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Why Integrate CP and MIP?

Complementary Strengths

Outline of the Tutorial
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Complementary Strengths

• CP:

– Inference methods

– Modeling

– Exploits local structure

• MIP:

– Relaxation methods

– Duality theory

– Exploits global structure

Let’s bring them 

together!
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Comparison

CP vs. MIP

CP MIP

Logic processing Numerical calculation

Inference (filtering, 

constraint propagation)

Relaxation

High-level modeling

(global constraints)

Atomistic modeling

(linear inequalities)

Branching Branching

Constraint-based

processing

Independence of model

And algorithm
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Programming  programming

• In constraint programming:

• programming = a form of computer programming 

(constraint-based processing)

• In mathematical programming:

• programming = logistics planning (historically)
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CP vs. MIP

• In MIP, equations (constraints) describe the problem but 

don’t tell how to solve it.

• In CP, each constraint invokes a procedure that screens 

out unacceptable solutions.

• Much as each line of a computer program invokes 

an operation.
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Advantages of CP

• Better at sequencing and scheduling

• …where MP methods have weak relaxations.

• Adding messy constraints makes the problem easier.

• The more constraints, the better.

• More powerful modeling language.

• Global constraints lead to succinct models.

• Constraints convey problem structure to the solver.

• “Better at highly-constrained problems”

• Misleading – better when constraints propagate well, or 

when constraints have few variables.
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Advantages of MIP

• Deals naturally with continuous variables.

• Continuous relaxation, numerical techniques

• Handles constraints with many variables.

• These constraints don’t propagate well in CP. 

• Good at finding optimal (as opposed to feasible) solutions.

• Sophisticated relaxation technology provides bounds.

• Scales up

• Decades of engineering, orders of magnitude speedup

8



Obvious solution…

• Integrate CP and MIP.
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Obvious solution…

• Integrate CP and MIP.
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Two basic strategies…

• Combine CP and MIP in a single solution method.

• Link CP and MIP solvers in a principled way.



Outline of the Tutorial

• Why Integrate OR and CP?

• Combine CP and MIP in a single solution method

– Designing an Integrated Solver

– Linear Relaxation and Duality

– Mixed Integer/Linear Modeling

– Cutting Planes

– Lagrangean Relaxation and CP

• Link CP and MIP solvers

– Constraint Programming Concepts

– CP Filtering Algorithms

– CP-based Branch and Price

– Benders Decomposition

• Software
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Hybrid methods I am leaving out

• CP and dynamic programming

• OR-based filtering methods (e.g. flow models, edge finding)

• Decision diagrams (to be presented by W-J van Hoeve)

• CP and local search (to be presented by Paul Shaw)
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Background Reading

• J. N. Hooker and W.-J. van Hoeve, Constraint 

programming and operations research, Constraints 23 

(2018) 172-195.  Contains many references.

• J. N. Hooker, Integrated Methods for Optimization, 2nd ed., 

Springer (2012).   Contains many exercises.
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http://public.tepper.cmu.edu/jnh/CPandOR2post.pdf


Initial Example: 

Designing an Integrated Solver

Freight Transfer

Bounds Propagation

Cutting Planes

Branch-infer-and-relax Tree
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Example: Freight Transfer

• Transport 42 tons of freight using 8 trucks, which come in 

4 sizes…

Truck 

size

Number 

available

Capacity

(tons)

Cost 

per 

truck

1 3 7 90

2 3 5 60

3 3 4 50

4 3 3 40
15



Truck 

type

Number 

available

Capacity

(tons)

Cost 

per 

truck

1 3 7 90

2 3 5 60

3 3 4 50

4 3 3 40

  

   

   



1 2 3 4

1 2 3 4

1 2 3 4

min 90 60 50 40

7 5 4 3 42

8

{0,1,2,3}i

x x x x

x x x x

x x x x

x

Number of trucks of type 1

Knapsack 

covering 

constraint
Knapsack 

packing 

constraint
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  

   

   



1 2 3 4

1 2 3 4

1 2 3 4

min 90 60 50 40

7 5 4 3 42

8

{0,1,2,3}i

x x x x

x x x x

x x x x

x

Bounds propagation

      
 
  

1

42 5 3 4 3 3 3
1

7
x
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  

   

   

 

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

min 90 60 50 40

7 5 4 3 42

8

{1,2,3}, , , {0,1,2,3}

x x x x

x x x x

x x x x

x x x x

Bounds propagation

      
 
  

1

42 5 3 4 3 3 3
1

7
x

Reduced 

domain
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• Let {Lj, …, Uj} be the domain of xj

• A constraint set is bounds consistent if for each j :

• xj = Lj in some feasible solution and 

• xj = Uj in some feasible solution.

• Bounds consistency  we will not set xj to any infeasible 

values during branching.

• Bounds propagation achieves bounds consistency for a 

single inequality.

• 7x1 + 5x2 + 4x3 + 3x4  42 is bounds consistent when the 

domains are x1  {1,2,3} and x2, x3, x4  {0,1,2,3}.

• But not necessarily for a set of inequalities.

Bounds consistency
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 Bounds propagation may not achieve bounds consistency 

for a set of constraints.

 Consider set of inequalities

with domains x1, x2  {0,1}, solutions (x1,x2) = (1,0), (1,1).

 Bounds propagation has no effect on the domains.  

 But constraint set is not bounds consistent because x1 = 0 

in no feasible solution.

Bounds consistency

1 2

1 2

1

0

x x

x x

 

 
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  

   

   

  

1 2 3 4

1 2 3 4

1 2 3 4

1

min 90 60 50 40

7 5 4 3 42

8

0 3, 1i

x x x x

x x x x

x x x x

x x

Cutting Planes

Begin with continuous relaxation

Replace domains 

with bounds

This is a linear programming problem, which is easy to 

solve.

Its optimal value provides a lower bound on optimal 

value of original problem.
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  

   

   

  

1 2 3 4

1 2 3 4

1 2 3 4

1

min 90 60 50 40

7 5 4 3 42

8

0 3, 1i

x x x x

x x x x

x x x x

x x

Cutting planes (valid inequalities)

We can create a tighter relaxation (larger minimum 

value) with the addition of cutting planes.
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  

   

   

  

1 2 3 4

1 2 3 4

1 2 3 4

1

min 90 60 50 40

7 5 4 3 42

8

0 3, 1i

x x x x

x x x x

x x x x

x x

Cutting planes (valid inequalities)

All feasible solutions of the 

original problem satisfy a 

cutting plane (i.e., it is valid).

But a cutting plane may 

exclude (“cut off”) solutions of 

the continuous relaxation.

Cutting 

plane

Feasible solutions

Continuous 

relaxation
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  

   

   

  

1 2 3 4

1 2 3 4

1 2 3 4

1

min 90 60 50 40

7 5 4 3 42

8

0 3, 1i

x x x x

x x x x

x x x x

x x

Cutting planes (valid inequalities)

{1,2} is a packing

…because 7x1 + 5x2 alone cannot satisfy the inequality, 

even with x1 = x2 = 3.
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  

   

   

  

1 2 3 4

1 2 3 4

1 2 3 4

1

min 90 60 50 40

7 5 4 3 42

8

0 3, 1i

x x x x

x x x x

x x x x

x x

Cutting planes (valid inequalities)

{1,2} is a packing

 

    
   

 
3 4

42 (7 3 5 3)
2

max 4,3
x x

So,      3 44 3 42 (7 3 5 3)x x

which implies

Knapsack cut
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Cutting planes (valid inequalities)

Let xi have domain [Li,Ui] and let a  0.

In general, a packing P for ax  a0 satisfies

 

  0i i i i

i P i P

a x a aU

and generates a knapsack cut

 






 
 
 
  




0

max

i i

i P
i

i P i
i P

a aU

x
a
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  

   

   

  

1 2 3 4

1 2 3 4

1 2 3 4

1

min 90 60 50 40

7 5 4 3 42

8

0 3, 1i

x x x x

x x x x

x x x x

x x

Cutting planes (valid inequalities)

Maximal Packings Knapsack cuts

{1,2} x3 + x4  2

{1,3} x2 + x4  2

{1,4} x2 + x3  3

Knapsack cuts corresponding to nonmaximal 

packings can be nonredundant.
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  

   



 

 

 

  

  

1 2 3 4

1 2 3 4

1

3 4

2 3

2

1

2 3

4

4

min 90 60 50 40

7 5 4 3 42

8

0 3, 1

2

2

3

i

x x x x

x x x x

x x x

x x

x x

x x

x

x x

Continuous relaxation with cuts

Optimal value of 523.3 is a lower bound on optimal value 

of original problem.

Knapsack cuts

28



Branch-

infer-and-

relax tree

Propagate bounds 

and solve 

relaxation of 

original problem.

x1  {  123}

x2  {0123}

x3  {0123}

x4  {0123}

x = (2⅓,3,2⅔,0)

value = 523⅓
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Branch on a 

variable with 

nonintegral value 

in the relaxation.

x1  {  123}

x2  {0123}

x3  {0123}

x4  {0123}

x = (2⅓,3,2⅔,0)

value = 523⅓

x1  {1,2}
x1 = 3

Branch-infer-

and-relax tree
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Propagate bounds 

and solve 

relaxation.

Since relaxation 

is infeasible, 

backtrack.

x1  {  123}

x2  {0123}

x3  {0123}

x4  {0123}

x = (2⅓,3,2⅔,0)

value = 523⅓

x1  {  12  }

x2  {    23}

x3  {  123}

x4  {  123}

infeasible

relaxation

x1  {1,2}
x1 = 3

Branch-infer-

and-relax tree
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Propagate bounds 

and solve 

relaxation.

Branch on 

nonintegral 

variable.

x1  {  123}

x2  {0123}

x3  {0123}

x4  {0123}

x = (2⅓,3,2⅔,0)

value = 523⅓

x1  {  12  }

x2  {    23}

x3  {  123}

x4  {  123}

infeasible

relaxation

x1  {      3}

x2  {0123}

x3  {0123}

x4  {0123}

x = (3,2.6,2,0)

value = 526

x1  {1,2}
x1 = 3

x2  {0,1,2}

x2 = 3

Branch-infer-

and-relax tree
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Branch again.

x1  {  123}

x2  {0123}

x3  {0123}

x4  {0123}

x = (2⅓,3,2⅔,0)

value = 523⅓

x1  {  12  }

x2  {    23}

x3  {  123}

x4  {  123}

infeasible

relaxation

x1  {      3}

x2  {0123}

x3  {0123}

x4  {0123}

x = (3,2.6,2,0)

value = 526

x1  {      3}

x2  {012  }

x3  {  123}

x4  {0123}

x = (3,2,2¾,0)

value = 527½

x1  {1,2}
x1 = 3

x2  {0,1,2}

x2 = 3

x3  {1,2}
x3 = 3

Branch-infer-

and-relax tree
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Solution of 

relaxation 

is integral and 

therefore feasible 

in the original 

problem.

This becomes the 

incumbent 

solution.

x1  {  123}

x2  {0123}

x3  {0123}

x4  {0123}

x = (2⅓,3,2⅔,0)

value = 523⅓

x1  {  12  }

x2  {    23}

x3  {  123}

x4  {  123}

infeasible

relaxation

x1  {      3}

x2  {0123}

x3  {0123}

x4  {0123}

x = (3,2.6,2,0)

value = 526

x1  {      3}

x2  {012  }

x3  {  123}

x4  {0123}

x = (3,2,2¾,0)

value = 527½

x1  {      3}

x2  {  12  }

x3  {  12  }

x4  {  123}

x = (3,2,2,1)

value = 530

feasible solution

x1  {1,2}
x1 = 3

x2  {0,1,2}

x2 = 3

x3  {1,2}
x3 = 3

Branch-infer-

and-relax tree
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Solution is 

nonintegral, but 

we can backtrack 

because value of 

relaxation is 

no better than 

incumbent solution.

x1  {  123}

x2  {0123}

x3  {0123}

x4  {0123}

x = (2⅓,3,2⅔,0)

value = 523⅓

x1  {  12  }

x2  {    23}

x3  {  123}

x4  {  123}

infeasible

relaxation

x1  {      3}

x2  {0123}

x3  {0123}

x4  {0123}

x = (3,2.6,2,0)

value = 526

x1  {      3}

x2  {012  }

x3  {  123}

x4  {0123}

x = (3,2,2¾,0)

value = 527½

x1  {      3}

x2  {  12  }

x3  {  12  }

x4  {  123}

x = (3,2,2,1)

value = 530

feasible solution

x1  {      3}

x2  {012  }

x3  {      3}

x4  {012  }

x = (3,1½,3,½)

value = 530

backtrack

due to bound

x1  {1,2}
x1 = 3

x2  {0,1,2}

x2 = 3

x3  {1,2}
x3 = 3

Branch-infer-

and-relax tree
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Another feasible 

solution found.

