28

Branch-

infer-and-

relax tree

Propagate bounds

and solve

relaxation of

original problem.

x1  { 123}

x2  {0123}

x3  {0123}

x4  {0123}

x = (2⅓,3,2⅔,0)

value = 523⅓

29

Branch on a

variable with

nonintegral value

in the relaxation.

x1  { 123}

x2  {0123}

x3  {0123}

x4  {0123}

x = (2⅓,3,2⅔,0)

value = 523⅓

x1  {1,2}
x1 = 3

Branch-infer-

and-relax tree

30

Propagate bounds

and solve

relaxation.

Since relaxation

is infeasible,

backtrack.

x1  { 123}

x2  {0123}

x3  {0123}

x4  {0123}

x = (2⅓,3,2⅔,0)

value = 523⅓

x1  { 12 }

x2  { 23}

x3  { 123}

x4  { 123}

infeasible

relaxation

x1  {1,2}
x1 = 3

Branch-infer-

and-relax tree

31

Propagate bounds

and solve

relaxation.

Branch on

nonintegral

variable.

x1  { 123}

x2  {0123}

x3  {0123}

x4  {0123}

x = (2⅓,3,2⅔,0)

value = 523⅓

x1  { 12 }

x2  { 23}

x3  { 123}

x4  { 123}

infeasible

relaxation

x1  { 3}

x2  {0123}

x3  {0123}

x4  {0123}

x = (3,2.6,2,0)

value = 526

x1  {1,2}
x1 = 3

x2  {0,1,2}

x2 = 3

Branch-infer-

and-relax tree

32

Branch again.

x1  { 123}

x2  {0123}

x3  {0123}

x4  {0123}

x = (2⅓,3,2⅔,0)

value = 523⅓

x1  { 12 }

x2  { 23}

x3  { 123}

x4  { 123}

infeasible

relaxation

x1  { 3}

x2  {0123}

x3  {0123}

x4  {0123}

x = (3,2.6,2,0)

value = 526

x1  { 3}

x2  {012 }

x3  { 123}

x4  {0123}

x = (3,2,2¾,0)

value = 527½

x1  {1,2}
x1 = 3

x2  {0,1,2}

x2 = 3

x3  {1,2}
x3 = 3

Branch-infer-

and-relax tree

33

Solution of

relaxation

is integral and

therefore feasible

in the original

problem.

This becomes the

incumbent

solution.

x1  { 123}

x2  {0123}

x3  {0123}

x4  {0123}

x = (2⅓,3,2⅔,0)

value = 523⅓

x1  { 12 }

x2  { 23}

x3  { 123}

x4  { 123}

infeasible

relaxation

x1  { 3}

x2  {0123}

x3  {0123}

x4  {0123}

x = (3,2.6,2,0)

value = 526

x1  { 3}

x2  {012 }

x3  { 123}

x4  {0123}

x = (3,2,2¾,0)

value = 527½

x1  { 3}

x2  { 12 }

x3  { 12 }

x4  { 123}

x = (3,2,2,1)

value = 530

feasible solution

x1  {1,2}
x1 = 3

x2  {0,1,2}

x2 = 3

x3  {1,2}
x3 = 3

Branch-infer-

and-relax tree

34

Solution is

nonintegral, but

we can backtrack

because value of

relaxation is

no better than

incumbent solution.

x1  { 123}

x2  {0123}

x3  {0123}

x4  {0123}

x = (2⅓,3,2⅔,0)

value = 523⅓

x1  { 12 }

x2  { 23}

x3  { 123}

x4  { 123}

infeasible

relaxation

x1  { 3}

x2  {0123}

x3  {0123}

x4  {0123}

x = (3,2.6,2,0)

value = 526

x1  { 3}

x2  {012 }

x3  { 123}

x4  {0123}

x = (3,2,2¾,0)

value = 527½

x1  { 3}

x2  { 12 }

x3  { 12 }

x4  { 123}

x = (3,2,2,1)

value = 530

feasible solution

x1  { 3}

x2  {012 }

x3  { 3}

x4  {012 }

x = (3,1½,3,½)

value = 530

backtrack

due to bound

x1  {1,2}
x1 = 3

x2  {0,1,2}

x2 = 3

x3  {1,2}
x3 = 3

Branch-infer-

and-relax tree

35

Another feasible

solution found.

No better than

incumbent solution,

which is optimal

because search

has finished.

x1  { 123}

x2  {0123}

x3  {0123}

x4  {0123}

x = (2⅓,3,2⅔,0)

value = 523⅓

x1  { 12 }

x2  { 23}

x3  { 123}

x4  { 123}

infeasible

relaxation

x1  { 3}

x2  {0123}

x3  {0123}

x4  {0123}

x = (3,2.6,2,0)

value = 526

x1  { 3}

x2  {012 }

x3  { 123}

x4  {0123}

x = (3,2,2¾,0)

value = 527½

x1  { 3}

x2  { 3}

x3  {012 }

x4  {012 }

x = (3,3,0,2)

value = 530

feasible solution

x1  { 3}

x2  { 12 }

x3  { 12 }

x4  { 123}

x = (3,2,2,1)

value = 530

feasible solution

x1  { 3}

x2  {012 }

x3  { 3}

x4  {012 }

x = (3,1½,3,½)

value = 530

backtrack

due to bound

x1  {1,2}
x1 = 3

x2  {0,1,2}

x2 = 3

x3  {1,2}
x3 = 3

Branch-infer-

and-relax tree

36

Two optimal solutions…

 (3,2,2,1)x

 (3,3,0,2)x

37

Linear Relaxation and Duality

Why Relax?

Algebraic Analysis of LP

Linear Programming Duality

LP-Based Domain Filtering

Example: Single-Vehicle Routing

Disjunctions of Linear Systems

38

Why Relax?

Solving a relaxation of a problem can:

• Tighten variable bounds.

• Possibly solve original problem.

• Guide the search in a promising direction.

• Filter domains using reduced costs or Lagrange multipliers.

• Prune the search tree using a bound on the optimal value.

• Provide a more global view, because a single OR relaxation

can pool relaxations of several constraints.

39

Some OR models that can provide relaxations:

• Linear programming (LP).

• Mixed integer linear programming (MILP)

– Can itself be relaxed as an LP.

– LP relaxation can be strengthened with cutting planes.

• Lagrangean relaxation.

• Specialized relaxations.

– For particular problem classes.

– For global constraints.

40

Motivation

• Linear programming is remarkably versatile for representing

real-world problems.

• LP is by far the most widely used tool for relaxation.

• LP relaxations can be strengthened by cutting planes.

- Based on polyhedral analysis.

• LP has an elegant and powerful duality theory.

- Useful for domain filtering, and much else.

• The LP problem is extremely well solved.

41

1 2

1 2

1 2

1 2

min 4 7

2 3 6

2 4

, 0

x x

x x

x x

x x



 

 



2x1 + 3x2  6

2x1 + x2  4

An example…

4x1 + 7x2 = 12

Optimal solution

x = (3,0)

Algebraic Analysis of LP

42

1 2

1 2

1 2

1 2

min 4 7

2 3 6

2 4

, 0

x x

x x

x x

x x



 

 



Rewrite

1 2

1 2 3

1 2 4

1 2 3 4

min 4 7

2 3 6

2 4

, , , 0

x x

x x x

x x x

x x x x



  

  



as

In general an LP has the form min

0

cx

Ax b

x





Algebraic Analysis of LP

43

Algebraic analysis of LP

Write as





min

0

cx

Ax b

x



 



min

, 0

B B N N

B N

B N

c x c x

Bx Nx b

x x

m  n matrix
Basic

variables

where

 A B N

Any set of

m linearly

independent

columns of A.

These form a

basis for the

space spanned

by the columns.

Nonbasic

variables

44

Algebraic analysis of LP

Write as





min

0

cx

Ax b

x



 



min

, 0

B B N N

B N

B N

c x c x

Bx Nx b

x x

where

 A B N

Solve constraint equation for xB:   1 1

B Nx B b B Nx

All solutions can be obtained by setting xN to some value.

The solution is basic if xN = 0.

It is a basic feasible solution if xN = 0 and xB  0.

45

1 2

1 2 3

1 2 4

1 2 3 4

min 4 7

2 3 6

2 4

, , , 0

x x

x x x

x x x

x x x x



  

  



2x1 + 3x2  6

2x1 + x2  4

Example…

x2, x3 basic

x1, x2 basic

x1, x4 basic

x2, x4 basic

x3, x4 basic
x1, x3 basic

= basic feasible

solution

x1

x2

46

Algebraic analysis of LP

Write as





min

0

cx

Ax b

x



 



min

, 0

B B N N

B N

B N

c x c x

Bx Nx b

x x

where

 A B N

Solve constraint equation for xB:   1 1

B Nx B b B Nx

Express cost in terms of nonbasic variables:

  1 1()B N B Nc B b c c B N x

Vector of reduced costs

Since xN  0,

basic solution (xB,0)

is optimal if

reduced costs are

nonnegative.
47

1 2

1 2 3

1 2 4

1 2 3 4

min 4 7

2 3 6

2 4

, , , 0

x x

x x x

x x x

x x x x



  

  



Example…

x1, x4 basic

Consider this

basic feasible

solution

x1

x2

48

Example…

   
  

   
   

        
                 

     
     
    

21

34

1 1

4 4

1 1

4 4

min 4 0 7 0

2 0 3 1 6

2 1 1 0 4

0
,

0

xx

xx

x x

x x

x x

x x

Write… as… cBxB cNxN

BxB

NxN b

1 2

1 2 3

1 2 4

1 2 3 4

min 4 7

2 3 6

2 4

, , , 0

x x

x x x

x x x

x x x x



  

  



49

   
  

   
   

        
                 

     
     
    

21

34

1 1

4 4

1 1

4 4

min 4 0 7 0

2 0 3 1 6

2 1 1 0 4

0
,

0

xx

xx

x x

x x

x x

x x

Example…

b

cBxB cNxN

BxB

NxN

50

Example…

    

       
               

1 1 1

1/ 21

4

0 6 3

1 1 4 2

B Nx B b B Nx B b

x

x

Basic solution is

x1, x4 basic

x2

x1

   
  

   
   

        
                 

     
     
    

21

34

1 1

4 4

1 1

4 4

min 4 0 7 0

2 0 3 1 6

2 1 1 0 4

0
,

0

xx

xx

x x

x x

x x

x x

cBxB cNxN

BxB

NxN b

51

   

   

1

1/ 2 0 3 1
7 0 4 0

1 1 1 0

1 2 0 0

N Bc c B N

   
        



Example…
Basic solution is

Reduced costs are

Solution is

optimal

   
  

   
   

        
                 

     
     
    

21

34

1 1

4 4

1 1

4 4

min 4 0 7 0

2 0 3 1 6

2 1 1 0 4

0
,

0

xx

xx

x x

x x

x x

x x

cBxB cNxN

BxB

NxN

    

       
               

1 1 1

1/ 21

4

0 6 3

1 1 4 2

B Nx B b B Nx B b

x

x

52

Linear Programming Duality

An LP can be viewed as an inference problem…



  
0

max
x

v

Ax b cx v







min

0

cx

Ax b

x
implies

Dual problem: Find the tightest lower bound on the

objective function that is implied by the constraints.

