Tutorial Hybrid Mixed-Integer Programming and Constraint Programing Methods

John Hooker
Carnegie Mellon University
CIMI, Toulouse
June 2018

Why Integrate CP and MIP?

Complementary Strengths
 Outline of the Tutorial

Complementary Strengths

- CP:
- Inference methods
- Modeling
- Exploits local structure
- MIP:
- Relaxation methods
- Duality theory
- Exploits global structure

Let's bring them together!

Comparison

CP vs. MIP

CP	MIP
Logic processing	Numerical calculation
Inference (filtering,	Relaxation
constraint propagation)	
High-level modeling	Atomistic modeling
(global constraints)	(linear inequalities)
Branching	Branching
Constraint-based processing	Independence of model

Programming \neq programming

- In constraint programming:
- programming = a form of computer programming (constraint-based processing)
- In mathematical programming:
- programming = logistics planning (historically)

CP vs. MIP

- In CP, each constraint invokes a procedure that screens out unacceptable solutions.
- Much as each line of a computer program invokes an operation.
- In MIP, equations (constraints) describe the problem but don't tell how to solve it.

Advantages of CP

- Better at sequencing and scheduling
- ...where MP methods have weak relaxations.
- Adding messy constraints makes the problem easier.
- The more constraints, the better.
- More powerful modeling language.
- Global constraints lead to succinct models.
- Constraints convey problem structure to the solver.
- "Better at highly-constrained problems"
- Misleading - better when constraints propagate well, or when constraints have few variables.

Advantages of MIP

- Deals naturally with continuous variables.
- Continuous relaxation, numerical techniques
- Handles constraints with many variables.
- These constraints don't propagate well in CP.
- Good at finding optimal (as opposed to feasible) solutions.
- Sophisticated relaxation technology provides bounds.
- Scales up
- Decades of engineering, orders of magnitude speedup

Obvious solution...

- Integrate CP and MIP.

Obvious solution...

- Integrate CP and MIP.

Two basic strategies...

- Combine CP and MIP in a single solution method.
- Link CP and MIP solvers in a principled way.

Outline of the Tutorial

- Why Integrate OR and CP?
- Combine CP and MIP in a single solution method
- Designing an Integrated Solver
- Linear Relaxation and Duality
- Mixed Integer/Linear Modeling
- Cutting Planes
- Lagrangean Relaxation and CP
- Link CP and MIP solvers
- Constraint Programming Concepts
- CP Filtering Algorithms
- CP-based Branch and Price
- Benders Decomposition
- Software

Hybrid methods I am leaving out

- CP and dynamic programming
- OR-based filtering methods (e.g. flow models, edge finding)
- Decision diagrams (to be presented by W-J van Hoeve)
- CP and local search (to be presented by Paul Shaw)

Background Reading

- J. N. Hooker and W.-J. van Hoeve, Constraint programming and operations research, Constraints 23 (2018) 172-195. Contains many references.
- J. N. Hooker, Integrated Methods for Optimization, $2^{\text {nd }}$ ed., Springer (2012). Contains many exercises.

Initial Example:
 Designing an Integrated Solver

Freight Transfer
Bounds Propagation
Cutting Planes
Branch-infer-and-relax Tree

Example: Freight Transfer

- Transport 42 tons of freight using 8 trucks, which come in 4 sizes...

Truck size	Number available	Capacity (tons)	Cost per truck
1	3	7	90
2	3	5	60
3	3	4	50
4	3	3	40

Truck type	Number available	Capacity (tons)	Cost per truck
1	3	7	90
2	3	5	60
3	3	4	50
4	3	3	40

Bounds propagation

$$
\begin{aligned}
& \min 90 x_{1}+60 x_{2}+50 x_{3}+40 x_{4} \\
& 7 x_{1}+5 x_{2}+4 x_{3}+3 x_{4} \geq 42 \\
& x_{1}+x_{2}+x_{3}+x_{4} \leq 8 \\
& x_{i} \in\{0,1,2,3\}
\end{aligned}
$$

$$
x_{1} \geq\left\lceil\frac{42-5 \cdot 3-4 \cdot 3-3 \cdot 3}{7}\right\rceil=1
$$

Bounds propagation

$$
\begin{aligned}
& \min 90 x_{1}+60 x_{2}+50 x_{3}+40 x_{4} \\
& 7 x_{1}+5 x_{2}+4 x_{3}+3 x_{4} \geq 42 \\
& x_{1}+x_{2}+x_{3}+x_{4} \leq 8 \\
& x_{1} \in\{1,2,3\}, \quad x_{2}, x_{3}, x_{4} \in\{0,1,2,3\}
\end{aligned}
$$

domain

$$
x_{1} \geq\left\lceil\frac{42-5 \cdot 3-4 \cdot 3-3 \cdot 3}{7}\right\rceil=1
$$

Bounds consistency

- Let $\left\{L_{j}, \ldots, U_{j}\right\}$ be the domain of x_{j}
- A constraint set is bounds consistent if for each j :
- $x_{j}=L_{j}$ in some feasible solution and
- $x_{j}=U_{j}$ in some feasible solution.
- Bounds consistency \Rightarrow we will not set x_{j} to any infeasible values during branching.
- Bounds propagation achieves bounds consistency for a single inequality.
- $7 x_{1}+5 x_{2}+4 x_{3}+3 x_{4} \geq 42$ is bounds consistent when the domains are $x_{1} \in\{1,2,3\}$ and $x_{2}, x_{3}, x_{4} \in\{0,1,2,3\}$.
- But not necessarily for a set of inequalities.

Bounds consistency

- Bounds propagation may not achieve bounds consistency for a set of constraints.
- Consider set of inequalities

$$
\begin{aligned}
& x_{1}+x_{2} \geq 1 \\
& x_{1}-x_{2} \geq 0
\end{aligned}
$$

with domains $x_{1}, x_{2} \in\{0,1\}$, solutions $\left(x_{1}, x_{2}\right)=(1,0),(1,1)$.

- Bounds propagation has no effect on the domains.
- But constraint set is not bounds consistent because $x_{1}=0$ in no feasible solution.

Cutting Planes

Begin with continuous relaxation

$$
\begin{aligned}
& \min 90 x_{1}+60 x_{2}+50 x_{3}+40 x_{4} \\
& 7 x_{1}+5 x_{2}+4 x_{3}+3 x_{4} \geq 42 \\
& x_{1}+x_{2}+x_{3}+x_{4} \leq 8 \\
& 0 \leq x_{i} \leq 3, \quad x_{1} \geq 1 \quad \text { Replace domains }
\end{aligned}
$$

This is a linear programming problem, which is easy to solve.

Its optimal value provides a lower bound on optimal value of original problem.

Cutting planes (valid inequalities)

$$
\begin{aligned}
& \min 90 x_{1}+60 x_{2}+50 x_{3}+40 x_{4} \\
& 7 x_{1}+5 x_{2}+4 x_{3}+3 x_{4} \geq 42 \\
& x_{1}+x_{2}+x_{3}+x_{4} \leq 8 \\
& 0 \leq x_{i} \leq 3, \quad x_{1} \geq 1
\end{aligned}
$$

We can create a tighter relaxation (larger minimum value) with the addition of cutting planes.

Cutting planes (valid inequalities)

$\min 90 x_{1}+60 x_{2}+50 x_{3}+40 x_{4}$
$7 x_{1}+5 x_{2}+4 x_{3}+3 x_{4} \geq 42$
$x_{1}+x_{2}+x_{3}+x_{4} \leq 8$
$0 \leq x_{i} \leq 3, \quad x_{1} \geq 1$

All feasible solutions of the original problem satisfy a cutting plane (i.e., it is valid).
But a cutting plane may exclude ("cut off") solutions of the continuous relaxation.

Feasible solutions

Cutting planes (valid inequalities)

$\min 90 x_{1}+60 x_{2}+50 x_{3}+40 x_{4}$
$7 x_{1}+5 x_{2}+4 x_{3}+3 x_{4} \geq 42$
$x_{1}+x_{2}+x_{3}+x_{4} \leq 8$
$0 \leq x_{i} \leq 3, \quad x_{1} \geq 1$
$\{1,2\}$ is a packing
...because $7 x_{1}+5 x_{2}$ alone cannot satisfy the inequality, even with $x_{1}=x_{2}=3$.

Cutting planes (valid inequalities)

$\min 90 x_{1}+60 x_{2}+50 x_{3}+40 x_{4}$ $7 x_{1}+5 x_{2}+4 x_{3}+3 x_{4} \geq 42$

$$
x_{1}+x_{2}+x_{3}+x_{4} \leq 8
$$

$$
0 \leq x_{i} \leq 3, \quad x_{1} \geq 1
$$

$\{1,2\}$ is a packing
So, $\quad 4 x_{3}+3 x_{4} \geq 42-(7 \cdot 3+5 \cdot 3) \quad$ Knapsack cut
which implies

$$
x_{3}+x_{4} \geq\left\lceil\frac{42-(7 \cdot 3+5 \cdot 3)}{\max \{4,3\}}\right\rceil=2
$$

Cutting planes (valid inequalities)

Let x_{i} have domain $\left[L_{i}, U_{j}\right]$ and let $a \geq 0$.
In general, a packing P for $a x \geq a_{0}$ satisfies

$$
\sum_{i \notin P} a_{i} x_{i} \geq a_{0}-\sum_{i \in P} a_{i} U_{i}
$$

and generates a knapsack cut

$$
\sum_{i \notin P} x_{i} \geq\left[\frac{a_{0}-\sum_{i \in P} a_{i} U_{i}}{\max _{i \notin P}\left\{a_{i}\right\}}\right.
$$

Cutting planes (valid inequalities)

$\min 90 x_{1}+60 x_{2}+50 x_{3}+40 x_{4}$
$7 x_{1}+5 x_{2}+4 x_{3}+3 x_{4} \geq 42$
$x_{1}+x_{2}+x_{3}+x_{4} \leq 8$
$0 \leq x_{i} \leq 3, \quad x_{1} \geq 1$
Maximal Packings Knapsack cuts
$\{1,2\}$
$\{1,3\}$
$\{1,4\}$
$x_{3}+x_{4} \geq 2$
$x_{2}+x_{4} \geq 2$
$x_{2}+x_{3} \geq 3$
Knapsack cuts corresponding to nonmaximal packings can be nonredundant.

Continuous relaxation with cuts

$$
\min 90 x_{1}+60 x_{2}+50 x_{3}+40 x_{4}
$$

$$
7 x_{1}+5 x_{2}+4 x_{3}+3 x_{4} \geq 42
$$

$$
x_{1}+x_{2}+x_{3}+x_{4} \leq 8
$$

$$
0 \leq x_{i} \leq 3, \quad x_{1} \geq 1
$$

$$
\begin{aligned}
& x_{3}+x_{4} \geq 2 \\
& x_{2}+x_{4} \geq 2 \\
& x_{2}+x_{3} \geq 3
\end{aligned}
$$

Knapsack cuts

Optimal value of 523.3 is a lower bound on optimal value of original problem.

Branch-infer-andrelax tree

Propagate bounds
and solve
relaxation of original problem.

$$
\begin{gathered}
x_{1} \in\{123\} \\
x_{2} \in\{0123\} \\
x_{3} \in\{0123\} \\
x_{4} \in\{0123\} \\
x=\left(21 / 3,3,2^{2} / 3,0\right) \\
\text { value }=523^{1} / 3
\end{gathered}
$$

Branch-infer-and-relax tree

Branch on a variable with nonintegral value in the relaxation.

Branch-infer-and-relax tree

Propagate bounds and solve relaxation.

Since relaxation is infeasible, backtrack.

Branch-infer-and-relax tree

Propagate bounds and solve relaxation.

Branch on nonintegral variable.

$$
\begin{aligned}
& x_{1} \in\{123\} \\
& x_{2} \in\{0123\} \\
& x_{3} \in\{0123\}
\end{aligned}
$$

$$
x_{4} \in\{0123\}
$$

$$
x=\left(2^{1 ⁄ 3}, 3,2^{2 / 3}, 0\right)
$$

$$
\text { value }=5231 / 3
$$

$x_{1} \in\left\{\begin{array}{l}12\end{array}\right\}$
$x_{2} \in\left\{\begin{array}{l}23\end{array}\right\}$
$x_{3} \in\left\{\begin{array}{l}123\end{array}\right]$
$x_{4} \in\{123\}$
infeasible
relaxation

Branch-infer-and-relax tree

Branch again.

Branch-infer-and-relax tree

Solution of relaxation
is integral and therefore feasible in the original problem.

This becomes the incumbent solution.

Branch-infer-and-relax tree

Solution is nonintegral, but we can backtrack because value of relaxation is no better than incumbent solution.

Branch-infer-and-relax tree

Another feasible solution found.

No better than incumbent solution, which is optimal because search has finished.

Two optimal solutions...

$$
x=(3,2,2,1)
$$

$x=(3,3,0,2)$

Linear Relaxation and Duality

Why Relax?

Algebraic Analysis of LP
Linear Programming Duality
LP-Based Domain Filtering
Example: Single-Vehicle Routing
Disjunctions of Linear Systems

Why Relax?

Solving a relaxation of a problem can:

- Tighten variable bounds.
- Possibly solve original problem.
- Guide the search in a promising direction.
- Filter domains using reduced costs or Lagrange multipliers.
- Prune the search tree using a bound on the optimal value.
- Provide a more global view, because a single OR relaxation can pool relaxations of several constraints.

Some OR models that can provide relaxations:

- Linear programming (LP).
- Mixed integer linear programming (MILP)
- Can itself be relaxed as an LP.
- LP relaxation can be strengthened with cutting planes.
- Lagrangean relaxation.
- Specialized relaxations.
- For particular problem classes.
- For global constraints.

Motivation

- Linear programming is remarkably versatile for representing real-world problems.
- LP is by far the most widely used tool for relaxation.
- LP relaxations can be strengthened by cutting planes.
- Based on polyhedral analysis.
- LP has an elegant and powerful duality theory.
- Useful for domain filtering, and much else.
- The LP problem is extremely well solved.

Algebraic Analysis of LP

An example...

$$
\begin{aligned}
& \min 4 x_{1}+7 x_{2} \\
& 2 x_{1}+3 x_{2} \geq 6 \\
& 2 x_{1}+x_{2} \geq 4 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

Algebraic Analysis of LP

Rewrite
$\min 4 x_{1}+7 x_{2}$
$2 x_{1}+3 x_{2} \geq 6$
$2 x_{1}+x_{2} \geq 4$
$x_{1}, x_{2} \geq 0$
as
$\min 4 x_{1}+7 x_{2}$
$2 x_{1}+3 x_{2}-x_{3}=6$
$2 x_{1}+x_{2}-x_{4}=4$
$x_{1}, x_{2}, x_{3}, x_{4} \geq 0$

In general an LP has the form min $C X$
$A x=b$
$x \geq 0$

Algebraic analysis of LP

where

$$
A=[N]
$$

Any set of
m linearly
independent
columns of A .
These form a basis for the space spanned by the columns.

Algebraic analysis of LP

Write

$$
\begin{aligned}
& \min c x \\
& A x=b \\
& x \geq 0
\end{aligned}
$$

as $\min C_{B} x_{B}+c_{N} x_{N}$
where

$$
\begin{aligned}
& B x_{B}+N x_{N}=b \\
& x_{B}, x_{N} \geq 0
\end{aligned}
$$

$A=[B N]$

Solve constraint equation for $x_{B}: \quad x_{B}=B^{-1} b-B^{-1} N x_{N}$
All solutions can be obtained by setting x_{N} to some value.
The solution is basic if $x_{N}=0$.
It is a basic feasible solution if $x_{N}=0$ and $x_{B} \geq 0$.