No better than 

incumbent solution, 

which is optimal 

because search 

has finished.

x1  {  123}

x2  {0123}

x3  {0123}

x4  {0123}

x = (2⅓,3,2⅔,0)

value = 523⅓

x1  {  12  }

x2  {    23}

x3  {  123}

x4  {  123}

infeasible

relaxation

x1  {      3}

x2  {0123}

x3  {0123}

x4  {0123}

x = (3,2.6,2,0)

value = 526

x1  {      3}

x2  {012  }

x3  {  123}

x4  {0123}

x = (3,2,2¾,0)

value = 527½

x1  {      3}

x2  {      3}

x3  {012  }

x4  {012  }

x = (3,3,0,2)

value = 530

feasible solution

x1  {      3}

x2  {  12  }

x3  {  12  }

x4  {  123}

x = (3,2,2,1)

value = 530

feasible solution

x1  {      3}

x2  {012  }

x3  {      3}

x4  {012  }

x = (3,1½,3,½)

value = 530

backtrack

due to bound

x1  {1,2}
x1 = 3

x2  {0,1,2}

x2 = 3

x3  {1,2}
x3 = 3

Branch-infer-

and-relax tree
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Two optimal solutions…

 (3,2,2,1)x

 (3,3,0,2)x
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Linear Relaxation and Duality

Why Relax?

Algebraic Analysis of LP

Linear Programming Duality

LP-Based Domain Filtering

Example: Single-Vehicle Routing

Disjunctions of Linear Systems
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Why Relax?

Solving a relaxation of a problem can:

• Tighten variable bounds.

• Possibly solve original problem.

• Guide the search in a promising direction.

• Filter domains using reduced costs or Lagrange multipliers.

• Prune the search tree using a bound on the optimal value.

• Provide a more global view, because a single OR relaxation 

can pool relaxations of several constraints.
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Some OR models that can provide relaxations:

• Linear programming (LP).

• Mixed integer linear programming (MILP)

– Can itself be relaxed as an LP.

– LP relaxation can be strengthened with cutting planes.

• Lagrangean relaxation.

• Specialized relaxations.

– For particular problem classes.

– For global constraints.

40



Motivation

• Linear programming is remarkably versatile for representing 

real-world problems.

• LP is by far the most widely used tool for relaxation.

• LP relaxations can be strengthened by cutting planes.

- Based on polyhedral analysis.

• LP has an elegant and powerful duality theory. 

- Useful for domain filtering, and much else.

• The LP problem is extremely well solved.
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1 2

1 2

1 2

1 2

min 4 7

2 3 6

2 4

, 0

x x

x x

x x

x x



 

 



2x1 + 3x2  6

2x1 + x2  4

An example…

4x1 + 7x2 = 12

Optimal solution

x = (3,0)

Algebraic Analysis of LP 
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1 2

1 2

1 2

1 2

min 4 7

2 3 6

2 4

, 0

x x

x x

x x

x x



 

 



Rewrite

1 2

1 2 3

1 2 4

1 2 3 4

min 4 7

2 3 6

2 4

, , , 0

x x

x x x

x x x

x x x x



  

  



as

In general an LP has the form min

0

cx

Ax b

x





Algebraic Analysis of LP
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Algebraic analysis of LP

Write as





min

0

cx

Ax b

x



 



min

, 0

B B N N

B N

B N

c x c x

Bx Nx b

x x

m  n matrix
Basic

variables

where

 A B N

Any set of 

m linearly 

independent 

columns of A.

These form a 

basis for the 

space spanned 

by the columns.

Nonbasic

variables

44



Algebraic analysis of LP

Write as





min

0

cx

Ax b

x



 



min

, 0

B B N N

B N

B N

c x c x

Bx Nx b

x x

where

 A B N

Solve constraint equation for xB:   1 1

B Nx B b B Nx

All solutions can be obtained by setting xN to some value.

The solution is basic if xN = 0.

It is a basic feasible solution if xN = 0 and xB  0.
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1 2

1 2 3

1 2 4

1 2 3 4

min 4 7

2 3 6

2 4

, , , 0

x x

x x x

x x x

x x x x



  

  



2x1 + 3x2  6

2x1 + x2  4

Example…

x2, x3 basic

x1, x2 basic

x1, x4 basic

x2, x4 basic

x3, x4 basic
x1, x3 basic

= basic feasible    

solution

x1

x2
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Algebraic analysis of LP

Write as





min

0

cx

Ax b

x



 



min

, 0

B B N N

B N

B N

c x c x

Bx Nx b

x x

where

 A B N

Solve constraint equation for xB:   1 1

B Nx B b B Nx

Express cost in terms of nonbasic variables:

  1 1( )B N B Nc B b c c B N x

Vector of reduced costs

Since xN  0, 

basic solution (xB,0) 

is optimal if 

reduced costs are 

nonnegative.
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1 2

1 2 3

1 2 4

1 2 3 4

min 4 7

2 3 6

2 4

, , , 0

x x

x x x

x x x

x x x x



  

  



Example…

x1, x4 basic

Consider this 

basic feasible 

solution

x1

x2
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Example…

   
  

   
   

        
                 

     
     
    

21

34

1 1

4 4

1 1

4 4

min 4 0 7 0

2 0 3 1 6

2 1 1 0 4

0
,

0

xx

xx

x x

x x

x x

x x

Write… as… cBxB cNxN

BxB

NxN b

1 2

1 2 3

1 2 4

1 2 3 4

min 4 7

2 3 6

2 4

, , , 0

x x

x x x

x x x

x x x x



  

  


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   
  

   
   

        
                 

     
     
    

21

34

1 1

4 4

1 1

4 4

min 4 0 7 0

2 0 3 1 6

2 1 1 0 4

0
,

0

xx

xx

x x

x x

x x

x x

Example…

b

cBxB cNxN

BxB

NxN
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Example…

    

       
               

1 1 1

1/ 21

4

0 6 3

1 1 4 2

B Nx B b B Nx B b

x

x

Basic solution is

x1, x4 basic

x2

x1

   
  

   
   

        
                 

     
     
    

21

34

1 1

4 4

1 1

4 4

min 4 0 7 0

2 0 3 1 6

2 1 1 0 4

0
,

0

xx

xx

x x

x x

x x

x x

cBxB cNxN

BxB

NxN b
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   

   

1

1/ 2 0 3 1
7 0 4 0

1 1 1 0

1 2 0 0

N Bc c B N

   
        



Example…
Basic solution is

Reduced costs are

Solution is 

optimal

   
  

   
   

        
                 

     
     
    

21

34

1 1

4 4

1 1

4 4

min 4 0 7 0

2 0 3 1 6

2 1 1 0 4

0
,

0

xx

xx

x x

x x

x x

x x

cBxB cNxN

BxB

NxN

    

       
               

1 1 1

1/ 21

4

0 6 3

1 1 4 2

B Nx B b B Nx B b

x

x
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Linear Programming Duality

An LP can be viewed as an inference problem…



  
0

max
x

v

Ax b cx v







min

0

cx

Ax b

x
implies

Dual problem: Find the tightest lower bound on the 

objective function that is implied by the constraints.
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An LP can be viewed as an inference problem…



  
0

max
x

v

Ax b cx v







min

0

cx

Ax b

x

From Farkas Lemma:  If Ax  b, x  0 is feasible,

0   dominates 
iff   

for some  0 

x Ax b cx v
Ax b cx v

 



  
  



A  c  and  b  v

That is, some surrogate 

(nonnegative linear 

combination) of  

Ax  b dominates  cx  v
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An LP can be viewed as an inference problem…



  
0

max
x

v

Ax b cx v







min

0

cx

Ax b

x

From Farkas Lemma:  If Ax  b, x  0 is feasible,

0   dominates 
iff   

for some  0 

x Ax b cx v
Ax b cx v

 



  
  



A  c  and  b  v











max

0

b

A c

 This is the 

classical 

LP dual
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This equality is called strong duality.







min

0

cx

Ax b

x

If Ax  b, x  0 is feasible











max

0

b

A c

This is the 

classical 

LP dual

Note that the dual of the dual is the primal

(i.e., the original LP).
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



 

 

 



1

1 2

1 2

1 2

1 2

1

min 4 7

2 3 ( )

( )

6

2 4

, 0

x x

x x

x x

x x

Example

1 2

1

21 2

2

12

1

(

max 6 4

)

(

12

2 2 4

3 7

,

)

0

x

x

 

 

 

 

 

 

 



A dual solution is (1,2) = (2,0)

Primal Dual

2

2

1

1 2

1( 2)

(

6

0)

2 3

2 4

x x

x x





















1 24 6 12x x 

1 24 7 12x x 

dominates

Dual multipliers

Surrogate

Tightest bound on cost
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Weak Duality

If x* is feasible in the 

primal problem

min

0

cx

Ax b

x















max

0

b

A c

and * is feasible in the 

dual problem

then  cx*  *b.  

This is because  

cx*  *Ax*  *b

* is dual 

feasible 

and x*  0

x* is primal 

feasible 

and *  0
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Dual multipliers as marginal costs

min

0

cx

Ax b b

x

 





Suppose we perturb the RHS of an LP 

(i.e., change the requirement levels):

The dual of the perturbed LP has the 

same constraints at the original LP:
max (

0

)bb

A c















So an optimal solution * of the original dual is feasible in the 

perturbed dual.
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Dual multipliers as marginal costs

min

0

cx

Ax b b

x

 





Suppose we perturb the RHS of an LP 

(i.e., change the requirement levels):

By weak duality,  the optimal value of the perturbed LP is at least 

*(b + b) = *b + *b.

So i*  is a lower bound on the marginal cost of increasing the 

i-th requirement by one unit (bi = 1). 

Optimal value of original LP, by strong duality.

If i* > 0, the i-th constraint must be tight (complementary slackness).
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Dual of an LP in equality form

Primal Dual





 



m n

, 0

)

i

(

B B N N

B N

B N

c x c x

Bx Nx b

x x

(

max

 unrestric

)

d

)

te

(

B

N

B

B

x

b

B c

c xN












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Dual of an LP in equality form

Primal Dual

Recall that reduced cost vector is 1

N Bc c B N Nc N 

this solves the dual

if (xB,0) solves the primal







 



m n

, 0

)

i

(

B B N N

B N

B N

c x c x

Bx Nx b

x x

(

max

 unrestric

)

d

)

te

(

B

N

B

B

x

b

B c

c xN












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Dual of an LP in equality form

Primal Dual

Check: 1

1

B B

B N

B c B B c

N c B N c









 

 

Because reduced cost is nonnegative 

at optimal solution (xB,0). 

Recall that reduced cost vector is 1

N Bc c B N Nc N 

this solves the dual

if (xB,0) solves the primal







 



m n

, 0

)

i

(

B B N N

B N

B N

c x c x

Bx Nx b

x x

(

max

 unrestric

)

d

)

te

(

B

N

B

B

x

b

B c

c xN












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Dual of an LP in equality form





 



m n

, 0

)

i

(

B B N N

B N

B N

c x c x

Bx Nx b

x x

Primal Dual

(

max

 unrestric

)

d

)

te

(

B

N

B

B

x

b

B c

c xN













   
1/ 21 0

4 0 2 0
1 1

Bc B   
    

In the example, 

Recall that reduced cost vector is 1

N Bc c B N Nc N 

this solves the dual

if (xB,0) solves the primal


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Dual of an LP in equality form





 



m n

, 0

)

i

(

B B N N

B N

B N

c x c x

Bx Nx b

x x

Primal Dual

(

max

 unrestric

)

d

)

te

(

B

N

B

B

x

b

B c

c xN













Note that the reduced cost of an individual variable xj is

Recall that reduced cost vector is 1

N Bc c B N Nc N 



j j jr c A 

Column j of A
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 One way to filter the domain of xj is to minimize and maximize xj

subject to Ax  b, x  0.  

- This is time consuming.

 A faster method is to use dual multipliers to derive valid 

inequalities.

- A special case of this method uses reduced costs to bound or 

fix variables.