53

An LP can be viewed as an inference problem…



  
0

max
x

v

Ax b cx v







min

0

cx

Ax b

x

From Farkas Lemma: If Ax  b, x  0 is feasible,

0 dominates
iff

for some 0

x Ax b cx v
Ax b cx v

 



  
  



A  c and b  v

That is, some surrogate

(nonnegative linear

combination) of

Ax  b dominates cx  v

54

An LP can be viewed as an inference problem…



  
0

max
x

v

Ax b cx v







min

0

cx

Ax b

x

From Farkas Lemma: If Ax  b, x  0 is feasible,

0 dominates
iff

for some 0

x Ax b cx v
Ax b cx v

 



  
  



A  c and b  v











max

0

b

A c

 This is the

classical

LP dual

55

This equality is called strong duality.







min

0

cx

Ax b

x

If Ax  b, x  0 is feasible











max

0

b

A c

This is the

classical

LP dual

Note that the dual of the dual is the primal

(i.e., the original LP).

56





 

 

 



1

1 2

1 2

1 2

1 2

1

min 4 7

2 3 ()

()

6

2 4

, 0

x x

x x

x x

x x

Example

1 2

1

21 2

2

12

1

(

max 6 4

)

(

12

2 2 4

3 7

,

)

0

x

x

 

 

 

 

 

 

 



A dual solution is (1,2) = (2,0)

Primal Dual

2

2

1

1 2

1(2)

(

6

0)

2 3

2 4

x x

x x





















1 24 6 12x x 

1 24 7 12x x 

dominates

Dual multipliers

Surrogate

Tightest bound on cost
57

Weak Duality

If x* is feasible in the

primal problem

min

0

cx

Ax b

x















max

0

b

A c

and * is feasible in the

dual problem

then cx*  *b.

This is because

cx*  *Ax*  *b

* is dual

feasible

and x*  0

x* is primal

feasible

and *  0

58

Dual multipliers as marginal costs

min

0

cx

Ax b b

x

 





Suppose we perturb the RHS of an LP

(i.e., change the requirement levels):

The dual of the perturbed LP has the

same constraints at the original LP:
max (

0

)bb

A c















So an optimal solution * of the original dual is feasible in the

perturbed dual.

59

Dual multipliers as marginal costs

min

0

cx

Ax b b

x

 





Suppose we perturb the RHS of an LP

(i.e., change the requirement levels):

By weak duality, the optimal value of the perturbed LP is at least

*(b + b) = *b + *b.

So i* is a lower bound on the marginal cost of increasing the

i-th requirement by one unit (bi = 1).

Optimal value of original LP, by strong duality.

If i* > 0, the i-th constraint must be tight (complementary slackness).

60

Dual of an LP in equality form

Primal Dual





 



m n

, 0

)

i

(

B B N N

B N

B N

c x c x

Bx Nx b

x x

(

max

 unrestric

)

d

)

te

(

B

N

B

B

x

b

B c

c xN













61

Dual of an LP in equality form

Primal Dual

Recall that reduced cost vector is 1

N Bc c B N Nc N 

this solves the dual

if (xB,0) solves the primal







 



m n

, 0

)

i

(

B B N N

B N

B N

c x c x

Bx Nx b

x x

(

max

 unrestric

)

d

)

te

(

B

N

B

B

x

b

B c

c xN













62

Dual of an LP in equality form

Primal Dual

Check: 1

1

B B

B N

B c B B c

N c B N c









 

 

Because reduced cost is nonnegative

at optimal solution (xB,0).

Recall that reduced cost vector is 1

N Bc c B N Nc N 

this solves the dual

if (xB,0) solves the primal







 



m n

, 0

)

i

(

B B N N

B N

B N

c x c x

Bx Nx b

x x

(

max

 unrestric

)

d

)

te

(

B

N

B

B

x

b

B c

c xN













63

Dual of an LP in equality form





 



m n

, 0

)

i

(

B B N N

B N

B N

c x c x

Bx Nx b

x x

Primal Dual

(

max

 unrestric

)

d

)

te

(

B

N

B

B

x

b

B c

c xN













   
1/ 21 0

4 0 2 0
1 1

Bc B   
    

In the example,

Recall that reduced cost vector is 1

N Bc c B N Nc N 

this solves the dual

if (xB,0) solves the primal



64

Dual of an LP in equality form





 



m n

, 0

)

i

(

B B N N

B N

B N

c x c x

Bx Nx b

x x

Primal Dual

(

max

 unrestric

)

d

)

te

(

B

N

B

B

x

b

B c

c xN













Note that the reduced cost of an individual variable xj is

Recall that reduced cost vector is 1

N Bc c B N Nc N 



j j jr c A 

Column j of A

65

 One way to filter the domain of xj is to minimize and maximize xj

subject to Ax  b, x  0.

- This is time consuming.

 A faster method is to use dual multipliers to derive valid

inequalities.

- A special case of this method uses reduced costs to bound or

fix variables.

- Reduced-cost variable fixing is a widely used technique in OR.

LP-based Domain Filtering

min

0

cx

Ax b

x





Let be an LP relaxation of a CP problem.

66

min

0

cx

Ax b

x





Suppose:

has optimal solution x*, optimal value v*, and

optimal dual solution *.

…and i* > 0, which means the i-th constraint is tight

(complementary slackness);

…and the LP is a relaxation of a CP problem;

…and we have a feasible solution of the CP problem with value

U, so that U is an upper bound on the optimal value.

67

min

0

cx

Ax b

x





Supposing
has optimal solution x*, optimal value v*, and

optimal dual solution *:

If x were to change to a value other than x*, the LHS of i-th constraint

Aix  bi would change by some amount bi.

Since the constraint is tight, this would increase the optimal value

as much as changing the constraint to Aix  bi + bi.

So it would increase the optimal value at least i*bi.

68

We have found: a change in x that changes Aix by bi increases

the optimal value of LP at least i*bi.

Since optimal value of the LP  optimal value of the CP  U,

we have i*bi  U  v*, or *

*i

i

U v
b




 

min

0

cx

Ax b

x





Supposing
has optimal solution x*, optimal value v*, and

optimal dual solution *:

69

Since bi = Aix  Aix* = Aix  bi, this implies the inequality
*

*

i

i

i

U v
A x b




 

…which can be propagated.

min

0

cx

Ax b

x





Supposing
has optimal solution x*, optimal value v*, and

optimal dual solution *:

We have found: a change in x that changes Aix by bi increases

the optimal value of LP at least i*bi.

Since optimal value of the LP  optimal value of the CP  U,

we have i*bi  U  v*, or *

*i

i

U v
b




 

70

1 2

1 2

1 2

2

1

1

1

(2

min

)

4 7

2 3 6

2 4

, 0

(0)

x x

x x

x x

x x









 

 





Example

Suppose we have a feasible solution

of the original CP with value U = 13.

*
1

1 *

1

U v
A x b




 

1 2

13 12
2 3 6 6.5

2
x x


   

Since the first constraint is tight, we can propagate

the inequality

or

71

Reduced-cost domain filtering

Suppose xj* = 0, which means the constraint xj  0 is tight.

*

*

i

i

i

U v
A x b




  becomes

*

j

j

U v
x

r


The inequality

The dual multiplier for xj  0 is the reduced cost

rj of xj, because increasing xj (currently 0) by 1

increases optimal cost by rj.

Similar reasoning can bound a variable below when it is at its

upper bound.

72

1 2

1 2

1 2

2

1

1

1

(2

min

)

4 7

2 3 6

2 4

, 0

(0)

x x

x x

x x

x x









 

 





Example

Suppose we have a feasible solution

of the original CP with value U = 13.

Since x2* = 0, we have

or

*

2

2

U v
x

r




2

13 12
0.5

2
x


 

If x2 is required to be integer, we can fix it to zero.

This is reduced-cost variable fixing.

73

Example: Single-Vehicle Routing

A vehicle must make several stops and return home, perhaps subject

to time windows.

The objective is to find the order of stops that minimizes travel time.

This is also known as the traveling salesman problem (with time

windows).

Stop i

Stop j

Travel time cij

74

Assignment Relaxation

 

min

1, all

0,1 , all ,

ij ij

ij

ij ji

j j

ij

c x

x x i

x i j

 





 

= 1 if stop i immediately precedes stop j

Stop i is preceded and

followed by exactly one stop.

75

Assignment Relaxation

min

1, al

0 1, all ,

l

ij ij

ij

ij ji

j j

ij

c

x

i j

x i

x

x

 

 



 

= 1 if stop i immediately precedes stop j

Stop i is preceded and

followed by exactly one stop.

Because this problem is totally unimodular, it can be solved as an LP.

The relaxation provides a very weak lower bound on the optimal value.

But reduced-cost variable fixing can be very useful in a CP context.

76

Disjunctions of linear systems often occur naturally in problems

and can be given a convex hull relaxation.

A disjunction of linear systems

represents a union of polyhedra.
 

min

k k

k

cx

A x b

Disjunctions of linear systems

77

Disjunctions of linear systems often occur naturally in problems

and can be given a convex hull relaxation.

A disjunction of linear systems

represents a union of polyhedra.

We want a convex hull relaxation

(tightest linear relaxation).

 

min

k k

k

cx

A x b

Relaxing a disjunction of linear systems

78

Relaxing a disjunction of linear systems

Disjunctions of linear systems often occur naturally in problems

and can be given a convex hull relaxation.

The closure of the convex hull of

 

min

k k

k

cx

A x b

min

, all

1

0 1

k k k

k

k

k

k

k

k

cx

A x b y k

y

x x

y







 





…is described by

79

Why?

Convex hull relaxation

(tightest linear relaxation)

To derive convex hull

relaxation of a disjunction…

min

, all

1

0 1

k k k

k

k

k

k

k

k

cx

A x b k

y

x y x

y







 





Write each

solution as a

convex

combination

of points in

the

polyhedron

x
1x

2x

80

Why?

Convex hull relaxation

(tightest linear relaxation)

min

, all

1

0 1

k k k

k

k

k

k

k

k

cx

A x b y k

y

x x

y







 





To derive convex hull

relaxation of a disjunction…

min

, all

1

0 1

k k k

k

k

k

k

k

k

cx

A x b k

y

x y x

y







 





Write each

solution as a

convex

combination

of points in

the

polyhedron

x
1x

2x

Change of

variable

k k

kx y x

81

Mixed Integer/Linear Modeling

MILP Representability

Disjunctive Modeling

Knapsack Modeling

82

Motivation

• We can relax a CP problem by modeling some constraints with an MILP.

• If desired, we can then relax the MILP by dropping the integrality constraint,

to obtain an LP.

• The LP relaxation can be strengthened with cutting planes.

• The first step is to learn how to write MILP models.