Example...

$\min 4 x_{1}+7 x_{2}$
$2 x_{1}+3 x_{2}-x_{3}=6$
$2 x_{1}+x_{2}-x_{4}=4$
$x_{1}, x_{2}, x_{3}, x_{4} \geq 0$

Algebraic analysis of LP

Write $\min c x$

$$
\text { as } \min ^{C_{B} x_{B}+c_{N} x_{N} \quad \text { where }}
$$

$A x=b$
$B x_{B}+N x_{N}=b$
$A=[B N]$
$x \geq 0$

$$
x_{B}, x_{N} \geq 0
$$

Solve constraint equation for $x_{B}: x_{B}=B^{-1} b-B^{-1} N x_{N}$
Express cost in terms of nonbasic variables:

$$
\begin{aligned}
& c_{B} B^{-1} b+\left(c_{N}-c_{B} B^{-1} N\right) x_{N} \\
& \text { rof reduced costs }
\end{aligned}
$$

Since $x_{N} \geq 0$, basic solution ($x_{B}, 0$) is optimal if reduced costs are nonnegative.

Example...

$\min 4 x_{1}+7 x_{2}$
$2 x_{1}+3 x_{2}-x_{3}=6$
$2 x_{1}+x_{2}-x_{4}=4$
$x_{1}, x_{2}, x_{3}, x_{4} \geq 0$

Example...

Write...
$\min 4 x_{1}+7 x_{2}$
$2 x_{1}+3 x_{2}-x_{3}=6$
$2 x_{1}+x_{2}-x_{4}=4$
$x_{1}, x_{2}, x_{3}, x_{4} \geq 0$

Example...

$$
\left.\begin{gathered}
c_{B} x_{B} \quad c_{N} x_{N} \\
\min \left[\begin{array}{ll}
4 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{4}
\end{array}\right]+\left[\begin{array}{ll}
7 & 0
\end{array}\right]\left[\begin{array}{l}
x_{2} \\
x_{3}
\end{array}\right] \\
B x_{B}\left[\begin{array}{cc}
2 & 0 \\
2 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{4}
\end{array}\right]+\left[\begin{array}{cc}
3 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{4}
\end{array}\right]
\end{gathered}=\left[\begin{array}{l}
6 \\
4
\end{array}\right] \right\rvert\,
$$

Example...

Basic solution is

$$
\begin{aligned}
& x_{B}=B^{-1} b-B^{-1} N x_{N}=B^{-1} b \\
= & {\left[\begin{array}{l}
x_{1} \\
x_{4}
\end{array}\right]=\left[\begin{array}{cc}
1 / 2 & 0 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
6 \\
4
\end{array}\right]=\left[\begin{array}{l}
3 \\
2
\end{array}\right] }
\end{aligned}
$$

Example...

$$
\begin{gathered}
c_{B} x_{B} \quad c_{N} x_{N} \\
\min \left[\begin{array}{ll}
4 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{4}
\end{array}\right]+\left[\begin{array}{ll}
7 & 0
\end{array}\right]\left[\begin{array}{l}
x_{2} \\
x_{3}
\end{array}\right] \\
{\left[\begin{array}{cc}
2 & 0 \\
2 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{4}
\end{array}\right]+\left[\begin{array}{ll}
3 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{4}
\end{array}\right]}
\end{gathered}=\left[\begin{array}{l}
6 \\
4
\end{array}\right]
$$

Basic solution is

$$
\begin{aligned}
& x_{B}=B^{-1} b-B^{-1} N x_{N}=B^{-1} b \\
= & {\left[\begin{array}{l}
x_{1} \\
x_{4}
\end{array}\right]=\left[\begin{array}{cc}
1 / 2 & 0 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
6 \\
4
\end{array}\right]=\left[\begin{array}{l}
3 \\
2
\end{array}\right] }
\end{aligned}
$$

Reduced costs are

$$
\begin{aligned}
& C_{N}-c_{B} B^{-1} N \\
& =\left[\begin{array}{ll}
7 & 0
\end{array}\right]-\left[\begin{array}{ll}
4 & 0
\end{array}\right]\left[\begin{array}{cc}
1 / 2 & 0 \\
1 & -1
\end{array}\right]\left[\begin{array}{cc}
3 & -1 \\
1 & 0
\end{array}\right] \\
& =\left[\begin{array}{ll}
1 & 2
\end{array}\right] \geq\left[\begin{array}{ll}
0 & 0
\end{array}\right]^{2} \\
& \underset{\substack{\text { Solution is } \\
\text { optimal }}}{ }
\end{aligned}
$$

Linear Programming Duality

An LP can be viewed as an inference problem...

$$
\begin{aligned}
& \min c x= \\
& A x \geq b \\
& x \geq 0
\end{aligned}=\begin{gathered}
\max v \\
A x \geq b \Rightarrow c x \geq v \\
\text { implies }
\end{gathered}
$$

Dual problem: Find the tightest lower bound on the objective function that is implied by the constraints.

An LP can be viewed as an inference problem...

$$
\begin{aligned}
& \min c x=\max v \\
& A x \geq b \\
& x \geq 0
\end{aligned} \quad A x \geq b \stackrel{x \geq 0}{\Rightarrow} c x \geq v
$$

That is, some surrogate (nonnegative linear combination) of $A x \geq b$ dominates $c x \geq v$

From Farkas Lemma: If $A x \geq b, x \geq 0$ is feasible,

$$
\begin{array}{r}
A x \geq b \stackrel{x \geq 0}{\Rightarrow} c x \geq v \text { iff } \begin{array}{c}
\lambda A x \geq \lambda b \text { dominates } c x \geq v \\
\text { for some } \uparrow \lambda \geq 0 \\
\lambda A \leq c \text { and } \lambda b \geq v
\end{array}
\end{array}
$$

An LP can be viewed as an inference problem...

$$
\begin{array}{lc|ll}
\min c x= & \max v \\
A x \geq b \\
x \geq 0
\end{array} \quad A x \geq b \stackrel{x \geq 0}{\Rightarrow} c x \geq v \begin{array}{ll}
\max \lambda b & \text { This is the } \\
\lambda A \leq c & \text { classical } \\
\lambda \geq 0 & \text { LP dual } \\
&
\end{array}
$$

From Farkas Lemma: If $A x \geq b, x \geq 0$ is feasible,

$$
\begin{aligned}
& A x \geq b \stackrel{x \geq 0}{\Rightarrow} c x \geq v \text { iff } \lambda A x \geq \lambda b \text { dominates } c x \geq v \\
& \text { for some } \uparrow \lambda \geq 0 \\
& \lambda A \leq c \text { and } \lambda b \geq v
\end{aligned}
$$

This equality is called strong duality.

| $\min c x$ | $=$ | $\max \lambda b$ |
| :--- | :--- | :--- | | This is the |
| :--- |
| $A x \geq b$ |
| $x A \leq c$ | | classical | |
| :--- | :--- |
| $\lambda \geq 0$ | |
| $\lambda \geq 0$ | LP dual |

Note that the dual of the dual is the primal (i.e., the original LP).

Example

Primal

$$
\begin{array}{lrlr}
\min 4 x_{1}+7 x_{2} & = & \max 6 \lambda_{1}+4 \lambda_{2} & =12 \\
2 x_{1}+3 x_{2} \geq 6 & \left(\lambda_{4}\right) & 2 \lambda_{1}+2 \lambda_{2} \leq 4 & \left(x_{1}\right) \\
2 x_{1}+x_{2} \geq 4 & \left(\lambda_{4}\right) & 3 \lambda_{1}+\lambda_{2} \leq 7 & \left(x_{2}\right) \\
x_{1}, x_{2} \geq 0 & & \lambda_{1}, \lambda_{2} \geq 0 &
\end{array}
$$

A dual solution is $\left(\lambda_{1}, \lambda_{2}\right)=(2,0)$

$$
\begin{gathered}
2 x_{1}+3 x_{2} \geq 6 \quad \cdot\left(\lambda_{1}=2\right) \\
2 x_{1}+x_{2} \geq 4 \quad \cdot\left(\lambda_{2}=0\right) \\
\hline 4 x_{1}+6 x_{2} \geq 12 \longleftarrow \text { Dual multi } \\
\downarrow \text { dominates }
\end{gathered}
$$

$$
4 x_{1}+7 x_{2} \geq 12 \longleftarrow \text { Tightest bound on cost }
$$

Weak Duality

If x^{*} is feasible in the primal problem
$\min c x$
$A x \geq b$
$x \geq 0$
and λ^{*} is feasible in the dual problem

$\max \lambda b$
$\lambda A \leq c$
$\lambda \geq 0$

then $c x^{*} \geq \lambda^{*} b$.

This is because $c x^{*} \geq \lambda^{*} A x^{*} \geq \lambda^{*} b$
λ^{*} is dual $\quad x^{*}$ is primal feasible feasible and $x^{*} \geq 0 \quad$ and $\lambda^{*} \geq 0$

Dual multipliers as marginal costs

Suppose we perturb the RHS of an LP
(i.e., change the requirement levels):

The dual of the perturbed LP has the same constraints at the original LP:

$$
\begin{aligned}
& \min c x \\
& A x \geq b+\Delta b \\
& x \geq 0
\end{aligned}
$$

$\max \lambda(b+\Delta b)$

$$
\begin{aligned}
& \lambda A \leq c \\
& \lambda \geq 0
\end{aligned}
$$

So an optimal solution λ^{*} of the original dual is feasible in the perturbed dual.

Dual multipliers as marginal costs

Suppose we perturb the RHS of an LP
(i.e., change the requirement levels):

$$
\begin{aligned}
& \min c x \\
& A x \geq b+\Delta b \\
& x \geq 0
\end{aligned}
$$

By weak duality, the optimal value of the perturbed LP is at least $\lambda^{*}(b+\Delta \mathrm{b})=\sqrt{\lambda^{*} b}+\lambda^{*} \Delta b$.

Optimal value of original LP, by strong duality.
So λ_{i}^{*} is a lower bound on the marginal cost of increasing the i-th requirement by one unit $\left(\Delta b_{i}=1\right)$.

If $\lambda_{i}^{*}>0$, the i-th constraint must be tight (complementary slackness).

Dual of an LP in equality form

$$
\begin{aligned}
& \text { Primal } \\
& \min c_{B} x_{B}+c_{N} x_{N} \\
& B x_{B}+N x_{N}=b \\
& x_{B}, x_{N} \geq 0
\end{aligned}
$$

Dual
$\max \lambda b$

$$
\begin{array}{ll}
\lambda B \leq c_{B} & \left(x_{B}\right) \\
\lambda N \leq c_{N} & \left(x_{B}\right)
\end{array}
$$

λ unrestricted

Dual of an LP in equality form

$$
\begin{aligned}
& \text { Primal } \\
& \min c_{B} x_{B}+c_{N} x_{N} \\
& B x_{B}+N x_{N}=b \\
& x_{B}, x_{N} \geq 0
\end{aligned}
$$

Dual
$\max \lambda b$

$$
\begin{array}{ll}
\lambda B \leq c_{B} & \left(x_{B}\right) \\
\lambda N \leq c_{N} & \left(x_{B}\right)
\end{array}
$$

λ unrestricted

Recall that reduced cost vector is $c_{N}-\frac{c_{B} B^{-1}}{\lambda} N=c_{N}-\lambda N$
this solves the dual
if $\left(x_{B}, 0\right)$ solves the primal

Dual of an LP in equality form

$$
\begin{aligned}
& \text { Primal } \\
& \min c_{B} x_{B}+c_{N} x_{N} \\
& B x_{B}+N x_{N}=b \\
& x_{B}, x_{N} \geq 0
\end{aligned}
$$

Dual
$\max \lambda b$

$$
\begin{array}{ll}
\lambda B \leq c_{B} & \left(x_{B}\right) \\
\lambda N \leq c_{N} & \left(x_{B}\right)
\end{array}
$$

λ unrestricted

Recall that reduced cost vector is $c_{N}-\frac{C_{B} B^{-1}}{\lambda} N=c_{N}-\lambda N$
Check:

$$
\begin{aligned}
& \lambda B=c_{B} B^{-1} B=C_{B} \\
& \lambda N=c_{B} B^{-1} N \leq c_{N}
\end{aligned}
$$

this solves the dual
if $\left(x_{B}, 0\right)$ solves the primal

Because reduced cost is nonnegative at optimal solution $\left(x_{B}, 0\right)$.

Dual of an LP in equality form

$$
\begin{aligned}
& \text { Primal } \\
& \min c_{B} x_{B}+c_{N} x_{N} \\
& B x_{B}+N x_{N}=b \\
& x_{B}, x_{N} \geq 0
\end{aligned}
$$

Dual

$\max \lambda b$

$$
\begin{array}{ll}
\lambda B \leq c_{B} & \left(x_{B}\right) \\
\lambda N \leq c_{N} & \left(x_{B}\right)
\end{array}
$$

λ unrestricted

Recall that reduced cost vector is $c_{N}-\frac{c_{B} B^{-1}}{\lambda} N=c_{N}-\lambda N$
this solves the dual
if $\left(x_{B}, 0\right)$ solves the primal
In the example,

$$
\lambda=c_{B} B^{-1}=\left[\begin{array}{ll}
4 & 0
\end{array}\right]\left[\begin{array}{cc}
1 / 2 & 0 \\
1 & -1
\end{array}\right]=\left[\begin{array}{ll}
2 & 0
\end{array}\right]
$$

Dual of an LP in equality form

$$
\begin{aligned}
& \text { Primal } \\
& \min c_{B} x_{B}+c_{N} x_{N} \\
& B x_{B}+N x_{N}=b \\
& x_{B}, x_{N} \geq 0
\end{aligned}
$$

Dual

$\max \lambda b$

$$
\begin{array}{ll}
\lambda B \leq c_{B} & \left(x_{B}\right) \\
\lambda N \leq c_{N} & \left(x_{B}\right)
\end{array}
$$

λ unrestricted

Recall that reduced cost vector is $c_{N}-\frac{c_{B} B^{-1}}{\lambda} N=c_{N}-\lambda N$
Note that the reduced cost of an individual variable x_{j} is $r_{j}=c_{j}-\lambda A_{j}$
Column j of A

LP-based Domain Filtering

$$
\min c x
$$

Let $\quad A x \geq b$ be an LP relaxation of a CP problem.

$$
x \geq 0
$$

- One way to filter the domain of x_{j} is to minimize and maximize x_{j} subject to $A x \geq b, x \geq 0$.
- This is time consuming.
- A faster method is to use dual multipliers to derive valid inequalities.
- A special case of this method uses reduced costs to bound or fix variables.
- Reduced-cost variable fixing is a widely used technique in OR.

Suppose:

min $c x$ has optimal solution x^{*}, optimal value v^{*}, and $A x \geq b \quad$ optimal dual solution λ^{*}.
$x \geq 0$
...and $\lambda_{i}{ }^{*}>0$, which means the i-th constraint is tight (complementary slackness);
... and the LP is a relaxation of a CP problem;
...and we have a feasible solution of the CP problem with value U, so that U is an upper bound on the optimal value.

Supposing $\begin{gathered}\min c x \\ A x \geq b\end{gathered}$ has optimal solution x^{*}, optimal value v^{*}, and optimal dual solution λ^{*} :

If x were to change to a value other than x^{*}, the LHS of i-th constraint $A^{i} x \geq b_{i}$ would change by some amount Δb_{i}.

