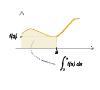
Tutorial: Operations Research and Constraint Programming

John Hooker Carnegie Mellon University June 2008

LSE tutorial, June 2007 Slide 1



Why Integrate OR and CP?

Complementary strengths Computational advantages Outline of the Tutorial

LSE tutorial, June 2007 Slide 2

Complementary Strengths

- CP:
 - Inference methods
 - Modeling
 - Exploits local structure
- OR:
 - Relaxation methods
 - Duality theory
 - Exploits global structure

Let's bring them together!

Computational Advantage of Integrating CP and OR

Using CP + relaxation from MILP

	Problem	Speedup
Focacci, Lodi, Milano (1999)	Lesson timetabling	2 to 50 times faster than CP
Refalo (1999)	Piecewise linear costs	2 to 200 times faster than MILP
Hooker & Osorio (1999)	Flow shop scheduling, etc.	4 to 150 times faster than MILP.
Thorsteinsson & Ottosson (2001)	Product configuration	30 to 40 times faster than CP, MILP

LSE tutorial, June 2007 Slide 4

Computational Advantage of Integrating CP and MILP

Using CP + relaxation from MILP

	Problem	Speedup
Sellmann & Fahle (2001)	Automatic recording	1 to 10 times faster than CP, MILP
Van Hoeve (2001)	Stable set problem	Better than CP in less time
Bollapragada, Ghattas & Hooker (2001)	Structural design (nonlinear)	Up to 600 times faster than MILP. 2 problems: <6 min vs >20 hrs for MILP
Beck & Refalo (2003)	Scheduling with earliness & tardiness costs	Solved 67 of 90, CP solved only 12

Computational Advantage of Integrating CP and MILP

Using CP-based Branch and Price

	Problem	Speedup	
Yunes, Moura & de Souza (1999)	Urban transit crew scheduling	Optimal schedule for 210 trips, vs. 120 for traditional branch and price	
Easton, Nemhauser & Trick (2002)	Traveling tournament scheduling	First to solve 8-team instance	

Computational Advantage of Integrating CP and MILP

Using CP/MILP Benders methods

	Problem	Speedup
Jain & Grossmann (2001)	Min-cost planning & scheduing	20 to 1000 times faster than CP, MILP
Thorsteinsson (2001)	Min-cost planning & scheduling	10 times faster than Jain & Grossmann
Timpe (2002)	Polypropylene batch scheduling at BASF	Solved previously insoluble problem in 10 min

LSE tutorial, June 2007 Slide 7

Computational Advantage of Integrating CP and MILP

Using CP/MILP Benders methods

	Problem	Speedup
Benoist, Gaudin, Rottembourg (2002)	Call center scheduling	Solved twice as many instances as traditional Benders
Hooker (2004)	Min-cost, min-makespan planning & cumulative scheduling	100-1000 times faster than CP, MILP
Hooker (2005)	Min tardiness planning & cumulative scheduling	10-1000 times faster than CP, MILP

LSE tutorial, June 2007 Slide 8

Outline of the Tutorial

- Why Integrate OR and CP?
- A Glimpse at CP
- Initial Example: Integrated Methods
- CP Concepts
- CP Filtering Algorithms
- Linear Relaxation and CP
- Mixed Integer/Linear Modeling
- Cutting Planes
- Lagrangean Relaxation and CP
- Dynamic Programming in CP
- CP-based Branch and Price
- CP-based Benders Decomposition

Detailed Outline • Why Integrate OR and CP? Complementary strengths Computational advantages Outline of the tutorial A Glimpse at CP Early successes Advantages and disadvantages Initial Example: Integrated Methods Freight Transfer Bounds Propagation Cutting PlanesBranch-infer-and-relax Tree LSE tutorial, June 2007 Slide 10 **Detailed Outline** • CP Concepts ConsistencyHyperarc Consistency Modeling Examples CP Filtering Algorithms ElementAlldiff Disjunctive Scheduling Cumulative Scheduling · Linear Relaxation and CP Why relax? Algebraic Analysis of LP Linear Programming Duality LP-Based Domain Filtering - LP-Based Domain Filtering - Example: Single-Vehicle Routing - Disjunctions of Linear Systems LSE tutorial, June 2007 Slide 11 **Detailed Outline** Mixed Integer/Linear Modeling MILP Representability 4.2 Disjunctive Modeling 4.3 Knapsack Modeling Cutting Planes 0-1 Knapsack Cuts Gomory Cuts · Mixed Integer Rounding Cuts Example: Product Configuration

Lagrangean Relaxation and CP
 Lagrangean Duality
 Properties of the Lagrangean Dual

LSE tutorial, June 2007 Slide 12

Example: Fast Linear Programming
Domain Filtering
Example: Continuous Global Optimization

4

Detailed Outline

- Dynamic Programming in CP
 Example: Capital Budgeting

 - Domain Filtering
- Recursive Optimization
 CP-based Branch and Price

 - Basic Idea
 Example: Airline Crew Scheduling
- CP-based Benders Decomposition
 - Benders Decomposition in the Abstract
 Classical Benders Decomposition
 Example: Machine Scheduling

LSE tutorial, June 2007 Slide 13

Background Reading

This tutorial is based on:

- J. N. Hooker, *Integrated Methods for Optimization*, Springer (2007). Contains 295 exercises.
- J. N. Hooker, Operations research methods in constraint programming, in F. Rossi, P. van Beek and T. Walsh, eds., *Handbook of Constraint Programming*, Elsevier (2006), pp. 527-570.

LSE tutorial, June 2007 Slide 14

A Glimpse at Constraint Programming

Early Successes Advantages and Disadvantages

What is constraint programming?

- It is a relatively new technology developed in the computer science and artificial intelligence communities.
- It has found an important role in scheduling, logistics and supply chain management.

LSE tutorial, June 2007 Slide 16

Early commercial successes

• Circuit design (Siemens)

 Real-time control (Siemens, Xerox)

LSE tutorial, June 2007 Slide 17

Applications

- Job shop scheduling
- Assembly line smoothing and balancing
- Cellular frequency assignment
- Nurse scheduling
- Shift planning
- Maintenance planning
- Airline crew rostering and scheduling
- Airport gate allocation and stand planning

Applications

- Production scheduling chemicals aviation oil refining steel lumber photographic plates tires
- Transport scheduling (food, nuclear fuel)
- Warehouse management
- Course timetabling

Advantages and Disadvantages

CP vs. Mathematical Programming

MP	CP
Numerical calculation	Logic processing
Relaxation	Inference (filtering, constraint propagation)
Atomistic modeling (linear inequalities)	High-level modeling (global constraints)
Branching	Branching
Independence of model and algorithm	Constraint-based processing
LSE tutorial, June 2007 Slide 20	

Programming \neq programming

- In constraint programming:
 - *programming* = a form of computer programming (constraint-based processing)
- In mathematical programming:
 - programming = logistics planning (historically)

CP vs. MP

- In mathematical programming, equations (constraints) describe the problem but don't tell how to
- In **constraint programming**, each constraint invokes a procedure that screens out unacceptable solutions.
 - Much as each line of a computer program invokes an operation

LSE tutorial, June 2007 Slide 22

Advantages of CP

- Better at sequencing and scheduling
 - $\bullet \dots$ where MP methods have weak relaxations.
- Adding messy constraints makes the problem easier.
 - The more constraints, the better.
- More powerful modeling language.
 - Global constraints lead to succinct models.
 - Constraints convey problem structure to the solver.
- "Better at highly-constrained problems"
 - Misleading better when constraints propagate well, or when constraints have few variables.

LSE tutorial, June 2007 Slide 23

Disdvantages of CP

- Weaker for continuous variables.
 - Due to lack of numerical techniques
- May fail when constraints contain many variables.
 - These constraints don't propagate well.
- •Often not good for funding optimal solutions.
 - Due to lack of relaxation technology.
- May not scale up
 - Discrete combinatorial methods
- Software is not robust
 - Younger field

-	

Obvious solution... • Integrate CP and MP. • More on this later. LSE tutorial, June 2007 Slide 25

Trends

- CP is better known in continental Europe, Asia.
 - Less known in North America, seen as threat to OR.
- CP/MP integration is growing
 - Eclipse, Mozart, OPL Studio, SIMPL, SCIP, BARON
- Heuristic methods increasingly important in CP
 - Discrete combinatorial methods
- MP/CP/heuristics may become a single technology.

LSE tutorial, June 2007 Slide 26

Initial Example: Integrated Methods

Freight Transfer Bounds Propagation Cutting Planes Branch-infer-and-relax Tree

Example: Freight Transfer

• Transport 42 tons of freight using 8 trucks, which come in

	Truck size	Number available	Capacity (tons)	Cost per truck
	1	3	7	90
	2	3	5	60
	3	3	4	50
LSE tutorial. June 2007	4	3	3	40
Slide 28				

Number of trucks of type 1

covering constraint

Knapsack packing constraint

$$\begin{array}{c}
\text{min } 90x_4 + 60x_2 + 50x_3 + 40x_4 \\
7x_1 + 5x_2 + 4x_3 + 3x_4 \ge 42
\end{array}$$

 $X_1 + X_2 + X_3 + X_4 \le 8$ $x_i \in \{0,1,2,3\}$

	Truck type	Number available	Capacity (tons)	Cost per truck
	1	3	7	90
	2	3	5	60
	3	3	4	50
_	4	3	3	40

LSE tutorial, June 2007 Slide 29

Bounds propagation

$$\begin{aligned} & \min 90x_1 + 60x_2 + 50x_3 + 40x_4 \\ & 7x_1 + 5x_2 + 4x_3 + 3x_4 \ge 42 \\ & x_1 + x_2 + x_3 + x_4 \le 8 \\ & x_i \in \{0, 1, 2, 3\} \end{aligned}$$

$$x_1 \ge \left\lceil \frac{42 - 5 \cdot 3 - 4 \cdot 3 - 3 \cdot 3}{7} \right\rceil = 1$$

Bounds propagation

$$\begin{aligned} &\min \ 90x_1 + 60x_2 + 50x_3 + 40x_4 \\ &7x_1 + 5x_2 + 4x_3 + 3x_4 \ge 42 \\ &x_1 + x_2 + x_3 + x_4 \le 8 \\ &x_1 \in \{1,2,3\}, \quad x_2, x_3, x_4 \in \{0,1,2,3\} \end{aligned}$$
 Reduced domain

$$x_1 \ge \left\lceil \frac{42 - 5 \cdot 3 - 4 \cdot 3 - 3 \cdot 3}{7} \right\rceil = 1$$

LSE tutorial, June 2007 Slide 31

Bounds consistency

- Let $\{L_i, ..., U_i\}$ be the domain of x_i
- A constraint set is **bounds consistent** if for each *j* :
 - $x_i = L_i$ in some feasible solution and
 - $x_j = U_j$ in some feasible solution.
- \bullet Bounds consistency \Rightarrow we will not set x_{j} to any infeasible values during branching.
- Bounds propagation achieves bounds consistency for a single inequality.
 - $7x_1 + 5x_2 + 4x_3 + 3x_4 \ge 42$ is bounds consistent when the domains are $x_1 \in \{1,2,3\}$ and $x_2, x_3, x_4 \in \{0,1,2,3\}$.
- But not necessarily for a **set** of inequalities.

LSE tutorial, June 2007 Slide 32

Bounds consistency

- Bounds propagation may not achieve bounds consistency for a set of constraints.
- Consider set of inequalities $x_1 + x_2 \ge 1$

 $x_1-x_2\geq 0$ with domains $x_1,\ x_2\in\{0,1\},$ solutions $(x_1,x_2)=(1,0),$ (1,1).

- $\hfill\blacksquare$ Bounds propagation has no effect on the domains.
- \blacksquare But constraint set is not bounds consistent because $x_{\rm i}$ = 0 in no feasible solution.

Cutting Planes

Begin with continuous relaxation

min
$$90x_1 + 60x_2 + 50x_3 + 40x_4$$

 $7x_1 + 5x_2 + 4x_3 + 3x_4 \ge 42$
 $x_1 + x_2 + x_3 + x_4 \le 8$

$$0 \le x_i \le 3, \quad x_1 \ge 1$$

Replace domains with bounds

This is a linear programming problem, which is easy to

Its optimal value provides a lower bound on optimal value of original problem.

LSE tutorial, June 2007 Slide 34

Cutting planes (valid inequalities)

$$\begin{aligned} & \text{min } 90x_1 + 60x_2 + 50x_3 + 40x_4 \\ & 7x_1 + 5x_2 + 4x_3 + 3x_4 \ge 42 \end{aligned}$$

$$x_1 + x_2 + x_3 + x_4 \le 8$$

 $0 \le x_i \le 3, \quad x_1 \ge 1$

We can create a **tighter** relaxation (larger minimum value) with the addition of cutting planes.

LSE tutorial, June 2007 Slide 35

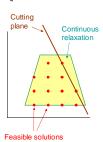
Cutting planes (valid inequalities)

$$\min 90x_1 + 60x_2 + 50x_3 + 40x_4$$

$$7x_1 + 5x_2 + 4x_3 + 3x_4 \ge 42$$

$$x_1 + x_2 + x_3 + x_4 \le 8$$

 $0 \le x_i \le 3, \quad x_1 \ge 1$



All feasible solutions of the original problem satisfy a cutting plane (i.e., it is valid).

But a cutting plane may exclude ("cut off") solutions of the continuous relaxation.