A mixed integer/linear programming

(MILP) problem has the form
min

, 0

 integer

cx dy

Ax by b

x y

y



 



83

MILP Representability

A subset S of is MILP representable if it is the projection onto x

of some MILP constraint set of the form

 

  



  

, 0

, , 0,1n m

k

Ax Bu Dy b

x y

x u y

n

84

MILP Representability

A subset S of is MILP representable if it is the projection onto x

of some MILP constraint set of the form

 

  



  

, 0

, , 0,1n m

k

Ax Bu Dy b

x y

x u y

n

Theorem. S  is MILP

representable if and only if

S is the union of finitely

many polyhedra having the

same recession cone.

n

Polyhedron

Recession cone

of polyhedron

85

Example: Fixed charge function

Minimize a fixed charge function:

x1

x2

2

1

2

1 1

1

min

0 if 0

if 0

0

x

x
x

f cx x

x

 
  

  



86

Example

Minimize a fixed charge function:
2

1

2

1 1

1

min

0 if 0

if 0

0

x

x
x

f cx x

x

 
  

  



x1

x2

Feasible set

(epigraph

of the

optimization

problem)

87

Example

Minimize a fixed charge function:
2

1

2

1 1

1

min

0 if 0

if 0

0

x

x
x

f cx x

x

 
  

  



x1

x2

Union of two

polyhedra

P1, P2

P1

88

Example

Minimize a fixed charge function:
2

1

2

1 1

1

min

0 if 0

if 0

0

x

x
x

f cx x

x

 
  

  



x1

x2

Union of two

polyhedra

P1, P2

P1

P2

89

Example

Minimize a fixed charge function:
2

1

2

1 1

1

min

0 if 0

if 0

0

x

x
x

f cx x

x

 
  

  



x1

x2

The

polyhedra

have

different

recession

cones.

P1

P1

recession

cone

P2

P2

recession

cone
90

Example

Minimize a fixed charge function:

Add an upper bound on x1

2

1

2

1 1

1

min

0 if 0

if

0

 0

x

x
x

f cx x

x M






  

 





x1

x2

The

polyhedra

have the

same

recession

cone.

P1

P1

recession

cone

P2

P2

recession

coneM 91

Modeling a union of polyhedra

Start with a disjunction of linear

systems to represent the union

of polyhedra.

The kth polyhedron is {x | Akx  b}

 

min

k k

k

cx

A x b

Introduce a 0-1 variable yk that is

1 when x is in polyhedron k.

Disaggregate x to create an xk for

each k.

 

min

, all

1

0,1

k k k

k

k

k

k

k

k

cx

A x b y k

y

x x

y













92

Example

Start with a disjunction of

linear systems to represent

the union of polyhedra

2

1 1

2 2 1

min

0 0

0

x

x x M

x x f cx

     
        

x1

x2

P1

P2

M 93

Example

Start with a disjunction of

linear systems to represent

the union of polyhedra

2

1 1

2 2 1

min

0 0

0

x

x x M

x x f cx

     
        

 

1 1

1 2

2 2 2

1 2 1 2 2

1 2

1 2

min

0, 0

0 ,

1, 0,1k

cx

x x

x My cx x fy

y y y

x x x

 

    

  

 

Introduce a 0-1 variable yk

that is 1 when x is in

polyhedron k.

Disaggregate x to create an

xk for each k.

94

Example

To simplify:

Replace x1
2 with x1.

Replace x2
2 with x2.

Replace y2 with y.  

2

1 1

1 2

2 2 2

1 2 1 2 2

1 2

1 2

min

0, 0

0 ,

1, 0,1k

x

x x

x My cx x fy

y y y

x x x

 

    

  

 

This yields

 

2

1

2 1

min

0

0,1

x

x My

x fy cx

y

 

 



 

min

0

0,1

fy cx

x My

y



 



or

“Big M ”

95

Disjunctive Modeling

Disjunctions often occur naturally in problems and can be given

an MILP model.

Recall that a disjunction of linear

systems (representing polyhedra

with the same recession cone)  

min

k k

k

cx

A x b

 

min

, all

1

0,1

k k k

k

k

k

k

k

k

cx

A x b y k

y

x x

y













…has the MILP model

96

Example: Uncapacitated facility location

i j

fi cij

Fixed

cost Transport

cost

m possible

factory

locations n markets Locate factories to serve

markets so as to minimize

total fixed cost and

transport cost.

No limit on production

capacity of each factory.

97

Uncapacitated facility location

i j

fi cij

Fixed

cost Transport

cost

n markets Disjunctive model:

min

0, all 0 1, all
, all

0

1, all

i ij ij

i ij

ij ij

i i i

ij

i

z c x

x j x j
i

z z f

x j



     
       



 



No factory

at location i

Factory

at location i

Fraction of

market j’s demand

satisfied from

location im possible

factory

locations

98

Uncapacitated facility location

MILP formulation: Disjunctive model:

min

0, all 0 1, all
, all

0

1, all

i ij ij

i ij

ij ij

i i i

ij

i

z c x

x j x j
i

z z f

x j



     
       



 



No factory

at location i

Factory

at location i

 

min

0 , all ,

0,1

i i ij ij

i ij

ij i

i

f y c x

x y i j

y



 



 

Based on LP relaxation

of disjunction described

earlier

99

Uncapacitated facility location

MILP formulation:

 

min

0 , all ,

0,1

i i ij ij

i ij

ij i

i

f y c x

x y i j

y



 



 

Beginner’s model:

 

min

, all ,

0,1

i i ij ij

i ij

ij i

j

i

f y c x

x ny i j

y







 



Based on capacitated location model.

It has a weaker continuous relaxation

(obtained by replacing yi  {0,1} with 0  yi  1).

This beginner’s mistake can be avoided by

starting with disjunctive formulation.

Maximum output

from location i

100

Knapsack Modeling

• Knapsack models consist of knapsack covering and

knapsack packing constraints.

• The freight transfer model presented earlier is an example.

• We will consider a similar example that combines disjunctive

and knapsack modeling.

• Most OR professionals are unlikely to write a model as good

as the one presented here.

101

Note on tightness of knapsack models

• The continuous relaxation of a knapsack model is not in general

a convex hull relaxation.

- A disjunctive formulation would provide a convex hull

relaxation, but there are exponentially many disjuncts.

• Knapsack cuts can significantly tighten the relaxation.

102

 

min

; 1, all

1

0

0 , all

0
0 1, all

, 0,1

i

i

i i j ij

i j i

i

ii i

ij ij i

j
ij

ij

ij i

z

Q y a x j

y

yz c

z ia x Q

x
x j

x y

 

 
   
   

    
       





  



Example: Package transport

Each package j

has size aj

Each truck i has

capacity Qi and

costs ci to

operate

Disjunctive model Knapsack

constraints

Truck i used
Truck i not used

1 if truck i carries

package j 1 if truck i is used

103

Example: Package transport

 

min

; 1, all

1

0

0 , all

0
0 1, all

, 0,1

i

i

i i j ij

i j i

i

ii i

ij ij i

j
ij

ij

ij i

z

Q y a x j

y

yz c

z ia x Q

x
x j

x y

 

 
   
   

    
       





  



Disjunctive modelMILP model

 

min

; 1, all

, all

, all ,

, 0,1

i i

i

i i j ij

i j i

j ij i i

j

ij i

ij i

c y

Q y a x j

a x Q y i

x y i j

x y

 









  



104

Example: Package transport

MILP model

 

min

; 1, all

, all

, all ,

, 0,1

i i

i

i i j ij

i j i

j ij i i

j

ij i

ij i

c y

Q y a x j

a x Q y i

x y i j

x y

 









  

 Modeling trick;

unobvious without

disjunctive approach

Most OR professionals

would omit this constraint,

since it is the sum over i

of the next constraint.

But it generates very

effective knapsack cuts.

105

Cutting Planes

0-1 Knapsack Cuts

Gomory Cuts

Mixed Integer Rounding Cuts

Example: Product Configuration

106

Cutting

plane

Feasible solutions

Continuous

relaxation

To review…

A cutting plane (cut, valid inequality) for

an MILP model:

• …is valid

- It is satisfied by all feasible solutions

of the model.

• …cuts off solutions of the continuous

relaxation.

- This makes the relaxation tighter.

107

Motivation

• Cutting planes (cuts) tighten the continuous relaxation of an

MILP model.

• Knapsack cuts

- Generated for individual knapsack constraints.

- We saw general integer knapsack cuts earlier.

- 0-1 knapsack cuts and lifting techniques are well studied

and widely used.

• Rounding cuts

- Generated for the entire MILP, they are widely used.

- Gomory cuts for integer variables only.

- Mixed integer rounding cuts for any MILP.

108

0-1 Knapsack Cuts

0-1 knapsack cuts are designed for knapsack constraints with 0-1

variables.

The analysis is different from that of general knapsack constraints,

to exploit the special structure of 0-1 inequalities.

109

0-1 Knapsack Cuts

0-1 knapsack cuts are designed for knapsack constraints with 0-1

variables.

The analysis is different from that of general knapsack constraints,

to exploit the special structure of 0-1 inequalities.

Consider a 0-1 knapsack packing constraint ax  a0. (Knapsack

covering constraints are similarly analyzed.)

Index set J is a cover if 0j

j J

a a




The cover inequality is a 0-1 knapsack cut for

ax  a0

1j

j J

x J


 

Only minimal covers need be considered.
110

Example

Index set J is a cover if 0j

j J

a a




The cover inequality is a 0-1 knapsack cut for

ax  a0

1j

j J

x J


 

J = {1,2,3,4} is a cover for

1 2 3 4 5 66 5 5 5 8 3 17x x x x x x     

Only minimal covers need be considered.

This gives rise to the cover inequality

1 2 3 4 3x x x x   

111

Sequential lifting

• A cover inequality can often be strengthened by lifting it into a

higher dimensional space.

• That is, by adding variables.

• Sequential lifting adds one variable at a time.

• Sequence-independent lifting adds several variables at once.

112

Sequential lifting

To lift a cover inequality 1j

j J

x J


 

add a term to the left-hand side 1j k k

j J

x x J


  

where k is the largest coefficient for which the inequality is still valid.

So,
  00,1

for

1 max
j

k j j j k
x

j J j J
j J

J x a x a a


 


 
     

 
 

This can be done repeatedly (by dynamic programming).

113

Example

To lift

add a term to the left-hand side

This yields

 
 5 1 2 3 4 1 2 3 4

0,1

for {1,2,3,4}

3 max 6 5 5 5 17 8
jx

j

x x x x x x x x




         

Further lifting leaves the cut unchanged.

But if the variables are added in the order x6, x5, the result is different:

1 2 3 4 3x x x x   

1 2 3 4 5 5 3x x x x x    

Given
1 2 3 4 5 66 5 5 5 8 3 17x x x x x x     

where

1 2 3 4 52 3x x x x x    

1 2 3 4 5 6 3x x x x x x     

114

Sequence-independent lifting

• Sequence-independent lifting usually yields a weaker cut than

sequential lifting.

• But it adds all the variables at once and is much faster.

• Commonly used in commercial MILP solvers.