- Reduced-cost variable fixing is a widely used technique in OR.

LP-based Domain Filtering

min

0

cx

Ax b

x





Let be an LP relaxation of a CP problem.
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min

0

cx

Ax b

x





Suppose:

has optimal solution x*, optimal value v*, and 

optimal dual solution *.

…and i* > 0, which means the i-th constraint is tight 

(complementary slackness);

…and the LP is a relaxation of a CP problem;

…and we have a feasible solution of the CP problem with value 

U, so that U is an upper bound on the optimal value.
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min

0

cx

Ax b

x





Supposing
has optimal solution x*, optimal value v*, and 

optimal dual solution *:

If x were to change to a value other than x*, the LHS of i-th constraint 

Aix  bi would change by some amount bi.  

Since the constraint is tight, this would increase the optimal value 

as much as changing the constraint to Aix  bi + bi.  

So it would increase the optimal value at least  i*bi.
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We have found: a change in x that changes Aix by bi increases 

the optimal value of LP at least  i*bi.

Since      optimal value of the LP  optimal value of the CP  U,  

we have  i*bi  U  v*,  or *

*i

i

U v
b




 

min

0

cx

Ax b

x





Supposing
has optimal solution x*, optimal value v*, and 

optimal dual solution *:
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Since  bi = Aix  Aix* = Aix  bi,  this implies the inequality
*

*

i

i

i

U v
A x b




 

…which can be propagated.

min

0

cx

Ax b

x





Supposing
has optimal solution x*, optimal value v*, and 

optimal dual solution *:

We have found: a change in x that changes Aix by bi increases 

the optimal value of LP at least  i*bi.

Since      optimal value of the LP  optimal value of the CP  U,  

we have  i*bi  U  v*,  or *

*i

i

U v
b




 
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1 2

1 2

1 2

2

1

1

1

( 2

min

)

4 7

2 3 6

2 4

, 0

( 0)

x x

x x

x x

x x









 

 





Example

Suppose we have a feasible solution 

of the original CP with value U = 13.

*
1

1 *

1

U v
A x b




 

1 2

13 12
2 3 6 6.5

2
x x


   

Since the first constraint is tight, we can propagate 

the inequality

or
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Reduced-cost domain filtering

Suppose xj* = 0, which means the constraint  xj  0  is tight.  

*

*

i

i

i

U v
A x b




  becomes

*

j

j

U v
x

r


The inequality

The dual multiplier for  xj  0 is the reduced cost 

rj of xj, because increasing xj (currently 0) by 1 

increases optimal cost by rj.

Similar reasoning can bound a variable below when it is at its 

upper bound.
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1 2

1 2

1 2

2

1

1

1

( 2

min

)

4 7

2 3 6

2 4

, 0

( 0)

x x

x x

x x

x x









 

 





Example

Suppose we have a feasible solution 

of the original CP with value U = 13.

Since x2* = 0, we have

or

*

2

2

U v
x

r




2

13 12
0.5

2
x


 

If  x2 is required to be integer, we can fix it to zero.  

This is reduced-cost variable fixing.
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Example: Single-Vehicle Routing

A vehicle must make several stops and return home, perhaps subject 

to time windows.

The objective is to find the order of stops that minimizes travel time.

This is also known as the traveling salesman problem (with time 

windows).

Stop i

Stop j

Travel time cij
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Assignment Relaxation

 

min

1, all 

0,1 , all ,

ij ij

ij

ij ji

j j

ij

c x

x x i

x i j

 





 

= 1 if stop i immediately precedes stop j

Stop i is preceded and 

followed by exactly one stop.
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Assignment Relaxation

min

1, al

0 1, all ,

l 

ij ij

ij

ij ji

j j

ij

c

x

i j

x i

x

x

 

 



 

= 1 if stop i immediately precedes stop j

Stop i is preceded and 

followed by exactly one stop.

Because this problem is totally unimodular, it can be solved as an LP.

The relaxation provides a very weak lower bound on the optimal value.

But reduced-cost variable fixing can be very useful in a CP context.
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Disjunctions of linear systems often occur naturally in problems 

and can be given a convex hull relaxation.

A disjunction of linear systems 

represents a union of polyhedra.
 

min

k k

k

cx

A x b

Disjunctions of linear systems
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Disjunctions of linear systems often occur naturally in problems 

and can be given a convex hull relaxation.

A disjunction of linear systems 

represents a union of polyhedra.

We want a convex hull relaxation

(tightest linear relaxation).

 

min

k k

k

cx

A x b

Relaxing a disjunction of linear systems
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Relaxing a disjunction of linear systems

Disjunctions of linear systems often occur naturally in problems 

and can be given a convex hull relaxation.

The closure of the convex hull of

 

min

k k

k

cx

A x b

min

, all 

1

0 1

k k k

k

k

k

k

k

k

cx

A x b y k

y

x x

y







 





…is described by
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Why?

Convex hull relaxation

(tightest linear relaxation)

To derive convex hull 

relaxation of a disjunction…

min

, all 

1

0 1

k k k

k

k

k

k

k

k

cx

A x b k

y

x y x

y







 





Write each 

solution as a 

convex 

combination 

of points in 

the 

polyhedron

x
1x

2x
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Why?

Convex hull relaxation

(tightest linear relaxation)

min

, all 

1

0 1

k k k

k

k

k

k

k

k

cx

A x b y k

y

x x

y







 





To derive convex hull 

relaxation of a disjunction…

min

, all 

1

0 1

k k k

k

k

k

k

k

k

cx

A x b k

y

x y x

y







 





Write each 

solution as a 

convex 

combination 

of points in 

the 

polyhedron

x
1x

2x

Change of 

variable

k k

kx y x
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Mixed Integer/Linear Modeling

MILP Representability

Disjunctive Modeling

Knapsack Modeling
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Motivation

• We can relax a CP problem by modeling some constraints with an MILP.

• If desired, we can then relax the MILP by dropping the integrality constraint, 

to obtain an LP.

• The LP relaxation can be strengthened with cutting planes.

• The first step is to learn how to write MILP models.

A mixed integer/linear programming 

(MILP) problem has the form
min

, 0

 integer

cx dy

Ax by b

x y

y



 


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MILP Representability

A subset S of    is MILP representable if it is the projection onto x

of some MILP constraint set of the form

 

  



  

, 0

, , 0,1n m

k

Ax Bu Dy b

x y

x u y

n
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MILP Representability

A subset S of    is MILP representable if it is the projection onto x

of some MILP constraint set of the form

 

  



  

, 0

, , 0,1n m

k

Ax Bu Dy b

x y

x u y

n

Theorem.  S  is MILP 

representable if and only if 

S is the union of finitely 

many polyhedra having the 

same recession cone.

n

Polyhedron

Recession cone 

of polyhedron
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Example: Fixed charge function

Minimize a fixed charge function:

x1

x2

2

1

2

1 1

1

min

0 if 0

if 0

0

x

x
x

f cx x

x

 
  

  


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Example

Minimize a fixed charge function:
2

1

2

1 1

1

min

0 if 0

if 0

0

x

x
x

f cx x

x

 
  

  



x1

x2

Feasible set

(epigraph

of the 

optimization

problem)
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Example

Minimize a fixed charge function:
2

1

2

1 1

1

min

0 if 0

if 0

0

x

x
x

f cx x

x

 
  

  



x1

x2

Union of two 

polyhedra

P1, P2

P1
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Example

Minimize a fixed charge function:
2

1

2

1 1

1

min

0 if 0

if 0

0

x

x
x

f cx x

x

 
  

  



x1

x2

Union of two 

polyhedra

P1, P2

P1

P2
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Example

Minimize a fixed charge function:
2

1

2

1 1

1

min

0 if 0

if 0

0

x

x
x

f cx x

x

 
  

  



x1

x2

The 

polyhedra 

have 

different 

recession 

cones.

P1

P1

recession

cone

P2

P2

recession

cone
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Example

Minimize a fixed charge function:

Add an upper bound on x1

2

1

2

1 1

1

min

0 if 0

if

0

 0

x

x
x

f cx x

x M






  

 





x1

x2

The 

polyhedra 

have the 

same 

recession 

cone.

P1

P1

recession

cone

P2

P2

recession

coneM 91



Modeling a union of polyhedra

Start with a disjunction of linear 

systems to represent the union 

of polyhedra.

The kth polyhedron is {x | Akx  b}

 

min

k k

k

cx

A x b

Introduce a 0-1 variable  yk that is 

1 when x is in polyhedron k.

Disaggregate x to create an xk for 

each k.  

 

min

, all 

1

0,1

k k k

k

k

k

k

k

k

cx

A x b y k

y

x x

y












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Example

Start with a disjunction of 

linear systems to represent 

the union of polyhedra

2

1 1

2 2 1

min

0 0

0

x

x x M

x x f cx

     
        

x1

x2

P1

P2

M 93



Example

Start with a disjunction of 

linear systems to represent 

the union of polyhedra

2

1 1

2 2 1

min

0 0

0

x

x x M

x x f cx

     
        

 

1 1

1 2

2 2 2

1 2 1 2 2

1 2

1 2

min

0,  0

0 ,   

1,  0,1k

cx

x x

x My cx x fy

y y y

x x x

 

    

  

 

Introduce a 0-1 variable  yk

that is 1 when x is in 

polyhedron k.

Disaggregate x to create an 

xk for each k.  
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Example

To simplify:

Replace x1
2 with x1.

Replace x2
2 with x2.

Replace y2 with y.  

2

1 1

1 2

2 2 2

1 2 1 2 2

1 2

1 2

min

0,  0

0 ,   

1,  0,1k

x

x x

x My cx x fy

y y y

x x x

 

    

  

 

This yields

 

2

1

2 1

min

0

0,1

x

x My

x fy cx

y

 

 



 

min

0

0,1

fy cx

x My

y



 



or

“Big M ”
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Disjunctive Modeling

Disjunctions often occur naturally in problems and can be given 

an MILP model.

Recall that a disjunction of linear 

systems (representing polyhedra 

with the same recession cone)  

min

k k

k

cx

A x b

 

min

, all 

1

0,1

k k k

k

k

k

k

k

k

cx

A x b y k

y

x x

y













…has the MILP model
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Example:  Uncapacitated facility location

i j

fi cij

Fixed 

cost Transport 

cost

m possible 

factory 

locations n markets Locate factories to serve 

markets so as to minimize 

total fixed cost and 

transport cost.

No limit on production 

capacity of each factory.
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Uncapacitated facility location

i j

fi cij

Fixed 

cost Transport 

cost

n markets Disjunctive model:

min

0, all 0 1, all 
,   all 

0

1,  all 

i ij ij

i ij

ij ij

i i i

ij

i

z c x

x j x j
i

z z f

x j



     
       



 



No factory 

at location i

Factory

at location i

Fraction of 

market j’s demand 

satisfied from 

location im possible 

factory 

locations
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Uncapacitated facility location

MILP formulation: Disjunctive model:

min

0, all 0 1, all 
,   all 

0

1,  all 

i ij ij

i ij

ij ij

i i i

ij

i

z c x

x j x j
i

z z f

x j



     
       



 



No factory 

at location i

Factory

at location i

 

min

0 ,  all ,

0,1

i i ij ij

i ij

ij i

i

f y c x

x y i j

y



 



 

Based on LP relaxation

of disjunction described

earlier
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Uncapacitated facility location

MILP formulation:

 

min

0 ,  all ,

0,1

i i ij ij

i ij

ij i

i

f y c x

x y i j

y



 



 

Beginner’s model:

 

min

,  all ,

0,1

i i ij ij

i ij

ij i

j

i

f y c x

x ny i j

y







 



Based on capacitated location model.

It has a weaker continuous relaxation

(obtained by replacing yi  {0,1} with 0  yi  1).

This beginner’s mistake can be avoided by 

starting with disjunctive formulation.

Maximum output 

from location i
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Knapsack Modeling

• Knapsack models consist of knapsack covering and 

knapsack packing constraints.

• The freight transfer model presented earlier is an example.

• We will consider a similar example that combines disjunctive 

and knapsack modeling.

• Most OR professionals are unlikely to write a model as good 

as the one presented here.
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Note on tightness of knapsack models

• The continuous relaxation of a knapsack model is not in general 

a convex hull relaxation.

- A disjunctive formulation would provide a convex hull 

relaxation, but there are exponentially many disjuncts.