Cutting planes (valid inequalities)

$$\begin{array}{c}
\min 90x_{1} + 60x_{2} + 50x_{3} + 40x_{4} \\
7x_{1} + 5x_{2} + 4x_{3} + 3x_{4} \ge 42
\end{array}$$

$$x_{1} + x_{2} + x_{3} + x_{4} \le 8$$

$$0 \le x_{1} \le 3, \quad x_{1} \ge 1$$

{1,2} is a packing

...because $7x_1 + 5x_2$ alone cannot satisfy the inequality, even with $x_1 = x_2 = 3$.

LSE tutorial, June 2007 Slide 37

Cutting planes (valid inequalities)

$$\begin{array}{c|c}
min \ 90x_1 + 60x_2 + 50x_3 + 40x_4 \\
\hline
7x_1 + 5x_2 + 4x_3 + 3x_4 \ge 42 \\
x_1 + x_2 + x_3 + x_4 \le 8 \\
0 \le x_i \le 3, \quad x_1 \ge 1
\end{array}$$

{1,2} is a packing

So,
$$4x_3 + 3x_4 \ge 42 - (7 \cdot 3 + 5 \cdot 3)$$
 Knapsack cut

which implies
$$x_3 + x_4 \ge \left\lceil \frac{42 - (7 \cdot 3 + 5 \cdot 3)}{\max\{4,3\}} \right\rceil = 2$$

LSE tutorial, June 2007 Slide 38

Cutting planes (valid inequalities)

Let x_i have domain $[L_i, U_i]$ and let $a \ge 0$. In general, a **packing** P for $ax \ge a_0$ satisfies

$$\sum_{i \notin P} a_i x_i \ge a_0 - \sum_{i \in P} a_i U_i$$

and generates a knapsack cut

$$\sum_{i \in P} x_i \ge \left[\frac{a_0 - \sum_{i \in P} a_i U_i}{\max_{i \in P} \{a_i\}} \right]$$

Cutting planes (valid inequalities)

Maximal Packings	Knapsack cuts
{1,2}	$x_3 + x_4 \ge 2$
{1,3}	$x_2 + x_4 \ge 2$
{1,4}	$x_2 + x_3 \ge 3$

Knapsack cuts corresponding to nonmaximal packings can be nonredundant. LSE tutorial, June 2007 Slide 40

Continuous relaxation with cuts

$$\begin{aligned} & \min 90x_1 + 60x_2 + 50x_3 + 40x_4 \\ & 7x_1 + 5x_2 + 4x_3 + 3x_4 \ge 42 \\ & x_1 + x_2 + x_3 + x_4 \le 8 \\ & 0 \le x_i \le 3, \quad x_1 \ge 1 \\ \hline & x_3 + x_4 \ge 2 \\ & x_2 + x_4 \ge 2 \end{aligned} \quad \text{Knapsack cuts}$$

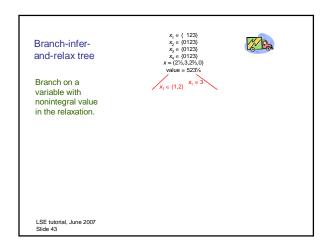
 $X_2 + X_3 \ge 3$

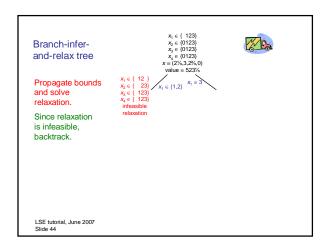
Optimal value of 523.3 is a lower bound on optimal value of original problem.

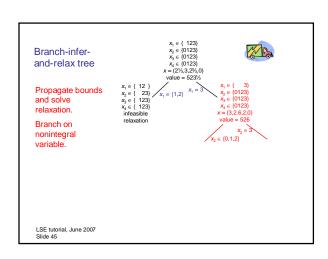
LSE tutorial, June 2007 Slide 41

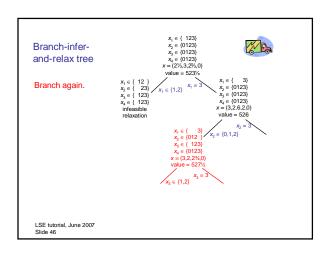
Branchinfer-andrelax tree

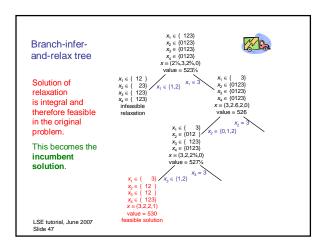
Propagate bounds and solve relaxation of original problem.

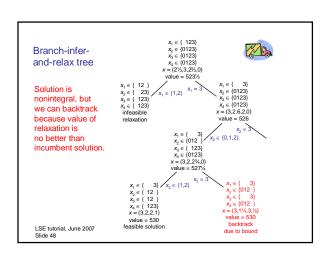


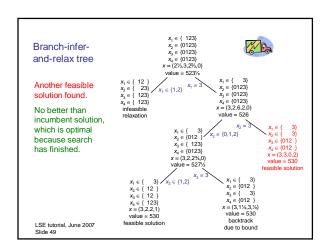


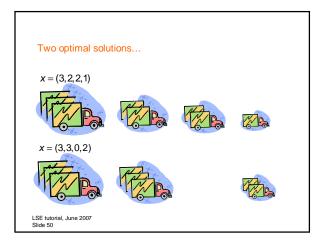


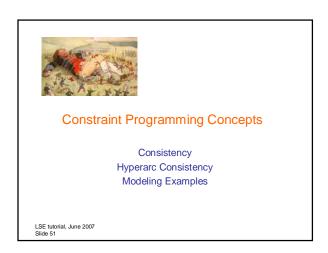












Consistency

- A constraint set is **consistent** if every partial assignment to the variables that violates no constraint is feasible.
 - i.e., can be extended to a feasible solution.
- Consistency ≠ feasibility
 - Consistency means that any infeasible partial assignment is explicitly ruled out by a constraint.
- Fully consistent constraint sets can be solved without backtracking.

LSE tutorial, June 2007 Slide 52

Consistency

Consider the constraint set

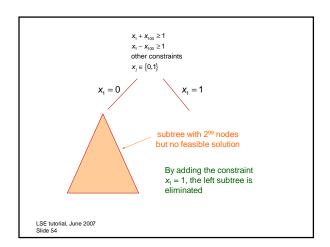
$$x_{1} + x_{100} \ge 1$$
$$x_{1} - x_{100} \ge 0$$
$$x_{j} \in \{0,1\}$$

$$X_1 - X_{100} \ge 0$$

$$x_i \in \{0,1\}$$

It is not consistent, because $x_1 = 0$ violates no constraint and yet is infeasible (no solution has $x_1 = 0$).

Adding the constraint $x_1 = 1$ makes the set consistent.

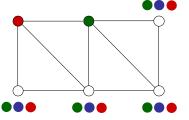


Hyperarc Consistency

- Also known as generalized arc consistency.
- A constraint set is **hyperarc consistent** if every value in every variable domain is part of some feasible solution.
 - That is, the domains are reduced as much as possible.
 - If all constraints are "binary" (contain 2 variables), hyperarc consistent = arc consistent.
 - Domain reduction is CP's biggest engine.

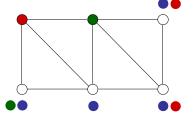
LSE tutorial, June 2007 Slide 55

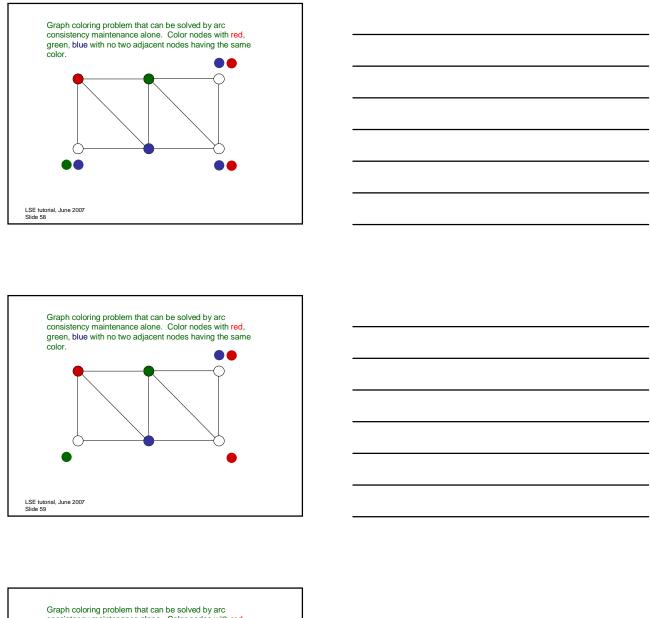
Graph coloring problem that can be solved by arc consistency maintenance alone. Color nodes with red, green, blue with no two adjacent nodes having the same color.

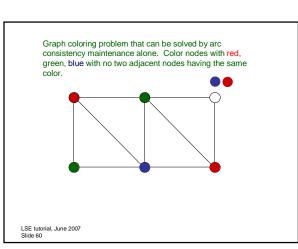


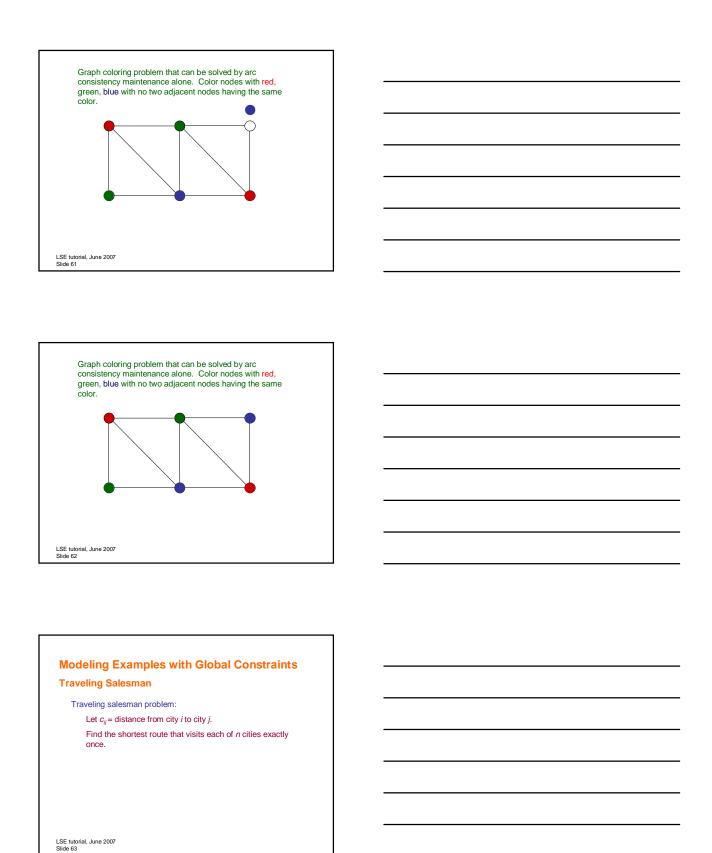
LSE tutorial, June 2007 Slide 56

Graph coloring problem that can be solved by arc consistency maintenance alone. Color nodes with red, green, blue with no two adjacent nodes having the same color.









Popular 0-1 model

Let $x_{ij} = 1$ if city *i* immediately precedes city *j*, 0 otherwise

$$\begin{aligned} & \min & & \sum_{i} c_{ij} x_{ij} \\ & \text{s.t.} & & \sum_{i} x_{ij} = 1, \text{ all } j \\ & & \sum_{i} x_{ij} = 1, \text{ all } i \\ & & \sum_{i \in V} \sum_{j \in W} x_{ij} \geq 1, \text{ all disjoint } V, W \subset \left\{1, \dots, n\right\} \\ & & x_{ij} \in \left\{0,1\right\} \end{aligned}$$

LSE tutorial, June 2007 Slide 64

A CP model

Let y_k = the kth city visited.