115

Sequence-independent lifting

To lift a cover inequality 1j

j J

x J


 

add terms to the left-hand side () 1j j k

j J j J

x a x J
 

   

where

with

 

 
1if and 0, , 1

() () / if and 1, , 1

() / if

j j

j j j

p p

j A u A j p

u j u A A u A j p

p u A A u




      


           
      

0j

j J

a a


  

 1, ,J p

1

j

j k

k

A a




0 0A 

116

Example

To lift

Add terms

1 2 3 4 3x x x x   

1 2 3 4 5 6(8) (3) 3x x x x x x      

Given
1 2 3 4 5 66 5 5 5 8 3 17x x x x x x     

where (u) is given by

This yields the lifted cut

1 2 3 4 5 6(5 / 4) (1/ 4) 3x x x x x x     

117

Gomory Cuts

• When an integer programming

problem has a nonintegral solution,

we can generate at least one Gomory

cut to cut off that solution.

- This is a special case of a

separating cut, because it

separates the current solution of

the relaxation from the feasible

set.

• Gomory cuts are widely used and

very effective in MILP solvers.

Separating

cut

Feasible solutions

Solution of

continuous

relaxation

118

min

0 and integral

cx

Ax b

x





Gomory cuts

Given an integer programming

problem

Let (xB,0) be an optimal solution

of the continuous relaxation,

where
ˆ ˆ

B Nx b Nx 
1 1ˆ ˆ, b B b N B N  

Then if xi is nonintegral in this solution, the following Gomory cut is

violated by (xB,0):
ˆ ˆ

i i N ix N x b       

119

1 2

1 2

1 2

1 2

min 2 3

3 3

4 3 6

, 0 and integral

x x

x x

x x

x x



 

 



Example

1 2

1 2 3

1 2 4

min 2 3

3 3

4 3 6

0 and integralj

x x

x x x

x x x

x



  

  



or Optimal solution of

the continuous

relaxation has

1/ 3 1/ 3
ˆ

4 / 9 1/ 9
N

 
   

1
ˆ

2 / 3
b

 
  
 

1

2

1

2/3
B

x
x

x

   
    

  

120

1 2

1 2

1 2

1 2

min 2 3

3 3

4 3 6

, 0 and integral

x x

x x

x x

x x



 

 



Example

1 2

1 2 3

1 2 4

min 2 3

3 3

4 3 6

0 and integralj

x x

x x x

x x x

x



  

  



or Optimal solution of

the continuous

relaxation has

1/ 3 1/ 3
ˆ

4 / 9 1/ 9
N

 
   

1
ˆ

2 / 3
b

 
  
 

ˆ ˆ
i i N ix N x b       

1

2

1

2/3
B

x
x

x

   
    

  

The Gomory cut

is   3

2

4

4 /9 1/ 9 2 /3
x

x
x

 
         

 

or
2 3 0x x  In x1,x2 space this is 1 22 3x x 

121

1 2

1 2

1 2

1 2

min 2 3

3 3

4 3 6

, 0 and integral

x x

x x

x x

x x



 

 



Example

1 2

1 2 3

1 2 4

min 2 3

3 3

4 3 6

0 and integralj

x x

x x x

x x x

x



  

  



or Optimal solution of

the continuous

relaxation has

1/ 3 1/ 3
ˆ

4 / 9 1/ 9
N

 
   

1
ˆ

2 / 3
b

 
  
 

1

2

1

2/3
B

x
x

x

   
    

  

Gomory cut x1 + 2x2  3

Gomory cut after re-solving LP with

previous cut.

1
ˆ

2 / 3
b

 
  
 

122

Mixed Integer Rounding Cuts

• Mixed integer rounding (MIR) cuts can be generated for solutions

of any relaxed MILP in which one or more integer variables has a

fractional value.

− Like Gomory cuts, they are separating cuts.

− MIR cuts are widely used in commercial solvers.

min

, 0 and integral

cx dy

Ax Dy b

x y y



 



MIR cuts

Given an MILP problem

In an optimal solution of the

continuous relaxation, let

J = { j | yj is nonbasic}

K = { j | xj is nonbasic}

N = nonbasic cols of [A D]

Then if yi is nonintegral in this solution, the following MIR cut is

violated by the solution of the relaxation:

1 2

ˆfrac() 1ˆ ˆ ˆ ˆ ˆ
ˆ ˆfrac() frac()

ij

i ij j ij ij j ij i

j J j J j Ki i

N
y N y N N x N b

b b



  

 
               

 
  

where  1
ˆ ˆfrac() frac()ij jJ j J N b  

2 1\J J J

Example

Take basic solution (x1,y1) = (8/3,17/3).

Then
1 2 1 2

1 2 1 2

3 4 6 4 1

2 3

, 0, integerj j j

x x y y

x x y y

x y y

   

   



1/ 3 2 / 3
ˆ

2 / 3 8 / 3
N

 
   

8 / 3
ˆ

17 / 3
b

 
  
 

J = {2}, K = {2}, J1 = , J2 = {2}

The MIR cut is 1 2 2

1/ 3 1
1/ 3 (2 /3) 8 /3

2 / 3 2 /3
y y x 
          
 

or 1 2 2(1/ 2) 3y y x  

Lagrangean Relaxation

Lagrangean Duality

Properties of the Lagrangean Dual

Example: Fast Linear Programming

Domain Filtering

Example: Continuous Global Optimization

Motivation

• Lagrangean relaxation can provide better bounds than LP

relaxation.

• The Lagrangean dual generalizes LP duality.

• It provides domain filtering analogous to that based on LP

duality.

- This is a key technique in continuous global optimization.

• Lagrangean relaxation gets rid of troublesome constraints by

dualizing them.

- That is, moving them into the objective function.

- The Lagrangean relaxation may decouple.

Lagrangean Duality

Consider an

inequality-constrained

problem

min ()

() 0

f x

g x

x S





Hard constraints

Easy constraints

The object is to get rid of (dualize) the hard constraints

by moving them into the objective function.

Lagrangean Duality

Consider an

inequality-constrained

problem

max

() ()
s S

v

g x b f x v


  

min ()

() 0

f x

g x

x S



 implies

Lagrangean Dual problem: Find the tightest lower bound

on the objective function that is implied by the constraints.

It is related to an

inference problem

() 0 dominates () 0
() 0 () iff

for some 0

x S g x f x v
g x f x v





   
  



max

() ()
s S

v

g x b f x v


  

min ()

() 0

f x

g x

x S





Let us say that

Primal Dual

Surrogate

g(x)  f(x)  v for all x  S

That is, v  f(x)  g(x) for all x  S

() 0 dominates () 0
() 0 () iff

for some 0

x S g x f x v
g x f x v





   
  



max

() ()
s S

v

g x b f x v


  

min ()

() 0

f x

g x

x S





Let us say that

Primal Dual

Surrogate

g(x)  f(x)  v for all x  S

That is, v  f(x)  g(x) for all x  S

If we replace domination with material implication,

we get the surrogate dual, which gives better bounds

but lacks the nice properties of the Lagrangean dual.

() 0 dominates () 0
() 0 () iff

for some 0

x S g x f x v
g x f x v





   
  



max

() ()
s S

v

g x b f x v


  

min ()

() 0

f x

g x

x S





Let us say that

Primal Dual

Surrogate

g(x)  f(x)  v for all x  S

That is, v  f(x)  g(x) for all x  S

Or  min () ()
x S

v f x g x


 

() 0 dominates () 0
() 0 () iff

for some 0

x S g x f x v
g x f x v





   
  



g(x)  f(x)  v for all x  S

That is, v  f(x)  g(x) for all x  S

Or

max

() ()
s S

v

g x b f x v


  

min ()

() 0

f x

g x

x S





Let us say that

Primal Dual

So the dual becomes

 

max

min () () for some 0
x S

v

v f x g x 


  

 min () ()
x S

v f x g x


 

Surrogate

min ()

() 0

f x

g x

x S





Primal Dual

Now we have…

0
max ()


 


or where

 () min () ()
x S

f x g x  


 

 

max

min () () for some 0
x S

v

v f x g x 


  

Lagrangean

relaxation

Vector of

Lagrange

multipliers

The Lagrangean dual can be viewed as the problem

of finding the Lagrangean relaxation that gives the

tightest bound.

These constraints

are dualized

Example

 

1 2

1 2

1 2

1 2

min 3 4

3 0

2 5 0

, 0,1,2,3

x x

x x

x x

x x



  

  



Optimal solution (2,1)

Strongest

surrogate

 

 

1 2 1 2 1 1 2 2 1 2
{0, ,3}

1 2 1 1 2 2 2
{0, ,3}

(,) min 3 4 (3) (2 5)

min (3 2) (4 3) 5

j

j

x

x

x x x x x x

x x

    

    





       

      

The Lagrangean relaxation is

The Lagrangean relaxation is easy to solve

for any given 1, 2:

1 2

1

0 if 3 2 0

3 otherwise
x

   
 


1 2

2

0 if 4 3 0

3 otherwise
x

   
 


Example

 

1 2

1 2

1 2

1 2

min 3 4

3 0

2 5 0

, 0,1,2,3

x x

x x

x x

x x



  

  



(1,2) is piecewise linear and concave.

Optimal solution (2,1)

Value = 10

1

2

()=0

()=9 2/7

()=5

()=0

()=7.5

Solution of Lagrangean dual:

(1,2) = (5/7, 13/7), () = 9 2/7

Note duality gap between 10 and 9 2/7

(no strong duality).

Example

 

1 2

1 2

1 2

1 2

min 3 4

3 0

2 5 0

, 0,1,2,3

x x

x x

x x

x x



  

  



Note: in this example, the Lagrangean dual

provides the same bound (9 2/7) as the

continuous relaxation of the IP.

This is because the Lagrangean relaxation

can be solved as an LP:

Lagrangean duality is useful when the

Lagrangean relaxation is tighter than an LP

but nonetheless easy to solve.

 

 

{0,
1 2 1 2 1 1 2 2 2

1 2 1 1 2 2 2

,3}

0 3

(,) min (3 2) (4 3) 5

min (3 2) (4 3) 5

j

j

x

x

x x

x x

       

    



 

      

      

Properties of the Lagrangean dual

Weak duality: For any feasible x* and any *  0, f(x*)  (*).

In particular, min ()

() 0

f x

g x

x S







0
max ()


 


Concavity: () is concave. It can therefore be maximized by

local search methods.

Complementary slackness: If x* and * are optimal, and there

is no duality gap, then *g(x*) = 0.

Solving the Lagrangean dual

Let k be the kth iterate, and let 1k k k

k     

Subgradient of () at  = k

If xk solves the Lagrangean relaxation for  = k, then k = g(xk).

This is because () = f(xk) + g(xk) at  = k.

The stepsize k must be adjusted so that the sequence

converges but not before reaching a maximum.

Example: Fast Linear Programming

• In CP contexts, it is best to process each node of the search tree

very rapidly.

• Lagrangean relaxation may allow very fast calculation of a lower

bound on the optimal value of the LP relaxation at each node.

• The idea is to solve the Lagrangean dual at the root node (which

is an LP) and use the same Lagrange multipliers to get an LP

bound at other nodes.