Since the constraint is tight, this would increase the optimal value as much as changing the constraint to $A^{\prime} x \geq b_{i}+\Delta b_{i}$.

So it would increase the optimal value at least $\lambda_{i}^{*} \Delta b_{i}$.

Supposing $\begin{aligned} & \min c x \\ & A x \geq b\end{aligned}$ has optimal solution x^{*}, optimal value v^{*}, and optimal dual solution λ^{*} :

We have found: a change in x that changes $A^{i} x$ by Δb_{i} increases the optimal value of LP at least $\lambda_{i}^{*} \Delta b_{i}$.

Since optimal value of the LP \leq optimal value of the $\mathrm{CP} \leq U$, we have $\lambda_{i}{ }^{*} \Delta b_{i} \leq U-v^{*}$, or

$$
\Delta b_{i} \leq \frac{U-v^{*}}{\lambda_{i}^{*}}
$$

Supposing $\begin{aligned} & \text { min } c x \\ & A x \geq b\end{aligned}$ has optimal solution x^{*}, optimal value v^{*}, and $x \geq 0$ optimal dual solution λ^{*} :

We have found: a change in x that changes $A^{i} x$ by Δb_{i} increases the optimal value of LP at least $\lambda_{i}^{*} \Delta b_{i}$.

Since optimal value of the LP \leq optimal value of the $C P \leq U$, we have $\lambda_{i}^{*} \Delta b_{i} \leq U-v^{*}$, or

$$
\Delta b_{i} \leq \frac{U-v^{*}}{\lambda_{i}^{*}}
$$

Since $\Delta b_{i}=A^{\prime} x-A^{i} x^{*}=A^{\prime} x-b_{i}$, this implies the inequality

$$
A^{i} x \leq b_{i}+\frac{U-v^{*}}{\lambda_{i}^{*}}
$$

...which can be propagated.

Example

$\min 4 x_{1}+7 x_{2}$
$2 x_{1}+3 x_{2} \geq 6 \quad\left(\lambda_{1}=2\right)$
$2 x_{1}+x_{2} \geq 4 \quad\left(\lambda_{1}=0\right)$
$x_{1}, x_{2} \geq 0$

Suppose we have a feasible solution of the original CP with value $U=13$.

Since the first constraint is tight, we can propagate the inequality

$$
\begin{gathered}
A^{1} x \leq b_{1}+\frac{U-v^{*}}{\lambda_{1}^{*}} \\
\text { or } 2 x_{1}+3 x_{2} \leq 6+\frac{13-12}{2}=6.5
\end{gathered}
$$

Reduced-cost domain filtering

Suppose $x_{j}^{*}=0$, which means the constraint $x_{j} \geq 0$ is tight.

The inequality $A^{i} x \leq b_{i}+\frac{U-V^{*}}{\lambda_{i}^{*}}$ becomes $x_{j} \leq \frac{U-V^{*}}{\sqrt[r_{j}]{ }}$
The dual multiplier for $x_{j} \geq 0$ is the reduced cost r_{j} of x_{j}, because increasing x_{j} (currently 0) by 1 increases optimal cost by r_{j}.

Similar reasoning can bound a variable below when it is at its upper bound.

Example

$$
\begin{array}{ll}
\min 4 x_{1}+7 x_{2} & \\
2 x_{1}+3 x_{2} \geq 6 & \left(\lambda_{1}=2\right) \\
2 x_{1}+x_{2} \geq 4 & \left(\lambda_{1}=0\right) \\
x_{1}, x_{2} \geq 0 &
\end{array}
$$

Since $x_{2}{ }^{*}=0$, we have $x_{2} \leq \frac{U-v^{*}}{r_{2}}$
or $\quad x_{2} \leq \frac{13-12}{2}=0.5$
If x_{2} is required to be integer, we can fix it to zero. This is reduced-cost variable fixing.

Example: Single-Vehicle Routing

A vehicle must make several stops and return home, perhaps subject to time windows.

The objective is to find the order of stops that minimizes travel time.
This is also known as the traveling salesman problem (with time windows).

Assignment Relaxation

$\min \sum_{i j} c_{i j}\left(X_{i j}\right)=1$ if stop i immediately precedes stop j

$\sum_{j} x_{i j}=\sum_{j} x_{j i}=1$, all $i \longleftarrow \quad \begin{aligned} & \text { Stop } i \text { is preceded and } \\ & \text { followed by exactly one stop. }\end{aligned}$
$x_{i j} \in\{0,1\}$, all i, j

Assignment Relaxation

$$
\begin{aligned}
& \min \sum_{i j} c_{i j} x_{i j} \quad 1 \text { if stop } i \text { immediately precedes stop } j \\
& \sum_{j} x_{i j}=\sum_{j} x_{j i}=1, \text { all } i \longleftarrow \quad \begin{array}{l}
\text { Stop } i \text { is preceded and } \\
\text { followed by exactly one stop. }
\end{array} \\
& 0 \leq x_{i j} \leq 1, \text { all } i, j
\end{aligned}
$$

Because this problem is totally unimodular, it can be solved as an LP.
The relaxation provides a very weak lower bound on the optimal value.

But reduced-cost variable fixing can be very useful in a CP context.

Disjunctions of linear systems

Disjunctions of linear systems often occur naturally in problems and can be given a convex hull relaxation.

A disjunction of linear systems represents a union of polyhedra.
$\min c x$

$$
\vee_{k}\left(A^{k} x \geq b^{k}\right)
$$

Relaxing a disjunction of linear systems

Disjunctions of linear systems often occur naturally in problems and can be given a convex hull relaxation.

A disjunction of linear systems represents a union of polyhedra.
We want a convex hull relaxation (tightest linear relaxation).

$\min c x$

$$
\vee_{k}\left(A^{k} x \geq b^{k}\right)
$$

Relaxing a disjunction of linear systems

Disjunctions of linear systems often occur naturally in problems and can be given a convex hull relaxation.

The closure of the convex hull of $\min c x$

$$
\vee_{k}\left(A^{k} x \geq b^{k}\right)
$$

...is described by
$\min c x$

$$
\begin{aligned}
& A^{k} x^{k} \geq b^{k} y_{k}, \text { all } k \\
& \sum_{k} y_{k}=1 \\
& x=\sum_{k} x^{k} \\
& 0 \leq y_{k} \leq 1
\end{aligned}
$$

Why?

To derive convex hull relaxation of a disjunction...

Convex hull relaxation (tightest linear relaxation)

Why?

To derive convex hull relaxation of a disjunction...

Write each
solution as a convex
$\min c x$
$A^{k} \bar{x}^{k} \geq b^{k}$, all k
$\sum_{k} y_{k}=1$
combination
of points in the
polyhedron
$\min c x$
$A^{k} x^{k} \geq b^{k} y_{k}$, all k
$\sum_{k} y_{k}=1$
$x=\sum_{k} x^{k}$
$0 \leq y_{k} \leq 1$

Convex hull relaxation (tightest linear relaxation)

Mixed Integer/Linear Modeling

MILP Representability
Disjunctive Modeling
Knapsack Modeling

Motivation

A mixed integer/linear programming
$\min c x+d y$
(MILP) problem has the form
$A x+b y \geq b$
$x, y \geq 0$
y integer

- We can relax a CP problem by modeling some constraints with an MILP.
- If desired, we can then relax the MILP by dropping the integrality constraint, to obtain an LP.
- The LP relaxation can be strengthened with cutting planes.
- The first step is to learn how to write MILP models.

MILP Representability

A subset S of \mathbb{R}^{n} is MILP representable if it is the projection onto x of some MILP constraint set of the form

$$
\begin{aligned}
& A x+B u+D y \geq b \\
& x, y \geq 0 \\
& x \in \mathbb{R}^{n}, u \in \mathbb{R}^{m}, y_{k} \in\{0,1\}
\end{aligned}
$$

MILP Representability

A subset S of \mathbb{R}^{n} is MILP representable if it is the projection onto x of some MILP constraint set of the form

$$
\begin{aligned}
& A x+B u+D y \geq b \\
& x, y \geq 0 \\
& x \in \mathbb{R}^{n}, u \in \mathbb{R}^{m}, y_{k} \in\{0,1\}
\end{aligned}
$$

Example: Fixed charge function

Minimize a fixed charge function: $\min x_{2}$

$$
\begin{aligned}
& x_{2} \geq\left\{\begin{array}{ll}
0 & \text { if } x_{1}=0 \\
f+c x_{1} & \text { if } x_{1}>0
\end{array}\right\} \\
& x_{1} \geq 0
\end{aligned}
$$

Example

Minimize a fixed charge function:

$\min x_{2}$

$$
\begin{aligned}
& x_{2} \geq\left\{\begin{array}{ll}
0 & \text { if } x_{1}=0 \\
f+c x_{1} & \text { if } x_{1}>0
\end{array}\right\} \\
& x_{1} \geq 0
\end{aligned}
$$

Feasible set (epigraph of the optimization problem)

Example

Minimize a fixed charge function:

$\min x_{2}$

$$
\begin{aligned}
& x_{2} \geq\left\{\begin{array}{ll}
0 & \text { if } x_{1}=0 \\
f+c x_{1} & \text { if } x_{1}>0
\end{array}\right\} \\
& x_{1} \geq 0
\end{aligned}
$$

Example

Minimize a fixed charge function:

$\min x_{2}$

$$
\begin{aligned}
& x_{2} \geq\left\{\begin{array}{ll}
0 & \text { if } x_{1}=0 \\
f+c x_{1} & \text { if } x_{1}>0
\end{array}\right\} \\
& x_{1} \geq 0
\end{aligned}
$$

Example

Minimize a fixed charge function:

$\min x_{2}$

$$
\begin{aligned}
& x_{2} \geq\left\{\begin{array}{ll}
0 & \text { if } x_{1}=0 \\
f+c x_{1} & \text { if } x_{1}>0
\end{array}\right\} \\
& x_{1} \geq 0
\end{aligned}
$$

The polyhedra have different recession cones.

Example

Minimize a fixed charge function:
Add an upper bound on x_{1}

$\min x_{2}$

$$
\begin{aligned}
& x_{2} \geq\left\{\begin{array}{ll}
0 & \text { if } x_{1}=0 \\
f+c x_{1} & \text { if } x_{1}>0
\end{array}\right\} \\
& 0 \leq x_{1} \leq M
\end{aligned}
$$

The polyhedra have the same recession cone.

Modeling a union of polyhedra

Start with a disjunction of linear systems to represent the union of polyhedra.

The k th polyhedron is $\left\{x \mid A^{k} x \geq b\right\}$

Introduce a $0-1$ variable y_{k} that is 1 when x is in polyhedron \underline{k}.

Disaggregate x to create an x^{k} for each k.
$\min C x$
$\vee_{k}\left(A^{k} x \geq b^{k}\right)$
$\min C x$
$A^{k} x^{k} \geq b^{k} y_{k}$, all k
$\sum_{k} y_{k}=1$
$x=\sum_{k} x^{k}$
$y_{k} \in\{0,1\}$

Example

Start with a disjunction of linear systems to represent the union of polyhedra
$\min x_{2}$

$$
\binom{x_{1}=0}{x_{2} \geq 0} \vee\binom{0 \leq x_{1} \leq M}{x_{2} \geq f+c x_{1}}
$$

Example

Start with a disjunction of linear systems to represent the union of polyhedra

Introduce a 0-1 variable y_{k} that is 1 when x is in polyhedron \underline{k}.

Disaggregate x to create an x^{k} for each k.
$\min x_{2}$

$$
\binom{x_{1}=0}{x_{2} \geq 0} \vee\binom{0 \leq x_{1} \leq M}{x_{2} \geq f+c x_{1}}
$$

$\min c x$

$$
\begin{aligned}
& x_{1}^{1}=0, \quad x_{2}^{1} \geq 0 \\
& 0 \leq x_{1}^{2} \leq M y_{2}, \quad-c x_{1}^{2}+x_{2}^{2} \geq f y_{2} \\
& y_{1}+y_{2}=1, \quad y_{k} \in\{0,1\} \\
& x=x^{1}+x^{2}
\end{aligned}
$$

Example

To simplify:
Replace $x_{1}{ }^{2}$ with x_{1}.
Replace $x_{2}{ }^{2}$ with x_{2}.
Replace y_{2} with y.

$$
\begin{aligned}
& \min x_{2} \\
& x_{1}^{1}=0, \quad x_{2}^{1} \geq 0 \\
& 0 \leq x_{1}^{2} \leq M y_{2}, \quad-c x_{1}^{2}+x_{2}^{2} \geq f y_{2} \\
& y_{1}+y_{2}=1, \quad y_{k} \in\{0,1\} \\
& x=x^{1}+x^{2}
\end{aligned}
$$

This yields

$$
\begin{array}{lll}
\min x_{2} & \text { or } & \min f y+c x \\
0 \leq x_{1} \leq M y & & 0 \leq x \leq M y \\
x_{2} \geq f y+c x_{1} & y \in\{0,1\} \\
y \in\{0,1\} &
\end{array}
$$

Disjunctive Modeling

Disjunctions often occur naturally in problems and can be given an MILP model.

Recall that a disjunction of linear systems (representing polyhedra with the same recession cone)
...has the MILP model

$$
\min c x
$$

$$
\begin{aligned}
& A^{k} x^{k} \geq b^{k} y_{k}, \text { all } k \\
& \sum_{k} y_{k}=1 \\
& x=\sum_{k} x^{k} \\
& y_{k} \in\{0,1\}
\end{aligned}
$$

Example: Uncapacitated facility location

Uncapacitated facility location

Fraction of
market js demand satisfied from location i

Disjunctive model:

$$
\min \sum_{i} z_{i}+\sum_{i j} c_{i j} x_{i j}
$$

$$
\begin{gathered}
\binom{x_{i j}=0, \text { all } j}{z_{i}=0} \vee\binom{0 \leq x_{i j} \leq 1, \text { all } j}{z_{i} \geq f_{i}} \text {, all } i \\
\sum_{i} x_{i j}=1,(\text { all } j \\
\text { No factory } \\
\text { Factory }
\end{gathered}
$$

at location i at location i

Uncapacitated facility location

MILP formulation:

$$
\begin{aligned}
& \min \sum_{i} f_{i} y_{i}+\sum_{i j} c_{i j} x_{i j} \\
& 0 \leq x_{i j} \leq y_{i}, \text { all } i, j \\
& y_{i} \in\{0,1\}
\end{aligned}
$$

Based on LP relaxation of disjunction described earlier

Disjunctive model:

$$
\min \sum_{i} z_{i}+\sum_{i j} c_{i j} x_{i j}
$$

$$
\begin{gathered}
\binom{x_{i j}=0, \text { all } j}{z_{i}=0} \vee\binom{0 \leq x_{i j} \leq 1, \text { all } j}{z_{i} \geq f_{i}} \text {, all } i \\
\sum_{i} x_{i j}=1, \text { all } j \\
\text { No factory } \quad \text { Factory } \\
\text { at location } i \\
\text { at location } i
\end{gathered}
$$

MILP formulation:

$$
\begin{aligned}
& \min \sum_{i} f_{i} y_{i}+\sum_{i j} c_{i j} x_{i j} \\
& 0 \leq x_{i j} \leq y_{i}, \text { all } i, j \\
& y_{i} \in\{0,1\}
\end{aligned}
$$

Maximum output from location i

Beginner's model:

$$
\begin{aligned}
& \min \sum_{i} f_{i} y_{i}+\sum_{i j} c_{i j} x_{i j} \\
& \sum_{j} x_{i j} \leq n y_{j}, \text { all } i, j
\end{aligned}
$$

$$
y_{i} \in\{0,1\}
$$

$$
\uparrow
$$

Based on capacitated location model.
It has a weaker continuous relaxation (obtained by replacing $y_{i} \in\{0,1\}$ with $0 \leq y_{i} \leq 1$).