The model would be written in a specific constraint programming language but would essentially say:

$$\min \sum_{k} c_{y_k y_{k+1}}$$

s.t. $alldiff(y_1,...,y_n)$ $y_k \in \{1,...,n\}$ "Global" constraint

LSE tutorial, June 2007 Slide 65

An alternate CP model

Let y_k = the city visited after city k.

$$\min \sum_{k} c_{ky_k}$$

s.t. $circuit(y_1,...,y_n)$ $y_k \in \{1, ..., n\}$

Hamiltonian circuit constraint

Element constraint

The constraint $c_y \le 5$ can be implemented:

$$z \le 5$$

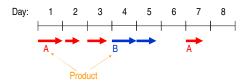
element $(y,(c_1,...,c_n),z) \leftarrow$ Assign z the yth value in the list

The constraint $x_v \le 5$ can be implemented

$$z \leq 5 \qquad \qquad \text{Add the}$$
 element $(y,(x_1,...,x_n),z) \leftarrow$ constraint $z = x_y$ (this is a slightly different constraint)

LSE tutorial, June 2007 Slide 67

Modeling example: Lot sizing and scheduling



- At most one product manufactured on each day.
- Demands for each product on each day.
- Minimize setup + holding cost.

$$\begin{aligned} & \min & \sum_{i,l} \left(h_n s_n + \sum_{j \neq l} q_{ij} \delta_{ijt} \right) \\ & \text{s.t.} & s_{i,t-1} + x_n = d_n + s_n, & \text{all } i, t \\ & z_n \geq y_n - y_{i,t-1}, & \text{all } i, t \\ & z_n \leq y_n, & \text{all } i, t \end{aligned}$$

$$\begin{aligned} & \text{Integer} & \text{programming} \\ & \text{model} & \delta_{ijt} \geq y_{i,t-1}, & \text{all } i, t \\ & \delta_{ijt} \geq y_{i,t-1}, & \text{all } i, j, t \end{aligned}$$

$$\begin{aligned} & \delta_{ijt} \geq y_{i,t-1}, & \text{all } i, j, t \\ & \delta_{ijt} \geq y_{j}, & \text{all } i, j, t \end{aligned}$$

$$\begin{aligned} & \delta_{ijt} \geq y_{i,t-1}, & \text{all } i, j, t \\ & \delta_{ijt} \geq y_{j}, & \text{all } i, j, t \end{aligned}$$

$$\begin{aligned} & \delta_{ijt} \geq y_{i,t-1}, & \text{all } i, j, t \\ & \delta_{ijt} \geq y_{j}, & \text{all } i, j, t \end{aligned}$$

$$\begin{aligned} & \delta_{ijt} \geq y_{i,t-1}, & \text{all } i, j, t \\ & \delta_{ijt} \geq y_{i,t-1}, & \text{all } i, j, t \end{aligned}$$

$$\begin{aligned} & \delta_{ijt} \geq y_{i,t-1}, & \text{all } i, j, t \end{aligned}$$

$$\begin{aligned} & \delta_{ijt} \geq y_{i,t-1}, & \text{all } i, j, t \end{aligned}$$

$$\begin{aligned} & \delta_{ijt} \geq y_{i,t-1}, & \text{all } i, j, t \end{aligned}$$

$$\begin{aligned} & \delta_{ijt} \geq y_{i,t-1}, & \text{all } i, j, t \end{aligned}$$

$$\end{aligned}$$

$$\begin{aligned} & \delta_{ijt} \geq y_{i,t-1}, & \text{all } i, j, t \end{aligned}$$

$$\end{aligned}$$

$$\end{aligned}$$

$$\begin{aligned} & \delta_{ijt} \geq y_{i,t-1}, & \text{all } i, j, t \end{aligned}$$

$$\end{aligned}$$

$$\end{aligned}$$

CP model

Minimize holding and setup costs

Variable indices

min
$$\sum_{t} \left(q_{y_{i-1}y_{i}} + \sum_{i} h_{i} s_{it} \right)$$
 Inventory balance

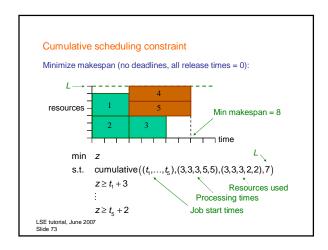
s.t. $s_{i,t-1} + x_{it} = d_{it} + s_{it}$, all i, t Production capacity $0 \le x_{it} \le C$, $s_{it} \ge 0$, all i, t Production level of product i in period t

Product manufactured in period t

LSE tutorial, June 2007

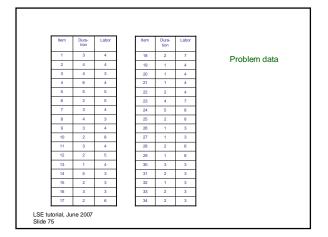
Slide 71

Cumulative scheduling constraint • Used for resource-constrained scheduling. • Total resources consumed by jobs at any one time must not exceed L. cumulative $((t_1,...,t_n),(p_1,...,p_n),(c_1,...,c_n),L)$ Job start times (variables) Job processing times Job resource requirements



Modeling example: Ship loading

- Will use ILOG's OPL Studio modeling language.
 - Example is from OPL manual.
- The problem
 - \bullet Load 34 items on the ship in minimum time (min makespan)
 - Each item requires a certain time and certain number of workers.
 - Total of 8 workers available.



```
Precedence constraints
                                                                                            \begin{array}{c} 22 \rightarrow 23 \\ 23 \rightarrow 24 \\ 24 \rightarrow 25 \end{array}
             1\rightarrow 2,\!4
                                                  11 →13
           2\rightarrow 3
                                                  12 \rightarrow 13
           3 →5,7
                                                  13\mathop{\rightarrow} 15{,}16
             4 →5
                                                                                             25 →26,30,31,32
                                                  14 →15
15 →18
            5 \!\to\! \! 6
                                                                                             26 \rightarrow 27
            6 \rightarrow 8
                                                  16 →17
                                                                                             27 \rightarrow 28\,
                                                                                           27 \rightarrow 28
28 \rightarrow 29
30 \rightarrow 28
31 \rightarrow 28
32 \rightarrow 33
            7 →8
                                                  17 \mathop{\rightarrow} 18
            8 →9
                                                  18 \rightarrow 19
             9 →10
                                                  18 \to 20,21

19 \to 23
            9 \rightarrow \! 14
            10 →11
10 →12
                                                  20 \rightarrow 2321 \rightarrow 22
                                                                                             33 \rightarrow 34\,
LSE tutorial, June 2007
Slide 76
```

```
Use the cumulative scheduling constraint.
```

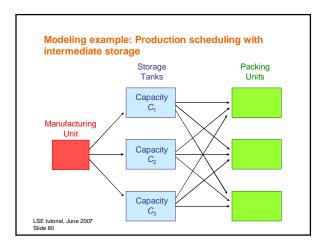
```
\min z
s.t. z \ge t_1 + 3, z \ge t_2 + 4, etc.
       cumulative ((t_1,...,t_{34}),(3,4,...,2),(4,4,...,3),8)
       t_2 \ge t_1 + 3, t_4 \ge t_1 + 3, etc.
```

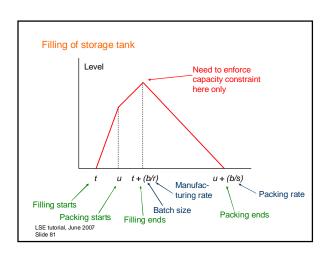
LSE tutorial, June 2007 Slide 77

OPL model

```
int capacity = 8;
int nbTasks = 34;
    range Tasks 1..nbTasks;
    int duration[Tasks] = [3,4,4,6,...,2];
    int totalDuration =
           sum(t in Tasks) duration[t];
    int demand[Tasks] = [4,4,3,4,...,3];
struct Precedences {
       int before;
        int after;
     LSE tutorial, June 2007
Slide 78
```

```
scheduleHorizon = totalDuration;
Activity a[t in Tasks](duration[t]);
DiscreteResource res(8);
Activity makespan(0);
minimize
    makespan.end
subject to
    forall(t in Tasks)
        a[t] precedes makespan;
    forall(p in setOfPrecedences)
        a[p.before] precedes a[p.after];
    forall(t in Tasks)
        a[t] requires(demand[t]) res;
};
```





min
$$T \leftarrow$$
 Makespan

s.t. $T \ge u_j + \frac{b_j}{s_j}$, all j
 $t_j \ge R_j$, all j

cumulative $(t, v, e, m) \leftarrow$ m storage tanks

 $v_i = u_i + \frac{b_i}{s_j} - t_i$, all $i \leftarrow$ Job duration

 $b_i \left(1 - \frac{s_i}{r_i}\right) + s_i u_i \le C_i$, all $i \leftarrow$ Tank capacity

cumulative $\left(u_i \left(\frac{b_i}{s_i}, ..., \frac{b_n}{s_n}\right), e, p\right) \leftarrow$ p packing units

 $u_j \ge t_j \ge 0$

LSE tutorial, June 2007

Slide 82

Modeling example: Employee scheduling

- Schedule four nurses in 8-hour shifts.
- A nurse works at most one shift a day, at least 5 days a week.
- Same schedule every week.
- \bullet No shift staffed by more than two different nurses in a week.
- A nurse cannot work different shifts on two consecutive days.
- A nurse who works shift 2 or 3 must do so at least two days in a row.

LSE tutorial, June 2007 Slide 83

Two ways to view the problem

Assign nurses to shifts

	Sun	Mon	Tue	Wed	Thu	Fri	Sat
Shift 1	Α	В	Α	Α	Α	Α	Α
Shift 2	С	С	С	В	В	В	В
Shift 3	D	D	D	D	С	С	D

Assign shifts to nurses

	Sun	Mon	Tue	Wed	Thu	Fri	Sat
Nurse A	1	0	1	1	1	1	1
Nurse B	0	1	0	2	2	2	2
Nurse C	2	2	2	0	3	3	0
Nurse D	3	3	3	3	0	0	3

LSE tutorial, June 2007 Slide 84

0 = day off

Use **both** formulations in the same model! First, assign nurses to shifts. Let \mathbf{w}_{sd} = nurse assigned to shift s on day dThe variables w_{1d} , w_{2d} , w_{3d} take different values alldiff(w_{1d}, w_{2d}, w_{3d}), all $d \leftarrow$ That is, schedule 3 different nurses on each LSE tutorial, June 2007 Slide 85 Use **both** formulations in the same model! First, assign nurses to shifts. Let w_{sd} = nurse assigned to shift s on day d $\mathsf{alldiff}(\textcolor{red}{w_{1d}},\textcolor{red}{w_{2d}},\textcolor{red}{w_{3d}}), \ \mathsf{all} \ d$ cardinality (w | (A, B, C, D), (5, 5, 5, 5), (6, 6, 6, 6))A occurs at least 5 and at most 6 times in the array w, and similarly for B, C, D. That is, each nurse works at least 5 and at most 6 days a week LSE tutorial, June 2007 Slide 86 Use **both** formulations in the same model! First, assign nurses to shifts. Let \mathbf{w}_{sd} = nurse assigned to shift s on day dalldiff (w_{1d}, w_{2d}, w_{3d}) , all dcardinality (w | (A, B, C, D), (5,5,5,5), (6,6,6,6))nvalues $(w_{s,Sun},...,w_{s,Sat} | 1,2)$, all sThe variables $w_{s,Sun}, ..., w_{s,Sat}$ take at least 1 and at most 2 different values.

That is, at least 1 and at most 2 nurses work any given shift.

Remaining constraints are not easily expressed in this So, assign shifts to nurses. Let y_{id} = shift assigned to nurse i on day dalldiff (y_{1d}, y_{2d}, y_{3d}) , all d. Assign a different nurse to each shift on each day. This constraint is redundant of previous constraints, but redundant constraints speed solution. LSE tutorial, June 2007 Slide 88 Remaining constraints are not easily expressed in this notation. So, assign shifts to nurses. Let y_{id} = shift assigned to nurse i on day d $\mathsf{alldiff}\big(y_{1d}, y_{2d}, y_{3d}\big), \ \mathsf{all} \ d$ stretch $(y_{i,Sun},...,y_{i,Sat} | (2,3),(2,2),(6,6),P)$, all iEvery stretch of 2's has length between 2 and 6. Every stretch of 3's has length between 2 and 6. So a nurse who works shift 2 or 3 must do so at least two days in a row. LSE tutorial, June 2007 Slide 89 Remaining constraints are not easily expressed in this notation. So, assign shifts to nurses. Let y_{id} = shift assigned to nurse i on day dalldiff (y_{1d}, y_{2d}, y_{3d}) , all dstretch $(y_{i,Sun},...,y_{i,Sat} | (2,3),(2,2),(6,6),P)$, all iHere $P = \{(s,0),(0,s) \mid s = 1,2,3\}$ Whenever a stretch of a's immediately precedes a stretch of b's, (a,b) must be one of the pairs in P. So a nurse cannot switch shifts without taking at least one day off. LSE tutorial, June 2007 Slide 90

Now we must connect the w_{sd} variables to the y_{id} variables. Use **channeling constraints**:

$$\mathbf{w}_{y_{id}d} = i$$
, all i,d
 $y_{\mathbf{w}_{sd}d} = s$, all s,d

Channeling constraints increase propagation and make the problem easier to solve.