At root node, solve min

()

0

cx

Ax b

Dx d

x







The (partial) LP dual solution *

solves the Lagrangean dual in which

Dualize

 
0

() min ()
Dx d

x

cx Ax b  




  

Special structure,

e.g. variable bounds

At root node, solve min

()

0

cx

Ax b

Dx d

x







The (partial) LP dual solution *

solves the Lagrangean dual in which

Dualize

 
0

() min ()
Dx d

x

cx Ax b  




  

At another node, the LP is

min

()

0

cx

Ax b

Dx d

Hx h

x









Branching

constraints,

etc.
Here (*) is still a lower bound on the optimal

value of the LP and can be quickly calculated

by solving a specially structured LP.

Special structure,

e.g. variable bounds

min ()

() 0

f x

g x

x S





Suppose:

has optimal solution x*, optimal value v*, and

optimal Lagrangean dual solution *.

…and i* > 0, which means the i-th constraint is tight

(complementary slackness);

…and the problem is a relaxation of a CP problem;

…and we have a feasible solution of the CP problem with value

U, so that U is an upper bound on the optimal value.

Domain Filtering

min ()

() 0

f x

g x

x S





Supposing
has optimal solution x*, optimal value v*, and

optimal Lagrangean dual solution *:

If x were to change to a value other than x*, the LHS of i-th constraint

gi(x)  0 would change by some amount i.

Since the constraint is tight, this would increase the optimal value

as much as changing the constraint to gi(x)  i  0.

So it would increase the optimal value at least i*i.

(It is easily shown that Lagrange multipliers are marginal costs. Dual

multipliers for LP are a special case of Lagrange multipliers.)

We have found: a change in x that changes gi(x) by i increases

the optimal value at least i*i.

Since optimal value of this problem  optimal value of the CP  U,

we have i*i  U  v*, or *

*i

i

U v




 

min ()

() 0

f x

g x

x S





Supposing
has optimal solution x*, optimal value v*, and

optimal Lagrangean dual solution *:

Since i = gi(x)  gi(x*) = gi(x), this implies the inequality
*

*
()i

i

U v
g x






…which can be propagated.

We have found: a change in x that changes gi(x) by i increases

the optimal value at least i*i.

Since optimal value of this problem  optimal value of the CP  U,

we have i*i  U  v*, or *

*i

i

U v




 

min ()

() 0

f x

g x

x S





Supposing
has optimal solution x*, optimal value v*, and

optimal Lagrangean dual solution *:

Example: Continuous Global Optimization

• Some of the best continuous global solvers (e.g., BARON)

combine OR-style relaxation with CP-style interval arithmetic and

domain filtering.

• These methods can be combined with domain filtering based on

Lagrange multipliers.

Feasible set

Global optimum

Local optimum

x1

x2

Continuous Global Optimization

1 2

1 2

1 2

1 2

max

4 1

2 2

[0,1], [0,2]

x x

x x

x x

x x





 

 

To solve it:

• Search: split interval domains of x1, x2.

– Each node of search tree is a problem restriction.

• Propagation: Interval propagation, domain filtering.

– Use Lagrange multipliers to infer valid inequality for

propagation.

– Reduced-cost variable fixing is a special case.

• Relaxation: Use McCormick factorization to obtain linear

continuous relaxation.

Interval propagation

Propagate intervals

[0,1], [0,2]

through constraints

to obtain

[1/8,7/8], [1/4,7/4]

x1

x2

Relaxation (McCormick factorization)

Factor complex functions into elementary functions that have

known linear relaxations.

Write 4x1x2 = 1 as 4y = 1 where y = x1x2.

This factors 4x1x2 into linear function 4y and bilinear function x1x2.

Linear function 4y is its own linear relaxation.

Relaxation (McCormick factorization)

Factor complex functions into elementary functions that have

known linear relaxations.

For example, consider function f(x) = x2sin x

Factor into elementary functions:

Let y = x2, z = sin x, f(x) = yz

Now write linear relaxations of the elementary functions.

where domain of xj is [,]j jx x

Relaxation (McCormick factorization)

Factor complex functions into elementary functions that have

known linear relaxations.

Write 4x1x2 = 1 as 4y = 1 where y = x1x2.

This factors 4x1x2 into linear function 4y and bilinear function x1x2.

Linear function 4y is its own linear relaxation.

Bilinear function y = x1x2 has relaxation:

2 1 1 2 1 2 2 1 1 2 1 2

2 1 1 2 1 2 2 1 1 2 1 2

x x x x x x y x x x x x x

x x x x x x y x x x x x x

     

     

The linear relaxation becomes:

Relaxation (McCormick factorization)

1 2

1 2

2 1 1 2 1 2 2 1 1 2 1 2

2 1 1 2 1 2 2 1 1 2 1 2

min

4 1

2 2

, 1,2j j j

x x

y

x x

x x x x x x y x x x x x x

x x x x x x y x x x x x x

x x x j





 

     

     

  

Solve linear relaxation.

x1

x2

Relaxation (McCormick factorization)

x1

x2

Since solution is infeasible,

split an interval and branch.

Solve linear relaxation.

Relaxation (McCormick factorization)

2 [1,1.75]x 

2 [0.25,1]x 

x1

x2

x1

x2

2 [1,1.75]x  2 [0.25,1]x 

Solution of

relaxation is

feasible,

value = 1.25

This becomes

incumbent

solution

x1

x2

x1

x2

2 [1,1.75]x  2 [0.25,1]x 

Solution of

relaxation is

feasible,

value = 1.25

This becomes

incumbent

solution

x1

x2

x1

x2

Solution of

relaxation is

not quite

feasible,

value = 1.854

Also use

Lagrange

multipliers for

domain

filtering…

2 [1,1.75]x  2 [0.25,1]x 

1 2

1 2

2 1 1 2 1 2 2 1 1 2 1 2

2 1 1 2 1 2 2 1 1 2 1 2

min

4 1

2 2

, 1,2j j j

x x

y

x x

x x x x x x y x x x x x x

x x x x x x y x x x x x x

x x x j





 

     

     

  

Associated Lagrange

multiplier in solution of

relaxation is 2 = 1.1

Relaxation (McCormick factorization)

This yields a valid inequality for propagation:

Associated Lagrange

multiplier in solution of

relaxation is 2 = 1.1

1 2

1.854 1.25
2 2 1.451

1.1
x x


   

Relaxation (McCormick factorization)

Value of

relaxation
Lagrange multiplier

Value of incumbent

solution

1 2

1 2

2 1 1 2 1 2 2 1 1 2 1 2

2 1 1 2 1 2 2 1 1 2 1 2

min

4 1

2 2

, 1,2j j j

x x

y

x x

x x x x x x y x x x x x x

x x x x x x y x x x x x x

x x x j





 

     

     

  

Constraint Programming Concepts

Domain Consistency

Cumulative Scheduling

Domain Consistency

• Also known as generalized arc consistency.

• A constraint set is domain consistent if every value in

every variable domain is part of some feasible solution.

• That is, the domains are reduced as much as

possible.

• Domain reduction is CP’s biggest engine.

Domain Consistency

Consider the constraint set

It is not domain consistent, because 0 appears in the

domain of x1, and yet no solution has x1 = 0.

Removing 0 from domain of x1 = 1 makes the set domain

consistent.

 

1 100

1 100

1

0

0,1j

x x

x x

x

 

 



subtree with 299 nodes

but no feasible solution

By removing 0 from domain of x1,

the left subtree is eliminated

 

1 100

1 100

1

1

other constraints

0,1j

x x

x x

x

 

 



1 0x  1 1x 

Graph coloring problem that can be solved by domain

consistency maintenance alone. Color nodes with red,

green, blue with no two adjacent nodes having the same

color.

Graph coloring problem that can be solved by domain

consistency maintenance alone. Color nodes with red,

green, blue with no two adjacent nodes having the same

color.

Graph coloring problem that can be solved by domain

consistency maintenance alone. Color nodes with red,

green, blue with no two adjacent nodes having the same

color.

Graph coloring problem that can be solved by domain

consistency maintenance alone. Color nodes with red,

green, blue with no two adjacent nodes having the same

color.

Graph coloring problem that can be solved by domain

consistency maintenance alone. Color nodes with red,

green, blue with no two adjacent nodes having the same

color.

Graph coloring problem that can be solved by domaim

consistency maintenance alone. Color nodes with red,

green, blue with no two adjacent nodes having the same

color.

Graph coloring problem that can be solved by domain

consistency maintenance alone. Color nodes with red,

green, blue with no two adjacent nodes having the same

color.

• Used for resource-constrained scheduling.

• Total resources consumed by jobs at any one time must

not exceed L.

Job start times

(variables)
Job processing times

Job resource

requirements

Cumulative scheduling constraint

 1 1 1cumulative (, ,),(, ,),(, ,),n n nt t p p c c L

 1 5

1

5

min

s.t. cumulative (, ,),(3,3,3,5,5),(3,3,3,2,2),7

3

2

z

t t

z t

z t

 

 

Minimize makespan (no deadlines, all release times = 0):

Min makespan = 8

L

1

2 3

4

5

time

resources

Job start times

Processing times

Resources used

L

Cumulative scheduling constraint

CP Filtering Algorithms

All-different

Disjunctive Scheduling

Cumulative Scheduling

Filtering for all-different

Domains can be filtered with an algorithm based on maximum

cardinality bipartite matching and a theorem of Berge.

It is a special case of optimality conditions for max flow.

 1alldiff , , ny y

Filtering for alldiff

Consider the domains

 
 
 
 
 

1

2

3

4

5

1

2,3,5

1,2,3,5

1,5

1,2,3,4,5,6

y

y

y

y

y











y1

y2

y3

y4

y5

1

2

3

4

5

6

Indicate domains with edges

y1

y2

y3

y4

y5

1

2

3

4

5

6

Indicate domains with edges

Find maximum cardinality bipartite

matching.

y1

y2

y3

y4

y5

1

2

3

4

5

6

Indicate domains with edges

Find maximum cardinality bipartite

matching.

y1

y2

y3

y4

y5

1

2

3

4

5

6

Indicate domains with edges

Find maximum cardinality bipartite

matching.

Mark edges in alternating paths

that start at an uncovered vertex.

y1

y2

y3

y4

y5

1

2

3

4

5

6

Indicate domains with edges

Find maximum cardinality bipartite

matching.

Mark edges in alternating paths

that start at an uncovered vertex.

y1

y2

y3

y4

y5

1

2

3

4

5

6

Indicate domains with edges

Find maximum cardinality bipartite

matching.

Mark edges in alternating paths

that start at an uncovered vertex.

Mark edges in alternating cycles.

y1

y2

y3

y4

y5

1

2

3

4

5

6

Indicate domains with edges

Find maximum cardinality bipartite

matching.

Mark edges in alternating paths

that start at an uncovered vertex.

Mark edges in alternating cycles.

Remove unmarked edges not in

matching.

y1

y2

y3

y4

y5

1

2

3

4

5

6

Indicate domains with edges

Find maximum cardinality bipartite

matching.

Mark edges in alternating paths

that start at an uncovered vertex.

Mark edges in alternating cycles.

Remove unmarked edges not in

matching.

Filtering for alldiff

Domains have been filtered:

 
 
 
 
 

1

2

3

4

5

1

2,3,5

1,2,3,5

1,5

1,2,3,4,5,6

y

y

y

y

y











 
 
 
 
 

1

2

3

4

5

1

2,3

2,3

5

4,6

y

y

y

y

y











Domain consistency achieved.