• Knapsack cuts can significantly tighten the relaxation.
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 

min

;   1,  all 

1

0

0 ,  all 

0
0 1, all 

, 0,1

i

i

i i j ij

i j i

i

ii i

ij ij i

j
ij

ij

ij i

z

Q y a x j

y

yz c

z ia x Q

x
x j

x y

 

 
   
   

    
       





  



Example:  Package transport

Each package j

has size aj

Each truck i has 

capacity Qi and 

costs ci to 

operate

Disjunctive model Knapsack 

constraints

Truck i used
Truck i not used

1 if truck i carries 

package j 1 if truck i is used
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Example:  Package transport

 

min

;   1,  all 

1

0

0 ,  all 

0
0 1, all 

, 0,1

i

i

i i j ij

i j i

i

ii i

ij ij i

j
ij

ij

ij i

z

Q y a x j

y

yz c

z ia x Q

x
x j

x y

 

 
   
   

    
       





  



Disjunctive modelMILP model

 

min

;   1,  all 

,   all 

,   all ,

, 0,1

i i

i

i i j ij

i j i

j ij i i

j

ij i

ij i

c y

Q y a x j

a x Q y i

x y i j

x y

 









  


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Example:  Package transport

MILP model

 

min

;   1,  all 

,   all 

,   all ,

, 0,1

i i

i

i i j ij

i j i

j ij i i

j

ij i

ij i

c y

Q y a x j

a x Q y i

x y i j

x y

 









  

 Modeling trick; 

unobvious without 

disjunctive approach

Most OR professionals 

would omit this constraint, 

since it is the sum over i

of the next constraint.  

But it generates very 

effective knapsack cuts.
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Cutting Planes

0-1 Knapsack Cuts

Gomory Cuts

Mixed Integer Rounding Cuts

Example: Product Configuration
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Cutting 

plane

Feasible solutions

Continuous 

relaxation

To review…

A cutting plane (cut, valid inequality) for 

an MILP model:

• …is valid

- It is satisfied by all feasible solutions 

of the model.

• …cuts off solutions of the continuous 

relaxation.

- This makes the relaxation tighter.
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Motivation

• Cutting planes (cuts) tighten the continuous relaxation of an 

MILP model.

• Knapsack cuts

- Generated for individual knapsack constraints.

- We saw general integer knapsack cuts earlier.

- 0-1 knapsack cuts and lifting techniques are well studied 

and widely used.

• Rounding cuts

- Generated for the entire MILP, they are widely used.

- Gomory cuts for integer variables only.

- Mixed integer rounding cuts for any MILP.
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0-1 Knapsack Cuts

0-1 knapsack cuts are designed for knapsack constraints with 0-1 

variables.

The analysis is different from that of general knapsack constraints, 

to exploit the special structure of 0-1 inequalities.
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0-1 Knapsack Cuts

0-1 knapsack cuts are designed for knapsack constraints with 0-1 

variables.

The analysis is different from that of general knapsack constraints, 

to exploit the special structure of 0-1 inequalities.

Consider a 0-1 knapsack packing constraint ax  a0.  (Knapsack 

covering constraints are similarly analyzed.)

Index set J is a cover if 0j

j J

a a




The cover inequality                           is a 0-1 knapsack cut for 

ax  a0

1j

j J

x J


 

Only minimal covers need be considered.
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Example

Index set J is a cover if 0j

j J

a a




The cover inequality                           is a 0-1 knapsack cut for 

ax  a0

1j

j J

x J


 

J = {1,2,3,4} is a cover for

1 2 3 4 5 66 5 5 5 8 3 17x x x x x x     

Only minimal covers need be considered.

This gives rise to the cover inequality

1 2 3 4 3x x x x   
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Sequential lifting

• A cover inequality can often be strengthened by lifting it into a 

higher dimensional space.

• That is, by adding variables.

• Sequential lifting adds one variable at a time.

• Sequence-independent lifting adds several variables at once.
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Sequential lifting

To lift a cover inequality 1j

j J

x J


 

add a term to the left-hand side 1j k k

j J

x x J


  

where k is the largest coefficient for which the inequality is still valid.

So,
  00,1

for 

1 max
j

k j j j k
x

j J j J
j J

J x a x a a


 


 
     

 
 

This can be done repeatedly (by dynamic programming).
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Example

To lift

add a term to the left-hand side

This yields

 
 5 1 2 3 4 1 2 3 4

0,1

for {1,2,3,4}

3 max 6 5 5 5 17 8
jx

j

x x x x x x x x




         

Further lifting leaves the cut unchanged.

But if the variables are added in the order x6, x5, the result is different:

1 2 3 4 3x x x x   

1 2 3 4 5 5 3x x x x x    

Given
1 2 3 4 5 66 5 5 5 8 3 17x x x x x x     

where

1 2 3 4 52 3x x x x x    

1 2 3 4 5 6 3x x x x x x     
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Sequence-independent lifting

• Sequence-independent lifting usually yields a weaker cut than 

sequential lifting.

• But it adds all the variables at once and is much faster.

• Commonly used in commercial MILP solvers.
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Sequence-independent lifting

To lift a cover inequality 1j

j J

x J


 

add terms to the left-hand side ( ) 1j j k

j J j J

x a x J
 

   

where

with

 

 
1if   and  0, , 1

( ) ( ) / if   and  1, , 1

( ) / if 

j j

j j j

p p

j A u A j p

u j u A A u A j p

p u A A u




      


           
      

0j

j J

a a


  

 1, ,J p

1

j

j k

k

A a




0 0A 
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Example

To lift

Add terms

1 2 3 4 3x x x x   

1 2 3 4 5 6(8) (3) 3x x x x x x      

Given
1 2 3 4 5 66 5 5 5 8 3 17x x x x x x     

where (u) is given by

This yields the lifted cut

1 2 3 4 5 6(5 / 4) (1/ 4) 3x x x x x x     
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Gomory Cuts

• When an integer programming 

problem has a nonintegral solution, 

we can generate at least one Gomory 

cut to cut off that solution.

- This is a special case of a 

separating cut, because it 

separates the current solution of 

the relaxation from the feasible 

set.

• Gomory cuts are widely used and 

very effective in MILP solvers.

Separating 

cut

Feasible solutions

Solution of 

continuous 

relaxation
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min

0 and integral

cx

Ax b

x





Gomory cuts

Given an integer programming 

problem

Let (xB,0) be an optimal solution 

of the continuous relaxation, 

where
ˆ ˆ

B Nx b Nx 
1 1ˆ ˆ,   b B b N B N  

Then if xi is nonintegral in this solution, the following Gomory cut is 

violated by (xB,0):
ˆ ˆ

i i N ix N x b       
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1 2

1 2

1 2

1 2

min 2 3

3 3

4 3 6

, 0 and integral

x x

x x

x x

x x



 

 



Example

1 2

1 2 3

1 2 4

min 2 3

3 3

4 3 6

0 and integralj

x x

x x x

x x x

x



  

  



or Optimal solution of 

the continuous 

relaxation has

1/ 3 1/ 3
ˆ

4 / 9 1/ 9
N

 
   

1
ˆ

2 / 3
b

 
  
 

1

2

1

2/3
B

x
x

x

   
    

  
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1 2

1 2

1 2

1 2

min 2 3

3 3

4 3 6

, 0 and integral

x x

x x

x x

x x



 

 



Example

1 2

1 2 3

1 2 4

min 2 3

3 3

4 3 6

0 and integralj

x x

x x x

x x x

x



  

  



or Optimal solution of 

the continuous 

relaxation has

1/ 3 1/ 3
ˆ

4 / 9 1/ 9
N

 
   

1
ˆ

2 / 3
b

 
  
 

ˆ ˆ
i i N ix N x b       

1

2

1

2/3
B

x
x

x

   
    

  

The Gomory cut 

is   3

2

4

4 /9 1/ 9 2 /3
x

x
x

 
         

 

or 
2 3 0x x  In x1,x2 space this is 1 22 3x x 
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1 2

1 2

1 2

1 2

min 2 3

3 3

4 3 6

, 0 and integral

x x

x x

x x

x x



 

 



Example

1 2

1 2 3

1 2 4

min 2 3

3 3

4 3 6

0 and integralj

x x

x x x

x x x

x



  

  



or Optimal solution of 

the continuous 

relaxation has

1/ 3 1/ 3
ˆ

4 / 9 1/ 9
N

 
   

1
ˆ

2 / 3
b

 
  
 

1

2

1

2/3
B

x
x

x

   
    

  

Gomory cut  x1 + 2x2  3

Gomory cut after re-solving LP with 

previous cut.

1
ˆ

2 / 3
b

 
  
 
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Mixed Integer Rounding Cuts

• Mixed integer rounding (MIR) cuts can be generated for solutions 

of any relaxed MILP in which one or more integer variables has a 

fractional value.

− Like Gomory cuts, they are separating cuts.

− MIR cuts are widely used in commercial solvers.



min

, 0 and  integral

cx dy

Ax Dy b

x y y



 



MIR cuts

Given an MILP problem

In an optimal solution of the 

continuous relaxation, let

J = { j | yj is nonbasic}

K = { j | xj is nonbasic}

N = nonbasic cols of [A D]

Then if yi is nonintegral in this solution, the following MIR cut is 

violated by the solution of the relaxation:

1 2

ˆfrac( ) 1ˆ ˆ ˆ ˆ ˆ
ˆ ˆfrac( ) frac( )

ij

i ij j ij ij j ij i

j J j J j Ki i

N
y N y N N x N b

b b



  

 
               

 
  

where  1
ˆ ˆfrac( ) frac( )ij jJ j J N b  

2 1\J J J



Example

Take basic solution (x1,y1) = (8/3,17/3).

Then
1 2 1 2

1 2 1 2

3 4 6 4 1

2 3

, 0,   integerj j j

x x y y

x x y y

x y y

   

   



1/ 3 2 / 3
ˆ

2 / 3 8 / 3
N

 
   

8 / 3
ˆ

17 / 3
b

 
  
 

J = {2}, K = {2},  J1 = ,  J2 = {2}

The MIR cut is 1 2 2

1/ 3 1
1/ 3 (2 /3) 8 /3

2 / 3 2 /3
y y x 
          
 

or 1 2 2(1/ 2) 3y y x  



Lagrangean Relaxation

Lagrangean Duality

Properties of the Lagrangean Dual

Example: Fast Linear Programming

Domain Filtering

Example:  Continuous Global Optimization



Motivation

• Lagrangean relaxation can provide better bounds than LP 

relaxation.

• The Lagrangean dual generalizes LP duality.

• It provides domain filtering analogous to that based on LP 

duality.

- This is a key technique in continuous global optimization.

• Lagrangean relaxation gets rid of troublesome constraints by 

dualizing them.

- That is, moving them into the objective function.

- The Lagrangean relaxation may decouple.



Lagrangean Duality

Consider an 

inequality-constrained 

problem

min ( )

( ) 0

f x

g x

x S





Hard constraints

Easy constraints

The object is to get rid of (dualize) the hard constraints 

by moving them into the objective function.



Lagrangean Duality

Consider an 

inequality-constrained 

problem

max

( ) ( )
s S

v

g x b f x v


  

min ( )

( ) 0

f x

g x

x S



 implies

Lagrangean Dual problem: Find the tightest lower bound 

on the objective function that is implied by the constraints.

It is related to an 

inference problem



( ) 0  dominates ( ) 0
( ) 0 ( ) iff   

for some  0 

x S g x f x v
g x f x v





   
  



max

( ) ( )
s S

v

g x b f x v


  

min ( )

( ) 0

f x

g x

x S





Let us say that

Primal Dual

Surrogate

g(x)  f(x)  v  for all x  S

That is, v  f(x)  g(x) for all x  S



( ) 0  dominates ( ) 0
( ) 0 ( ) iff   

for some  0 

x S g x f x v
g x f x v





   
  



max

( ) ( )
s S

v

g x b f x v


  

min ( )

( ) 0

f x

g x

x S





Let us say that

Primal Dual

Surrogate

g(x)  f(x)  v  for all x  S

That is, v  f(x)  g(x) for all x  S

If we replace domination with material implication,

we get the surrogate dual, which gives better bounds

but lacks the nice properties of the Lagrangean dual. 