LSE tutorial, June 2007 Slide 91

The complete model is:

$$\begin{split} & \text{alldiff}\left(\textit{W}_{\text{1d}}, \textit{W}_{\text{2d}}, \textit{W}_{\text{3d}} \right), \text{ all } d \\ & \text{cardinality}\left(\textit{w} \mid (\textit{A}, \textit{B}, \textit{C}, \textit{D}), (5, 5, 5, 5), (6, 6, 6, 6) \right) \\ & \text{nvalues}\left(\textit{W}_{\text{s},\text{Sun}}, \dots, \textit{W}_{\text{s},\text{Sat}} \mid 1, 2 \right), \text{ all } s \\ & \text{alldiff}\left(\textit{y}_{\text{1d}}, \textit{y}_{\text{2d}}, \textit{y}_{\text{3d}} \right), \text{ all } d \\ & \text{stretch}\left(\textit{y}_{i,\text{Sun}}, \dots, \textit{y}_{i,\text{Sat}} \mid (2, 3), (2, 2), (6, 6), \textit{P} \right), \text{ all } i \\ & \textit{W}_{\textit{y}_{\text{sd}}d} = i, \text{ all } i, d \\ & \textit{y}_{\textit{w}_{\text{sd}}d} = s, \text{ all } s, d \end{split}$$

LSE tutorial, June 2007 Slide 92

CP Filtering Algorithms

Element Alldiff Disjunctive Scheduling Cumulative Scheduling

Filtering for element

element $(y,(x_1,...,x_n),z)$

Variable domains can be easily filtered to maintain hyperarc consistency.

$$\begin{array}{ll} \text{Domain of } z & D_z \leftarrow D_z \cap \bigcup_{j \in D_y} D_{x_j} \\ \\ D_y \leftarrow D_y \cap \left\{ j \, | \, D_z \cap D_{x_j} \neq \varnothing \right\} \\ \\ D_{x_j} \leftarrow \left\{ \begin{matrix} D_z & \text{if } D_y = \{j\} \\ D_{x_j} & \text{otherwise} \end{matrix} \right\} \end{array}$$

LSE tutorial, June 2007 Slide 94

Filtering for element

Example... element $(y,(x_1,x_2,x_3,x_4),z)$

The initial domains are: The reduced domains are:

 $\begin{array}{lll} D_z = \left\{20,30,60,80,90\right\} & D_z = \left\{80,90\right\} \\ D_y = \left\{1,3,4\right\} & D_y = \left\{3\right\} \\ D_{x_i} = \left\{10,50\right\} & D_{x_i} = \left\{10,50\right\} \\ D_{x_2} = \left\{10,20\right\} & D_{x_2} = \left\{10,20\right\} \\ D_{x_3} = \left\{40,50,80,90\right\} & D_{x_3} = \left\{80,90\right\} \\ D_{x_4} = \left\{40,50,70\right\} & D_{x_4} = \left\{40,50,70\right\} \end{array}$

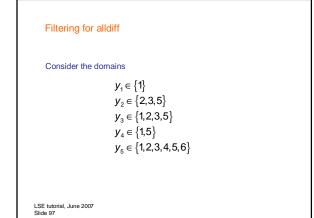
LSE tutorial, June 2007 Slide 95

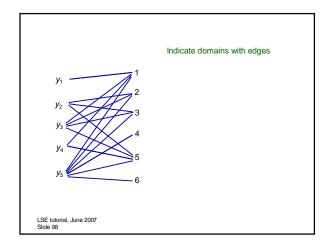
Filtering for alldiff

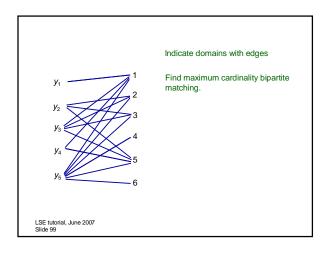
alldiff $(y_1, ..., y_n)$

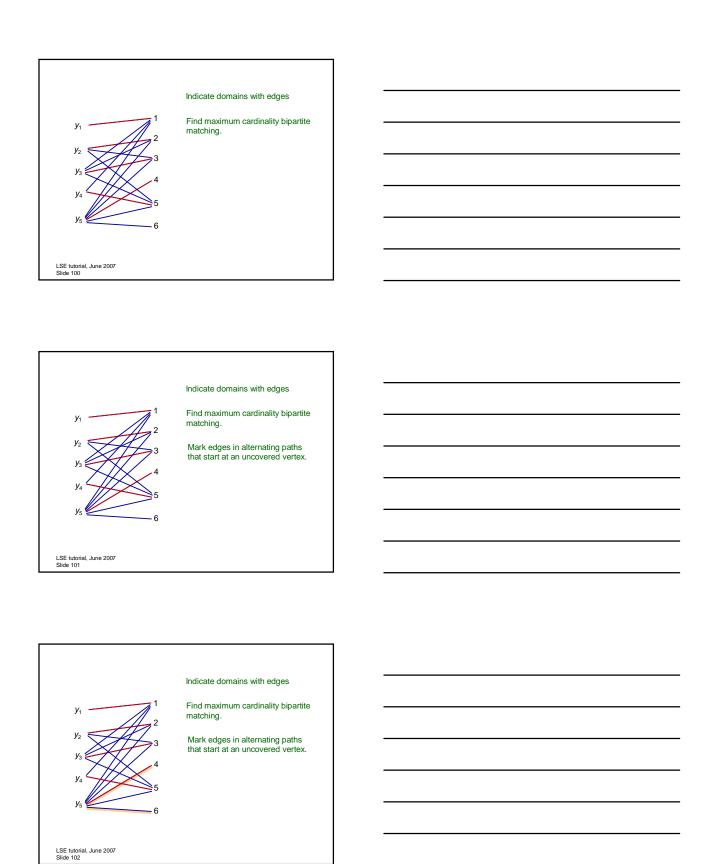
Domains can be filtered with an algorithm based on maximum cardinality bipartite matching and a theorem of Berge.

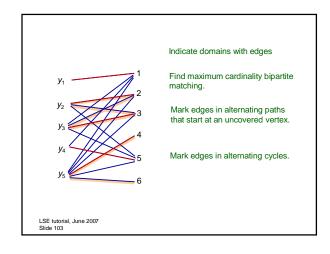
It is a special case of optimality conditions for max flow.

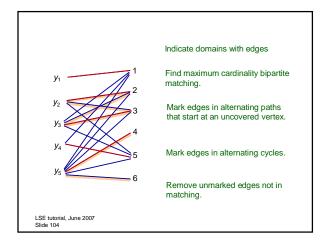


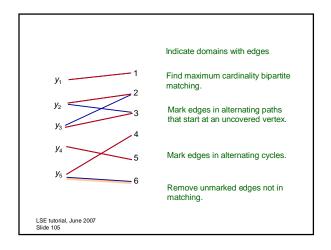












Filtering for alldiff

Domains have been filtered:

$$\begin{array}{lll} y_1 \in \{1\} & & y_1 \in \{1\} \\ y_2 \in \{2,3,5\} & & y_2 \in \{2,3\} \\ y_3 \in \{1,2,3,5\} & & & y_3 \in \{2,3\} \\ y_4 \in \{1,5\} & & y_4 \in \{5\} \\ y_5 \in \{1,2,3,4,5,6\} & & y_5 \in \{4,6\} \end{array}$$

Hyperarc consistency achieved.

LSE tutorial, June 2007 Slide 106

Disjunctive scheduling

Consider a disjunctive scheduling constraint:

disjunctive
$$(s_1, s_2, s_3, s_5), (p_1, p_2, p_3, p_5)$$

Job j	Release time r_j	$Dead$ - $line$ d_j	Processing time		Start time variable
			p_{Aj}	p_{Bj}	
1	0	10	1	5	
2	0	10	3	6	
3	2	7	3	7	
4	2	10	4	6	
5	4	7	2	5	

LSE tutorial, June 2007 Slide 107

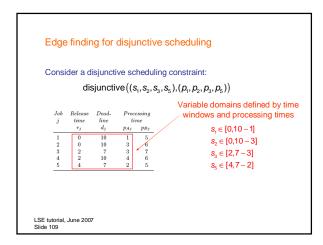
Edge finding for disjunctive scheduling

Consider a disjunctive scheduling constraint:

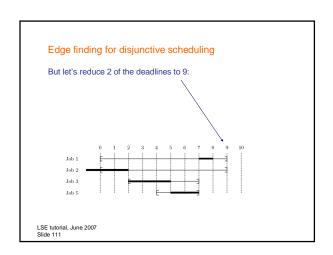
disjunctive
$$((s_1, s_2, s_3, s_5), (p_1, p_2, p_3, p_5))$$

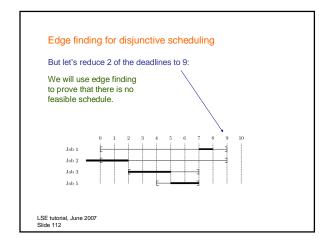
Job j	Release time	Dead- line		Processing time	
	r_j	d_j	p_{Aj}	p_{Bj}	
1	0	10	1	5	
2	0	10	3	6	
3	2	7	3	7	
4	2	10	4	6	
5	4	7	2	5	

Processing times







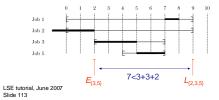


Edge finding for disjunctive scheduling

We can deduce that job 2 must precede jobs 3 and 4: $2 \ll \{3,5\}$

Because if job 2 is not first, there is not enough time for all 3 jobs within the time windows:

$$L_{_{\{2,3,5\}}}-E_{_{\{3,5\}}}<\rho_{_{\{2,3,5\}}}$$

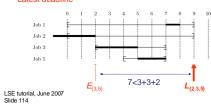


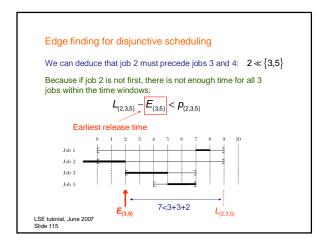
Edge finding for disjunctive scheduling

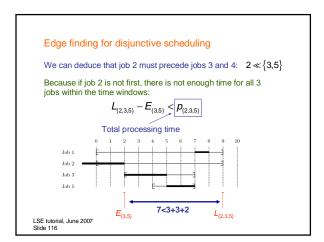
We can deduce that job 2 must precede jobs 3 and 4: $2 \ll \{3,5\}$

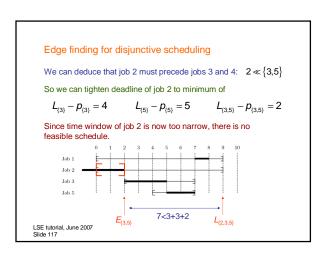
Because if job 2 is not first, there is not enough time for all 3 jobs within the time windows:

Latest deadline









Edge finding for disjunctive scheduling

In general, we can deduce that job k must precede all the jobs in set J: $k \ll J$

If there is not enough time for all the jobs after the earliest release time of the jobs in ${\cal J}$

$$L_{J \cup \{k\}} - E_J < p_{J \cup \{k\}}$$
 $L_{\{2,3,5\}} - E_{\{3,5\}} < p_{\{2,3,5\}}$

LSE tutorial, June 2007 Slide 118

Edge finding for disjunctive scheduling

In general, we can deduce that job k must precede all the jobs in set J: $k \ll J$

If there is not enough time for all the jobs after the earliest release time of the jobs in ${\cal J}$

$$L_{J \cup \{k\}} - E_J < \rho_{J \cup \{k\}}$$
 $L_{\{2,3,5\}} - E_{\{3,5\}} < \rho_{\{2,3,5\}}$

Now we can tighten the deadline for job *k* to:

$$\min_{J \subset J} \{ L_{J'} - p_{J'} \} \qquad L_{(3.5)} - p_{(3.5)} = 2$$

LSE tutorial, June 2007 Slide 119

Edge finding for disjunctive scheduling

There is a symmetric rule: $k \gg J$

If there is not enough time for all the jobs before the latest deadline of the jobs in J:

$$L_J - E_{J \cup \{k\}} < p_{J \cup \{k\}}$$

Now we can tighten the release date for job *k* to:

$$\max_{J'\subset J}\left\{E_{J'}+p_{J'}\right\}$$

Edge finding for disjunctive scheduling

Problem: how can we avoid enumerating all subsets *J* of jobs to find edges?

$$L_{J \cup \{k\}} - E_J < p_{J \cup \{k\}}$$

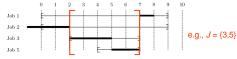
...and all subsets J' of J to tighten the bounds?

$$\min_{J'\subset J}\{L_{J'}-p_{J'}\}$$

LSE tutorial, June 2007 Slide 121

Edge finding for disjunctive scheduling

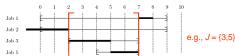
Key result: We only have to consider sets J whose time windows lie within some interval.



LSE tutorial, June 2007 Slide 122

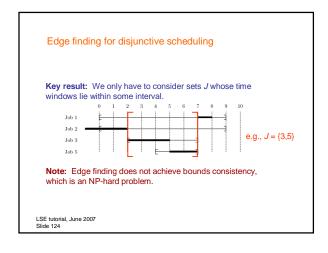
Edge finding for disjunctive scheduling

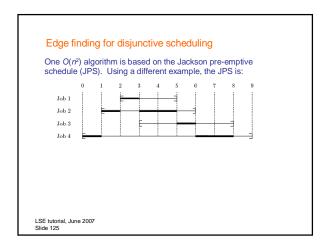
Key result: We only have to consider sets *J* whose time windows lie within some interval.

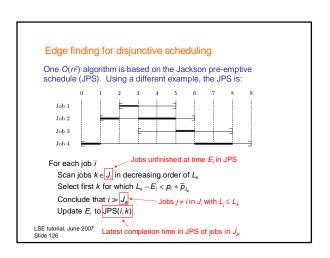


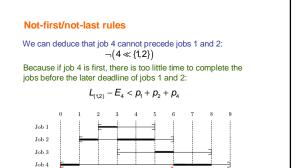
Removing a job from those within an interval only weakens the test $L_{J\cup\{k\}}-E_J<\rho_{J\cup\{k\}}$

There are a polynomial number of intervals defined by release times and deadlines.









LSE tutorial, June 2007 Slide 127

 \dot{E}_4

Not-first/not-last rules

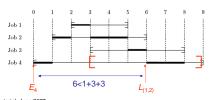
We can deduce that job 4 cannot precede jobs 1 and 2:

6<1+3+3

$$\neg (4 \ll \{1,2\})$$

Now we can tighten the release time of job 4 to minimum of:

$$E_1 + p_1 = 3$$
 $E_2 + p_2 = 4$



LSE tutorial, June 2007 Slide 128

Not-first/not-last rules

In general, we can deduce that job k cannot precede all the jobs in J: $\neg \big(k \ll J \big)$

if there is too little time after release time of job $\it k$ to complete all jobs before the latest deadline in $\it J$:

$$L_J - E_k < p_J$$

Now we can update E_i to

$$\min_{i \in J} \left\{ E_j + p_j \right\}$$

Not-first/not-last rules

In general, we can deduce that job k cannot precede all the jobs in J: $\neg(k \ll J)$

if there is too little time after release time of job k to complete all jobs before the latest deadline in J:

$$L_J - E_k < p_J$$

Now we can update E_i to

$$\min_{i \in J} \left\{ E_j + p_j \right\}$$

There is a symmetric not-last rule.