Disjunctive scheduling

Consider a disjunctive scheduling constraint:

 1 2 3 5 1 2 3 5disjunctive (, , ,),(, , ,)s s s s p p p p

Start time variables

Edge finding for disjunctive scheduling

Consider a disjunctive scheduling constraint:

 1 2 3 5 1 2 3 5disjunctive (, , ,),(, , ,)s s s s p p p p

Processing times

Edge finding for disjunctive scheduling

Consider a disjunctive scheduling constraint:

 1 2 3 5 1 2 3 5disjunctive (, , ,),(, , ,)s s s s p p p p

Variable domains defined by time

windows and processing times

1

2

3

5

[0,10 1]

[0,10 3]

[2,7 3]

[4,7 2]

s

s

s

s

 

 

 

 

Edge finding for disjunctive scheduling

Consider a disjunctive scheduling constraint:

 1 2 3 5 1 2 3 5disjunctive (, , ,),(, , ,)s s s s p p p p

A feasible (min makespan) solution:

Time window

Edge finding for disjunctive scheduling

But let’s reduce 2 of the deadlines to 9:

Edge finding for disjunctive scheduling

But let’s reduce 2 of the deadlines to 9:

We will use edge finding

to prove that there is no

feasible schedule.

Edge finding for disjunctive scheduling

We can deduce that job 2 must precede jobs 3 and 5:

Because if job 2 is not first, there is not enough time for all 3

jobs within the time windows:

{2,3,5} {3,5} {2,3,5}L E p 

L{2,3,5}E{3,5}
7<3+3+2

Edge finding for disjunctive scheduling

We can deduce that job 2 must precede jobs 3 and 5:

Because if job 2 is not first, there is not enough time for all 3

jobs within the time windows:

{2,3,5} {3,5} {2,3,5}L E p 

L{2,3,5}E{3,5}
7<3+3+2

Latest deadline

Edge finding for disjunctive scheduling

We can deduce that job 2 must precede jobs 3 and 5:

Because if job 2 is not first, there is not enough time for all 3

jobs within the time windows:

{2,3,5} {3,5} {2,3,5}L E p 

L{2,3,5}E{3,5}
7<3+3+2

Earliest release time

Edge finding for disjunctive scheduling

We can deduce that job 2 must precede jobs 3 and 5:

Because if job 2 is not first, there is not enough time for all 3

jobs within the time windows:

{2,3,5} {3,5} {2,3,5}L E p 

L{2,3,5}E{3,5}
7<3+3+2

Total processing time

Edge finding for disjunctive scheduling

We can deduce that job 2 must precede jobs 3 and 5:

So we can tighten deadline of job 2 to minimum of

{3} {3} 4L p 

L{2,3,5}E{3,5}
7<3+3+2

Since time window of job 2 is now too narrow, there is no

feasible schedule.

{5} {5} 5L p  {3,5} {3,5} 2L p 

Edge finding for disjunctive scheduling

In general, we can deduce that job k must precede all the jobs

in set J:

If there is not enough time for all the jobs after the earliest

release time of the jobs in J

{ } { }J k J J kL E p
 

  {2,3,5} {3,5} {2,3,5}L E p 

Edge finding for disjunctive scheduling

In general, we can deduce that job k must precede all the jobs

in set J:

If there is not enough time for all the jobs after the earliest

release time of the jobs in J

{ } { }J k J J kL E p
 

  {2,3,5} {3,5} {2,3,5}L E p 

Now we can tighten the deadline for job k to:

 min J J
J J

L p 


 {3,5} {3,5} 2L p 

Edge finding for disjunctive scheduling

There is a symmetric rule:

If there is not enough time for all the jobs before the latest

deadline of the jobs in J:

{ } { }J J k J kL E p
 

 

Now we can tighten the release date for job k to:

 max J J
J J

E p 




Edge finding for disjunctive scheduling

Problem: how can we avoid enumerating all subsets J of jobs

to find edges?

{ } { }J k J J kL E p
 

 

…and all subsets J of J to tighten the bounds?

 min J J
J J

L p 




Edge finding for disjunctive scheduling

Key result: We only have to consider sets J whose time

windows lie within some interval.

 min J J
J J

L p 




e.g., J = {3,5}

Edge finding for disjunctive scheduling

Key result: We only have to consider sets J whose time

windows lie within some interval.

Removing a job from those within an interval only weakens the

test

 min J J
J J

L p 




e.g., J = {3,5}

{ } { }J k J J kL E p
 

 

There are a polynomial number of intervals

defined by release times and deadlines.

Edge finding for disjunctive scheduling

Key result: We only have to consider sets J whose time

windows lie within some interval.

 min J J
J J

L p 




e.g., J = {3,5}

Note: Edge finding does not achieve bounds consistency,

which is an NP-hard problem.

Edge finding for disjunctive scheduling

One O(n2) algorithm is based on the Jackson pre-emptive

schedule (JPS). Using a different example, the JPS is:

Edge finding for disjunctive scheduling

One O(n2) algorithm is based on the Jackson pre-emptive

schedule (JPS). Using a different example, the JPS is:

For each job

Scan jobs in decreasing order of

Select first for which

Conclude that

Update to JPS(,)

ik

i k

k i i J

ik

i

i

k J L

k L E p p

i J

E i k



  

Jobs unfinished at time Ei in JPS

Jobs j  i in Ji with Lj  Lk

Latest completion time in JPS of jobs in Jik

Total remaining processing

time in JPS of jobs in Jik

Not-first/not-last rules

We can deduce that job 4 cannot precede jobs 1 and 2:

{1,2} 4 1 2 4L E p p p   

Because if job 4 is first, there is too little time to complete the

jobs before the later deadline of jobs 1 and 2:

L{1,2}E4
6<1+3+3

Not-first/not-last rules

We can deduce that job 4 cannot precede jobs 1 and 2:

1 1 3E p 

Now we can tighten the release time of job 4 to minimum of:

L{1,2}E4
6<1+3+3

2 2 4E p 

Not-first/not-last rules

In general, we can deduce that job k cannot precede all the

jobs in J:

J k JL E p 

if there is too little time after release time of job k to complete

all jobs before the latest deadline in J:

Now we can update Ei to

 min j j
j J

E p




Not-first/not-last rules

In general, we can deduce that job k cannot precede all the

jobs in J:

J k JL E p 

if there is too little time after release time of job k to complete

all jobs before the latest deadline in J:

Now we can update Ei to

 min j j
j J

E p




There is a symmetric not-last rule.

The rules can be applied in polynomial time, although an

efficient algorithm is quite complicated.

Cumulative scheduling

Consider a cumulative scheduling constraint:

 1 2 3 1 2 3 1 2 3cumulative (, ,),(, ,),(, ,),s s s p p p c c c C

A feasible solution:

Edge finding for cumulative scheduling

We can deduce that job 3 must finish after the others finish:  3 1,2

Because the total energy required exceeds the area between

the earliest release time and the later deadline of jobs 1,2:

 3 {1,2} {1,2} {1,2,3}e e C L E   

Edge finding for cumulative scheduling

We can deduce that job 3 must finish after the others finish:  3 1,2

Because the total energy required exceeds the area between

the earliest release time and the later deadline of jobs 1,2:

 3 {1,2} {1,2} {1,2,3}e e C L E   

Total energy

required = 22
9

5

8

Edge finding for cumulative scheduling

We can deduce that job 3 must finish after the others finish:  3 1,2

Because the total energy required exceeds the area between

the earliest release time and the later deadline of jobs 1,2:

 3 {1,2} {1,2} {1,2,3}e e C L E   

Total energy

required = 22
9

5

8Area available

= 20

Edge finding for cumulative scheduling

We can deduce that job 3 must finish after the others finish:  3 1,2

We can update the release time of job 3 to

3 {1,2} {1,2}

{1,2}

3

()()Je C c L E
E

c

  


Energy available

for jobs 1,2 if

space is left for job

3 to start anytime

= 10

10

Edge finding for cumulative scheduling

We can deduce that job 3 must finish after the others finish:  3 1,2

We can update the release time of job 3 to

3 {1,2} {1,2}

{1,2}

3

()()Je C c L E
E

c

  


Energy available

for jobs 1,2 if

space is left for job

3 to start anytime

= 10

10Excess energy

required by jobs

1,2 = 4

4

Edge finding for cumulative scheduling

We can deduce that job 3 must finish after the others finish:  3 1,2

We can update the release time of job 3 to

3 {1,2} {1,2}

{1,2}

3

()()Je C c L E
E

c

  


Energy available

for jobs 1,2 if

space is left for job

3 to start anytime

= 10

10Excess energy

required by jobs

1,2 = 4

4 Move up job 3

release time

4/2 = 2 units

beyond E{1,2}

E3

Edge finding for cumulative scheduling

In general, if  { } { }J k J J ke C L E
 

  

then k > J, and update Ek to

()() 0

()()
max

J k J J

J k J J
JJ J

k
e C c L E

e C c L E
E

c
  

  


   

   
 

 

In general, if  { } { }J k J k Je C L E
 

  

then k < J, and update Lk to

()() 0

()()
min

J k J J

J k J J
JJ J

k
e C c L E

e C c L E
L

c
  

  


   

   
 

 

Edge finding for cumulative scheduling

There is an O(n2) algorithm that finds all applications of the

edge finding rules.

Other propagation rules for cumulative

scheduling

• Extended edge finding.

• Timetabling.

• Not-first/not-last rules.

• Energetic reasoning.

CP-based Branch and Price

Basic Idea

Example: Airline Crew Scheduling

Motivation

• Branch and price allows solution of integer programming

problems with a huge number of variables.

• The problem is solved by branching, like a normal IP. The

difference lies in how the LP relaxation is solved.

• Variables are added to the LP relaxation only as needed.

• Variables are priced to find which ones should be added.

• CP is useful for solving the pricing problem, particularly

when constraints are complex.

• CP-based branch and price has been successfully applied

to airline crew scheduling, transit scheduling, and other

transportation-related problems.

Basic Idea

Suppose the LP relaxation of an integer

programming problem has a huge number of

variables:

min

0

cx

Ax b

x





We will solve a restricted master problem,

which has a small subset of the variables:
()

min

0

j j

j J

j j

j J

j

c x

A x b

x














Column j of A

Adding xk to the problem would improve the solution if xk has a

negative reduced cost:
0k k kr c A  

Adding xk to the problem would improve the solution if xk has a

negative reduced cost:
0k k kr c A  

Basic Idea

Computing the reduced cost of xk is known as pricing xk.

min

 is a column of

yc y

y A



If the solution y* satisfies cy*  y* < 0, then we can add column y to

the restricted master problem.

So we solve the pricing problem:

Cost of column y

Basic Idea

max

 is a column of

y

y A



need not be solved to optimality, so long as we find a column with

negative reduced cost.

However, when we can no longer find an improving column, we

solved the pricing problem to optimality to make sure we have the

optimal solution of the LP.

The pricing problem

If we can state constraints that the columns of A must satisfy,

CP may be a good way to solve the pricing problem.

Example: Airline Crew Scheduling

Flight data

Start

time

Finish

time

A roster is the sequence of flights assigned to

a single crew member.