( ) 0  dominates ( ) 0
( ) 0 ( ) iff   

for some  0 

x S g x f x v
g x f x v





   
  



max

( ) ( )
s S

v

g x b f x v


  

min ( )

( ) 0

f x

g x

x S





Let us say that

Primal Dual

Surrogate

g(x)  f(x)  v  for all x  S

That is, v  f(x)  g(x) for all x  S

Or   min ( ) ( )
x S

v f x g x


 



( ) 0  dominates ( ) 0
( ) 0 ( ) iff   

for some  0 

x S g x f x v
g x f x v





   
  



g(x)  f(x)  v  for all x  S

That is, v  f(x)  g(x) for all x  S

Or  

max

( ) ( )
s S

v

g x b f x v


  

min ( )

( ) 0

f x

g x

x S





Let us say that

Primal Dual

So the dual becomes

 

max
 

min ( ) ( )  for some 0
x S

v

v f x g x 


  

 min ( ) ( )
x S

v f x g x


 

Surrogate



min ( )

( ) 0

f x

g x

x S





Primal Dual

Now we have…

0
max ( )


 


or where

 ( ) min ( ) ( )
x S

f x g x  


 

 

max
 

min ( ) ( )  for some 0
x S

v

v f x g x 


  

Lagrangean 

relaxation

Vector of

Lagrange 

multipliers

The Lagrangean dual can be viewed as the problem 

of finding the Lagrangean relaxation that gives the 

tightest bound.

These constraints 

are dualized



Example

 

1 2

1 2

1 2

1 2

min 3 4

3 0

2 5 0

, 0,1,2,3

x x

x x

x x

x x



  

  



Optimal solution (2,1)

Strongest 

surrogate

 

 

1 2 1 2 1 1 2 2 1 2
{0, ,3}

1 2 1 1 2 2 2
{0, ,3}

( , ) min 3 4 ( 3 ) (2 5)

min (3 2 ) (4 3 ) 5

j

j

x

x

x x x x x x

x x

    

    





       

      

The Lagrangean relaxation is

The Lagrangean relaxation is easy to solve

for any given 1, 2:

1 2

1

0 if 3 2 0

3 otherwise
x

   
 


1 2

2

0 if 4 3 0

3 otherwise
x

   
 




Example

 

1 2

1 2

1 2

1 2

min 3 4

3 0

2 5 0

, 0,1,2,3

x x

x x

x x

x x



  

  



(1,2) is piecewise linear and concave.

Optimal solution (2,1)

Value = 10

1

2

()=0

()=9 2/7

()=5

()=0

()=7.5

Solution of Lagrangean dual:

(1,2) = (5/7, 13/7),  () = 9 2/7

Note duality gap between 10 and 9 2/7 

(no strong duality).



Example

 

1 2

1 2

1 2

1 2

min 3 4

3 0

2 5 0

, 0,1,2,3

x x

x x

x x

x x



  

  



Note: in this example, the Lagrangean dual 

provides the same bound (9 2/7) as the 

continuous relaxation of the IP.

This is because the Lagrangean relaxation 

can be solved as an LP:

Lagrangean duality is useful when the 

Lagrangean relaxation is tighter than an LP 

but nonetheless easy to solve.

 

 

{0,
1 2 1 2 1 1 2 2 2

1 2 1 1 2 2 2

,3}

0 3

( , ) min (3 2 ) (4 3 ) 5

min (3 2 ) (4 3 ) 5

j

j

x

x

x x

x x

       

    



 

      

      



Properties of the Lagrangean dual

Weak duality:  For any feasible x* and any *  0,  f(x*)  (*).

In particular, min ( )

( ) 0

f x

g x

x S







0
max ( )


 


Concavity: () is concave.  It can therefore be maximized by 

local search methods.

Complementary slackness:  If x* and * are optimal, and there 

is no duality gap, then *g(x*) = 0.



Solving the Lagrangean dual

Let k be the kth iterate, and let 1k k k

k     

Subgradient of () at  = k

If xk solves the Lagrangean relaxation for  = k, then k = g(xk).

This is because () = f(xk) + g(xk) at  = k. 

The stepsize k must be adjusted so that the sequence 

converges but not before reaching a maximum.



Example: Fast Linear Programming

• In CP contexts, it is best to process each node of the search tree 

very rapidly.  

• Lagrangean relaxation may allow very fast calculation of a lower 

bound on the optimal value of the LP relaxation at each node.

• The idea is to solve the Lagrangean dual at the root node (which 

is an LP) and use the same Lagrange multipliers to get an LP 

bound at other nodes.



At root node, solve min

( )

0

cx

Ax b

Dx d

x







The (partial) LP dual solution * 

solves the Lagrangean dual in which 

Dualize

 
0

( ) min ( )
Dx d

x

cx Ax b  




  

Special structure,

e.g. variable bounds



At root node, solve min

( )

0

cx

Ax b

Dx d

x







The (partial) LP dual solution * 

solves the Lagrangean dual in which 

Dualize

 
0

( ) min ( )
Dx d

x

cx Ax b  




  

At another node, the LP is

min

( )

0

cx

Ax b

Dx d

Hx h

x









Branching 

constraints, 

etc.
Here (*) is still a lower bound on the optimal 

value of the LP and can be quickly calculated 

by solving a specially structured LP.

Special structure,

e.g. variable bounds



min ( )

( ) 0

f x

g x

x S





Suppose:

has optimal solution x*, optimal value v*, and 

optimal Lagrangean dual solution *.

…and i* > 0, which means the i-th constraint is tight 

(complementary slackness);

…and the problem is a relaxation of a CP problem;

…and we have a feasible solution of the CP problem with value 

U, so that U is an upper bound on the optimal value.

Domain Filtering



min ( )

( ) 0

f x

g x

x S





Supposing
has optimal solution x*, optimal value v*, and 

optimal Lagrangean dual solution *:

If x were to change to a value other than x*, the LHS of i-th constraint 

gi(x)  0 would change by some amount i.  

Since the constraint is tight, this would increase the optimal value 

as much as changing the constraint to gi(x)  i  0. 

So it would increase the optimal value at least  i*i.

(It is easily shown that Lagrange multipliers are marginal costs.  Dual 

multipliers for LP are a special case of Lagrange multipliers.)



We have found: a change in x that changes gi(x) by i increases 

the optimal value at least  i*i.

Since      optimal value of this problem  optimal value of the CP  U,  

we have  i*i  U  v*,  or *

*i

i

U v




 

min ( )

( ) 0

f x

g x

x S





Supposing
has optimal solution x*, optimal value v*, and 

optimal Lagrangean dual solution *:



Since  i = gi(x)  gi(x*) = gi(x),  this implies the inequality
*

*
( )i

i

U v
g x






…which can be propagated.

We have found: a change in x that changes gi(x) by i increases 

the optimal value at least  i*i.

Since      optimal value of this problem  optimal value of the CP  U,  

we have  i*i  U  v*,  or *

*i

i

U v




 

min ( )

( ) 0

f x

g x

x S





Supposing
has optimal solution x*, optimal value v*, and 

optimal Lagrangean dual solution *:



Example:  Continuous Global Optimization

• Some of the best continuous global solvers (e.g., BARON) 

combine OR-style relaxation with CP-style interval arithmetic and 

domain filtering.

• These methods can be combined with domain filtering based on 

Lagrange multipliers.



Feasible set

Global optimum

Local optimum

x1

x2

Continuous Global Optimization

1 2

1 2

1 2

1 2

max

4 1

2 2

[0,1],   [0,2]

x x

x x

x x

x x





 

 



To solve it:

• Search: split interval domains of x1, x2.

– Each node of search tree is a problem restriction.

• Propagation: Interval propagation, domain filtering. 

– Use Lagrange multipliers to infer valid inequality for 

propagation.

– Reduced-cost variable fixing is a special case.

• Relaxation: Use McCormick factorization to obtain linear 

continuous relaxation.



Interval propagation

Propagate intervals 

[0,1], [0,2] 

through constraints 

to obtain 

[1/8,7/8], [1/4,7/4] 

x1

x2



Relaxation (McCormick factorization)

Factor complex functions into elementary functions that have 

known linear relaxations.

Write 4x1x2 = 1 as 4y = 1 where y = x1x2.

This factors 4x1x2 into linear function 4y and bilinear function x1x2.

Linear function 4y is its own linear relaxation.



Relaxation (McCormick factorization)

Factor complex functions into elementary functions that have 

known linear relaxations.

For example, consider function f(x) = x2sin x

Factor into elementary functions:

Let y = x2, z = sin x, f(x) = yz

Now write linear relaxations of the elementary functions.



where domain of xj is [ , ]j jx x

Relaxation (McCormick factorization)

Factor complex functions into elementary functions that have 

known linear relaxations.

Write 4x1x2 = 1 as 4y = 1 where y = x1x2.

This factors 4x1x2 into linear function 4y and bilinear function x1x2.

Linear function 4y is its own linear relaxation.

Bilinear function y = x1x2 has relaxation:

2 1 1 2 1 2 2 1 1 2 1 2

2 1 1 2 1 2 2 1 1 2 1 2

x x x x x x y x x x x x x

x x x x x x y x x x x x x

     

     



The linear relaxation becomes:

Relaxation (McCormick factorization)

1 2

1 2

2 1 1 2 1 2 2 1 1 2 1 2

2 1 1 2 1 2 2 1 1 2 1 2

min

4 1

2 2

,  1,2j j j

x x

y

x x

x x x x x x y x x x x x x

x x x x x x y x x x x x x

x x x j





 

     

     

  



Solve linear relaxation.

x1

x2

Relaxation (McCormick factorization)



x1

x2

Since solution is infeasible, 

split an interval and branch.

Solve linear relaxation.

Relaxation (McCormick factorization)

2 [1,1.75]x 

2 [0.25,1]x 



x1

x2

x1

x2

2 [1,1.75]x  2 [0.25,1]x 



Solution of 

relaxation is 

feasible, 

value = 1.25

This becomes 

incumbent 

solution

x1

x2

x1

x2

2 [1,1.75]x  2 [0.25,1]x 



Solution of 

relaxation is 

feasible, 

value = 1.25

This becomes 

incumbent 

solution

x1

x2

x1

x2

Solution of 

relaxation is 

not quite 

feasible, 

value = 1.854

Also use 

Lagrange 

multipliers for 

domain 

filtering…

2 [1,1.75]x  2 [0.25,1]x 



1 2

1 2

2 1 1 2 1 2 2 1 1 2 1 2

2 1 1 2 1 2 2 1 1 2 1 2

min

4 1

2 2

,  1,2j j j

x x

y

x x

x x x x x x y x x x x x x

x x x x x x y x x x x x x

x x x j





 

     

     

  

Associated Lagrange 

multiplier in solution of 

relaxation is 2 = 1.1

Relaxation (McCormick factorization)



This yields a valid inequality for propagation:

Associated Lagrange 

multiplier in solution of 

relaxation is 2 = 1.1

1 2

1.854 1.25
2 2 1.451

1.1
x x


   

Relaxation (McCormick factorization)

Value of 

relaxation
Lagrange multiplier

Value of incumbent 

solution

1 2

1 2

2 1 1 2 1 2 2 1 1 2 1 2

2 1 1 2 1 2 2 1 1 2 1 2

min

4 1

2 2

,  1,2j j j

x x

y

x x

x x x x x x y x x x x x x

x x x x x x y x x x x x x

x x x j





 

     

     

  



Constraint Programming Concepts

Domain Consistency

Cumulative Scheduling



Domain Consistency

• Also known as generalized arc consistency.

• A constraint set is domain consistent if every value in 

every variable domain is part of some feasible solution.

• That is, the domains are reduced as much as 

possible.

• Domain reduction is CP’s biggest engine.



Domain Consistency

Consider the constraint set

It is not domain consistent, because 0 appears in the 

domain of x1, and yet no solution has x1 = 0.

Removing 0 from domain of x1 = 1 makes the set domain 

consistent.

 

1 100

1 100

1

0

0,1j

x x

x x

x

 

 





subtree with 299 nodes

but no feasible solution

By removing 0 from domain of x1, 

the left subtree is eliminated 

 

1 100

1 100

1

1

other constraints

0,1j

x x

x x

x

 

 



1 0x  1 1x 



Graph coloring problem that can be solved by domain 

consistency maintenance alone.  Color nodes with red, 

green, blue with no two adjacent nodes having the same 

color.



Graph coloring problem that can be solved by domain 

consistency maintenance alone.  Color nodes with red, 

green, blue with no two adjacent nodes having the same 

color.



Graph coloring problem that can be solved by domain 

consistency maintenance alone.  Color nodes with red, 

green, blue with no two adjacent nodes having the same 

color.