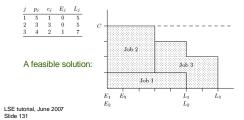
The rules can be applied in polynomial time, although an efficient algorithm is quite complicated.

LSE tutorial, June 2007 Slide 130

Cumulative scheduling

Consider a cumulative scheduling constraint:

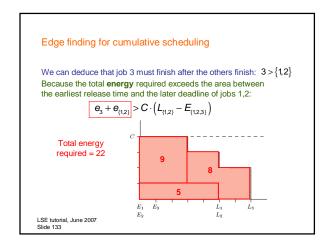
 $\mathsf{cumulative}\big((s_{\!\scriptscriptstyle 1}, s_{\!\scriptscriptstyle 2}, s_{\!\scriptscriptstyle 3}), (p_{\!\scriptscriptstyle 1}, p_{\!\scriptscriptstyle 2}, p_{\!\scriptscriptstyle 3}), (c_{\!\scriptscriptstyle 1}, c_{\!\scriptscriptstyle 2}, c_{\!\scriptscriptstyle 3}), C \big)$

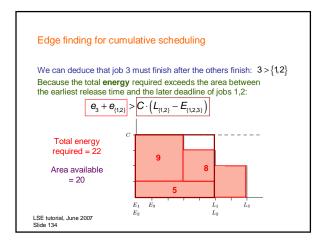


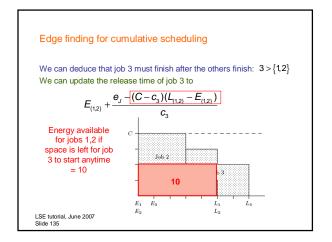
Edge finding for cumulative scheduling

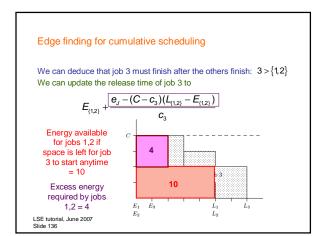
We can deduce that job 3 must finish after the others finish: $3 > \{1,2\}$

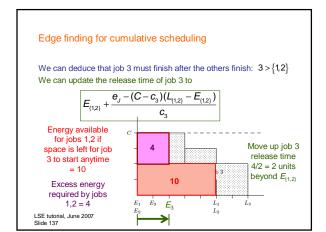
Because the total **energy** required exceeds the area between the earliest release time and the later deadline of jobs 1,2:











Edge finding for cumulative scheduling $\begin{aligned} & \text{In general, if } \ \ \boldsymbol{e}_{J \cup \{k\}} > C \cdot \left(L_J - E_{J \cup \{k\}}\right) \\ & \text{then } k > J, \text{ and update } E_k \text{ to} \\ & \max_{\boldsymbol{e}_{J'} - (C - c_k)(L_J - E_J) > 0} \left\{E_{J'} + \frac{\boldsymbol{e}_{J'} - (C - c_k)(L_{J'} - E_{J'})}{c_k}\right\} \\ & \text{In general, if } \ \ \boldsymbol{e}_{J \cup \{k\}} > C \cdot \left(L_{J \cup \{k\}} - E_J\right) \\ & \text{then } k < J, \text{ and update } L_k \text{ to} \\ & \max_{\boldsymbol{e}_{J'} - (C - c_k)(L_J - E_J) > 0} \left\{L_{J'} - \frac{\boldsymbol{e}_{J'} - (C - c_k)(L_{J'} - E_{J'})}{c_k}\right\} \end{aligned}$

Edge finding for cumulative scheduling There is an $O(n^2)$ algorithm that finds all applications of the edge finding rules. LSE tutorial, June 2007 Slide 139 Other propagation rules for cumulative scheduling • Extended edge finding. • Timetabling. • Not-first/not-last rules. • Energetic reasoning. LSE tutorial, June 2007 Slide 140 Linear Relaxation Why Relax? Algebraic Analysis of LP Linear Programming Duality LP-Based Domain Filtering Example: Single-Vehicle Routing

Disjunctions of Linear Systems

Why Relax? Solving a relaxation of a problem can:

- Tighten variable bounds.
- Possibly solve original problem.
- Guide the search in a promising direction.
- Filter domains using reduced costs or Lagrange multipliers.
- Prune the search tree using a bound on the optimal value.
- Provide a more global view, because a single OR relaxation can pool relaxations of several constraints.

LSE tutorial, June 2007 Slide 142

Some OR models that can provide relaxations:

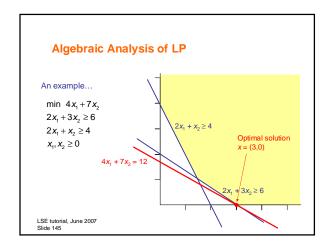
- Linear programming (LP).
- Mixed integer linear programming (MILP)
 - Can itself be relaxed as an LP.
 - LP relaxation can be strengthened with cutting planes.
- Lagrangean relaxation.
- Specialized relaxations.
 - For particular problem classes.
 - For global constraints.

LSE tutorial, June 2007 Slide 143

Motivation

- Linear programming is remarkably versatile for representing real-world problems.
- LP is by far the most widely used tool for relaxation.
- LP relaxations can be strengthened by cutting planes.
 - Based on polyhedral analysis.
- LP has an elegant and powerful duality theory.
 - Useful for domain filtering, and much else.
- The LP problem is extremely well solved.

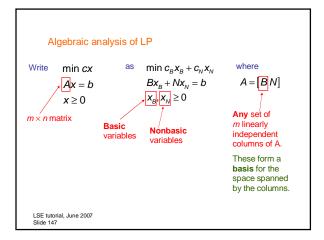
_		

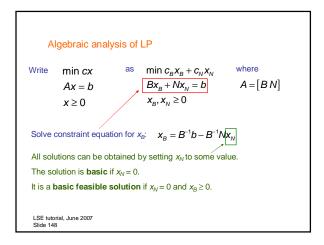


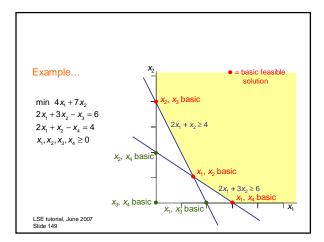
Algebraic Analysis of LP

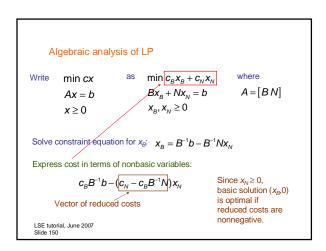
Rewrite

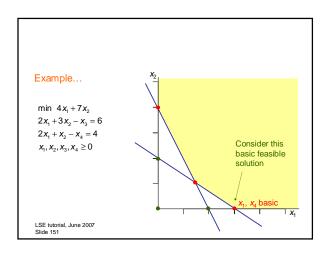
 $\begin{array}{lll} & \min \ 4x_1 + 7x_2 & \min \ 4x_1 + 7x_2 \\ & 2x_1 + 3x_2 \geq 6 & 2x_1 + 3x_2 - x_3 = 6 \\ & 2x_1 + x_2 \geq 4 & 2x_1 + x_2 - x_4 = 4 \\ & x_1, x_2 \geq 0 & x_1, x_2, x_3, x_4 \geq 0 \end{array}$

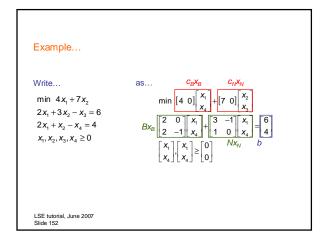


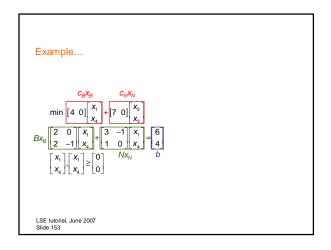












Example...

Basic solution is

$$x_{B} = B^{-1}b - B^{-1}Nx_{N} = B^{-1}b$$

$$= \begin{bmatrix} x_{1} \\ x_{4} \end{bmatrix} = \begin{bmatrix} 1/2 & 0 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 6 \\ 4 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 & 1 \end{bmatrix}$$

Basic solution is

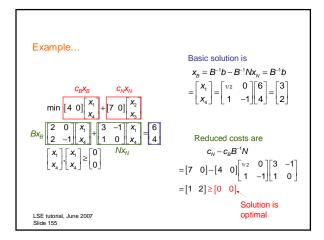
$$x_{B} = B^{-1}b - B^{-1}Nx_{N} = B^{-1}b$$

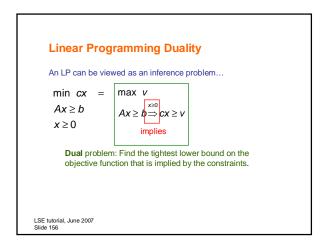
$$= \begin{bmatrix} x_{1} \\ x_{4} \end{bmatrix} = \begin{bmatrix} 1/2 & 0 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 6 \\ 4 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} x_{1} \\ x_{4} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{4} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad Nx_{N}$$

b

LSE tutorial, June 2007
Slide 154





```
An LP can be viewed as an inference problem...

min cx = \max v

Ax \ge b

x \ge 0

That is, some surrogate (nonnegative linear combination) of x \ge 0

From Farkas Lemma: If Ax \ge b, x \ge 0 is feasible,

Ax \ge b \Rightarrow cx \ge v

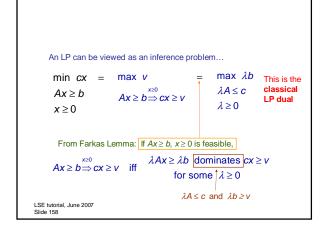
iff

Ax \ge b \Rightarrow cx \ge v

for some x \ge 0

LSE tutorial, June 2007

Slide 157
```



This equality is called **strong duality**. $\begin{aligned} & \min \ Cx &= \max \ \lambda b \\ & Ax \geq b & \lambda A \leq c \\ & x \geq 0 & \lambda \geq 0 \end{aligned}$ $\begin{aligned} & \sum_{\substack{ l \in Ax \geq b, \ x \geq 0 \text{ is feasible} \\ }} & \text{This is the classical } \\ & \sum_{\substack{ l \in Ax \geq b, \ x \geq 0 \text{ is feasible} \\ }} & \text{Note that the dual of the dual is the } \\ & \sum_{\substack{ l \in Ax \geq b, \ x \geq 0 \text{ is feasible} \\ }} & \text{Note that the original LP}. \end{aligned}$

```
Example
    Primal
                                                Dual
   min 4x_1 + 7x_2
                                                max 6\lambda_1 + 4\lambda_2
                                                                             =12
                                               2\lambda_1 + 2\lambda_2 \le 4 \qquad (x_1)
3\lambda_1 + \lambda_2 \le 7 \qquad (x_2)
    2x_1 + 3x_2 \ge 6 \qquad (\lambda_1)
   2x_1 + x_2 \ge 4 \qquad (\lambda_1)
    X_1, X_2 \ge 0
                                                \lambda_1, \lambda_2 \geq 0
                              A dual solution is (\lambda_1, \lambda_2) = (2,0)
                             2x_1 + 3x_2 \ge 6 \quad \cdot (\lambda_1 = 2) 2x_1 + x_2 \ge 4 \quad \cdot (\lambda_2 = 0) Dual multipliers
                              4x_1 + 6x_2 \ge 12 Surrogate
                                           dominates
toominates LSE tutorial, June 2007 4x_1 + 7x_2 \ge 12 Slide 160
```

— Tightest bound on cost

Weak Duality

LSE tutorial, June 2007 Slide 161

If x* is feasible in the and λ^* is feasible in the then $cx^* \ge \lambda^* b$. primal problem dual problem min cx max λb This is because $Ax \ge b$ $\lambda A \leq c$ $cx^* \ge \lambda^*Ax^* \ge \lambda^*b$ $\lambda \ge 0$ $x \ge 0$ λ^* is dual λ^* is primal feasible and $\lambda^* \ge 0$ and $\lambda^* \ge 0$

Dual multipliers as marginal costs

Suppose we perturb the RHS of an LP min cx (i.e., change the requirement levels): $Ax \ge b + \Delta b$ $x \ge 0$ The dual of the perturbed LP has the same constraints at the original LP: $\max \lambda(b + \Delta b)$ $\lambda A \leq c$ $\lambda \ge 0$ So an optimal solution λ^{*} of the original dual is feasible in the perturbed dual.

Dual multipliers as marginal costs

Suppose we perturb the RHS of an LP (i.e., change the requirement levels):

min cx

 $Ax \ge b + \Delta b$

 $x \ge 0$

By weak duality, the optimal value of the perturbed LP is at least $\lambda^*(b+\Delta b) = \lambda^* \frac{1}{2} + \lambda^* \Delta b$.

Optimal value of original LP, by strong duality.

So λ_i^* is a lower bound on the marginal cost of increasing the *i*-th requirement by one unit $(\Delta b_i = 1)$.

If $\lambda_i^* > 0$, the *i*-th constraint must be tight (complementary slackness).