This beginner's mistake can be avoided by starting with disjunctive formulation.

Knapsack Modeling

- Knapsack models consist of knapsack covering and knapsack packing constraints.
- The freight transfer model presented earlier is an example.
- We will consider a similar example that combines disjunctive and knapsack modeling.
- Most OR professionals are unlikely to write a model as good as the one presented here.

Note on tightness of knapsack models

- The continuous relaxation of a knapsack model is not in general a convex hull relaxation.
- A disjunctive formulation would provide a convex hull relaxation, but there are exponentially many disjuncts.
- Knapsack cuts can significantly tighten the relaxation.

Example: Package transport

Example: Package transport

MILP model
$\min \sum_{c}, y_{1}$
$\sum_{1} Q_{y} y_{i} \geq \sum_{j} a_{j} \quad \sum_{i} x_{i j}=1$, all j
$\sum_{i} a x_{i} \leq Q y_{0}$, all i
$x_{i j} \leq y_{i}$, all i, j
$x_{i j}, y_{i} \in\{0,1\}$

Disjunctive model

$$
\begin{aligned}
& \min \sum_{i} z_{i} \\
& \sum_{i} Q_{i} y_{i} \geq \sum_{j} a_{j} ; \quad \sum_{i} x_{i j}=1, \text { all } j \\
& \left(\begin{array}{c}
y_{i}=1 \\
z_{i}=c_{i} \\
\sum_{j} a_{j} x_{i j} \leq Q_{i} \\
0 \leq x_{i j} \leq 1, \text { all } j
\end{array}\right) \vee\left(\begin{array}{l}
y_{i}=0 \\
z_{i}=0 \\
x_{i j}=0
\end{array}\right), \text { all } i \\
& x_{i j}, y_{i} \in\{0,1\}
\end{aligned}
$$

Example: Package transport

Cutting Planes

0-1 Knapsack Cuts
Gomory Cuts

Mixed Integer Rounding Cuts
Example: Product Configuration

To review...

A cutting plane (cut, valid inequality) for an MILP model:

- ...is valid
- It is satisfied by all feasible solutions of the model.
- ...cuts off solutions of the continuous relaxation.
- This makes the relaxation tighter.

Feasible solutions

Motivation

- Cutting planes (cuts) tighten the continuous relaxation of an MILP model.
- Knapsack cuts
- Generated for individual knapsack constraints.
- We saw general integer knapsack cuts earlier.
- 0-1 knapsack cuts and lifting techniques are well studied and widely used.
- Rounding cuts
- Generated for the entire MILP, they are widely used.
- Gomory cuts for integer variables only.
- Mixed integer rounding cuts for any MILP.

0-1 Knapsack Cuts

0-1 knapsack cuts are designed for knapsack constraints with 0-1 variables.

The analysis is different from that of general knapsack constraints, to exploit the special structure of 0-1 inequalities.

0-1 Knapsack Cuts

0-1 knapsack cuts are designed for knapsack constraints with 0-1 variables.

The analysis is different from that of general knapsack constraints, to exploit the special structure of 0-1 inequalities.

Consider a 0-1 knapsack packing constraint $a x \leq a_{0}$. (Knapsack covering constraints are similarly analyzed.)

Index set J is a cover if $\sum_{j \in J} a_{j}>a_{0}$
The cover inequality $\sum_{j \in J} x_{j} \leq|J|-1$ is a $0-1$ knapsack cut for
$\mathrm{ax} \leq \mathrm{a}_{0}$

Example

$J=\{1,2,3,4\}$ is a cover for

$$
6 x_{1}+5 x_{2}+5 x_{3}+5 x_{4}+8 x_{5}+3 x_{6} \leq 17
$$

This gives rise to the cover inequality

$$
x_{1}+x_{2}+x_{3}+x_{4} \leq 3
$$

Index set J is a cover if $\sum_{j \in J} a_{j}>a_{0}$
The cover inequality $\sum_{j \in J} x_{j} \leq|J|-1$ is a 0-1 knapsack cut for
$\mathrm{ax} \leq \mathrm{a}_{0}$

Sequential lifting

- A cover inequality can often be strengthened by lifting it into a higher dimensional space.
- That is, by adding variables.
- Sequential lifting adds one variable at a time.
- Sequence-independent lifting adds several variables at once.

Sequential lifting

To lift a cover inequality $\sum_{j \in J} x_{j} \leq J \mid-1$
add a term to the left-hand side $\sum_{j \in J} x_{j}+\pi_{k} x_{k} \leq J \mid-1$
where π_{k} is the largest coefficient for which the inequality is still valid.
So, $\quad \pi_{k}=|J|-1-\max _{\substack{x_{j} \in\{0,1\} \\ \text { for } j \in J}}\left\{\sum_{j \in J} x_{j} \mid \sum_{j \in J} a_{j} x_{j} \leq a_{0}-a_{k}\right\}$
This can be done repeatedly (by dynamic programming).

Example

Given $6 x_{1}+5 x_{2}+5 x_{3}+5 x_{4}+8 x_{5}+3 x_{6} \leq 17$
To lift $x_{1}+x_{2}+x_{3}+x_{4} \leq 3$
add a term to the left-hand side $x_{1}+x_{2}+x_{3}+x_{4}+\pi_{5} x_{5} \leq 3$
where

$$
\pi_{5}=3-\max _{\substack{x_{j} \in\{0,1\} \\ \text { for } j \in\{1,2,3,4\}}}\left\{x_{1}+x_{2}+x_{3}+x_{4} 6 x_{1}+5 x_{2}+5 x_{3}+5 x_{4} \leq 17-8\right\}
$$

This yields $x_{1}+x_{2}+x_{3}+x_{4}+2 x_{5} \leq 3$
Further lifting leaves the cut unchanged.
But if the variables are added in the order x_{6}, x_{5}, the result is different:

$$
x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6} \leq 3
$$

Sequence-independent lifting

- Sequence-independent lifting usually yields a weaker cut than sequential lifting.
- But it adds all the variables at once and is much faster.
- Commonly used in commercial MILP solvers.

Sequence-independent lifting

To lift a cover inequality $\sum_{j \in J} x_{j} \leq J \mid-1$
add terms to the left-hand side $\sum_{j \in J} x_{j}+\sum_{j \notin J} \rho\left(a_{j}\right) x_{k} \leq|J|-1$
where $\rho(u)= \begin{cases}j & \text { if } A_{j} \leq u \leq A_{j+1}-\Delta \text { and } j \in\{0, \ldots, p-1\} \\ j+\left(u-A_{j}\right) / \Delta & \text { if } A_{j}-\Delta \leq u<A_{j}-\Delta \text { and } j \in\{1, \ldots, p-1\} \\ p+\left(u-A_{p}\right) / \Delta & \text { if } A_{p}-\Delta \leq u\end{cases}$
with $\quad \Delta=\sum_{j \in J} a_{j}-a_{0} \quad A_{j}=\sum_{k=1}^{j} a_{k}$

$$
J=\{1, \ldots, p\} \quad A_{0}=0
$$

Example

Given $6 x_{1}+5 x_{2}+5 x_{3}+5 x_{4}+8 x_{5}+3 x_{6} \leq 17$
To lift $x_{1}+x_{2}+x_{3}+x_{4} \leq 3$
Add terms $\quad x_{1}+x_{2}+x_{3}+x_{4}+\rho(8) x_{5}+\rho(3) x_{6} \leq 3$
where $\rho(u)$ is given by

This yields the lifted cut

$$
x_{1}+x_{2}+x_{3}+x_{4}+(5 / 4) x_{5}+(1 / 4) x_{6} \leq 3
$$

Gomory Cuts

- When an integer programming problem has a nonintegral solution, we can generate at least one Gomory cut to cut off that solution.
- This is a special case of a separating cut, because it separates the current solution of the relaxation from the feasible set.
- Gomory cuts are widely used and very effective in MILP solvers.

Feasible solutions

Gomory cuts

Given an integer programming problem
$\min c x$
$A x=b$
$x \geq 0$ and integral

Let $\left(x_{B}, 0\right)$ be an optimal solution of the continuous relaxation, where

$$
\begin{gathered}
x_{B}=\hat{b}-\hat{N} x_{N} \\
\hat{b}=B^{-1} b, \quad \hat{N}=B^{-1} N
\end{gathered}
$$

Then if x_{i} is nonintegral in this solution, the following Gomory cut is violated by $\left(x_{B}, 0\right)$:

$$
x_{i}+\left\lfloor\hat{N}_{i}\right\rfloor x_{N} \leq\left\lfloor\hat{b}_{i}\right\rfloor
$$

Example

$\min 2 x_{1}+3 x_{2} \quad$ or $\quad \min 2 x_{1}+3 x_{2}$
$x_{1}+3 x_{2} \geq 3$
$4 x_{1}+3 x_{2} \geq 6$
$x_{1}, x_{2} \geq 0$ and integral
$x_{1}+3 x_{2}-x_{3}=3$
$4 x_{1}+3 x_{2}-x_{4}=6$
$x_{j} \geq 0$ and integral

Optimal solution of the continuous relaxation has

$$
\begin{aligned}
& x_{B}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
1 \\
2 / 3
\end{array}\right] \\
& \hat{N}=\left[\begin{array}{cc}
1 / 3 & -1 / 3 \\
-4 / 9 & 1 / 9
\end{array}\right] \\
& \hat{b}=\left[\begin{array}{c}
1 \\
2 / 3
\end{array}\right]
\end{aligned}
$$

Example

$\min 2 x_{1}+3 x_{2} \quad$ or $\quad \min 2 x_{1}+3 x_{2}$
$x_{1}+3 x_{2} \geq 3$
$4 x_{1}+3 x_{2} \geq 6$
$x_{1}, x_{2} \geq 0$ and integral

The Gomory cut $x_{i}+\left\lfloor\hat{N}_{i}\right\rfloor x_{N} \leq\left\lfloor\hat{b}_{i}\right\rfloor$
is $x_{2}+\left\lfloor\left[\begin{array}{ll}-4 / 9 & 1 / 9\end{array}\right]\right\rfloor\left[\begin{array}{l}x_{3} \\ x_{4}\end{array}\right] \leq\lfloor 2 / 3\rfloor$

In x_{1}, x_{2} space this is $x_{1}+2 x_{2} \geq 3$

Example

$\min 2 x_{1}+3 x_{2} \quad$ or $\quad \min 2 x_{1}+3 x_{2}$
$x_{1}+3 x_{2} \geq 3 \quad x_{1}+3 x_{2}-x_{3}=3$
$4 x_{1}+3 x_{2} \geq 6$
$4 x_{1}+3 x_{2}-x_{4}=6$
$x_{j} \geq 0$ and integral
$x_{1}, x_{2} \geq 0$ and integral

Mixed Integer Rounding Cuts

- Mixed integer rounding (MIR) cuts can be generated for solutions of any relaxed MILP in which one or more integer variables has a fractional value.
- Like Gomory cuts, they are separating cuts.
- MIR cuts are widely used in commercial solvers.

MIR cuts

Given an MILP problem
$\min c x+d y$
$A x+D y=b$
$x, y \geq 0$ and y integral

In an optimal solution of the continuous relaxation, let
$J=\left\{j \mid y_{j}\right.$ is nonbasic $\}$
$K=\left\{j \mid x_{j}\right.$ is nonbasic $\}$
$N=$ nonbasic cols of [AD]

Then if y_{i} is nonintegral in this solution, the following MIR cut is violated by the solution of the relaxation:
$y_{i}+\sum_{j \in \mathcal{U}_{1}}\left\lceil\hat{N}_{i j}\right\rceil y_{j}+\sum_{j \in J_{2}}\left(\left\lfloor\hat{N}_{i j}\right\rfloor+\frac{\operatorname{frac}\left(\hat{N}_{i j}\right)}{\operatorname{frac}\left(\hat{b}_{i}\right)}\right)+\frac{1}{\operatorname{frac}\left(\hat{b}_{i}\right)} \sum_{j \in K} \hat{N}_{i j}^{+} x_{j} \geq \hat{N}_{i j}\left\lceil\hat{b}_{i}\right\rceil$
where $J_{1}=\left\{j \in J \mid \operatorname{frac}\left(\hat{N}_{i j}\right) \geq \operatorname{frac}\left(\hat{b}_{j}\right)\right\} \quad J_{2}=J \backslash J_{1}$

Example

$$
3 x_{1}+4 x_{2}-6 y_{1}-4 y_{2}=1
$$

Take basic solution $\left(x_{1}, y_{1}\right)=(8 / 3,17 / 3)$.

$$
x_{1}+2 x_{2}-y_{1}-y_{2}=3
$$

$$
\begin{aligned}
& \text { Then } \hat{N}=\left[\begin{array}{cc}
1 / 3 & 2 / 3 \\
-2 / 3 & 8 / 3
\end{array}\right] \quad \hat{b}=\left[\begin{array}{c}
8 / 3 \\
17 / 3
\end{array}\right] \\
& J=\{2\}, K=\{2\}, J_{1}=\varnothing, \quad J_{2}=\{2\}
\end{aligned}
$$

The MIR cut is $y_{1}+\left(\lfloor 1 / 3\rfloor+\frac{1 / 3}{2 / 3}\right) y_{2}+\frac{1}{2 / 3}(2 / 3)^{+} x_{2} \geq\lceil 8 / 3\rceil$

$$
\text { or } y_{1}+(1 / 2) y_{2}+x_{2} \geq 3
$$

Lagrangean Relaxation

Lagrangean Duality
Properties of the Lagrangean Dual
Example: Fast Linear Programming
Domain Filtering
Example: Continuous Global Optimization

Motivation

- Lagrangean relaxation can provide better bounds than LP relaxation.
- The Lagrangean dual generalizes LP duality.
- It provides domain filtering analogous to that based on LP duality.
- This is a key technique in continuous global optimization.
- Lagrangean relaxation gets rid of troublesome constraints by dualizing them.
- That is, moving them into the objective function.
- The Lagrangean relaxation may decouple.

Lagrangean Duality

Consider an
inequality-constrained problem
$\min f(x)$
$g(x) \geq 0$ Hard constraints
$x \in S \longleftarrow$ Easy constraints

The object is to get rid of (dualize) the hard constraints by moving them into the objective function.

Lagrangean Duality

Consider an inequality-constrained problem
$\min f(x)$
$g(x) \geq 0$
$x \in S$

It is related to an inference problem

Lagrangean Dual problem: Find the tightest lower bound on the objective function that is implied by the constraints.