Graph coloring problem that can be solved by domain 

consistency maintenance alone.  Color nodes with red, 

green, blue with no two adjacent nodes having the same 

color.



Graph coloring problem that can be solved by domain 

consistency maintenance alone.  Color nodes with red, 

green, blue with no two adjacent nodes having the same 

color.



Graph coloring problem that can be solved by domaim

consistency maintenance alone.  Color nodes with red, 

green, blue with no two adjacent nodes having the same 

color.



Graph coloring problem that can be solved by domain 

consistency maintenance alone.  Color nodes with red, 

green, blue with no two adjacent nodes having the same 

color.



• Used for resource-constrained scheduling.

• Total resources consumed by jobs at any one time must 

not exceed L.

Job start times

(variables)
Job processing times

Job resource 

requirements

Cumulative scheduling constraint

 1 1 1cumulative ( , , ),( , , ),( , , ),n n nt t p p c c L



 1 5

1

5

min

s.t. cumulative ( , , ),(3,3,3,5,5),(3,3,3,2,2),7

3

2

z

t t

z t

z t

 

 

Minimize makespan (no deadlines, all release times = 0):

Min makespan = 8

L

1

2 3

4

5

time

resources

Job start times

Processing times

Resources used

L

Cumulative scheduling constraint 



CP Filtering Algorithms

All-different

Disjunctive Scheduling

Cumulative Scheduling



Filtering for all-different

Domains can be filtered with an algorithm based on maximum 

cardinality bipartite matching and a theorem of Berge.

It is a special case of optimality conditions for max flow.

 1alldiff , , ny y



Filtering for alldiff

Consider the domains

 
 
 
 
 

1

2

3

4

5

1

2,3,5

1,2,3,5

1,5

1,2,3,4,5,6

y

y

y

y

y













y1

y2

y3

y4

y5

1

2

3

4

5

6

Indicate domains with edges



y1

y2

y3

y4

y5

1

2

3

4

5

6

Indicate domains with edges

Find maximum cardinality bipartite 

matching.



y1

y2

y3

y4

y5

1

2

3

4

5

6

Indicate domains with edges

Find maximum cardinality bipartite 

matching.



y1

y2

y3

y4

y5

1

2

3

4

5

6

Indicate domains with edges

Find maximum cardinality bipartite 

matching.

Mark edges in alternating paths 

that start at an uncovered vertex.



y1

y2

y3

y4

y5

1

2

3

4

5

6

Indicate domains with edges

Find maximum cardinality bipartite 

matching.

Mark edges in alternating paths 

that start at an uncovered vertex.



y1

y2

y3

y4

y5

1

2

3

4

5

6

Indicate domains with edges

Find maximum cardinality bipartite 

matching.

Mark edges in alternating paths 

that start at an uncovered vertex.

Mark edges in alternating cycles.



y1

y2

y3

y4

y5

1

2

3

4

5

6

Indicate domains with edges

Find maximum cardinality bipartite 

matching.

Mark edges in alternating paths 

that start at an uncovered vertex.

Mark edges in alternating cycles.

Remove unmarked edges not in 

matching.



y1

y2

y3

y4

y5

1

2

3

4

5

6

Indicate domains with edges

Find maximum cardinality bipartite 

matching.

Mark edges in alternating paths 

that start at an uncovered vertex.

Mark edges in alternating cycles.

Remove unmarked edges not in 

matching.



Filtering for alldiff

Domains have been filtered:

 
 
 
 
 

1

2

3

4

5

1

2,3,5

1,2,3,5

1,5

1,2,3,4,5,6

y

y

y

y

y











 
 
 
 
 

1

2

3

4

5

1

2,3

2,3

5

4,6

y

y

y

y

y











Domain consistency achieved.



Disjunctive scheduling

Consider a disjunctive scheduling constraint:

 1 2 3 5 1 2 3 5disjunctive ( , , , ),( , , , )s s s s p p p p

Start time variables



Edge finding for disjunctive scheduling

Consider a disjunctive scheduling constraint:

 1 2 3 5 1 2 3 5disjunctive ( , , , ),( , , , )s s s s p p p p

Processing times



Edge finding for disjunctive scheduling

Consider a disjunctive scheduling constraint:

 1 2 3 5 1 2 3 5disjunctive ( , , , ),( , , , )s s s s p p p p

Variable domains defined by time 

windows and processing times

1

2

3

5

[0,10 1]

[0,10 3]

[2,7 3]

[4,7 2]

s

s

s

s

 

 

 

 



Edge finding for disjunctive scheduling

Consider a disjunctive scheduling constraint:

 1 2 3 5 1 2 3 5disjunctive ( , , , ),( , , , )s s s s p p p p

A feasible (min makespan) solution:

Time window



Edge finding for disjunctive scheduling

But let’s reduce 2 of the deadlines to 9:



Edge finding for disjunctive scheduling

But let’s reduce 2 of the deadlines to 9:

We will use edge finding 

to prove that there is no 

feasible schedule.



Edge finding for disjunctive scheduling

We can deduce that job 2 must precede jobs 3 and 5:

Because if job 2 is not first, there is not enough time for all 3 

jobs within the time windows:

{2,3,5} {3,5} {2,3,5}L E p 

L{2,3,5}E{3,5}
7<3+3+2



Edge finding for disjunctive scheduling

We can deduce that job 2 must precede jobs 3 and 5:

Because if job 2 is not first, there is not enough time for all 3 

jobs within the time windows:

{2,3,5} {3,5} {2,3,5}L E p 

L{2,3,5}E{3,5}
7<3+3+2

Latest deadline



Edge finding for disjunctive scheduling

We can deduce that job 2 must precede jobs 3 and 5:

Because if job 2 is not first, there is not enough time for all 3 

jobs within the time windows:

{2,3,5} {3,5} {2,3,5}L E p 

L{2,3,5}E{3,5}
7<3+3+2

Earliest release time



Edge finding for disjunctive scheduling

We can deduce that job 2 must precede jobs 3 and 5:

Because if job 2 is not first, there is not enough time for all 3 

jobs within the time windows:

{2,3,5} {3,5} {2,3,5}L E p 

L{2,3,5}E{3,5}
7<3+3+2

Total processing time



Edge finding for disjunctive scheduling

We can deduce that job 2 must precede jobs 3 and 5:

So we can tighten deadline of job 2 to minimum of 

{3} {3} 4L p 

L{2,3,5}E{3,5}
7<3+3+2

Since time window of job 2 is now too narrow, there is no 

feasible schedule.

{5} {5} 5L p  {3,5} {3,5} 2L p 



Edge finding for disjunctive scheduling

In general, we can deduce that job k must precede all the jobs 

in set J:

If there is not enough time for all the jobs after the earliest 

release time of the jobs in J

{ } { }J k J J kL E p
 

  {2,3,5} {3,5} {2,3,5}L E p 



Edge finding for disjunctive scheduling

In general, we can deduce that job k must precede all the jobs 

in set J:

If there is not enough time for all the jobs after the earliest 

release time of the jobs in J

{ } { }J k J J kL E p
 

  {2,3,5} {3,5} {2,3,5}L E p 

Now we can tighten the deadline for job k to:

 min J J
J J

L p 


 {3,5} {3,5} 2L p 



Edge finding for disjunctive scheduling

There is a symmetric rule:

If there is not enough time for all the jobs before the latest 

deadline of the jobs in J:

{ } { }J J k J kL E p
 

 

Now we can tighten the release date for job k to:

 max J J
J J

E p 






Edge finding for disjunctive scheduling

Problem:  how can we avoid enumerating all subsets J of jobs 

to find edges?

{ } { }J k J J kL E p
 

 

…and all subsets J of J to tighten the bounds?

 min J J
J J

L p 






Edge finding for disjunctive scheduling

Key result:  We only have to consider sets J whose time 

windows lie within some interval.  

 min J J
J J

L p 




e.g., J = {3,5}



Edge finding for disjunctive scheduling

Key result:  We only have to consider sets J whose time 

windows lie within some interval.  

Removing a job from those within an interval only weakens the 

test

 min J J
J J

L p 




e.g., J = {3,5}

{ } { }J k J J kL E p
 

 

There are a polynomial number of intervals 

defined by release times and deadlines.



Edge finding for disjunctive scheduling

Key result:  We only have to consider sets J whose time 

windows lie within some interval.  

 min J J
J J

L p 




e.g., J = {3,5}

Note:  Edge finding does not achieve bounds consistency, 

which is an NP-hard problem.



Edge finding for disjunctive scheduling

One O(n2) algorithm is based on the Jackson pre-emptive 

schedule (JPS).  Using a different example, the JPS is:



Edge finding for disjunctive scheduling

One O(n2) algorithm is based on the Jackson pre-emptive 

schedule (JPS).  Using a different example, the JPS is:

For each job 

Scan jobs  in decreasing order of 

Select first  for which 

Conclude that 

Update  to JPS( , )

ik

i k

k i i J

ik

i

i

k J L

k L E p p

i J

E i k



  

Jobs unfinished at time Ei in JPS

Jobs j  i in Ji with Lj  Lk

Latest completion time in JPS of jobs in Jik

Total remaining processing 

time in JPS of jobs in Jik



Not-first/not-last rules

We can deduce that job 4 cannot precede jobs 1 and 2:

{1,2} 4 1 2 4L E p p p   

Because if job 4 is first, there is too little time to complete the 

jobs before the later deadline of jobs 1 and 2:

L{1,2}E4
6<1+3+3



Not-first/not-last rules

We can deduce that job 4 cannot precede jobs 1 and 2:

1 1 3E p 

Now we can tighten the release time of job 4 to minimum of:

L{1,2}E4
6<1+3+3

2 2 4E p 



Not-first/not-last rules

In general, we can deduce that job k cannot precede all the 

jobs in J:

J k JL E p 

if there is too little time after release time of job k to complete 

all jobs before the latest deadline in J:

Now we can update Ei to 

 min j j
j J

E p






Not-first/not-last rules

In general, we can deduce that job k cannot precede all the 

jobs in J:

J k JL E p 

if there is too little time after release time of job k to complete 

all jobs before the latest deadline in J:

Now we can update Ei to 

 min j j
j J

E p




There is a symmetric not-last rule.

The rules can be applied in polynomial time, although an 

efficient algorithm is quite complicated.



Cumulative scheduling

Consider a cumulative scheduling constraint:

 1 2 3 1 2 3 1 2 3cumulative ( , , ),( , , ),( , , ),s s s p p p c c c C

A feasible solution:



Edge finding for cumulative scheduling

We can deduce that job 3 must finish after the others finish:  3 1,2

Because the total energy required exceeds the area between 

the earliest release time and the later deadline of jobs 1,2:

 3 {1,2} {1,2} {1,2,3}e e C L E   



Edge finding for cumulative scheduling

We can deduce that job 3 must finish after the others finish:  3 1,2

Because the total energy required exceeds the area between 

the earliest release time and the later deadline of jobs 1,2:

 3 {1,2} {1,2} {1,2,3}e e C L E   

Total energy 

required = 22
9

5

8



Edge finding for cumulative scheduling

We can deduce that job 3 must finish after the others finish:  3 1,2

Because the total energy required exceeds the area between 

the earliest release time and the later deadline of jobs 1,2:

 3 {1,2} {1,2} {1,2,3}e e C L E   

Total energy 

required = 22
9

5

8Area available 

= 20



Edge finding for cumulative scheduling

We can deduce that job 3 must finish after the others finish:  3 1,2

We can update the release time of job 3 to

3 {1,2} {1,2}

{1,2}

3

( )( )Je C c L E
E

c

  


Energy available 

for jobs 1,2 if 

space is left for job 

3 to start anytime

= 10

10



Edge finding for cumulative scheduling

We can deduce that job 3 must finish after the others finish:  3 1,2

We can update the release time of job 3 to

3 {1,2} {1,2}

{1,2}

3

( )( )Je C c L E
E

c

  


Energy available 

for jobs 1,2 if 

space is left for job 

3 to start anytime 

= 10

10Excess energy 

required by jobs 

1,2 = 4

4



Edge finding for cumulative scheduling

We can deduce that job 3 must finish after the others finish:  3 1,2

We can update the release time of job 3 to

3 {1,2} {1,2}

{1,2}

3

( )( )Je C c L E
E

c

  


Energy available 

for jobs 1,2 if 

space is left for job 

3 to start anytime 

= 10

10Excess energy 

required by jobs 

1,2 = 4

4 Move up job 3 

release time 

4/2 = 2 units 

beyond E{1,2}

E3



Edge finding for cumulative scheduling

In general, if  { } { }J k J J ke C L E
 

  

then k > J, and update Ek to 

( )( ) 0

( )( )
max

J k J J

J k J J
JJ J

k
e C c L E

e C c L E
E

c
  

  


   

   
 

 

In general, if  { } { }J k J k Je C L E
 

  

then k < J, and update Lk to 

( )( ) 0

( )( )
min

J k J J

J k J J
JJ J

k
e C c L E

e C c L E
L

c
  

  


   

   
 

 



Edge finding for cumulative scheduling

There is an O(n2) algorithm that finds all applications of the 

edge finding rules.