LSE tutorial, June 2007 Slide 163

Dual of an LP in equality form

Primal

Dual

 $\min c_{\scriptscriptstyle B} x_{\scriptscriptstyle B} + c_{\scriptscriptstyle N} x_{\scriptscriptstyle N}$

 $\max \lambda b$

 $Bx_B + Nx_N = b$ (λ)

 $\lambda B \leq c_B$ $(x_{\scriptscriptstyle B})$ $\lambda N \leq c_N$

 $x_B, x_N \ge 0$

 $(x_{\scriptscriptstyle B})$

 λ unrestricted

LSE tutorial, June 2007 Slide 164

Dual of an LP in equality form

Primal

Dual

 $\min c_{\scriptscriptstyle B} x_{\scriptscriptstyle B} + c_{\scriptscriptstyle N} x_{\scriptscriptstyle N}$

max λb $\lambda B \leq c_B$

 $Bx_B + Nx_N = b$ (λ)

 $x_B, x_N \ge 0$

 $\lambda N \leq c_N$ $(x_{\scriptscriptstyle B})$ λ unrestricted

Recall that reduced cost vector is $c_N - c_B B^{-1} N = c_N - \lambda N$

this solves the dual if $(x_B, 0)$ solves the primal

 $(x_{\scriptscriptstyle B})$

Dual of an LP in equality form

$$\begin{array}{ll} \textit{Primal} & \textit{Dual} \\ \min c_{\mathcal{B}}x_{\mathcal{B}} + c_{\mathcal{N}}x_{\mathcal{N}} & \max \lambda b \\ Bx_{\mathcal{B}} + Nx_{\mathcal{N}} = b & (\lambda) & \lambda B \leq c_{\mathcal{B}} & (x_{\mathcal{B}}) \\ x_{\mathcal{B}}, x_{\mathcal{N}} \geq 0 & \lambda N \leq c_{\mathcal{N}} & (x_{\mathcal{B}}) \\ & \lambda N \leq c_{\mathcal{N}} & (x_{\mathcal{B}}) \\ & \lambda V \leq c_{\mathcal{M}} & (x_{\mathcal{B}) \\ & \lambda V \leq c_{\mathcal{M}} \\ & \lambda V \leq c_{\mathcal{M$$

Dual of an LP in equality form

le, $\lambda = c_B B^{-1} = \begin{bmatrix} 4 & 0 \end{bmatrix} \begin{bmatrix} 1/2 & 0 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 2 & 0 \end{bmatrix}$

LSE tutorial, June 2007 Slide 167

Dual of an LP in equality form

Primal	Dual		
$\min c_B x_B + c_N x_N$	$\max \lambda b$		
$Bx_{R} + Nx_{N} = b \qquad (\lambda)$	$\lambda B \leq c_{_{B}}$ $(x_{_{B}})$		
Б ,,	$\lambda N \leq c_N \qquad (x_B)$		
$X_B, X_N \ge 0$	ℓ unrestricted		

Recall that reduced cost vector is $c_N - c_B B^{-1} N = c_N - \lambda N$

Note that the reduced cost of an individual variable x_j is $r_j = c_j - \lambda A_j$

Column j of A

LP-based Domain Filtering

 $\begin{array}{ll} & \min \ cx \\ \text{Let} & Ax \geq b & \text{be an LP relaxation of a CP problem.} \\ & x \geq 0 & \end{array}$

- One way to filter the domain of x_j is to minimize and maximize x_j subject to $Ax \ge b$, $x \ge 0$.
 - This is time consuming.
- A faster method is to use **dual multipliers** to derive valid inequalities.
 - A special case of this method uses **reduced costs** to bound or fix variables.
 - Reduced-cost variable fixing is a widely used technique in OR.

LSE tutorial, June 2007 Slide 169

Suppose:

 $\begin{array}{ll} \min \ cx & \text{has optimal solution } x^*, \text{ optimal value } v^*, \text{ and} \\ Ax \geq b & \text{optimal dual solution } \lambda^*. \\ x \geq 0 & \end{array}$

...and $\lambda_i^* > 0$, which means the *i*-th constraint is tight (complementary slackness);

...and the LP is a relaxation of a CP problem;

...and we have a feasible solution of the CP problem with value U, so that U is an upper bound on the optimal value.

LSE tutorial, June 2007 Slide 170

Supposing $\begin{array}{ll} & \min \ cx \\ Ax \geq b \\ x \geq 0 \end{array}$ has optimal solution x^* , optimal value v^* , and optimal dual solution λ^* :

If x were to change to a value other than x*, the LHS of i-th constraint $A^ix \ge b_i$ would change by some amount Δb_i .

Since the constraint is tight, this would increase the optimal value as much as changing the constraint to $A^i x \ge b_i + \Delta b_i$.

So it would increase the optimal value at least $\lambda_i^* \Delta b_i$.

Supposing $\begin{array}{ll} & \text{min } cx \\ Ax \geq b \\ x \geq 0 \end{array} \text{ has optimal solution } x^*\text{, optimal value } v^*\text{, and} \\ & \text{optimal dual solution } \lambda^*\text{:} \end{array}$

We have found: a change in x that changes A^ix by Δb_i increases the optimal value of LP at least $\lambda_i^*\Delta b_i$.

Since optimal value of the LP \leq optimal value of the CP \leq U, we have $\lambda_i^* \Delta b_i \leq U - V^*$, or $\Delta b_i \leq \frac{U - V^*}{\lambda_i^*}$

LSE tutorial, June 2007 Slide 172

Supposing $Ax \ge b$ has optimal solution x^* , optimal value v^* , and optimal dual solution λ^* :

We have found: a change in x that changes A^ix by Δb_i increases the optimal value of LP at least $\lambda_i^*\Delta b_i$.

Since optimal value of the LP \leq optimal value of the CP \leq U, we have $\lambda_i^* \Delta b_i \leq U - V^*$, or $\Delta b_i \leq \frac{U - V^*}{\lambda_i^*}$

Since $\Delta b_i = A^i x - A^i x^* = A^j x - b_i$, this implies the inequality $A^i x \leq b_i + \frac{U - v}{\lambda_i^*}$which can be propagation.

 $\lambda_i \\ \text{...which can be propagated.} \\ \text{LSE tutorial, June 2007} \\ \text{Slide 173}$

Example

min $4x_1 + 7x_2$

 $2x_1 + 3x_2 \ge 6$ ($\lambda_1 = 2$) Suppose we have a feasible solution of the original CP with value U = 13.

 $2x_1+x_2\geq 4 \qquad (\lambda_1=0)$

 $x_1, x_2 \geq 0$

Since the first constraint is tight, we can propagate the inequality

 $A^{1}x \leq b_{1} + \frac{U - v^{*}}{\lambda_{1}^{*}}$

or $2x_1 + 3x_2 \le 6 + \frac{13 - 12}{2} = 6.5$

Reduced-cost domain filtering

Suppose $x_j^* = 0$, which means the constraint $x_j \ge 0$ is tight.

The inequality $A^i x \le b_i + \frac{U - v^*}{\lambda_i^*}$ becomes $x_j \le \frac{U - v^*}{r_j}$

The dual multiplier for $x_j \ge 0$ is the reduced cost r_j of x_j , because increasing x_j (currently 0) by 1 increases optimal cost by r_i .

Similar reasoning can bound a variable below when it is at its upper bound.

LSE tutorial, June 2007 Slide 175

Example

min $4x_1 + 7x_2$

 $2x_1 + 3x_2 \ge 6 \qquad (\lambda_1 = 2)$

Suppose we have a feasible solution of the original CP with value U = 13.

 $2x_1 + x_2 \ge 4 \qquad (\lambda_1 = 0)$

 $x_1, x_2 \ge 0$

Since $x_2^* = 0$, we have $x_2 \le \frac{U - v^*}{r_2}$

or $x_2 \le \frac{13-12}{2} = 0.5$

If x_2 is required to be integer, we can fix it to zero. This is **reduced-cost variable fixing.**

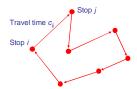
LSE tutorial, June 2007 Slide 176

Example: Single-Vehicle Routing

A vehicle must make several stops and return home, perhaps subject to time windows.

The objective is to find the order of stops that minimizes travel time.

This is also known as the $traveling\ salesman\ problem\ (with\ time\ windows).$



Assignment Relaxation

min
$$\sum_{ij} c_{ij} (X_{ij})^* = 1$$
 if stop i immediately precedes stop j

$$\sum_{ij} X_{ij} = \sum_{i} X_{ji} = 1$$
, all i Stop i is preceded and followed by exactly one stop.

LSE tutorial, June 2007 Slide 178

Assignment Relaxation

min $\sum_{i} c_{ij} \underbrace{X_{ij}}_{i}$ = 1 if stop i immediately precedes stop j $\sum_{i} X_{ij} = \sum_{i} X_{ji} = 1, \text{ all } i \leftarrow \text{Stop } i \text{ is preceded and followed by exactly one stop.}$

0 < x.. < 1. all i. i

Because this problem is totally unimodular, it can be solved as an LP.

The relaxation provides a very weak lower bound on the optimal value.

But reduced-cost variable fixing can be very useful in a CP context.

LSE tutorial, June 2007 Slide 179

Disjunctions of linear systems

Disjunctions of linear systems often occur naturally in problems and can be given a convex hull relaxation.

A disjunction of linear systems represents a union of polyhedra.

min cx $\bigvee (A^k x \ge b^k)$

Relaxing a disjunction of linear systems

Disjunctions of linear systems often occur naturally in problems and can be given a convex hull relaxation.

A disjunction of linear systems represents a union of polyhedra.

 $\min cx$ $\bigvee_{k} (A^{k}x \ge b^{k})$

We want a convex hull relaxation (tightest linear relaxation).

LSE tutorial, June 2007 Slide 181

Relaxing a disjunction of linear systems

Disjunctions of linear systems often occur naturally in problems and can be given a convex hull relaxation.

The closure of the convex hull of min cx

 $\bigvee_{k} (A^{k} x \geq b^{k})$

...is described by min cx

 $A^{k}x^{k} \ge b^{k}y_{k}, \text{ all } k$ $\sum_{k} y_{k} = 1$ $x = \sum_{k} x^{k}$

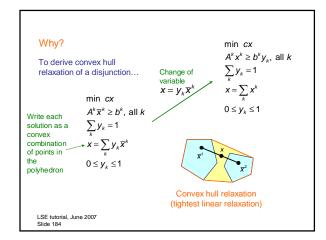
 $x = \sum_k x^{-k}$ LSE tutorial, June 2007 $0 \le y_k \le 1$ Slide 182

Why?

To derive convex hull relaxation of a disjunction...

 $\begin{array}{c} \text{min } \mathbf{c}\mathbf{x} \\ \text{Write each} \\ \text{solution as a} \\ \text{comivex} \\ \text{combination} \\ \text{of points in} \\ \text{the} \\ \text{polyhedron} \end{array} \mathbf{x} = \sum_{k} y_{k} \overline{\mathbf{x}}^{k} \\ \mathbf{0} \leq y_{k} \leq 1 \\ \end{array}$

Convex hull relaxation (tightest linear relaxation)



Mixed Integer/Linear Modeling

MILP Representability Disjunctive Modeling Knapsack Modeling

LSE tutorial, June 2007 Slide 185

Motivation

A mixed integer/linear programming (MILP) problem has the form

 $\min cx + dy$ $Ax + by \ge b$

 $x, y \ge 0$ y integer

- \bullet We can relax a CP problem by modeling some constraints with an MILP.
- If desired, we can then **relax the MILP** by dropping the integrality constraint, to obtain an LP.
- The LP relaxation can be strengthened with cutting planes.
- The first step is to learn how to write MILP models.

MILP Representability

A subset S of \mathbb{R}^n is **MILP representable** if it is the projection onto x of some MILP constraint set of the form

$$Ax + Bu + Dy \ge b$$

 $x, y \ge 0$

 $x \in \mathbb{R}^n$, $u \in \mathbb{R}^m$, $y_k \in \{0,1\}$

LSE tutorial, June 2007 Slide 187

MILP Representability

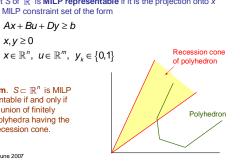
A subset S of \mathbb{R}^n is **MILP representable** if it is the projection onto x of some MILP constraint set of the form

$$Ax + Bu + Dy \ge b$$

$$x, y \ge 0$$

Theorem. $S \subset \mathbb{R}^n$ is MILP representable if and only if S is the union of finitely many polyhedra having the same recession cone.