Primal

$\min f(x)$
$g(x) \geq 0$
$x \in S$
Dual
$\max v$

$$
g(x) \geq b \stackrel{s \in S}{\Rightarrow} f(x) \geq v
$$

Surrogate

Let us say that
$g(x) \geq 0 \stackrel{x \in S}{\Rightarrow} f(x) \geq v \quad$ iff
$\lambda g(x) \geq 0$ dominates $f(x)-v \geq 0$ for some $\lambda \geq 0$
$\lambda g(x) \leq f(x)-v$ for all $x \in S$
That is, $v \leq f(x)-\lambda g(x)$ for all $x \in S$

Primal
$\min f(x)$
$g(x) \geq 0$
$x \in S$

Let us say that
$g(x) \geq 0 \stackrel{x \in S}{\Rightarrow} f(x) \geq v \quad$ iff

Dual

$\max v$

$$
g(x) \geq b \stackrel{s \in S}{\Rightarrow} f(x) \geq v
$$

Surrogate

$$
\begin{aligned}
& \lambda g(x) \geq 0 \text { dominates } f(x)-v \geq 0 \\
& \text { for some } \lambda \geq 0 \\
& \lambda g(x) \leq f(x)-v \text { for all } x \in S \\
& \text { That is, } v \leq f(x)-\lambda g(x) \text { for all } x \in S
\end{aligned}
$$

If we replace domination with material implication, we get the surrogate dual, which gives better bounds but lacks the nice properties of the Lagrangean dual.

Primal

$\min f(x)$
$g(x) \geq 0$
$x \in S$
Dual
$\max v$

$$
g(x) \geq b \stackrel{s \in S}{\Rightarrow} f(x) \geq v
$$

Surrogate

Let us say that
$g(x) \geq 0 \stackrel{x \in S}{\Rightarrow} f(x) \geq v \quad$ iff
$\lambda g(x) \geq 0$ dominates $f(x)-v \geq 0$ for some $\lambda \geq 0$
$\lambda g(x) \leq f(x)-v$ for all $x \in S$
That is, $v \leq f(x)-\lambda g(x)$ for all $x \in S$
Or $v \leq \min _{x \in S}\{f(x)-\lambda g(x)\}$

Primal

$\min f(x)$
$g(x) \geq 0$
$x \in S$
Dual
$\max v$

$$
g(x) \geq b \stackrel{s \in S}{\Rightarrow} f(x) \geq v
$$

Surrogate

Let us say that
$g(x) \geq 0 \stackrel{x \in S}{\Rightarrow} f(x) \geq v \quad$ iff

$$
\begin{aligned}
& \lambda g(x) \geq 0 \text { dominates } f(x)-v \geq 0 \\
& \text { for some } \lambda \geq 0
\end{aligned}
$$

$$
\lambda g(x) \leq f(x)-v \text { for all } x \in S
$$

That is, $v \leq f(x)-\lambda g(x)$ for all $x \in S$

$$
\text { Or } v \leq \min _{x \in S}\{f(x)-\lambda g(x)\}
$$

So the dual becomes
$\max v$

$$
v \leq \min _{x \in S}\{f(x)-\lambda g(x)\} \text { for some } \lambda \geq 0
$$

Now we have...

The Lagrangean dual can be viewed as the problem of finding the Lagrangean relaxation that gives the tightest bound.

Example

$\min 3 x_{1}+4 x_{2}$
$-x_{1}+3 x_{2} \geq 0$
$2 x_{1}+x_{2}-5 \geq 0$
$x_{1}, x_{2} \in\{0,1,2,3\}$
The Lagrangean relaxation is

$$
\begin{aligned}
& \theta\left(\lambda_{1}, \lambda_{2}\right)=\min _{x_{x} \in\{0, \ldots 3\}}\left\{3 x_{1}+4 x_{2}-\lambda_{1}\left(-x_{1}+3 x_{2}\right)-\lambda_{2}\left(2 x_{1}+x_{2}-5\right)\right\} \\
& =\min _{x_{j} \in\{0, \ldots, 3\}}\left\{\left(3+\lambda_{1}-2 \lambda_{2}\right) x_{1}+\left(4-3 \lambda_{1}-\lambda_{2}\right) x_{2}+5 \lambda_{2}\right\}
\end{aligned}
$$

The Lagrangean relaxation is easy to solve
 for any given λ_{1}, λ_{2} :

$$
\begin{aligned}
& x_{1}= \begin{cases}0 & \text { if } 3+\lambda_{1}-2 \lambda_{2} \geq 0 \\
3 & \text { otherwise }\end{cases} \\
& x_{2}= \begin{cases}0 & \text { if } 4-3 \lambda_{1}-\lambda_{2} \geq 0 \\
3 & \text { otherwise }\end{cases}
\end{aligned}
$$

Optimal solution (2,1)

Example

$\theta\left(\lambda_{1}, \lambda_{2}\right)$ is piecewise linear and concave.
$\min 3 x_{1}+4 x_{2}$
$-x_{1}+3 x_{2} \geq 0$
$2 x_{1}+x_{2}-5 \geq 0$
$x_{1}, x_{2} \in\{0,1,2,3\}$

Solution of Lagrangean dual:
$\left(\lambda_{1}, \lambda_{2}\right)=(5 / 7,13 / 7), \theta(\lambda)=92 / 7$
Note duality gap between 10 and 9 2/7 (no strong duality).

Example

$\min 3 x_{1}+4 x_{2}$
$-x_{1}+3 x_{2} \geq 0$
$2 x_{1}+x_{2}-5 \geq 0$
$x_{1}, x_{2} \in\{0,1,2,3\}$

Note: in this example, the Lagrangean dual provides the same bound ($92 / 7$) as the continuous relaxation of the IP.

This is because the Lagrangean relaxation can be solved as an LP:

$$
\begin{aligned}
& \theta\left(\lambda_{1}, \lambda_{2}\right)=\min _{x_{\mathrm{j}} \in\{0, \ldots 3\}}\left\{\left(3+\lambda_{1}-2 \lambda_{2}\right) x_{1}+\left(4-3 \lambda_{1}-\lambda_{2}\right) x_{2}+5 \lambda_{2}\right\} \\
& =\min _{0 \leq x_{j} \leq 3}\left\{\left(3+\lambda_{1}-2 \lambda_{2}\right) x_{1}+\left(4-3 \lambda_{1}-\lambda_{2}\right) x_{2}+5 \lambda_{2}\right\}
\end{aligned}
$$

Lagrangean duality is useful when the Lagrangean relaxation is tighter than an LP but nonetheless easy to solve.

Properties of the Lagrangean dual

Weak duality: For any feasible x^{*} and any $\lambda^{*} \geq 0, f\left(x^{*}\right) \geq \theta\left(\lambda^{*}\right)$.
In particular, $\min f(x) \geq \max _{\lambda \geq 0} \theta(\lambda)$

$$
g(x) \geq 0
$$

$$
x \in S
$$

Concavity: $\theta(\lambda)$ is concave. It can therefore be maximized by local search methods.

Complementary slackness: If x^{*} and λ^{*} are optimal, and there is no duality gap, then $\lambda^{*} g\left(x^{*}\right)=0$.

Solving the Lagrangean dual

If x^{k} solves the Lagrangean relaxation for $\lambda=\lambda^{k}$, then $\xi^{k}=g\left(x^{k}\right)$.
This is because $\theta(\lambda)=f\left(x^{k}\right)+\lambda g\left(x^{k}\right)$ at $\lambda=\lambda^{k}$.

The stepsize α_{k} must be adjusted so that the sequence converges but not before reaching a maximum.

Example: Fast Linear Programming

- In CP contexts, it is best to process each node of the search tree very rapidly.
- Lagrangean relaxation may allow very fast calculation of a lower bound on the optimal value of the LP relaxation at each node.
- The idea is to solve the Lagrangean dual at the root node (which is an LP) and use the same Lagrange multipliers to get an LP bound at other nodes.

Domain Filtering

Suppose:

$\min f(x)$
$g(x) \geq 0$ has optimal solution x^{*}, optimal value v^{*}, and optimal Lagrangean dual solution λ^{*}.
...and $\lambda_{i}^{*}>0$, which means the i-th constraint is tight (complementary slackness);
...and the problem is a relaxation of a CP problem;
...and we have a feasible solution of the CP problem with value U, so that U is an upper bound on the optimal value.

Supposing $\begin{aligned} & \min f(x) \geq 0\end{aligned}$ has optimal solution x^{\star}, optimal value v^{*}, and $g(x) \geq 0$ $x \in S$

If x were to change to a value other than x^{*}, the LHS of i-th constraint $g_{i}(x) \geq 0$ would change by some amount Δ_{i}.

Since the constraint is tight, this would increase the optimal value as much as changing the constraint to $g_{i}(x)-\Delta_{i} \geq 0$.

So it would increase the optimal value at least $\lambda_{i}^{*} \Delta_{i}$.
(It is easily shown that Lagrange multipliers are marginal costs. Dual multipliers for LP are a special case of Lagrange multipliers.)

Supposing $\begin{aligned} & \min f(x) \geq 0\end{aligned}$ has optimal solution x^{\star}, optimal value v^{*}, and $g(x) \geq 0$ $x \in S$ optimal Lagrangean dual solution λ^{*} :

We have found: a change in x that changes $g_{i}(x)$ by Δ_{i} increases the optimal value at least $\lambda_{i}^{*} \Delta_{i}$.

Since optimal value of this problem \leq optimal value of the $\mathrm{CP} \leq U$, we have $\lambda_{i}^{*} \Delta_{i} \leq U-v^{*}$, or

$$
\Delta_{i} \leq \frac{U-V^{*}}{\lambda_{i}^{*}}
$$

Supposing $g(x) \geq 0$ has optimal solution x^{*}, optimal value v^{*}, and $x \in S$ optimal Lagrangean dual solution λ^{*} :

We have found: a change in x that changes $g_{i}(x)$ by Δ_{i} increases the optimal value at least $\lambda_{i}^{*} \Delta_{i}$.

Since optimal value of this problem \leq optimal value of the $\mathrm{CP} \leq U$, we have $\lambda_{i}^{*} \Delta_{i} \leq U-v^{*}$, or

$$
\Delta_{i} \leq \frac{U-V^{*}}{\lambda_{i}^{*}}
$$

Since $\Delta_{i}=g_{i}(x)-g_{i}\left(x^{*}\right)=g_{i}(x)$, this implies the inequality

$$
g_{i}(x) \leq \frac{U-v^{*}}{\lambda_{i}^{*}}
$$

...which can be propagated.

Example: Continuous Global Optimization

- Some of the best continuous global solvers (e.g., BARON) combine OR-style relaxation with CP-style interval arithmetic and domain filtering.
- These methods can be combined with domain filtering based on Lagrange multipliers.

Continuous Global Optimization

To solve it:

- Search: split interval domains of x_{1}, x_{2}.
- Each node of search tree is a problem restriction.
- Propagation: Interval propagation, domain filtering.
- Use Lagrange multipliers to infer valid inequality for propagation.
- Reduced-cost variable fixing is a special case.
- Relaxation: Use McCormick factorization to obtain linear continuous relaxation.

Interval propagation

Propagate intervals [0,1], [0,2]
through constraints
to obtain
[1/8,7/8], [1/4,7/4]

Relaxation (McCormick factorization)

Factor complex functions into elementary functions that have known linear relaxations.

Write $4 x_{1} x_{2}=1$ as $4 y=1$ where $y=x_{1} x_{2}$.
This factors $4 x_{1} x_{2}$ into linear function $4 y$ and bilinear function $x_{1} x_{2}$. Linear function $4 y$ is its own linear relaxation.

Relaxation (McCormick factorization)

Factor complex functions into elementary functions that have known linear relaxations.

For example, consider function $f(x)=x^{2} \sin x$
Factor into elementary functions:

$$
\text { Let } y=x^{2}, z=\sin x, f(x)=y z
$$

Now write linear relaxations of the elementary functions.

Relaxation (McCormick factorization)

Factor complex functions into elementary functions that have known linear relaxations.

Write $4 x_{1} x_{2}=1$ as $4 y=1$ where $y=x_{1} x_{2}$.
This factors $4 x_{1} x_{2}$ into linear function $4 y$ and bilinear function $x_{1} x_{2}$. Linear function $4 y$ is its own linear relaxation.

Bilinear function $y=x_{1} x_{2}$ has relaxation:

$$
\begin{aligned}
& \underline{x}_{2} x_{1}+\underline{x}_{1} x_{2}-\underline{x}_{1} \underline{x}_{2} \leq y \leq \underline{x}_{2} x_{1}+\bar{x}_{1} x_{2}-\bar{x}_{1} \underline{x}_{2} \\
& \bar{x}_{2} x_{1}+\bar{x}_{1} x_{2}-\bar{x}_{1} \bar{x}_{2} \leq y \leq \bar{x}_{2} x_{1}+\underline{x}_{1} x_{2}-\underline{x}_{1} \bar{x}_{2}
\end{aligned}
$$

where domain of x_{j} is $\left[x_{j}, \bar{X}_{j}\right]$

Relaxation (McCormick factorization)

The linear relaxation becomes:

$$
\begin{aligned}
& \min x_{1}+x_{2} \\
& 4 y=1 \\
& 2 x_{1}+x_{2} \leq 2 \\
& \underline{x}_{2} x_{1}+\underline{x}_{1} x_{2}-\underline{x}_{1} x_{2} \leq y \leq \underline{x}_{2} x_{1}+\bar{x}_{1} x_{2}-\bar{x}_{1} \underline{x}_{2} \\
& \bar{x}_{2} x_{1}+\bar{x}_{1} x_{2}-\bar{x}_{1} \bar{x}_{2} \leq y \leq \bar{x}_{2} x_{1}+\underline{x}_{1} x_{2}-\underline{x}_{1} \bar{x}_{2} \\
& \underline{x}_{j} \leq x_{j} \leq \bar{x}_{j}, \quad j=1,2
\end{aligned}
$$

Relaxation (McCormick factorization)

Relaxation (McCormick factorization)

Relaxation (McCormick factorization)

$$
\begin{array}{lr}
\min x_{1}+x_{2} & \begin{array}{c}
\text { Associated Lagrange } \\
\text { multiplier in solution of } \\
\text { relaxation is } \lambda_{2}=1.1
\end{array} \\
4 y=1 & \\
2 x_{1}+x_{2} \leq 2 & \underline{x}_{2} x_{1}+\underline{x}_{1} x_{2}-\underline{x}_{1} x_{2} \leq y \leq \underline{x}_{2} x_{1}+\bar{x}_{1} x_{2}-\bar{x}_{1} \underline{x}_{2} \\
\bar{x}_{2} x_{1}+\bar{x}_{1} x_{2}-\bar{x}_{1} \bar{x}_{2} \leq y \leq \bar{x}_{2} x_{1}+\underline{x}_{1} x_{2}-x_{1} \bar{x}_{2} \\
\underline{x}_{j} \leq x_{j} \leq \bar{x}_{j}, \quad j=1,2
\end{array}
$$

Relaxation (McCormick factorization)

$\min x_{1}+x_{2}$
$4 y=1$
$2 x_{1}+x_{2} \leq 2$
$\underline{x}_{2} x_{1}+\underline{x}_{1} x_{2}-\underline{x}_{1} \underline{x}_{2} \leq y \leq \underline{x}_{2} x_{1}+\bar{x}_{1} x_{2}-\bar{x}_{1} \underline{x}_{2}$
$\bar{x}_{2} x_{1}+\bar{x}_{1} x_{2}-\bar{x}_{1} \bar{x}_{2} \leq y \leq \bar{x}_{2} x_{1}+x_{1} x_{2}-x_{1} \bar{x}_{2}$
$\underline{x}_{j} \leq x_{j} \leq \bar{x}_{j}, \quad j=1,2$

This yields a valid inequality for propagation:

Constraint Programming Concepts

Domain Consistency
Cumulative Scheduling

Domain Consistency

- Also known as generalized arc consistency.
- A constraint set is domain consistent if every value in every variable domain is part of some feasible solution.
- That is, the domains are reduced as much as possible.
- Domain reduction is CP's biggest engine.