Other propagation rules for cumulative 

scheduling

• Extended edge finding.

• Timetabling.

• Not-first/not-last rules.

• Energetic reasoning.



CP-based Branch and Price

Basic Idea

Example: Airline Crew Scheduling



Motivation

• Branch and price allows solution of integer programming 

problems with a huge number of variables.

• The problem is solved by branching, like a normal IP.  The 

difference lies in how the LP relaxation is solved.

• Variables are added to the LP relaxation only as needed.

• Variables are priced to find which ones should be added.

• CP is useful for solving the pricing problem, particularly 

when constraints are complex.

• CP-based branch and price has been successfully applied 

to airline crew scheduling, transit scheduling, and other 

transportation-related problems.



Basic Idea

Suppose the LP relaxation of an integer 

programming problem has a huge number of 

variables:

min

0

cx

Ax b

x





We will solve a restricted master problem, 

which has a small subset of the variables:
( )

min

0

j j

j J

j j

j J

j

c x

A x b

x














Column j of A

Adding xk to the problem would improve the solution if xk has a 

negative reduced cost:
0k k kr c A  



Adding xk to the problem would improve the solution if xk has a 

negative reduced cost:
0k k kr c A  

Basic Idea

Computing the reduced cost of xk is known as pricing xk.

min

 is a column of 

yc y

y A



If the solution y* satisfies cy*  y* < 0, then we can add column y to 

the restricted master problem.

So we solve the pricing problem:

Cost of column y



Basic Idea

max

 is a column of 

y

y A



need not be solved to optimality, so long as we find a column with 

negative reduced cost.  

However, when we can no longer find an improving column, we 

solved the pricing problem to optimality to make sure we have the 

optimal solution of the LP.

The pricing problem

If we can state constraints that the columns of A must satisfy, 

CP may be a good way to solve the pricing problem.



Example: Airline Crew Scheduling

Flight data

Start 

time

Finish 

time

A roster is the sequence of flights assigned to 

a single crew member.

The gap between two consecutive flights in a 

roster must be from 2 to 3 hours.  Total flight 

time for a roster must be between 6 and 10 

hours.

For example, 

flight 1 cannot immediately precede 6 

flight 4 cannot immediately precede 5.

The possible rosters are:

(1,3,5), (1,4,6), (2,3,5), (2,4,6)

We want to assign crew members to flights to minimize 

cost while covering the flights and observing complex 

work rules.

226



Airline Crew Scheduling

There are 2 crew members, and the possible rosters are:

1           2          3           4

(1,3,5), (1,4,6), (2,3,5), (2,4,6)

The LP relaxation of the problem is:

= 1 if we assign crew member 1 

to roster 2, = 0 otherwise.

Cost of assigning crew member 1 to roster 2

Each crew member is assigned to 

exactly 1 roster. 

Each flight is assigned at least 1 

crew member.

227



Airline Crew Scheduling

There are 2 crew members, and the possible rosters are:

1           2          3           4

(1,3,5), (1,4,6), (2,3,5), (2,4,6)

The LP relaxation of the problem is:

= 1 if we assign crew member 1 

to roster 2, = 0 otherwise.

Cost of assigning crew member 1 to roster 2

Each crew member is assigned to 

exactly 1 roster. 

Each flight is assigned at least 1 

crew member.

Rosters that cover flight 1.
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Airline Crew Scheduling

There are 2 crew members, and the possible rosters are:

1           2          3           4

(1,3,5), (1,4,6), (2,3,5), (2,4,6)

The LP relaxation of the problem is:

= 1 if we assign crew member 1 

to roster 2, = 0 otherwise.

Cost of assigning crew member 1 to roster 2

Each crew member is assigned to 

exactly 1 roster. 

Each flight is assigned at least 1 

crew member.

Rosters that cover flight 2.

229



Airline Crew Scheduling

There are 2 crew members, and the possible rosters are:

1           2          3           4

(1,3,5), (1,4,6), (2,3,5), (2,4,6)

The LP relaxation of the problem is:

= 1 if we assign crew member 1 

to roster 2, = 0 otherwise.

Cost of assigning crew member 1 to roster 2

Each crew member is assigned to 

exactly 1 roster. 

Each flight is assigned at least 1 

crew member.

Rosters that cover flight 3.
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Airline Crew Scheduling

There are 2 crew members, and the possible rosters are:

1           2          3           4

(1,3,5), (1,4,6), (2,3,5), (2,4,6)

The LP relaxation of the problem is:

= 1 if we assign crew member 1 

to roster 2, = 0 otherwise.

Cost of assigning crew member 1 to roster 2

Each crew member is assigned to 

exactly 1 roster. 

Each flight is assigned at least 1 

crew member.

Rosters that cover flight 4.

231



Airline Crew Scheduling

There are 2 crew members, and the possible rosters are:

1           2          3           4

(1,3,5), (1,4,6), (2,3,5), (2,4,6)

The LP relaxation of the problem is:

= 1 if we assign crew member 1 

to roster 2, = 0 otherwise.

Cost of assigning crew member 1 to roster 2

Each crew member is assigned to 

exactly 1 roster. 

Each flight is assigned at least 1 

crew member.

Rosters that cover flight 5.
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Airline Crew Scheduling

There are 2 crew members, and the possible rosters are:

1           2          3           4

(1,3,5), (1,4,6), (2,3,5), (2,4,6)

The LP relaxation of the problem is:

= 1 if we assign crew member 1 

to roster 2, = 0 otherwise.

Cost of assigning crew member 1 to roster 2

Each crew member is assigned to 

exactly 1 roster. 

Each flight is assigned at least 1 

crew member.

Rosters that cover flight 6.
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Airline Crew Scheduling

There are 2 crew members, and the possible rosters are:

1           2          3           4

(1,3,5), (1,4,6), (2,3,5), (2,4,6)

The LP relaxation of the problem is:

= 1 if we assign crew member 1 

to roster 2, = 0 otherwise.

Cost c12 of assigning crew member 1 to roster 2

Each crew member is assigned to 

exactly 1 roster. 

Each flight is assigned at least 1 

crew member.

In a real problem, there can be millions of rosters.
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Airline Crew Scheduling

We start by solving the problem with a subset 

of the columns:
Optimal 

dual 

solution

u1

u2

v1

v2

v3

v4

v5

v6
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Airline Crew Scheduling

We start by solving the problem with a subset 

of the columns:

Dual 

variables

u1

u2

v1

v2

v3

v4

v5

v6
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Airline Crew Scheduling

We start by solving the problem with a subset 

of the columns:

The reduced cost of an 

excluded roster k for 

crew member i is

 in roster k

ik i j

j

c u v  

We will formulate the 

pricing problem as a 

shortest path problem.

Dual 

variables

u1

u2

v1

v2

v3

v4

v5

v6

237



Pricing problem

2

Crew 

member 1

Crew 

member 2
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Pricing problem
Each s-t path corresponds to a roster, 

provided the flight time is within bounds.

2

Crew 

member 1

Crew 

member 2
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Pricing problem
Cost of flight 3 if it immediately follows 

flight 1, offset by dual multiplier for flight 1

2

Crew 

member 1

Crew 

member 2

240



Pricing problem
Cost of transferring from home to flight 1, 

offset by dual multiplier for crew member 1

Dual multiplier 

omitted to break 

symmetry

2

Crew 

member 1

Crew 

member 2
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Pricing problem
Length of a path is reduced cost of the 

corresponding roster.

2

Crew 

member 1

Crew 

member 2

242



Crew 

member 1

Crew 

member 2

Pricing problem
Arc lengths using dual solution of LP 

relaxation

10
5 2

2

0

3

4

5 6
1

0
5 2

2

-9

3

4

5 6
1

2
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Crew 

member 1

Crew 

member 2

Pricing problem

Solution of shortest path problems

10
5 2

2

0

3

4

5 6
1

0
5 2

2

-9

3

4

5 6
1

2

Reduced cost = 1

Add x12 to problem. 

Reduced cost = 2

Add x23 to problem.

After x12 and x23 are added to the problem, no 

remaining variable has negative reduced cost.



Pricing problem

The shortest path problem cannot be solved by traditional shortest 

path algorithms, due to the bounds on total duration of flights.  

It can be solved by CP:

 

 

min max

Path( , , ),  all flights 

flights ,  0,  all 

i

i i

j j

j X

i i

X z G i

T f s T

X z i



  

 



Set of flights 

assigned to crew 

member i

Path 

length Graph

Path global constraint

Setsum global constraint

Duration of flight j
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Benders Decomposition

Logic-Based Benders Decomposition

Some Applications

Example: Machine Scheduling

Application: Home Health Care

246



• Benders decomposition is a classical strategy that 

does not sacrifice overall optimality.

– Separates the problem into a master problem and 

multiple subproblems.

– Variables are partitioned 

between master and 

subproblems.

– Exploits the fact that the 

problem may radically 

simplify when the master 

problem variables are fixed 

to a set of values.

247

Benders Decomposition

Master problem

Subproblems



• But classical Benders decomposition has 

a serious limitation.

– The subproblems must be linear programming  

problems.

– Or continuous nonlinear programming problems.

– The linear programming dual provides the 

Benders cuts.

248

Benders Decomposition



• Logic-based Benders decomposition attempts to 

overcome this limitation.

– The subproblem can be any optimization/feasibility 

problem, such as a CP problem

– The Benders cuts are obtained from an inference 

dual.

– Speedup over state of the art can be several orders 

of magnitude.

– Yet the Benders cuts must be designed specifically 

for every class of problems.

249

Logic-Based Benders
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Number of Articles that Mention Benders Decomposition

Source: Google Scholar

Logic-Based Benders



• Logic-based Benders decomposition solves a 

problem of the form

– Where the problem simplifies when x is fixed to a specific 

value.

251

min ( , )

( , )

,x y

f x y

x y S

x D y D



 

Logic-Based Benders



• Decompose problem into master and subproblem.

– Subproblem is obtained by fixing x to solution value in 

master problem.

min

( )   (Benders cuts)k

x

z

z g x

x D





min ( , )

( , )

f x y

x y S

Minimize cost z subject to 

bounds given by Benders 

cuts, obtained from values 

of x attempted in previous 

iterations k.

Obtain proof of optimality 

(solution of inference dual).

Use same proof to deduce 

cost bounds for other 

assignments, yielding 

Benders cut.

Trial value x

that solves 

master

Benders cut

z  gk(x)

Master problem Subproblem

x

252

Logic-Based Benders



• Iterate until master problem value equals best 

subproblem value so far.

– This yields optimal solution.

min

( )   (Benders cuts)k

x

z

z g x

x D





min ( , )

( , )

f x y

x y S

Minimize cost z subject to 

bounds given by Benders 

cuts, obtained from values 

of x attempted in previous 

iterations k.

Trial value x

that solves 

master

Benders cut

z  gk(x)

Master problem Subproblem

x

253

Logic-Based Benders

Obtain proof of optimality 

(solution of inference dual).

Use same proof to deduce 

cost bounds for other 

assignments, yielding 

Benders cut.



Logic-Based Benders

• Fundamental concept: inference duality

min ( )f x

x S

max

( )
P

v

x S f x v

P

  

P
Find best feasible 

solution by 

searching over 

values of x.
Find a proof of optimal value v* 

by searching over proofs P.

Primal problem:

optimization

Dual problem:

Inference

In classical LP, the proof is a tuple of dual multipliers
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• The proof that solves the dual in iteration k gives a 

bound gk(  ) on the optimal value.

• The same proof gives a bound gk(x) for other values of x.

min

( )   (Benders cuts)k

x

z

z g x

x D





min ( , )

( , )

f x y

x y S
Trial value x

that solves 

master

Benders cut

z  gk(x)

Master problem Subproblem

x
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Logic-Based Benders

x

Minimize cost z subject to 

bounds given by Benders 

cuts, obtained from values 

of x attempted in previous 

iterations k.