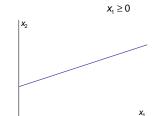
LSE tutorial, June 2007 Slide 188

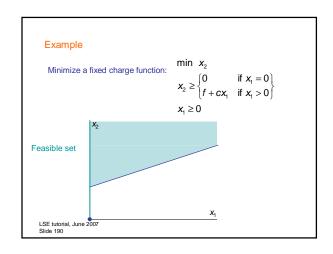


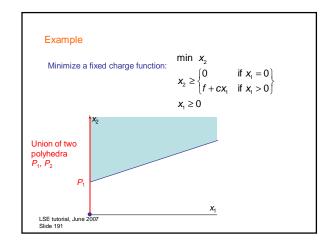
Example: Fixed charge function

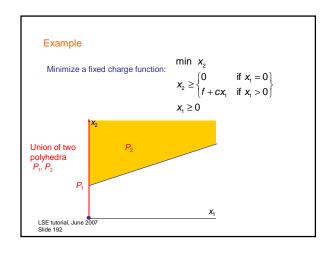
min x_2 Minimize a fixed charge function:

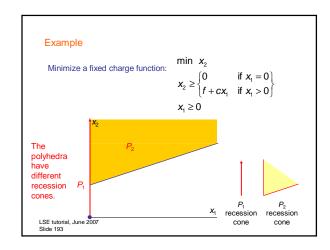
$$x_2 \ge \begin{cases} 0 & \text{if } x_1 = 0 \\ f + cx_1 & \text{if } x_1 > 0 \end{cases}$$

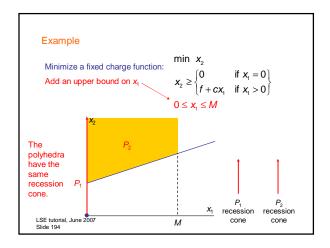




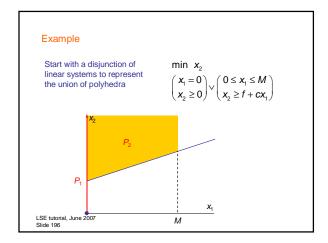








Modeling a union of polyhedra	a
Start with a disjunction of linear systems to represent the union of polyhedra. The k th polyhedron is $\{x \mid A^kx \ge b\}$	$\min_{k} cx$ $\bigvee_{k} (A^{k} x \ge b^{k})$
Introduce a 0-1 variable y_k that is 1 when x is in polyhedron \underline{k} . Disaggregate x to create an x^k for each k .	min cx $A^k x^k \ge b^k y_k$, all k $\sum_k y_k = 1$ $x = \sum_k x^k$ $y_k \in \{0,1\}$
LSE tutorial, June 2007 Slide 195	



Example

Start with a disjunction of linear systems to represent the union of polyhedra

$$\min \ x_2 \\ \left(\begin{array}{l} x_1 = 0 \\ x_2 \ge 0 \end{array} \right) \lor \left(\begin{array}{l} 0 \le x_1 \le M \\ x_2 \ge f + cx_1 \end{array} \right)$$

Introduce a 0-1 variable y_k that is 1 when x is in polyhedron <u>k</u>.

 $x_1^1 = 0, \quad x_2^1 \ge 0$ $0 \le x_1^2 \le My_2, -cx_1^2 + x_2^2 \ge fy_2$ $y_1 + y_2 = 1, y_k \in \{0,1\}$

min cx

 $\mathbf{x} = \mathbf{x}^1 + \mathbf{x}^2$

Disaggregate x to create an x^k for each k.

LSE tutorial, June 2007 Slide 197

Example

To simplify:

 $min x_2$

Replace x_1^2 with x_1 .

 $x_1^1 = 0, \quad x_2^1 \ge 0$

Replace x_2^2 with x_2 . Replace y_2 with y.

 $0 \le x_1^2 \le My_2, \quad -cx_1^2 + x_2^2 \ge fy_2$ $y_1 + y_2 = 1, y_k \in \{0,1\}$

 $\mathbf{x} = \mathbf{x}^1 + \mathbf{x}^2$

or

This yields

min x_2

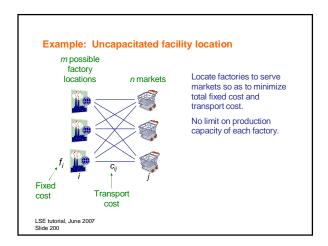
min fy + cx

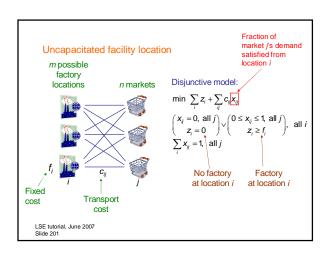
 $0 \le x_1 \le My$ $x_2 \ge fy + cx_1$

 $y \in \{0,1\}$

 $0 \le x \le My$ $y \in \{0,1\}$ "Big M"

Disjunctive Modeling Disjunctions often occur naturally in problems and can be given an MILP model. Recall that a disjunction of linear systems (representing polyhedra with the same recession cone) ...has the MILP model min cx $A^k x^k \ge b^k y_k \text{ all } k$ $\sum_k y_k = 1$ $x = \sum_k x^k$ LSE tutorial, June 2007 Slide 199





Uncapacitated facility location

MILP formulation:

$$\min \sum_{i} f_{i} y_{i} + \sum_{j} c_{ij} x_{ij}$$

$$0 \le x_{ij} \le y_{i}, \text{ all } i, j$$

$$y_{i} \in \{0,1\}$$
Disjunctive model:

$$\min \sum_{i} z_{i} + \sum_{ij} c_{ij} x_{ij}$$

$$(x_{ij} = 0, \text{ all } j) \setminus (0 \le x_{ij} \le 1, \text{ all } j)$$

$$z_{i} \ge f_{i}$$
No factory at location i

Uncapacitated facility location

Maximum output

MILP formulation:

LSE tutorial, June 2007 Slide 202

$$\begin{aligned} &\min & \sum_{i} f_{i} y_{i} + \sum_{ij} c_{ij} x_{ij} \\ &0 \leq x_{ij} \leq y_{i}, & \text{all } i, j \\ &y_{i} \in \left\{0,1\right\} \end{aligned}$$

Beginner's model:

from location i

$$\min \sum_{i} f_{i} y_{i} + \sum_{ij} c_{ij} x_{ij}$$

$$\sum_{j} x_{ij} \leq \boxed{ny_{ij}}, \text{ all } i, j$$

$$y_{i} \in \{0, 1\}$$

Based on capacitated location model.

It has a **weaker continuous relaxation** (obtained by replacing $y_i \in \{0,1\}$ with $0 \le y_i \le 1$).

This beginner's mistake can be avoided by starting with disjunctive formulation.

LSE tutorial, June 2007 Slide 203

Knapsack Modeling

- Knapsack models consist of **knapsack covering** and **knapsack packing** constraints.
- The freight transfer model presented earlier is an example.
- We will consider a similar example that combines disjunctive and knapsack modeling.
- Most OR professionals are unlikely to write a model as good as the one presented here.

Note on tightness of knapsack models

- The continuous relaxation of a knapsack model is not in general a convex hull relaxation.
 - A disjunctive formulation would provide a convex hull relaxation, but there are exponentially many disjuncts.
- Knapsack cuts can significantly tighten the relaxation.

LSE tutorial, June 2007 Slide 205

LSE tutorial, June 2007 Slide 206

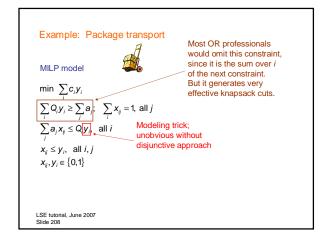
Example: Package transport Disjunctive model Knapsack Each package j constraints has size a_j $\min \sum_i z_i$ $\sum_{i} Q_{i} y_{i} \geq \sum_{i} a_{j}; \quad \sum_{i} x_{ij} = 1, \text{ all } j$ Each truck i has capacity Q_i and $y_i = 0$ $Z_i = C_i$ costs c, to $\vee |z_i = 0|$, all i $\sum_{j} a_{j} x_{ij} \leq Q_{i}$ operate $\left(x_{ij}=0\right)$ $0 \le x_{ij} \le 1$, all j $x_i, y_i \in \{0,1\}$

1 if truck i is used

1 if truck i carries

package j

Example: Package transport MILP model min $\sum_{i} c_{i} y_{i}$ Disjunctive model min $\sum_{i} a_{j} y_{i} \geq \sum_{j} a_{j}$; $\sum_{i} x_{ij} = 1$, all j $\sum_{i} Q_{i} y_{i} \geq \sum_{j} a_{j}$; $\sum_{i} x_{ij} = 1$, all j $\sum_{i} Q_{i} y_{i} \geq \sum_{j} a_{j}$; $\sum_{i} x_{ij} = 1$, all j $\sum_{i} Q_{i} y_{i} \geq \sum_{j} a_{j}$; $\sum_{i} x_{ij} = 1$, all j $x_{ij} \leq y_{i}$, all i, $y_{i} = 1$ $x_{ij} \leq y_{i}$, all i $x_{ij} y_{i} \in \{0,1\}$ LSE tutorial, June 2007 Slide 207



Cutting Planes

0-1 Knapsack Cuts Gomory Cuts Mixed Integer Rounding Cuts Example: Product Configuration

LSE tutorial, June 2007 Slide 209

A cutting plane (cut, valid inequality) for an MILP model: • ...is valid - It is satisfied by all feasible solutions of the model. • ...cuts off solutions of the continuous relaxation. - This makes the relaxation tighter. LSE tutorial, June 2007 Stide 210

Motivation

- Cutting planes (cuts) tighten the continuous relaxation of an MILP model.
- Knapsack cuts
 - Generated for individual knapsack constraints.
 - We saw **general integer knapsack cuts** earlier.
 - **0-1 knapsack cuts** and **lifting** techniques are well studied and widely used.
- Rounding cuts
 - Generated for the entire MILP, they are widely used.
 - Gomory cuts for integer variables only.
 - Mixed integer rounding cuts for any MILP.

LSE tutorial, June 2007 Slide 211

0-1 Knapsack Cuts

0-1 knapsack cuts are designed for knapsack constraints with 0-1 variables.

The analysis is different from that of general knapsack constraints, to exploit the special structure of 0-1 inequalities.

LSE tutorial, June 2007 Slide 212

0-1 Knapsack Cuts

0-1 knapsack cuts are designed for knapsack constraints with 0-1 variables.

The analysis is different from that of general knapsack constraints, to exploit the special structure of 0-1 inequalities.

Consider a 0-1 knapsack packing constraint $ax \le a_0$. (Knapsack covering constraints are similarly analyzed.)

Index set *J* is a **cover** if $\sum_{j \in J} a_j > a_0$

The cover inequality $\sum_{j\in J} x_j \le |J|-1$ is a 0-1 knapsack cut for $ax \le a_0$

LSE tutorial, June 2007 Slide 213 Only minimal covers need be considered.

Example

 $J = \{1,2,3,4\}$ is a cover for

$$6x_1 + 5x_2 + 5x_3 + 5x_4 + 8x_5 + 3x_6 \le 17$$

This gives rise to the cover inequality

$$x_1 + x_2 + x_3 + x_4 \le 3$$

Index set *J* is a **cover** if $\sum_{i \in J} a_i > a_0$

The cover inequality $\sum_{j\in J} x_j \leq \left|J\right|-1$ is a 0-1 knapsack cut for $ax \leq a_0$

LSE tutorial, June 2007 Slide 214 Only minimal covers need be considered.

Sequential lifting

- A cover inequality can often be strengthened by **lifting** it into a higher dimensional space.
 - That is, by adding variables.
- Sequential lifting adds one variable at a time.
- Sequence-independent lifting adds several variables at once.

LSE tutorial, June 2007 Slide 215

Sequential lifting

To lift a cover inequality $\sum_{j \in J} x_j \le |J| - 1$

add a term to the left-hand side $\sum_{j \in J} X_j + \pi_k X_k \le \left|J\right| - 1$

where π_k is the largest coefficient for which the inequality is still valid.

So,
$$\pi_k = |J| - 1 - \max_{\substack{x_j \in \{0,1\} \\ \text{for } j \in J}} \left\{ \sum_{j \in J} x_j \left| \sum_{j \in J} a_j x_j \le a_0 - a_k \right. \right\}$$

This can be done repeatedly (by dynamic programming).

Given
$$6x_1 + 5x_2 + 5x_3 + 5x_4 + 8x_5 + 3x_6 \le 17$$

To lift
$$x_1 + x_2 + x_3 + x_4 \le 3$$

add a term to the left-hand side $x_1 + x_2 + x_3 + x_4 + \pi_5 x_5 \le 3$

$$\pi_5 = 3 - \max_{\substack{x_1 \in \{0,3,4\}\\ \text{for fet } (2,3,4)}} \left\{ x_1 + x_2 + x_3 + x_4 \left| 6x_1 + 5x_2 + 5x_3 + 5x_4 \le 17 - 8 \right\} \right.$$

This yields
$$x_1 + x_2 + x_3 + x_4 + 2x_5 \le 3$$

Further lifting leaves the cut unchanged.

But if the variables are added in the order x_6 , x_5 , the result is different:

$$X_1 + X_2 + X_3 + X_4 + X_5 + X_6 \le 3$$

LSE tutorial, June 2007 Slide 217

Sequence-independent lifting

- Sequence-independent lifting usually yields a weaker cut than sequential lifting.
 - But it adds all the variables at once and is much faster.
 - Commonly used in commercial MILP solvers.

LSE tutorial, June 2007 Slide 218

Sequence-independent lifting

To lift a cover inequality
$$\sum_{j \in J} x_j \le |J| - 1$$

add terms to the left-hand side
$$\sum_{j \in J} X_j + \sum_{j \notin J} \rho(a_j) X_k \le |J| - 1$$

$$\text{where} \quad \rho(u) = \begin{cases} j & \text{if } A_j \leq u \leq A_{j+1} - \Delta \text{ and } j \in \{0, \dots, p-1\} \\ j + (u-A_j)/\Delta & \text{if } A_j - \Delta \leq u < A_j - \Delta \text{ and } j \in \{1, \dots, p-1\} \\ p + (u-A_p)/\Delta & \text{if } A_p - \Delta \leq u \end{cases}$$

with
$$\Delta = \sum_{j \in J} a_j - a_0$$
 $A_j = \sum_{k=1}^{j} a_k$
$$J = \{1, \dots, p\}$$
 $A_0 = 0$

$$A_j = \sum_{k=1}^{J} a_k$$

$$J = \{1, ..., p\}$$

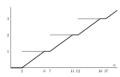
$$A_{\alpha}=0$$

Given
$$6x_1 + 5x_2 + 5x_3 + 5x_4 + 8x_5 + 3x_6 \le 17$$

To lift
$$x_1 + x_2 + x_3 + x_4 \le 3$$

Add terms
$$x_1 + x_2 + x_3 + x_4 + \rho(8)x_5 + \rho(3)x_6 \le 3$$

where $\rho(u)$ is given by



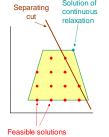
This yields the lifted cut

$$x_1 + x_2 + x_3 + x_4 + (5/4)x_5 + (1/4)x_6 \le 3$$

LSE tutorial, June 2007 Slide 220

Gomory Cuts

- When an integer programming problem has a nonintegral solution, we can generate at least one **Gomory cut** to cut off that solution.
 - This is a special case of a separating cut, because it separates the current solution of the relaxation from the feasible
- Gomory cuts are widely used and very effective in MILP solvers.