Domain Consistency

Consider the constraint set

$$
\begin{aligned}
& x_{1}+x_{100} \geq 1 \\
& x_{1}-x_{100} \geq 0 \\
& x_{j} \in\{0,1\}
\end{aligned}
$$

It is not domain consistent, because 0 appears in the domain of x_{1}, and yet no solution has $x_{1}=0$.

Removing 0 from domain of $x_{1}=1$ makes the set domain consistent.

$$
\begin{aligned}
& x_{1}+x_{100} \geq 1 \\
& x_{1}-x_{100} \geq 1
\end{aligned}
$$

other constraints

$$
x_{j} \in\{0,1\}
$$

By removing 0 from domain of x_{1}, the left subtree is eliminated

Graph coloring problem that can be solved by domain consistency maintenance alone. Color nodes with red, green, blue with no two adjacent nodes having the same color.

Graph coloring problem that can be solved by domain consistency maintenance alone. Color nodes with red, green, blue with no two adjacent nodes having the same color.

Graph coloring problem that can be solved by domain consistency maintenance alone. Color nodes with red, green, blue with no two adjacent nodes having the same color.

Graph coloring problem that can be solved by domain consistency maintenance alone. Color nodes with red, green, blue with no two adjacent nodes having the same color.

Graph coloring problem that can be solved by domain consistency maintenance alone. Color nodes with red, green, blue with no two adjacent nodes having the same color.

Graph coloring problem that can be solved by domaim consistency maintenance alone. Color nodes with red, green, blue with no two adjacent nodes having the same color.

Graph coloring problem that can be solved by domain consistency maintenance alone. Color nodes with red, green, blue with no two adjacent nodes having the same color.

Cumulative scheduling constraint

- Used for resource-constrained scheduling.
- Total resources consumed by jobs at any one time must not exceed L.
cumulative $\left(\left(t_{1}, \ldots, t_{n}\right),\left(p_{1}, \ldots, p_{n}\right),\left(c_{1}, \ldots, c_{n}\right), L\right)$
Job start times
(variables)

Cumulative scheduling constraint

Minimize makespan (no deadlines, all release times = 0):

min
z
s.t. cumulative $\left(\left(t_{1}, \ldots, t_{5}\right),(3,3,3,5,5),(3,3,3,2,2), 7\right)$

CP Filtering Algorithms

All-different
Disjunctive Scheduling
Cumulative Scheduling

Filtering for all-different

alldiff $\left(y_{1}, \ldots, y_{n}\right)$

Domains can be filtered with an algorithm based on maximum cardinality bipartite matching and a theorem of Berge.

It is a special case of optimality conditions for max flow.

Filtering for alldiff

Consider the domains

$$
\begin{aligned}
& y_{1} \in\{1\} \\
& y_{2} \in\{2,3,5\} \\
& y_{3} \in\{1,2,3,5\} \\
& y_{4} \in\{1,5\} \\
& y_{5} \in\{1,2,3,4,5,6\}
\end{aligned}
$$

Indicate domains with edges

Indicate domains with edges

Find maximum cardinality bipartite matching.

Indicate domains with edges

Find maximum cardinality bipartite matching.

Indicate domains with edges

Find maximum cardinality bipartite matching.

Mark edges in alternating paths that start at an uncovered vertex.

Indicate domains with edges

Find maximum cardinality bipartite matching.

Mark edges in alternating paths that start at an uncovered vertex.

Indicate domains with edges

Find maximum cardinality bipartite matching.

Mark edges in alternating paths that start at an uncovered vertex.

Mark edges in alternating cycles.

Indicate domains with edges

Find maximum cardinality bipartite matching.

Mark edges in alternating paths that start at an uncovered vertex.

Mark edges in alternating cycles.

Remove unmarked edges not in matching.

Indicate domains with edges

Find maximum cardinality bipartite matching.

Mark edges in alternating paths that start at an uncovered vertex.

Mark edges in alternating cycles.

Remove unmarked edges not in matching.

Filtering for alldiff

Domains have been filtered:

$$
\begin{array}{ll}
y_{1} \in\{1\} \\
y_{2} \in\{2,3,5\} \\
y_{3} \in\{1,2,3,5\} \\
y_{4} \in\{1,5\} & y_{1} \in\{1\} \\
y_{5} \in\{1,2,3,4,5,6\} & y_{2} \in\{2,3\} \\
y_{3} \in\{2,3\} \\
y_{4} \in\{5\} \\
& y_{5} \in\{4,6\}
\end{array}
$$

Domain consistency achieved.

Disjunctive scheduling

Consider a disjunctive scheduling constraint: disjunctive $\left(\left(s_{1}, s_{2}, s_{3}, s_{5}\right),\left(p_{1}, p_{2}, p_{3}, p_{5}\right)\right)$

Job	Release	Dead-	Processing	
j	time	line	time	
	r_{j}	d_{j}	$p_{A j}$	$p_{B j}$
1	0	10	1	5
2	0	10	3	6
3	2	7	3	7
4	2	10	4	6
5	4	7	2	5

Start time variables

Edge finding for disjunctive scheduling

Consider a disjunctive scheduling constraint: disjunctive $\left(\left(s_{1}, s_{2}, s_{3}, s_{5}\right),\left(p_{1}, p_{2}, p_{3}, p_{5}\right)\right)$

Job j	Release time	Dead- line	Processing time	
	r_{j}	d_{j}	$p_{A j}$	$p_{B_{j}}$
1	0	10	1	5
2	0	10	3	6
3	2	7	3	7
4	2	10	4	6
5	4	7	2	5

Edge finding for disjunctive scheduling

Consider a disjunctive scheduling constraint: disjunctive $\left(\left(s_{1}, s_{2}, s_{3}, s_{5}\right),\left(p_{1}, p_{2}, p_{3}, p_{5}\right)\right)$

$\begin{gathered} J o b \\ j \end{gathered}$	Release time	Deadline		essing me	vs and proces
	r_{j}	d_{j}	$p_{A j}$	$p_{B j}$	$S_{1} \in[0,10-1]$
1	0	10	1		$s \in[0,10-3]$
2	0	10	3		$S_{2} \in[0,10-3]$
3	2	7	3	7	$S_{3} \in[2,7-3]$
4	2	10	4	6	S_{3}
5	4	7	2	5	$S_{5} \in[4,7-2]$

Edge finding for disjunctive scheduling

Consider a disjunctive scheduling constraint: disjunctive $\left(\left(s_{1}, s_{2}, s_{3}, s_{5}\right),\left(p_{1}, p_{2}, p_{3}, p_{5}\right)\right)$

A feasible (min makespan) solution:

Edge finding for disjunctive scheduling

But let's reduce 2 of the deadlines to 9 :

Job 1

Job 2
Job 3

Job 5

Edge finding for disjunctive scheduling

But let's reduce 2 of the deadlines to 9 :
We will use edge finding to prove that there is no feasible schedule.

Edge finding for disjunctive scheduling

We can deduce that job 2 must precede jobs 3 and 5:
Because if job 2 is not first, there is not enough time for all 3 jobs within the time windows:

$$
L_{\{2,3,5\}}-E_{\{3,5\}}<p_{\{2,3,5\}}
$$

Edge finding for disjunctive scheduling

We can deduce that job 2 must precede jobs 3 and 5:
Because if job 2 is not first, there is not enough time for all 3 jobs within the time windows:

$$
L_{\{2,3,5\}}-E_{\{3,5\}}<p_{\{2,3,5\}}
$$

Latest deadline

Edge finding for disjunctive scheduling

We can deduce that job 2 must precede jobs 3 and 5:
Because if job 2 is not first, there is not enough time for all 3 jobs within the time windows:

$$
L_{\{2,3,5\}}-E_{\{3,5\}}<p_{\{2,3,5\}}
$$

Earliest release time

Edge finding for disjunctive scheduling

We can deduce that job 2 must precede jobs 3 and 5:
Because if job 2 is not first, there is not enough time for all 3 jobs within the time windows:

$$
L_{\{2,3,5\}}-E_{\{3,5\}}<p_{\{2,3,5\}}
$$

Total processing time

Edge finding for disjunctive scheduling

We can deduce that job 2 must precede jobs 3 and 5:
So we can tighten deadline of job 2 to minimum of

$$
L_{\{3\}}-p_{\{3\}}=4 \quad L_{\{5\}}-p_{\{5\}}=5 \quad L_{\{3,5\}}-p_{\{3,5\}}=2
$$

Since time window of job 2 is now too narrow, there is no feasible schedule.

Edge finding for disjunctive scheduling

In general, we can deduce that job k must precede all the jobs in set J :
If there is not enough time for all the jobs after the earliest release time of the jobs in J

$$
L_{J \cup\{k\}}-E_{J}<p_{J \cup\{k\}} \quad L_{\{2,3,5\}}-E_{\{3,5\}}<p_{\{2,3,5\}}
$$

Edge finding for disjunctive scheduling

In general, we can deduce that job k must precede all the jobs in set J :
If there is not enough time for all the jobs after the earliest release time of the jobs in J

$$
L_{J \cup\{k\}}-E_{J}<p_{J \cup\{k\}} \quad L_{\{2,3,5\}}-E_{\{3,5\}}<p_{\{2,3,5\}}
$$

Now we can tighten the deadline for job k to:

$$
\min _{J^{\prime} \subset J}\left\{L_{J^{\prime}}-p_{J^{\prime}}\right\} \quad L_{\{3,5\}}-p_{\{3,5\}}=2
$$

Edge finding for disjunctive scheduling

There is a symmetric rule:

If there is not enough time for all the jobs before the latest deadline of the jobs in J :

$$
L_{J}-E_{J \cup\{k\}}<p_{J \cup\{k\}}
$$

Now we can tighten the release date for job k to:

$$
\max _{J^{\prime} \subset J}\left\{E_{J^{\prime}}+p_{J^{\prime}}\right\}
$$

Edge finding for disjunctive scheduling

Problem: how can we avoid enumerating all subsets J of jobs to find edges?

$$
L_{J \cup\{k\}}-E_{J}<p_{J \cup\{k\}}
$$

... and all subsets J^{\prime} of J to tighten the bounds?

$$
\min _{J^{\prime} \subset J}\left\{L_{J^{\prime}}-p_{J^{\prime}}\right\}
$$

Edge finding for disjunctive scheduling

Key result: We only have to consider sets J whose time windows lie within some interval.

Edge finding for disjunctive scheduling

Key result: We only have to consider sets J whose time windows lie within some interval.

Removing a job from those within an interval only weakens the test

$$
L_{J \cup k\}}-E_{J}<p_{J \cup\{k\}}
$$

There are a polynomial number of intervals defined by release times and deadlines.

Edge finding for disjunctive scheduling

Key result: We only have to consider sets J whose time windows lie within some interval.

Note: Edge finding does not achieve bounds consistency, which is an NP-hard problem.

Edge finding for disjunctive scheduling

One $O\left(n^{2}\right)$ algorithm is based on the Jackson pre-emptive schedule (JPS). Using a different example, the JPS is:

Edge finding for disjunctive scheduling

One $O\left(n^{2}\right)$ algorithm is based on the Jackson pre-emptive schedule (JPS). Using a different example, the JPS is:

For each job i Jobs unfinished at time E_{i} in JPS
Scan jobs $k \in J_{i}$ in decreasing order of L_{k}
Select first k for which $L_{k}-E_{i}<p_{i}+\bar{D}_{J_{k}}$
Total remaining processing time in JPS of jobs in $J_{i k}$
Conclude that $i \square J_{i k} \longleftarrow$ Jobs $j \neq i$ in J_{i} with $L_{j} \leq L_{k}$
Update E_{i} to JPS (i, k)
Latest completion time in JPS of jobs in $J_{i k}$

Not-first/not-last rules

We can deduce that job 4 cannot precede jobs 1 and 2:

Because if job 4 is first, there is too little time to complete the jobs before the later deadline of jobs 1 and 2 :

$$
L_{\{1,2\}}-E_{4}<p_{1}+p_{2}+p_{4}
$$

Not-first/not-last rules

We can deduce that job 4 cannot precede jobs 1 and 2:

Now we can tighten the release time of job 4 to minimum of:

$$
E_{1}+p_{1}=3 \quad E_{2}+p_{2}=4
$$

Not-first/not-last rules

In general, we can deduce that job k cannot precede all the jobs in J :
if there is too little time after release time of job k to complete all jobs before the latest deadline in J :

$$
L_{J}-E_{k}<p_{J}
$$

Now we can update E_{i} to

$$
\min _{j \in J}\left\{E_{j}+p_{j}\right\}
$$

Not-first/not-last rules

In general, we can deduce that job k cannot precede all the jobs in J :
if there is too little time after release time of job k to complete all jobs before the latest deadline in J :

$$
L_{J}-E_{k}<p_{J}
$$

Now we can update E_{i} to

$$
\min _{j \in J}\left\{E_{j}+p_{j}\right\}
$$

There is a symmetric not-last rule.
The rules can be applied in polynomial time, although an efficient algorithm is quite complicated.

Cumulative scheduling

Consider a cumulative scheduling constraint:

$$
\text { cumulative }\left(\left(s_{1}, s_{2}, s_{3}\right),\left(p_{1}, p_{2}, p_{3}\right),\left(c_{1}, c_{2}, c_{3}\right), C\right)
$$

j	p_{j}	c_{j}	E_{j}	L_{j}
1	5	1	0	5
2	3	3	0	5
3	4	2	1	7

A feasible solution:

Edge finding for cumulative scheduling

We can deduce that job 3 must finish after the others finish: $3>\{1,2\}$ Because the total energy required exceeds the area between the earliest release time and the later deadline of jobs 1,2:

Edge finding for cumulative scheduling

We can deduce that job 3 must finish after the others finish: $3>\{1,2\}$ Because the total energy required exceeds the area between the earliest release time and the later deadline of jobs 1,2:

$$
e_{3}+e_{\{1,2\}}>C \cdot\left(L_{\{1,2\}}-E_{\{1,2,3\}}\right)
$$

Total energy required $=22$

Edge finding for cumulative scheduling

We can deduce that job 3 must finish after the others finish: $3>\{1,2\}$ Because the total energy required exceeds the area between the earliest release time and the later deadline of jobs 1,2:

$$
e_{3}+e_{\{1,2\}}>C \cdot\left(L_{\{1,2\}}-E_{\{1,2,3\}}\right)
$$

Total energy
required $=22$
Area available

$$
=20
$$

Edge finding for cumulative scheduling

We can deduce that job 3 must finish after the others finish: $3>\{1,2\}$
We can update the release time of job 3 to

$$
E_{\{1,2\}}+\frac{e_{J}-\left(C-C_{3}\right)\left(L_{\{1,2\}}-E_{\{1,2\}}\right)}{c_{3}}
$$

Energy available for jobs 1,2 if space is left for job 3 to start anytime

$$
=10
$$

Edge finding for cumulative scheduling

We can deduce that job 3 must finish after the others finish: $3>\{1,2\}$ We can update the release time of job 3 to

$$
E_{\{1,2\}}+\frac{e_{J}-\left(C-C_{3}\right)\left(L_{\{1,2\}}-E_{\{1,2\}}\right)}{C_{3}}
$$

Energy available for jobs 1,2 if
space is left for job 3 to start anytime

$$
=10
$$

Excess energy required by jobs

$$
1,2=4
$$

Edge finding for cumulative scheduling

We can deduce that job 3 must finish after the others finish: $3>\{1,2\}$ We can update the release time of job 3 to

$$
E_{\{1,2\}}+\frac{e_{J}-\left(C-c_{3}\right)\left(L_{\{1,2\}}-E_{\{1,2\}}\right)}{c_{3}}
$$

Energy available for jobs 1,2 if
space is left for job 3 to start anytime

$$
=10
$$

Excess energy required by jobs

$$
1,2=4
$$

Edge finding for cumulative scheduling

In general, if $e_{J \cup\{k\}}>C \cdot\left(L_{J}-E_{J \cup\{k\}}\right)$
then $k>J$, and update E_{k} to

$$
\max _{\substack{J^{\prime} \in J \\ e_{J}-\left(C-c_{k}\right)\left(L_{J^{\prime}}-E_{J}\right)>0}}\left\{E_{J^{\prime}}+\frac{e_{J^{\prime}}-\left(C-c_{k}\right)\left(L_{J^{\prime}}-E_{J^{\prime}}\right)}{c_{k}}\right\}
$$

In general, if $e_{J \cup\{k\}}>C \cdot\left(L_{J \cup\{k\}}-E_{J}\right)$
then $k<J$, and update L_{k} to

$$
\min _{\substack{J^{\prime} \subset \mathcal{J}^{\prime} \\ e_{J}-\left(C-c_{k}\right)\left(L_{j}-E_{j}\right)>0}}\left\{L_{J^{\prime}}-\frac{e_{J^{\prime}}-\left(C-c_{k}\right)\left(L_{J^{\prime}}-E_{J^{\prime}}\right)}{c_{k}}\right\}
$$

Edge finding for cumulative scheduling

There is an $O\left(n^{2}\right)$ algorithm that finds all applications of the edge finding rules.