Obtain proof of optimality 

(solution of inference dual).

Use same proof to deduce 

cost bounds for other 

assignments, yielding 

Benders cut.



Logic-Based Benders

• Popular optimization duals are special cases of 

the inference dual.

– Result from different choices of inference method.

– For example....

– Linear programming dual 

(gives classical Benders cuts)

– Lagrangean dual

– Surrogate dual

– Subadditive dual
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• Planning and scheduling:

– Machine allocation and scheduling

– Steel production scheduling

– Chemical batch processing (BASF, etc.)

– Auto assembly line management (Peugeot-Citroën)

– Allocation and scheduling of multicore processors 

(IBM, Toshiba, Sony)

– Worker assignment 

in a queuing 

environment

257
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• Other scheduling

– Lock scheduling

– Shift scheduling

– Permutation flow 

shop scheduling 

with time lags

– Resource-constrained 

scheduling

– Hospital scheduling

– Optimal control of 

dynamical systems

– Sports scheduling

Logic-Based Benders Applications
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• Routing and scheduling

– Vehicle routing

– Home health care

– Food distribution

– Automated guided 

vehicles in flexible 

manufacturing

– Traffic diversion 

around blocked 

routes

– Concrete delivery

Logic-Based Benders Applications
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• Location and Design

– Allocation of frequency

spectrum (U.S. FCC)

– Wireless local area 

network design

– Facility location-allocation

– Stochastic facility location 

and fleet management

– Capacity and distance-

constrained plant location

– Queuing design and control

260

Logic-Based Benders Applications
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• Other

– Logical inference (SAT solvers essentially use Benders)

– Logic circuit verification

– Bicycle sharing

– Service restoration 

in a network

– Inventory 

management

– Supply chain 

management

– Space packing

Logic-Based Benders Applications
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• Assign tasks to machines.

• Then schedule tasks assigned to each machine.

– Subject to time windows.

– Cumulative scheduling: several tasks can run 

simultaneously, subject to resource limits.

– Scheduling problem decouples into a separate problem for 

each machine.

Example: Machine Scheduling
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• Assign tasks in master, schedule in subproblem.

– Combine mixed integer programming and constraint 

programming

Assign tasks to resources 

to minimize cost.

Solve by mixed integer 

programming.

Schedule jobs on each 

machine, subject to time 

windows.

Constraint programming 

obtains proof of optimality 

(dual solution).

Use same proof to deduce 

cost for some other 

assignments, yielding 

Benders cut.

Trial 

assignment

Benders cut

z  gk(x)

Master problem Subproblem

x
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• Objective function 

– Cost is based on task assignment only.

– So cost appears only in the master problem.

– Scheduling subproblem is a feasibility problem.

cost ,    1  if task  assigned to resource ij ij ij

ij

c x x j i 

Machine Scheduling
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• Objective function 

– Cost is based on task assignment only.

– So cost appears only in the master problem.

– Scheduling subproblem is a feasibility problem.

• Benders cuts

– They have the form

– where Ji is a set of tasks that create infeasibility when 

assigned to resource i.

cost ,    1  if task  assigned to resource ij ij ij

ij

c x x j i 

(1 ) 1,  all 
i

ij

j J

x i


 

Machine Scheduling

265



• Resulting Benders decomposition:

Schedule jobs on each 

resource.

Constraint programming 

may obtain proof of 

infeasibility on some resources 

(dual solution).

Use same proof to deduce 

infeasibility for some other 

assignments, yielding 

Benders cut.

Trial 

assignment

Benders cuts

for infeasible 

resources i

Master problem Subproblem

x

min  

 

Benders cuts

ij ij

ij

z

z c x

(1 ) 1,
i

ij

j J

x


 

Machine Scheduling
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• Other objective functions

– Minimize makespan

– Minimize number of late jobs

– Minimize total tardiness

• Stronger Benders cuts

• Stronger relaxations

• Assume all release times are the same in 

cumulative scheduling subproblem...

Extensions
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Minimize Makespan
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Minimize Makespan
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Minimize Number of Late Tasks
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Minimize Number of Late Tasks
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Minimize Number of Late Tasks
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Minimize Number of Late Tasks
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Minimize Total Tardiness
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Minimize Total Tardiness
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Minimize Total Tardiness
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Minimize Total Tardiness
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Minimize Total Tardiness
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Minimize Total Tardiness
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Minimize Total Tardiness
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• General home health care problem.

– Assign aides to homebound patients.

• …subject to constraints on aide qualifications

and patent preferences.

• One patient may require a team 

of aides.

– Route each aide through assigned 

patients, observing time windows.

• …subject to constraints on 

hours, breaks, etc.

Application: Home Health Care
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• A large industry, and rapidly growing.

– Roughly as large as all courier and delivery services.

2014 2018

U.S. revenues, $ billions 75 150

World revenues, $ billions 196 306

Projected Growth 

of Home Health Care Industry

Increase in U.S. Employment, 2010-2020

Home health care industry 70%

Entire economy 14%

Home Health Care
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• Advantages of home healthcare

– Lower cost

• Hospital & nursing home care is very expensive.

– No hospital-acquired infections

• Less exposure to superbugs.

– Preferred by patients

• Comfortable, familiar surroundings of home.

• Sense of control over one’s life.

– Supported by new equipment & technology

• IT integration with hospital systems.

• Online consulting with specialists.

Home Health Care
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• Distinguishing characteristics

– Personal & household services

– Regular weekly schedule

• For example, Mon-Wed-Fri at 9 am.

– Same aide each visit

– Long planning horizon

• Several weeks

– Rolling schedule

• Update schedule as patient population evolves.

Home Hospice Care
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5-8% 

weekly

turnover

Home Hospice Care
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• Solve with Benders decomposition.

– Assign aides to patients 

in master problem.

• Maximize number of

patients served by a

given set of aides.

Master Problem

Solve with MIP

Subproblem

Solve with CP

Solution ҧ𝑥
of master

Benders 

cut

Home Hospice Care
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• Solve with Benders decomposition.

– Assign aides to patients 

in master problem.

• Maximize number of

patients served by a

given set of aides.

– Schedule home visits in

subproblem.

• Cyclic weekly schedule.

• Visit each patient

same time each day.

• No visits on weekends.

Master Problem

Solve with MIP

Subproblem

Solve with CP

Solution ҧ𝑥
of master

Benders 

cut

Home Hospice Care
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• Solve with Benders decomposition.

– Assign aides to patients 

in master problem.

• Maximize number of

patients served by a

given set of aides.

– Schedule home visits in

subproblem.

• Cyclic weekly schedule

• Visit each patient

same time each day.

• No visits on weekends.

– Subproblem decouples into 

a scheduling problem for each aide

Master Problem

Solve with MIP

Subproblem

Solve with CP

Solution ҧ𝑥
of master

Benders 

cut

Home Hospice Care

289



= 1 if patient j scheduled
= 1 if patient j

assigned to aide i

= 1 if patient j

assigned to aide i

on day k

Required number 

of visits per week

Master Problem
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• For a rolling schedule:

– Schedule new patients, drop departing patients from 

schedule.

• Provide continuity for remaining patients as follows:

– Old patients served by same aide on same days.

• Fix yijk = 1 for the relevant aides, patients, and days.

Master Problem
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nth patient in sequence

start time

Visit duration Travel time

Simplified routing & scheduling problem for aide i

Modeled with interval variables in CP solver

Patients assigned 

to aide i

Subproblem
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• Generate a cut for each infeasible scheduling problem.

– Solution of subproblem inference dual is a proof of infeasibility.

• The proof may show other patient assignments to be 

infeasible.

• Generate nogood cut that rules out these assignments.

Benders Cuts
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• Generate a cut for each infeasible scheduling problem.

– Solution of subproblem inference dual is a proof of infeasibility.

• The proof may show other patient assignments to be 

infeasible.

• Generate nogood cut that rules out these assignments.

– Unfortunately, we don’t have access to infeasibility proof in 

CP solver.

Benders Cuts
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• So, strengthen the nogood cuts heuristically.

– Find a smaller set of patients that create infeasibility…

• …by re-solving the each infeasible scheduling problem 

repeatedly.

Reduced set of patients whose 

assignment to aide i creates 

infeasibility

Benders Cuts
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• Include relaxation of subproblem in the master problem.

– Necessary for good performance.

– Use time window relaxation for each scheduling problem.

– Simplest relaxation for aide i and day k:

Set of patients whose time window 

fits in interval [a, b].

Can use several intervals.

Benders Cuts
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• This relaxation is very weak.

– Doesn’t take into account travel times.

Subproblem Relaxation
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• This relaxation is very weak.

– Doesn’t take into account travel times.

• Improved relaxation.

– Basic idea:  Augment visit duration pj with travel time 

to (or from) location j from closest patient or aide home base.

Subproblem Relaxation
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• This relaxation is very weak.

– Doesn’t take into account travel times.

• Improved relaxation.

– Basic idea:  Augment visit duration pj with travel time 

to (or from) location j from closest patient or aide home base.

– This is weak unless most assignments are fixed.

• As in rolling schedule.

Subproblem Relaxation
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• This relaxation is very weak.

– Doesn’t take into account travel times.

• Improved relaxation.

– Basic idea:  Augment visit duration pj with travel time 

to (or from) location j from closest patient or aide home base.

– This is weak unless most assignments are fixed.

• As in rolling schedule.

– Find intervals that yield tightest relaxation

• Short intervals that contain many time windows.

Subproblem Relaxation
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• A variation of logic-based Benders

– Solve master problem only once, by branching.

– At feasible nodes, solve subproblem to obtain Benders cut.

– Not the same as branch & cut.

• Use when master problem is the bottleneck

– Subproblem solves much faster than master problem.

Branch and Check
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• Original real-world dataset

– 60 home hospice patients

• 1-5 visits per week (not on weekends)

– 18 health care aides with time windows

– Actual travel distances

• Solver

– LBBD:  Hand-written code manages MIP & CP solvers

• SCIP + Gecode

– Branch & check:  Use constraint handler in SCIP

• SCIP + Gecode

– MIP:  SCIP

• Modified multicommodity flow model of VRPTW

Computational Tests
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Computation time, fewer visits per week
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• Practical implications

– Branch & check scales up to realistic size

• One month advance planning for original 60-patient dataset

• Assuming 5-8% weekly turnover

• Much faster performance for modified dataset

– Advantage of exact solution method

• We know for sure whether existing staff will cover 

projected demand.

Computational Tests
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Effect of time window relaxation
Standard LBBD

Original problem data
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Effect of time window relaxation and primal heuristic cuts
Branch & check

Original problem data
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• Rasmussen instances

– From 2 Danish municipalities

• One-day problem

• We extended it to 5 days with same schedule each day

• Reduce number of patients to 30, so MIP has a chance

– Solve problem from scratch

• No rolling schedule

– Two objective functions

• Weighted: Minimize weighted average of travel cost, 

matching cost (undesirability of assignment), uncovered 

patients.

• Covering: Minimize number of uncovered patients 

(same as ours)

Computational Tests
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Standard LBBD tends to be better when subproblem consumes most 

of the solution time in branch & check
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• LBBD can scale up despite sequence-dependent 

costs…

– …especially when computing a rolling schedule

• Time window relaxation is tight enough in this case

– Routing & scheduling problems remain small as patient 

population increases

• The 4-index MIP variables explode as the population grows

• …even for a rolling schedule

Computational Tests
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• LBBD can scale up despite sequence-dependent 

costs…

– …especially when computing a rolling schedule

• Time window relaxation is tight enough in this case

– Routing & scheduling problems remain small as patient 

population increases

• The 4-index MIP variables explode as the population grows

• …even for a rolling schedule

• However…

– LBBD not designed for temporal dependencies

• As when multiple aides must visit a patient simultaneously.

• Unclear how much performance degrades in this case.

Computational Tests
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Software

For integration of CP and MIP
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• ECLiPSe

– Exchanges information between ECLiPSe solver, Xpress-MP

• OPL Studio

– Combines CPLEX MIP and CP Optimizer with script language

• Mosel

– Combines Xpress-MP, Xpress-Kalis with low-level modeling

• BARON

– Global optimization with relaxation + domain reduction

• SIMPL

– Full integration with high-level modeling (prototype)

• SCIP

– Combines MIP and CP-based propagation

• MiniZinc

– High-level modeling with solver integration, including 

logic-based Benders

313