The gap between two consecutive flights in a

roster must be from 2 to 3 hours. Total flight

time for a roster must be between 6 and 10

hours.

For example,

flight 1 cannot immediately precede 6

flight 4 cannot immediately precede 5.

The possible rosters are:

(1,3,5), (1,4,6), (2,3,5), (2,4,6)

We want to assign crew members to flights to minimize

cost while covering the flights and observing complex

work rules.

226

Airline Crew Scheduling

There are 2 crew members, and the possible rosters are:

1 2 3 4

(1,3,5), (1,4,6), (2,3,5), (2,4,6)

The LP relaxation of the problem is:

= 1 if we assign crew member 1

to roster 2, = 0 otherwise.

Cost of assigning crew member 1 to roster 2

Each crew member is assigned to

exactly 1 roster.

Each flight is assigned at least 1

crew member.

227

Airline Crew Scheduling

There are 2 crew members, and the possible rosters are:

1 2 3 4

(1,3,5), (1,4,6), (2,3,5), (2,4,6)

The LP relaxation of the problem is:

= 1 if we assign crew member 1

to roster 2, = 0 otherwise.

Cost of assigning crew member 1 to roster 2

Each crew member is assigned to

exactly 1 roster.

Each flight is assigned at least 1

crew member.

Rosters that cover flight 1.

228

Airline Crew Scheduling

There are 2 crew members, and the possible rosters are:

1 2 3 4

(1,3,5), (1,4,6), (2,3,5), (2,4,6)

The LP relaxation of the problem is:

= 1 if we assign crew member 1

to roster 2, = 0 otherwise.

Cost of assigning crew member 1 to roster 2

Each crew member is assigned to

exactly 1 roster.

Each flight is assigned at least 1

crew member.

Rosters that cover flight 2.

229

Airline Crew Scheduling

There are 2 crew members, and the possible rosters are:

1 2 3 4

(1,3,5), (1,4,6), (2,3,5), (2,4,6)

The LP relaxation of the problem is:

= 1 if we assign crew member 1

to roster 2, = 0 otherwise.

Cost of assigning crew member 1 to roster 2

Each crew member is assigned to

exactly 1 roster.

Each flight is assigned at least 1

crew member.

Rosters that cover flight 3.

230

Airline Crew Scheduling

There are 2 crew members, and the possible rosters are:

1 2 3 4

(1,3,5), (1,4,6), (2,3,5), (2,4,6)

The LP relaxation of the problem is:

= 1 if we assign crew member 1

to roster 2, = 0 otherwise.

Cost of assigning crew member 1 to roster 2

Each crew member is assigned to

exactly 1 roster.

Each flight is assigned at least 1

crew member.

Rosters that cover flight 4.

231

Airline Crew Scheduling

There are 2 crew members, and the possible rosters are:

1 2 3 4

(1,3,5), (1,4,6), (2,3,5), (2,4,6)

The LP relaxation of the problem is:

= 1 if we assign crew member 1

to roster 2, = 0 otherwise.

Cost of assigning crew member 1 to roster 2

Each crew member is assigned to

exactly 1 roster.

Each flight is assigned at least 1

crew member.

Rosters that cover flight 5.

232

Airline Crew Scheduling

There are 2 crew members, and the possible rosters are:

1 2 3 4

(1,3,5), (1,4,6), (2,3,5), (2,4,6)

The LP relaxation of the problem is:

= 1 if we assign crew member 1

to roster 2, = 0 otherwise.

Cost of assigning crew member 1 to roster 2

Each crew member is assigned to

exactly 1 roster.

Each flight is assigned at least 1

crew member.

Rosters that cover flight 6.

233

Airline Crew Scheduling

There are 2 crew members, and the possible rosters are:

1 2 3 4

(1,3,5), (1,4,6), (2,3,5), (2,4,6)

The LP relaxation of the problem is:

= 1 if we assign crew member 1

to roster 2, = 0 otherwise.

Cost c12 of assigning crew member 1 to roster 2

Each crew member is assigned to

exactly 1 roster.

Each flight is assigned at least 1

crew member.

In a real problem, there can be millions of rosters.

234

Airline Crew Scheduling

We start by solving the problem with a subset

of the columns:
Optimal

dual

solution

u1

u2

v1

v2

v3

v4

v5

v6

235

Airline Crew Scheduling

We start by solving the problem with a subset

of the columns:

Dual

variables

u1

u2

v1

v2

v3

v4

v5

v6

236

Airline Crew Scheduling

We start by solving the problem with a subset

of the columns:

The reduced cost of an

excluded roster k for

crew member i is

 in roster k

ik i j

j

c u v  

We will formulate the

pricing problem as a

shortest path problem.

Dual

variables

u1

u2

v1

v2

v3

v4

v5

v6

237

Pricing problem

2

Crew

member 1

Crew

member 2

238

Pricing problem
Each s-t path corresponds to a roster,

provided the flight time is within bounds.

2

Crew

member 1

Crew

member 2

239

Pricing problem
Cost of flight 3 if it immediately follows

flight 1, offset by dual multiplier for flight 1

2

Crew

member 1

Crew

member 2

240

Pricing problem
Cost of transferring from home to flight 1,

offset by dual multiplier for crew member 1

Dual multiplier

omitted to break

symmetry

2

Crew

member 1

Crew

member 2

241

Pricing problem
Length of a path is reduced cost of the

corresponding roster.

2

Crew

member 1

Crew

member 2

242

Crew

member 1

Crew

member 2

Pricing problem
Arc lengths using dual solution of LP

relaxation

10
5 2

2

0

3

4

5 6
1

0
5 2

2

-9

3

4

5 6
1

2

243

Crew

member 1

Crew

member 2

Pricing problem

Solution of shortest path problems

10
5 2

2

0

3

4

5 6
1

0
5 2

2

-9

3

4

5 6
1

2

Reduced cost = 1

Add x12 to problem.

Reduced cost = 2

Add x23 to problem.

After x12 and x23 are added to the problem, no

remaining variable has negative reduced cost.

Pricing problem

The shortest path problem cannot be solved by traditional shortest

path algorithms, due to the bounds on total duration of flights.

It can be solved by CP:

 

 

min max

Path(, ,), all flights

flights , 0, all

i

i i

j j

j X

i i

X z G i

T f s T

X z i



  

 



Set of flights

assigned to crew

member i

Path

length Graph

Path global constraint

Setsum global constraint

Duration of flight j

245

Benders Decomposition

Logic-Based Benders Decomposition

Some Applications

Example: Machine Scheduling

Application: Home Health Care

246

• Benders decomposition is a classical strategy that

does not sacrifice overall optimality.

– Separates the problem into a master problem and

multiple subproblems.

– Variables are partitioned

between master and

subproblems.

– Exploits the fact that the

problem may radically

simplify when the master

problem variables are fixed

to a set of values.

247

Benders Decomposition

Master problem

Subproblems

• But classical Benders decomposition has

a serious limitation.

– The subproblems must be linear programming

problems.

– Or continuous nonlinear programming problems.

– The linear programming dual provides the

Benders cuts.

248

Benders Decomposition

• Logic-based Benders decomposition attempts to

overcome this limitation.

– The subproblem can be any optimization/feasibility

problem, such as a CP problem

– The Benders cuts are obtained from an inference

dual.

– Speedup over state of the art can be several orders

of magnitude.

– Yet the Benders cuts must be designed specifically

for every class of problems.

249

Logic-Based Benders

250

Number of Articles that Mention Benders Decomposition

Source: Google Scholar

Logic-Based Benders

• Logic-based Benders decomposition solves a

problem of the form

– Where the problem simplifies when x is fixed to a specific

value.

251

min (,)

(,)

,x y

f x y

x y S

x D y D



 

Logic-Based Benders

• Decompose problem into master and subproblem.

– Subproblem is obtained by fixing x to solution value in

master problem.

min

() (Benders cuts)k

x

z

z g x

x D





min (,)

(,)

f x y

x y S

Minimize cost z subject to

bounds given by Benders

cuts, obtained from values

of x attempted in previous

iterations k.

Obtain proof of optimality

(solution of inference dual).

Use same proof to deduce

cost bounds for other

assignments, yielding

Benders cut.

Trial value x

that solves

master

Benders cut

z  gk(x)

Master problem Subproblem

x

252

Logic-Based Benders

• Iterate until master problem value equals best

subproblem value so far.

– This yields optimal solution.

min

() (Benders cuts)k

x

z

z g x

x D





min (,)

(,)

f x y

x y S

Minimize cost z subject to

bounds given by Benders

cuts, obtained from values

of x attempted in previous

iterations k.

Trial value x

that solves

master

Benders cut

z  gk(x)

Master problem Subproblem

x

253

Logic-Based Benders

Obtain proof of optimality

(solution of inference dual).

Use same proof to deduce

cost bounds for other

assignments, yielding

Benders cut.

Logic-Based Benders

• Fundamental concept: inference duality

min ()f x

x S

max

()
P

v

x S f x v

P

  

P
Find best feasible

solution by

searching over

values of x.
Find a proof of optimal value v*

by searching over proofs P.

Primal problem:

optimization

Dual problem:

Inference

In classical LP, the proof is a tuple of dual multipliers

254

• The proof that solves the dual in iteration k gives a

bound gk() on the optimal value.

• The same proof gives a bound gk(x) for other values of x.

min

() (Benders cuts)k

x

z

z g x

x D





min (,)

(,)

f x y

x y S
Trial value x

that solves

master

Benders cut

z  gk(x)

Master problem Subproblem

x

255

Logic-Based Benders

x

Minimize cost z subject to

bounds given by Benders

cuts, obtained from values

of x attempted in previous

iterations k.

Obtain proof of optimality

(solution of inference dual).

Use same proof to deduce

cost bounds for other

assignments, yielding

Benders cut.

Logic-Based Benders

• Popular optimization duals are special cases of

the inference dual.

– Result from different choices of inference method.

– For example....

– Linear programming dual

(gives classical Benders cuts)

– Lagrangean dual

– Surrogate dual

– Subadditive dual

256

• Planning and scheduling:

– Machine allocation and scheduling

– Steel production scheduling

– Chemical batch processing (BASF, etc.)

– Auto assembly line management (Peugeot-Citroën)

– Allocation and scheduling of multicore processors

(IBM, Toshiba, Sony)

– Worker assignment

in a queuing

environment

257

Logic-Based Benders Applications

• Other scheduling

– Lock scheduling

– Shift scheduling

– Permutation flow

shop scheduling

with time lags

– Resource-constrained

scheduling

– Hospital scheduling

– Optimal control of

dynamical systems

– Sports scheduling

Logic-Based Benders Applications

258

• Routing and scheduling

– Vehicle routing

– Home health care

– Food distribution

– Automated guided

vehicles in flexible

manufacturing

– Traffic diversion

around blocked

routes

– Concrete delivery

Logic-Based Benders Applications

259

• Location and Design

– Allocation of frequency

spectrum (U.S. FCC)

– Wireless local area

network design

– Facility location-allocation

– Stochastic facility location

and fleet management

– Capacity and distance-

constrained plant location

– Queuing design and control

260

Logic-Based Benders Applications

260

• Other

– Logical inference (SAT solvers essentially use Benders)

– Logic circuit verification

– Bicycle sharing

– Service restoration

in a network

– Inventory

management

– Supply chain

management

– Space packing

Logic-Based Benders Applications

261

• Assign tasks to machines.