Other propagation rules for cumulative scheduling

- Extended edge finding.
- Timetabling.
- Not-first/not-last rules.
- Energetic reasoning.

CP-based Branch and Price

Basic Idea
Example: Airline Crew Scheduling

Motivation

- Branch and price allows solution of integer programming problems with a huge number of variables.
- The problem is solved by branching, like a normal IP. The difference lies in how the LP relaxation is solved.
- Variables are added to the LP relaxation only as needed.
- Variables are priced to find which ones should be added.
- CP is useful for solving the pricing problem, particularly when constraints are complex.
- CP-based branch and price has been successfully applied to airline crew scheduling, transit scheduling, and other transportation-related problems.

Basic Idea

Suppose the LP relaxation of an integer programming problem has a huge number of variables:
$\min c x$

$$
\begin{aligned}
& A x=b \\
& x \geq 0
\end{aligned}
$$

We will solve a restricted master problem, which has a small subset of the variables:

Adding x_{k} to the problem would improve the solution if x_{k} has a negative reduced cost:

$$
r_{k}=c_{k}-\lambda A_{k}<0
$$

Basic Idea

Adding x_{k} to the problem would improve the solution if x_{k} has a negative reduced cost:

$$
r_{k}=c_{k}-\lambda A_{k}<0
$$

Computing the reduced cost of x_{k} is known as pricing x_{k}.

So we solve the pricing problem: $\min c_{y}-\lambda y$
y is a column of A
If the solution y^{*} satisfies $c_{y^{*}}-\lambda y^{*}<0$, then we can add column y to the restricted master problem.

Basic Idea

The pricing problem max λy

y is a column of A

need not be solved to optimality, so long as we find a column with negative reduced cost.

However, when we can no longer find an improving column, we solved the pricing problem to optimality to make sure we have the optimal solution of the LP.

If we can state constraints that the columns of A must satisfy, CP may be a good way to solve the pricing problem.

Example: Airline Crew Scheduling

We want to assign crew members to flights to minimize cost while covering the flights and observing complex work rules.

Flight data

j	s_{j}	f_{j}		
1	0	3		
2	1	3		
3	5	8		
4	6	9		
5	10	12		
6	14	16		
\uparrow				\uparrow
Start				
time	Finish			

A roster is the sequence of flights assigned to a single crew member.

The gap between two consecutive flights in a roster must be from 2 to 3 hours. Total flight time for a roster must be between 6 and 10 hours.

For example,
flight 1 cannot immediately precede 6 flight 4 cannot immediately precede 5 .

The possible rosters are:

$$
(1,3,5),(1,4,6),(2,3,5),(2,4,6)
$$

Airline Crew Scheduling

There are 2 crew members, and the possible rosters are:

1	2	3
$(1,3,5)$,	4	
$(1,4,6)$,	$(2,3,5)$,	$(2,4,6)$

The LP relaxation of the problem is:

Airline Crew Scheduling

There are 2 crew members, and the possible rosters are:

1	2	3
$(1,3,5)$,	4	
$(1,4,6)$,	$(2,3,5)$,	$(2,4,6)$

The LP relaxation of the problem is:

Rosters that cover flight 1.

Airline Crew Scheduling

There are 2 crew members, and the possible rosters are:

1	2	3
$(1,3,5)$,	4	
$(1,4,6)$,	$(2,3,5)$,	$(2,4,6)$

The LP relaxation of the problem is:

Rosters that cover flight 2.

Airline Crew Scheduling

There are 2 crew members, and the possible rosters are:

1	2	3
$(1,3,5)$,	4	
$(1,4,6)$,	$(2,3,5)$,	$(2,4,6)$

The LP relaxation of the problem is:

Rosters that cover flight 3.

Airline Crew Scheduling

There are 2 crew members, and the possible rosters are:

1	2	3
$(1,3,5)$,	4	
$(1,4,6)$,	$(2,3,5)$,	$(2,4,6)$

The LP relaxation of the problem is:

Rosters that cover flight 4.

Airline Crew Scheduling

There are 2 crew members, and the possible rosters are:

1	2	3
$(1,3,5)$,	4	
$(1,4,6)$,	$(2,3,5)$,	$(2,4,6)$

The LP relaxation of the problem is:

Rosters that cover flight 5.

Airline Crew Scheduling

There are 2 crew members, and the possible rosters are:

1	2	3
$(1,3,5)$,	4	
$(1,4,6)$,	$(2,3,5)$,	$(2,4,6)$

The LP relaxation of the problem is:

Rosters that cover flight 6.

Airline Crew Scheduling

There are 2 crew members, and the possible rosters are:

1	2	3
$(1,3,5)$,	4	
$(1,4,6)$,	$(2,3,5)$,	$(2,4,6)$

The LP relaxation of the problem is:

In a real problem, there can be millions of rosters.

Airline Crew Scheduling

We start by solving the problem with a subset of the columns:

Optimal
dual

$\min z$

Airline Crew Scheduling

We start by solving the problem with a subset of the columns:

Airline Crew Scheduling

We start by solving the problem with a subset of the columns:

$$
\begin{aligned}
& \min z \\
& {\left[\begin{array}{cccc}
10 & 13 & 9 & 12 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{11} \\
x_{14} \\
x_{21} \\
x_{24}
\end{array}\right]} \\
& = \\
& = \\
& \\
& = \\
& \geq \\
& x_{i k} \geq 0, \text { all } i, k
\end{aligned}
$$

Dual

variables

(10)	u_{1}
(9)	u_{2}
(0)	v_{1}
(0)	v_{2}
(0)	v_{3}
(0)	v_{4}
(0)	v_{5}
(3)	v_{6}

The reduced cost of an excluded roster k for crew member i is

$$
c_{i k}-u_{i}-\sum_{j \text { in roster k }} v_{j}
$$

We will formulate the pricing problem as a shortest path problem.

Pricing problem

Crew member 1

Crew member 2

Pricing problem

Each s-t path corresponds to a roster, provided the flight time is within bounds.

Crew member 1

Crew member 2

Pricing problem

Crew member 1

Cost of flight 3 if it immediately follows flight 1, offset by dual multiplier for flight 1

Crew member 2

Pricing problem

Cost of transferring from home to flight 1 ,

Crew member 1

symmetry

Crew member 2

Pricing problem
Length of a path is reduced cost of the corresponding roster.

Crew member 1

Crew member 2

Pricing problem

Arc lengths using dual solution of LP relaxation

Crew member 1

Pricing problem

Solution of shortest path problems

Crew
member 1
Reduced cost = -1

Add x_{12} to problem.

Crew
member 2
Reduced cost $=-2$

Add x_{23} to problem.
After x_{12} and x_{23} are added to the problem, no remaining variable has negative reduced cost.

Pricing problem

The shortest path problem cannot be solved by traditional shortest path algorithms, due to the bounds on total duration of flights.

It can be solved by CP:

Benders Decomposition

Logic-Based Benders Decomposition

Some Applications
Example: Machine Scheduling
Application: Home Health Care

Benders Decomposition

- Benders decomposition is a classical strategy that does not sacrifice overall optimality.
- Separates the problem into a master problem and multiple subproblems.
- Variables are partitioned between master and subproblems.
- Exploits the fact that the problem may radically simplify when the master problem variables are fixed to a set of values.

Benders Decomposition

- But classical Benders decomposition has a serious limitation.
- The subproblems must be linear programming problems.
- Or continuous nonlinear programming problems.
- The linear programming dual provides the Benders cuts.

Logic-Based Benders

- Logic-based Benders decomposition attempts to overcome this limitation.
- The subproblem can be any optimization/feasibility problem, such as a CP problem
- The Benders cuts are obtained from an inference dual.
- Speedup over state of the art can be several orders of magnitude.
- Yet the Benders cuts must be designed specifically for every class of problems.

Logic-Based Benders

Source: Google Scholar

Logic-Based Benders

- Logic-based Benders decomposition solves a problem of the form

$$
\begin{aligned}
& \min f(x, y) \\
& (x, y) \in S \\
& x \in D_{x}, y \in D_{y}
\end{aligned}
$$

- Where the problem simplifies when x is fixed to a specific value.

Logic-Based Benders

- Decompose problem into master and subproblem.
- Subproblem is obtained by fixing x to solution value in master problem.

Master problem

$\min z$ $z \geq g_{k}(x) \quad$ (Benders cuts) $x \in D_{x}$	Trial value \bar{x} that solves master
Minimize cost z subject to bounds given by Benders cuts, obtained from values of x attempted in previous iterations k.	Benders cut $z \geq g_{k}(x)$

Subproblem
$\min f(\bar{x}, y)$
$(\bar{x}, y) \in S$

Obtain proof of optimality (solution of inference dual). Use same proof to deduce cost bounds for other assignments, yielding

Benders cut.

Logic-Based Benders

- Iterate until master problem value equals best subproblem value so far.
- This yields optimal solution.

Master problem

Subproblem
$\min f(\bar{x}, y)$
$(\bar{x}, y) \in S$

Obtain proof of optimality (solution of inference dual). Use same proof to deduce cost bounds for other assignments, yielding

Benders cut.

Logic-Based Benders

- Fundamental concept: inference duality

Dual problem:
Inference

$$
\begin{aligned}
& \max v \\
& x \in S \stackrel{P}{\Rightarrow} f(x) \geq v \\
& P \in \mathcal{P} \\
& \text { Find a proof of optimal value } v^{*} \\
& \text { by searching over proofs } P .
\end{aligned}
$$

In classical LP, the proof is a tuple of dual multipliers

Logic-Based Benders

- The proof that solves the dual in iteration k gives a bound $g_{k}(\bar{x})$ on the optimal value.
- The same proof gives a bound $g_{k}(x)$ for other values of x.

Master problem
$\min z$
$z \geq g_{k}(x) \quad$ (Benders cuts)
$x \in D_{x}$
Minimize cost z subject to
bounds given by Benders
cuts, obtained from values
of x attempted in previous
iterations k.

Subproblem
$\min f(\bar{x}, y)$
$(\bar{x}, y) \in S$

Obtain proof of optimality (solution of inference dual). Use same proof to deduce cost bounds for other assignments, yielding

Benders cut.

Logic-Based Benders

- Popular optimization duals are special cases of the inference dual.
- Result from different choices of inference method.
- For example....
- Linear programming dual (gives classical Benders cuts)
- Lagrangean dual
- Surrogate dual
- Subadditive dual

Logic-Based Benders Applications

- Planning and scheduling:
- Machine allocation and scheduling
- Steel production scheduling
- Chemical batch processing (BASF, etc.)
- Auto assembly line management (Peugeot-Citroën)
- Allocation and scheduling of multicore processors (IBM, Toshiba, Sony)
- Worker assignment in a queuing environment

Logic-Based Benders Applications

- Other scheduling
- Lock scheduling
- Shift scheduling
- Permutation flow shop scheduling with time lags
- Resource-constrained scheduling
- Hospital scheduling
- Optimal control of
 dynamical systems
- Sports scheduling

Logic-Based Benders Applications

- Routing and scheduling
- Vehicle routing
- Home health care
- Food distribution
- Automated guided vehicles in flexible manufacturing
- Traffic diversion around blocked routes
- Concrete delivery

Logic-Based Benders Applications

- Location and Design
- Allocation of frequency spectrum (U.S. FCC)
- Wireless local area network design
- Facility location-allocation
- Stochastic facility location and fleet management
- Capacity and distanceconstrained plant location
- Queuing design and control

Logic-Based Benders Applications

- Other
- Logical inference (SAT solvers essentially use Benders)
- Logic circuit verification
- Bicycle sharing
- Service restoration in a network
- Inventory management
- Supply chain management
- Space packing

Example: Machine Scheduling

- Assign tasks to machines.
- Then schedule tasks assigned to each machine.
- Subject to time windows.
- Cumulative scheduling: several tasks can run simultaneously, subject to resource limits.
- Scheduling problem decouples into a separate problem for each machine.

Machine Scheduling

- Assign tasks in master, schedule in subproblem.
- Combine mixed integer programming and constraint programming

Master problem

Subproblem

Schedule jobs on each machine, subject to time windows.

Constraint programming obtains proof of optimality (dual solution).

Use same proof to deduce cost for some other assignments, yielding

Benders cut.

Machine Scheduling

- Objective function
- Cost is based on task assignment only.

$$
\text { cost }=\sum_{i j} c_{i j} x_{i j}, \quad x_{i j}=1 \text { if task } j \text { assigned to resource } i
$$

- So cost appears only in the master problem.
- Scheduling subproblem is a feasibility problem.

Machine Scheduling

- Objective function
- Cost is based on task assignment only.

$$
\operatorname{cost}=\sum_{i j} c_{i j} x_{i j}, \quad x_{i j}=1 \text { if task } j \text { assigned to resource } i
$$

- So cost appears only in the master problem.
- Scheduling subproblem is a feasibility problem.
- Benders cuts
- They have the form $\sum_{j \in J_{i}}\left(1-x_{i j}\right) \geq 1$, all i
- where J_{i} is a set of tasks that create infeasibility when assigned to resource i.

Machine Scheduling

- Resulting Benders decomposition:

Master problem

Subproblem

Schedule jobs on each resource.

Constraint programming may obtain proof of infeasibility on some resources (dual solution).

Use same proof to deduce infeasibility for some other assignments, yielding Benders cut.

Extensions

- Other objective functions
- Minimize makespan
- Minimize number of late jobs
- Minimize total tardiness
- Stronger Benders cuts
- Stronger relaxations
- Assume all release times are the same in cumulative scheduling subproblem...

Minimize Makespan

Master Problem: Assign tasks to resources Formulate as MILP problem

$$
\begin{array}{ll}
\min & M \\
\text { subject to } & \sum_{i} x_{i j}=1, \quad \text { all } j \\
& M \geq \frac{1}{C_{i}} \sum_{j} p_{i j} c_{i j} x_{i j}, \quad \text { all } i \\
& \text { Benders cuts }
\end{array}
$$

Minimize Makespan

Benders cuts are based on:
Lemma. If we remove tasks $1, \ldots$ s from a resource, the minimum makespan on that resource is reduced by at most

$$
\sum_{j=1}^{s} p_{i j}+\max _{j \leq s}\left\{d_{j}\right\}-\min _{j \leq s}\left\{d_{j}\right\}
$$

Assuming all deadlines d_{i} are the same, we get the Benders cut

$$
M \geq M_{h i}^{*}-\sum_{j \in J_{h i}}\left(1-x_{i j}\right) p_{i j}
$$

Min makespan on
resource i in last
iteration

Minimize Number of Late Tasks

Master problem: Assign tasks to resources
$\begin{array}{ll}\min & L \\ \text { subject to } & \sum_{i}\left(x_{i j}\right)=1, \quad \text { all } j\end{array}$
Benders cuts
relaxation of subproblem
$x_{i j} \in\{0,1\}$

Minimize Number of Late Tasks

Benders cuts

Minimize Number of Late Tasks

Benders cuts

$$
L \geq \sum_{i} \hat{L}_{h i} \begin{aligned}
& \text { Min \# late tasks on resource } i \\
& \text { (solution of subproblem) }
\end{aligned}
$$

Minimize Number of Late Tasks

Relaxation of subproblem

Minimize Total Tardiness

Master problem: assign tasks to resources

$$
\begin{array}{ll}
\min & L \\
\text { subject to } & \sum_{i} x_{i j}=1, \quad \text { all } j \\
& \text { Benders cuts } \\
& \text { relaxation I of subproblem } j \text { is assigned to resource } i \\
& \text { relaxation II of subproblem } \\
& x_{i j} \in\{0,1\}
\end{array}
$$

Minimize Total Tardiness

Benders cuts

Minimize Total Tardiness

Benders cuts

$$
\begin{aligned}
& T \geq \sum_{i} \hat{T}_{h i} \\
& \hat{T}_{h i} \geq T_{h i}^{*}-T_{h i}^{*} \sum_{j \in J_{h i}}\left(1-x_{i j}\right), \text { all } i \\
& \hat{T}_{h i} \geq T_{h i}^{0}-T_{h i}^{0} \sum_{j \in J_{h i}\left(Z_{h i}\right)}\left(1-x_{i j}\right), \text { all } i \\
& \hat{T}_{h i} \geq 0 \text {, all } i \quad \begin{array}{l}
\text { Set of tasks that can be remo } \\
\text { one at a time from resource } i
\end{array} \\
& \text { without reducing min tardiness. }
\end{aligned}
$$

Min tardiness on resource i when all tasks in $Z_{h i}$ are removed simultaneously.

Minimize Total Tardiness

Subproblem relaxation I
Lower bound on total tardiness for resource i

Lower bound on total tardiness

Minimize Total Tardiness

Subproblem relaxation II

Lemma. Consider a min tardiness problem that schedules tasks $1, \ldots, n$ on resource i, where $d_{1} \leq \ldots \leq d_{n}$. The min tardiness T^{*} is bounded below by
where

$$
\bar{T}_{k}=\left(\frac{1}{C_{i}} \sum_{j=1}^{k} p_{i \pi_{i}(j)} c_{i \pi_{i}(j)}-d_{k}\right)^{+}
$$

and π is a permutation of $1, \ldots, n$ such that

$$
p_{\pi_{i}(1)^{c} \pi_{i}(1)} \leq \cdots \leq p_{\pi_{i}(n)^{c}} \pi_{i}(n)
$$

Minimize Total Tardiness

Example of Lemma

$$
\begin{aligned}
& \bar{T}_{1}=\left(\frac{1}{C_{i}}\left(p_{i 3} c_{i 3}\right)-d_{1}\right)^{+} \\
& \bar{T}_{2}=\left(\frac{1}{C_{i}}\left(p_{i 3} c_{i 3}+p_{i 1} c_{i 1}\right)-d_{2}\right)^{+} \\
& =\left(\frac{1}{3}(5+6)-4\right)^{+}=0 \\
& \bar{T}_{3}=\left(\frac{1}{C_{i}}\left(p_{i 3} c_{i 3}+p_{i 1} c_{i 1}+p_{i 2} c_{i 2}\right)-d_{3}\right)^{+}=\left(\frac{1}{3}(5+6+8)-5\right)^{+}=4 / 3 \\
& \text { Lower bound on tardiness }=\left\lceil\bar{T}_{1}+\bar{T}_{2}+\bar{T}_{3}\right\rceil=\lceil 4 / 3\rceil=2
\end{aligned}
$$

Min tardiness $=4$

Minimize Total Tardiness

Writing relaxation II

From the lemma, we can write the relaxation

$$
T \geq \sum_{i} \sum_{k=1}^{n} T_{i k}^{\prime} x_{i k}
$$

where $T_{i k}^{\prime} \geq \frac{1}{C_{i}} \sum_{j=1}^{k} p_{i \pi_{i}(j)} c_{i \pi_{i}(j)} x_{i \pi_{i}(j)}-d_{k}$
To linearize this, we write $T \geq \sum_{i} \sum_{k=1}^{n} T_{i k}$
and $T_{i k} \geq \frac{1}{C_{i}} \sum_{j=1}^{k} p_{i \pi_{i}(j)} c_{i \pi_{i}(j)} x_{i \pi_{i}(j)}-d_{k}-\left(1-x_{i k}\right) M_{i k}$
where $\quad M_{i k}=\frac{1}{C_{i}} \sum_{j=1}^{k} p_{i \pi_{i}(j)} c_{i \pi_{i}(j)}-d_{k}$

Application: Home Health Care

- General home health care problem.
- Assign aides to homebound patients.
- ...subject to constraints on aide qualifications and patent preferences.
- One patient may require a team of aides.
- Route each aide through assigned patients, observing time windows.
- ...subject to constraints on hours, breaks, etc.

Home Health Care

- A large industry, and rapidly growing.
- Roughly as large as all courier and delivery services.

Projected Growth of Home Health Care Industry

	2014	2018
U.S. revenues, $\$$ billions	75	150
World revenues, $\$$ billions	196	306

Increase in U.S. Employment, 2010-2020

Home health care industry	70%
Entire economy	14%

Home Health Care

- Advantages of home healthcare
- Lower cost
- Hospital \& nursing home care is very expensive.
- No hospital-acquired infections
- Less exposure to superbugs.
- Preferred by patients
- Comfortable, familiar surroundings of home.
- Sense of control over one's life.
- Supported by new equipment \& technology
- IT integration with hospital systems.
- Online consulting with specialists.

Home Hospice Care

- Distinguishing characteristics
- Personal \& household services
- Regular weekly schedule
- For example, Mon-Wed-Fri at 9 am.
- Same aide each visit
- Long planning horizon
- Several weeks
- Rolling schedule
- Update schedule as patient population evolves.

Home Hospice Care

Home Hospice Care

- Solve with Benders decomposition.
- Assign aides to patients in master problem.
- Maximize number of patients served by a given set of aides.

Home Hospice Care

- Solve with Benders decomposition.
- Assign aides to patients in master problem.
- Maximize number of patients served by a given set of aides.
- Schedule home visits in subproblem.
- Cyclic weekly schedule.
- Visit each patient same time each day.
- No visits on weekends.

Home Hospice Care

- Solve with Benders decomposition.
- Assign aides to patients in master problem.
- Maximize number of patients served by a given set of aides.
- Schedule home visits in subproblem.

- Subproblem decouples into a scheduling problem for each aide

Master Problem

Master Problem

- For a rolling schedule:
- Schedule new patients, drop departing patients from schedule.
- Provide continuity for remaining patients as follows:
- Old patients served by same aide on same days.
- Fix $y_{i j k}=1$ for the relevant aides, patients, and days.

Subproblem

Simplified routing \& scheduling problem for aide i

Modeled with interval variables in CP solver

Benders Cuts

- Generate a cut for each infeasible scheduling problem.
- Solution of subproblem inference dual is a proof of infeasibility.
- The proof may show other patient assignments to be infeasible.
- Generate nogood cut that rules out these assignments.

Benders Cuts

- Generate a cut for each infeasible scheduling problem.
- Solution of subproblem inference dual is a proof of infeasibility.
- The proof may show other patient assignments to be infeasible.
- Generate nogood cut that rules out these assignments.
- Unfortunately, we don't have access to infeasibility proof in CP solver.

Benders Cuts

- So, strengthen the nogood cuts heuristically.
- Find a smaller set of patients that create infeasibility...
- ...by re-solving the each infeasible scheduling problem repeatedly.
$\sum_{j \in \overline{\bar{P}}_{i}}\left(1-y_{i j k}\right) \geq 1$
Reduced set of patients whose assignment to aide icreates infeasibility

Benders Cuts

- Include relaxation of subproblem in the master problem.
- Necessary for good performance.
- Use time window relaxation for each scheduling problem.
- Simplest relaxation for aide i and day k :

$$
\sum_{j \in \underset{\uparrow}{\uparrow(a, b)}} p_{j} y_{i j k} \leq b-a
$$

Set of patients whose time window fits in interval $[a, b]$.

Can use several intervals.

Subproblem Relaxation

- This relaxation is very weak.
- Doesn't take into account travel times.

Subproblem Relaxation

- This relaxation is very weak.
- Doesn't take into account travel times.
- Improved relaxation.
- Basic idea: Augment visit duration p_{j} with travel time to (or from) location j from closest patient or aide home base.

Subproblem Relaxation

- This relaxation is very weak.
- Doesn't take into account travel times.
- Improved relaxation.
- Basic idea: Augment visit duration p_{j} with travel time to (or from) location j from closest patient or aide home base.
- This is weak unless most assignments are fixed.
- As in rolling schedule.

Subproblem Relaxation

- This relaxation is very weak.
- Doesn't take into account travel times.
- Improved relaxation.
- Basic idea: Augment visit duration p_{j} with travel time to (or from) location j from closest patient or aide home base.
- This is weak unless most assignments are fixed.
- As in rolling schedule.
- Find intervals that yield tightest relaxation
- Short intervals that contain many time windows.

Branch and Check

- A variation of logic-based Benders
- Solve master problem only once, by branching.
- At feasible nodes, solve subproblem to obtain Benders cut.
- Not the same as branch \& cut.
- Use when master problem is the bottleneck
- Subproblem solves much faster than master problem.

Computational Tests

- Original real-world dataset
- 60 home hospice patients
- 1-5 visits per week (not on weekends)
- 18 health care aides with time windows
- Actual travel distances
- Solver
- LBBD: Hand-written code manages MIP \& CP solvers
- SCIP + Gecode
- Branch \& check: Use constraint handler in SCIP
- SCIP + Gecode
- MIP: SCIP
- Modified multicommodity flow model of VRPTW

Computation time, fewer visits per week

Computational Tests

- Practical implications
- Branch \& check scales up to realistic size
- One month advance planning for original 60-patient dataset
- Assuming 5-8\% weekly turnover
- Much faster performance for modified dataset
- Advantage of exact solution method
- We know for sure whether existing staff will cover projected demand.

Effect of time window relaxation Standard LBBD

Original problem data

Effect of time window relaxation and primal heuristic cuts

 Branch \& checkOriginal problem data

Computational Tests

- Rasmussen instances
- From 2 Danish municipalities
- One-day problem
- We extended it to 5 days with same schedule each day
- Reduce number of patients to 30, so MIP has a chance
- Solve problem from scratch
- No rolling schedule
- Two objective functions
- Weighted: Minimize weighted average of travel cost, matching cost (undesirability of assignment), uncovered patients.
- Covering: Minimize number of uncovered patients (same as ours)

Table 6 Solution time (s) for modified Rasmussen instances

			Weighted objective			Covering objective			
Instance	Patients	Crews	MILP	LBBD	B\&Ch	MILP	LBBD	B\&Ch	
hh	30	15	$*$	3.16	$\mathbf{1 . 4 1}$	$*$	$\mathbf{2 3 . 3}$	441	
$\mathrm{ll1}$	30	8	$*$	1.74	$\mathbf{0 . 4 3}$	$*$	108	$\mathbf{1 . 4 1}$	
$\mathrm{ll2}$	30	7	2868	1.56	$\mathbf{0 . 3 2}$	$*$	$\mathbf{1 . 3 8}$	6.45	
$\mathrm{ll3}$	30	6	1398	2.16	$\mathbf{0 . 3 0}$	$*$	$\mathbf{3 . 0 7}$	5.98	

*Computation time exceeded one hour.

Table 6 Solution time (s) for modified Rasmussen instances

| | | | Weighted objective | | | Covering objective | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Instance | Patients | Crews | MILP | LBBD | B\&Ch | MILP | LBBD | B\&Ch |
| hh | 30 | 15 | $*$ | 3.16 | $\mathbf{1 . 4 1}$ | $*$ | $\mathbf{2 3 . 3}$ | 441 |
| ll 1 | 30 | 8 | $*$ | 1.74 | $\mathbf{0 . 4 3}$ | $*$ | 108 | $\mathbf{1 . 4 1}$ |
| $\mathrm{ll2}$ | 30 | 7 | 2868 | 1.56 | $\mathbf{0 . 3 2}$ | $*$ | $\mathbf{1 . 3 8}$ | 6.45 |
| ll 3 | 30 | 6 | 1398 | 2.16 | $\mathbf{0 . 3 0}$ | $*$ | $\mathbf{3 . 0 7}$ | 5.98 |

*Computation time exceeded one hour.
Standard LBBD tends to be better when subproblem consumes most of the solution time in branch \& check

Table 2 Percent of solution time devoted to subproblem

	S-LBBD		B\&Ch	
Instances	Avg	Max	Avg	Max
Original 60-patient instances	0.1	0.2	1.4	3.9
Narrow time windows	0.1	0.1	2.8	6.0
Fewer visits per patient	0.0	0.1	1.7	3.5
Rasmussen, weighted objective	0.4	0.8	6.3	13.6
Rasmussen, covering objective	1.2	1.5	85.6	99.7

Computational Tests

- LBBD can scale up despite sequence-dependent costs...
- ...especially when computing a rolling schedule
- Time window relaxation is tight enough in this case
- Routing \& scheduling problems remain small as patient population increases
- The 4-index MIP variables explode as the population grows
- ...even for a rolling schedule

Computational Tests

- LBBD can scale up despite sequence-dependent costs...
- ...especially when computing a rolling schedule
- Time window relaxation is tight enough in this case
- Routing \& scheduling problems remain small as patient population increases
- The 4-index MIP variables explode as the population grows
- ...even for a rolling schedule
- However...
- LBBD not designed for temporal dependencies
- As when multiple aides must visit a patient simultaneously.
- Unclear how much performance degrades in this case.

Software

For integration of CP and MIP

- ECLiPSe
- Exchanges information between ECLiPSe solver, Xpress-MP
- OPL Studio
- Combines CPLEX MIP and CP Optimizer with script language
- Mosel
- Combines Xpress-MP, Xpress-Kalis with low-level modeling
- BARON
- Global optimization with relaxation + domain reduction
- SIMPL
- Full integration with high-level modeling (prototype)
- SCIP
- Combines MIP and CP-based propagation
- MiniZinc
- High-level modeling with solver integration, including logic-based Benders