• Then schedule tasks assigned to each machine.

– Subject to time windows.

– Cumulative scheduling: several tasks can run

simultaneously, subject to resource limits.

– Scheduling problem decouples into a separate problem for

each machine.

Example: Machine Scheduling

262

• Assign tasks in master, schedule in subproblem.

– Combine mixed integer programming and constraint

programming

Assign tasks to resources

to minimize cost.

Solve by mixed integer

programming.

Schedule jobs on each

machine, subject to time

windows.

Constraint programming

obtains proof of optimality

(dual solution).

Use same proof to deduce

cost for some other

assignments, yielding

Benders cut.

Trial

assignment

Benders cut

z  gk(x)

Master problem Subproblem

x

263

Machine Scheduling

• Objective function

– Cost is based on task assignment only.

– So cost appears only in the master problem.

– Scheduling subproblem is a feasibility problem.

cost , 1 if task assigned to resource ij ij ij

ij

c x x j i 

Machine Scheduling

264

• Objective function

– Cost is based on task assignment only.

– So cost appears only in the master problem.

– Scheduling subproblem is a feasibility problem.

• Benders cuts

– They have the form

– where Ji is a set of tasks that create infeasibility when

assigned to resource i.

cost , 1 if task assigned to resource ij ij ij

ij

c x x j i 

(1) 1, all
i

ij

j J

x i


 

Machine Scheduling

265

• Resulting Benders decomposition:

Schedule jobs on each

resource.

Constraint programming

may obtain proof of

infeasibility on some resources

(dual solution).

Use same proof to deduce

infeasibility for some other

assignments, yielding

Benders cut.

Trial

assignment

Benders cuts

for infeasible

resources i

Master problem Subproblem

x

min

Benders cuts

ij ij

ij

z

z c x

(1) 1,
i

ij

j J

x


 

Machine Scheduling

266

0

5

10

15

20

25

30

35

40

45

50

0.01 0.1 1 10 100 1000 10000

N
u

m
b

e
r

o
f

n
s

ta
n

c
e

s
 s

o
lv

e
d

Computation time (sec)

Relax + strong cuts

Relax + weak cuts

MIP (CPLEX)

Performance

profile

50 problem instances

267

• Other objective functions

– Minimize makespan

– Minimize number of late jobs

– Minimize total tardiness

• Stronger Benders cuts

• Stronger relaxations

• Assume all release times are the same in

cumulative scheduling subproblem...

Extensions

268

Minimize Makespan

269

Minimize Makespan

270

Minimize Number of Late Tasks

271

Minimize Number of Late Tasks

272

Minimize Number of Late Tasks

273

Minimize Number of Late Tasks

274

Minimize Total Tardiness

275

Minimize Total Tardiness

276

Minimize Total Tardiness

277

Minimize Total Tardiness

278

Minimize Total Tardiness

279

Minimize Total Tardiness

280

Minimize Total Tardiness

281

• General home health care problem.

– Assign aides to homebound patients.

• …subject to constraints on aide qualifications

and patent preferences.

• One patient may require a team

of aides.

– Route each aide through assigned

patients, observing time windows.

• …subject to constraints on

hours, breaks, etc.

Application: Home Health Care

282

• A large industry, and rapidly growing.

– Roughly as large as all courier and delivery services.

2014 2018

U.S. revenues, $ billions 75 150

World revenues, $ billions 196 306

Projected Growth

of Home Health Care Industry

Increase in U.S. Employment, 2010-2020

Home health care industry 70%

Entire economy 14%

Home Health Care

283

• Advantages of home healthcare

– Lower cost

• Hospital & nursing home care is very expensive.

– No hospital-acquired infections

• Less exposure to superbugs.

– Preferred by patients

• Comfortable, familiar surroundings of home.

• Sense of control over one’s life.

– Supported by new equipment & technology

• IT integration with hospital systems.

• Online consulting with specialists.

Home Health Care

284

• Distinguishing characteristics

– Personal & household services

– Regular weekly schedule

• For example, Mon-Wed-Fri at 9 am.

– Same aide each visit

– Long planning horizon

• Several weeks

– Rolling schedule

• Update schedule as patient population evolves.

Home Hospice Care

285

5-8%

weekly

turnover

Home Hospice Care

286

• Solve with Benders decomposition.

– Assign aides to patients

in master problem.

• Maximize number of

patients served by a

given set of aides.

Master Problem

Solve with MIP

Subproblem

Solve with CP

Solution ҧ𝑥
of master

Benders

cut

Home Hospice Care

287

• Solve with Benders decomposition.

– Assign aides to patients

in master problem.

• Maximize number of

patients served by a

given set of aides.

– Schedule home visits in

subproblem.

• Cyclic weekly schedule.

• Visit each patient

same time each day.

• No visits on weekends.

Master Problem

Solve with MIP

Subproblem

Solve with CP

Solution ҧ𝑥
of master

Benders

cut

Home Hospice Care

288

• Solve with Benders decomposition.

– Assign aides to patients

in master problem.

• Maximize number of

patients served by a

given set of aides.

– Schedule home visits in

subproblem.

• Cyclic weekly schedule

• Visit each patient

same time each day.

• No visits on weekends.

– Subproblem decouples into

a scheduling problem for each aide

Master Problem

Solve with MIP

Subproblem

Solve with CP

Solution ҧ𝑥
of master

Benders

cut

Home Hospice Care

289

= 1 if patient j scheduled
= 1 if patient j

assigned to aide i

= 1 if patient j

assigned to aide i

on day k

Required number

of visits per week

Master Problem

290

• For a rolling schedule:

– Schedule new patients, drop departing patients from

schedule.

• Provide continuity for remaining patients as follows:

– Old patients served by same aide on same days.

• Fix yijk = 1 for the relevant aides, patients, and days.

Master Problem

291

nth patient in sequence

start time

Visit duration Travel time

Simplified routing & scheduling problem for aide i

Modeled with interval variables in CP solver

Patients assigned

to aide i

Subproblem

292

• Generate a cut for each infeasible scheduling problem.

– Solution of subproblem inference dual is a proof of infeasibility.

• The proof may show other patient assignments to be

infeasible.

• Generate nogood cut that rules out these assignments.

Benders Cuts

293

• Generate a cut for each infeasible scheduling problem.

– Solution of subproblem inference dual is a proof of infeasibility.

• The proof may show other patient assignments to be

infeasible.

• Generate nogood cut that rules out these assignments.

– Unfortunately, we don’t have access to infeasibility proof in

CP solver.

Benders Cuts

294

• So, strengthen the nogood cuts heuristically.

– Find a smaller set of patients that create infeasibility…

• …by re-solving the each infeasible scheduling problem

repeatedly.

Reduced set of patients whose

assignment to aide i creates

infeasibility

Benders Cuts

295

• Include relaxation of subproblem in the master problem.

– Necessary for good performance.

– Use time window relaxation for each scheduling problem.

– Simplest relaxation for aide i and day k:

Set of patients whose time window

fits in interval [a, b].

Can use several intervals.

Benders Cuts

296

• This relaxation is very weak.

– Doesn’t take into account travel times.

Subproblem Relaxation

297

• This relaxation is very weak.

– Doesn’t take into account travel times.

• Improved relaxation.

– Basic idea: Augment visit duration pj with travel time

to (or from) location j from closest patient or aide home base.

Subproblem Relaxation

298

• This relaxation is very weak.

– Doesn’t take into account travel times.

• Improved relaxation.

– Basic idea: Augment visit duration pj with travel time

to (or from) location j from closest patient or aide home base.

– This is weak unless most assignments are fixed.

• As in rolling schedule.

Subproblem Relaxation

299

• This relaxation is very weak.

– Doesn’t take into account travel times.

• Improved relaxation.

– Basic idea: Augment visit duration pj with travel time

to (or from) location j from closest patient or aide home base.

– This is weak unless most assignments are fixed.

• As in rolling schedule.

– Find intervals that yield tightest relaxation

• Short intervals that contain many time windows.

Subproblem Relaxation

300

• A variation of logic-based Benders

– Solve master problem only once, by branching.

– At feasible nodes, solve subproblem to obtain Benders cut.

– Not the same as branch & cut.

• Use when master problem is the bottleneck

– Subproblem solves much faster than master problem.

Branch and Check

301

• Original real-world dataset

– 60 home hospice patients

• 1-5 visits per week (not on weekends)

– 18 health care aides with time windows

– Actual travel distances

• Solver

– LBBD: Hand-written code manages MIP & CP solvers

• SCIP + Gecode

– Branch & check: Use constraint handler in SCIP

• SCIP + Gecode

– MIP: SCIP

• Modified multicommodity flow model of VRPTW

Computational Tests

302

Computation time, fewer visits per week

303

• Practical implications

– Branch & check scales up to realistic size

• One month advance planning for original 60-patient dataset

• Assuming 5-8% weekly turnover

• Much faster performance for modified dataset

– Advantage of exact solution method

• We know for sure whether existing staff will cover

projected demand.

Computational Tests

304

Effect of time window relaxation
Standard LBBD

Original problem data

305

Effect of time window relaxation and primal heuristic cuts
Branch & check

Original problem data

306

• Rasmussen instances

– From 2 Danish municipalities

• One-day problem

• We extended it to 5 days with same schedule each day

• Reduce number of patients to 30, so MIP has a chance

– Solve problem from scratch

• No rolling schedule

– Two objective functions

• Weighted: Minimize weighted average of travel cost,

matching cost (undesirability of assignment), uncovered

patients.

• Covering: Minimize number of uncovered patients

(same as ours)

Computational Tests

307

308

Standard LBBD tends to be better when subproblem consumes most

of the solution time in branch & check

309

• LBBD can scale up despite sequence-dependent

costs…

– …especially when computing a rolling schedule

• Time window relaxation is tight enough in this case

– Routing & scheduling problems remain small as patient

population increases

• The 4-index MIP variables explode as the population grows

• …even for a rolling schedule

Computational Tests

310

• LBBD can scale up despite sequence-dependent

costs…

– …especially when computing a rolling schedule

• Time window relaxation is tight enough in this case

– Routing & scheduling problems remain small as patient

population increases

• The 4-index MIP variables explode as the population grows

• …even for a rolling schedule

• However…

– LBBD not designed for temporal dependencies

• As when multiple aides must visit a patient simultaneously.

• Unclear how much performance degrades in this case.

Computational Tests

311

Software

For integration of CP and MIP

312

• ECLiPSe

– Exchanges information between ECLiPSe solver, Xpress-MP

• OPL Studio

– Combines CPLEX MIP and CP Optimizer with script language

• Mosel

– Combines Xpress-MP, Xpress-Kalis with low-level modeling

• BARON

– Global optimization with relaxation + domain reduction

• SIMPL

– Full integration with high-level modeling (prototype)

• SCIP

– Combines MIP and CP-based propagation

• MiniZinc

– High-level modeling with solver integration, including

logic-based Benders

313