LSE tutorial, June 2007 Slide 221

Gomory cuts

Given an integer programming problem

min cx

Ax = b

 $x \ge 0$ and integral

Let $(x_B,0)$ be an optimal solution of the continuous relaxation,

$$x_B = \hat{b} - \hat{N}x_N$$
$$\hat{b} = B^{-1}b, \quad \hat{N} = B^{-1}N$$

Then if x_i is nonintegral in this solution, the following **Gomory cut** is violated by $(x_B,0)$:

 $x_i + |\hat{N}_i| x_N \le |\hat{b}_i|$

 $\begin{array}{llll} \min \; 2x_1 + 3x_2 & \text{or} & \min \; 2x_1 + 3x_2 \\ x_1 + 3x_2 \geq 3 & x_1 + 3x_2 - x_3 = 3 \\ 4x_1 + 3x_2 \geq 6 & 4x_1 + 3x_2 - x_4 = 6 \\ x_1, x_2 \geq 0 \; \text{and integral} & x_j \geq 0 \; \text{and integral} \end{array}$

Optimal solution of the continuous relaxation has $x_{B} = \begin{bmatrix} x_{x} \\ x_{y} \end{bmatrix} = \begin{bmatrix} 1 \\ 2/3 \end{bmatrix}$ $\hat{N} = \begin{bmatrix} 1/3 & -1/3 \\ -4/9 & 1/9 \end{bmatrix}$ $\hat{b} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

LSE tutorial, June 2007 Slide 223

Example

Optimal solution of the continuous relaxation has $x_{B} = \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = \begin{bmatrix} 1 \\ 2/3 \end{bmatrix}$

The Gomory cut $X_i + \lfloor \hat{N}_i \rfloor X_N \leq \lfloor \hat{b}_i \rfloor$

 $\hat{N} = \begin{bmatrix} 1/3 & -1/3 \\ -4/9 & 1/9 \end{bmatrix}$ $\hat{L} = \begin{bmatrix} 1 & 1 & 1/4 \\ 1 & 1 & 1/4 \end{bmatrix}$

is $x_2 + \lfloor \begin{bmatrix} -4/9 & 1/9 \end{bmatrix} \rfloor \begin{bmatrix} x_3 \\ x_4 \end{bmatrix} \le \lfloor 2/3 \rfloor$

In x_1, x_2 space this is $x_1 + 2x_2 \ge 3$

LSE tutorial, June 2007 Slide 224

or $x_2 - x_3 \le 0$

Example

 $\hat{b} = \begin{bmatrix} 1 \\ 2/3 \end{bmatrix}$ Gomory cut $x_1 + 2x_2 \ge 3$ Gomory cut after re-solving LP with previous cut.

Mixed Integer Rounding Cuts

- Mixed integer rounding (MIR) cuts can be generated for solutions of any relaxed MILP in which one or more integer variables has a fractional value.
 - Like Gomory cuts, they are separating cuts.
 - MIR cuts are widely used in commercial solvers.

LSE tutorial, June 2007 Slide 226

MIR cuts

Given an MILP problem

In an optimal solution of the continuous relaxation, let

min cx + dy

 $J = \{ j \mid y_j \text{ is nonbasic} \}$

Ax + Dy = b

 $K = \{ j \mid x_j \text{ is nonbasic} \}$

 $x, y \ge 0$ and y integral

N = nonbasic cols of [A D]

Then if y_i is nonintegral in this solution, the following **MIR cut** is violated by the solution of the relaxation:

$$y_i + \sum_{j \in J_i} \left\lceil \hat{N}_{ij} \right\rceil y_j + \sum_{j \in J_i} \left[\left\lfloor \hat{N}_{ij} \right\rfloor + \frac{\mathsf{frac}(\hat{N}_{ij})}{\mathsf{frac}(\hat{b}_i)} \right) + \frac{1}{\mathsf{frac}(\hat{b}_i)} \sum_{j \in \mathcal{K}} \hat{N}_{ij}^+ X_j \geq \hat{N}_{ij} \left\lceil \hat{b}_i \right\rceil$$

 $\text{where} \quad J_{\text{1}} = \left\{ j \in J \middle| \operatorname{frac}(\hat{N}_{ij}) \geq \operatorname{frac}(\hat{b}_{j}) \right\} \qquad J_{2} = J \setminus J_{\text{1}}$

LSE tutorial, June 2007 Slide 227

Example

$$3x_1 + 4x_2 - 6y_1 - 4y_2 = 1$$

$$x_1 + 2x_2 - y_1 - y_2 = 3$$

 $x_j, y_j \ge 0, y_j$ integer

Take basic solution $(x_1, y_1) = (8/3, 17/3)$.

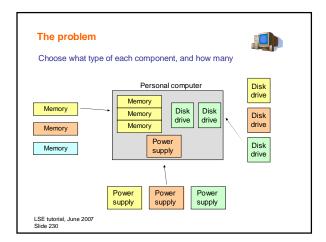
Then
$$\hat{N} = \begin{bmatrix} 1/3 & 2/3 \\ -2/3 & 8/3 \end{bmatrix} \hat{b} = \begin{bmatrix} 8/3 \\ 17/3 \end{bmatrix}$$

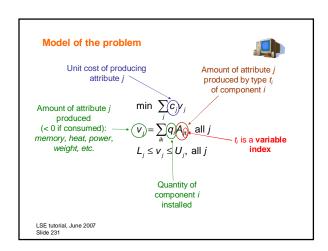
$$J = \{2\}, K = \{2\}, J_1 = \emptyset, J_2 = \{2\}$$

The MIR cut is
$$y_1 + \left(\lfloor 1/3 \rfloor + \frac{1/3}{2/3} \right) y_2 + \frac{1}{2/3} (2/3)^+ x_2 \ge \lceil 8/3 \rceil$$

or
$$y_1 + (1/2)y_2 + x_2 \ge 3$$

Example: Product Configuration This example illustrates: Combination of propagation and relaxation. Processing of variable indices. Continuous relaxation of element constraint.





To solve it:

- **Branch** on domains of t_i and q_i .
- **Propagate** element constraints and bounds on v_j .
 - Variable index is converted to specially structured element constraint.
 - Valid **knapsack** cuts are derived and propagated.
- Use linear continuous relaxations.
 - Special purpose **MILP** relaxation for *element*.

LSE tutorial, June 2007 Slide 232

Propagation

$$\begin{aligned} &\min & \sum_{j} c_{j} v_{j} \\ &v_{j} = \sum_{ik} q_{i} A_{ijk}, \text{ all } j \\ &\underbrace{L_{j} \leq v_{j} \leq U_{j}, \text{ all } j} \end{aligned} \qquad \textit{This} \text{ is propagated} \\ &\text{in the usual way} \end{aligned}$$

LSE tutorial, June 2007 Slide 233

Propagation

$$\begin{aligned} v_j &= \sum_i Z_i, \text{ all } j \\ &\text{element} \left(t_i, (q_i, A_{ij1}, \ldots, q_i A_{ijn}), Z_i \right), \text{ all } i, j \\ &\text{min } \sum_j c_j v_j \\ \hline v_j &= \sum_{jk} q_i A_{ijk_i}, \text{ all } j \end{aligned}$$

$$This \text{ is rewritten as}$$

$$L_j &\leq v_j \leq U_j, \text{ all } j$$

$$This \text{ is propagated}$$

in the usual way

Propagation

$$v_j = \sum_i z_i, \text{ all } j$$

$$\text{element} \left(t_i, (q_i, A_{ij1}, ..., q_i, A_{ijn}), z_i \right), \text{ all } i, j$$

This can be propagated by (a) using specialized filters for element constraints of this form...

LSE tutorial, June 2007 Slide 235

Propagation

$$v_j = \sum_i z_i, \text{ all } j$$

$$= \operatorname{element} \left(t_i, (q_i, A_{ij1}, \dots, q_i A_{ijn}), z_i \right), \text{ all } i, j$$

This is propagated by
(a) using specialized **filters** for *element* constraints of this form,
(b) adding **knapsack cuts** for the valid inequalities:

$$\begin{split} & \sum_{i} \max_{k \in D_{i_{i}}} \left\{ A_{ijk} \right\} q_{i} \geq \underline{\nu}_{j}, \text{ all } j \\ & \sum_{i} \min_{k \in D_{i_{i}}} \left\{ A_{ijk} \right\} q_{i} \leq \overline{\nu}_{j}, \text{ all } j \end{split}$$

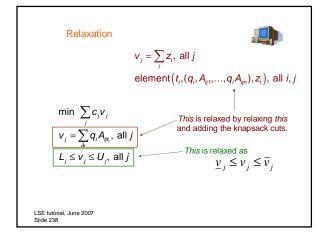
and (c) propagating the knapsack cuts.

 $[\underline{V}_j, \overline{V}_j]$ is current domain of v_i

LSE tutorial, June 2007 Slide 236

Relaxation

$$\begin{aligned} &\min \ \sum_{j} c_{j} v_{j} \\ &v_{j} = \sum_{ik} q_{i} A_{ijt_{i}}, \ \text{all} \ j \\ &\boxed{L_{j} \leq v_{j} \leq U_{j}, \ \text{all} \ j} \end{aligned} \qquad \qquad \qquad \qquad \qquad \qquad \qquad This \text{ is relaxed as}$$



Relaxation

$$\begin{split} \mathbf{v}_{j} &= \sum_{i} \mathbf{z}_{i}, \text{ all } j \\ &= \operatorname{element} \left(t_{i}, (q_{i}, A_{ij1}, \ldots, q_{i} A_{ijn}), \mathbf{z}_{i} \right), \text{ all } i, j \end{split}$$

This is relaxed by replacing each element constraint with a disjunctive **convex hull** relaxation:

$$\mathbf{Z}_i = \sum_{k \in D_{t_i}} \mathbf{A}_{ijk} \mathbf{q}_{ik}, \quad \mathbf{q}_i = \sum_{k \in D_{t_i}} \mathbf{q}_{ik}$$

LSE tutorial, June 2007 Slide 239

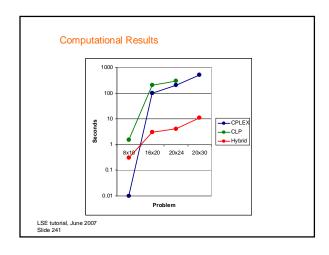
Relaxation

So the following LP relaxation is solved at each node of the search tree to obtain a lower bound:

$$\begin{split} \min & \sum_{j} c_{j} v_{j} \\ v_{j} &= \sum_{i} \sum_{k \in \mathbb{D}_{i}} A_{jk} q_{jk}, \text{ all } j \\ q_{j} &= \sum_{k \in \mathbb{D}_{i}} q_{jk}, \text{ all } i \\ & \underbrace{v_{j} \leq v_{j} \leq \overline{v}_{j}, \text{ all } j}_{q_{j} \leq q_{j} \leq \overline{q}_{j}, \text{ all } j} \\ q_{j} &= q_{j} \leq \overline{q}_{j}, \text{ all } j \\ \text{knapsack cuts for } \sum_{i} \max_{k \in \mathbb{D}_{i}} \left\{A_{jk}\right\} q_{i} \geq \underline{v}_{j}, \text{ all } j \\ \text{knapsack cuts for } \sum_{k \in \mathbb{D}_{i}} \left\{A_{jk}\right\} q_{i} \leq \overline{v}_{j}, \text{ all } j \end{split}$$

LSE tutorial, June 2007 Slide 240

 $q_{ik} \ge 0$, all i, k



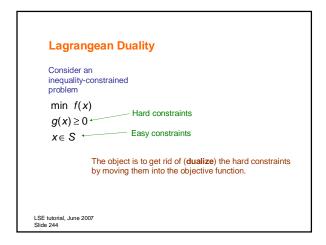
Lagrangean Relaxation

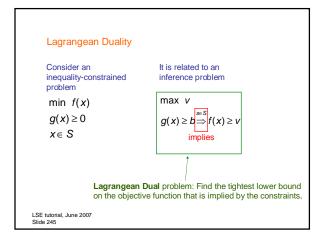
Lagrangean Duality
Properties of the Lagrangean Dual
Example: Fast Linear Programming
Domain Filtering
Example: Continuous Global Optimization

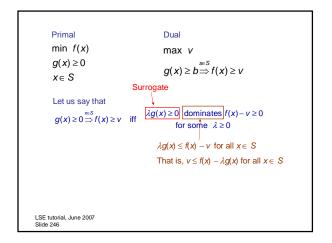
LSE tutorial, June 2007 Slide 242

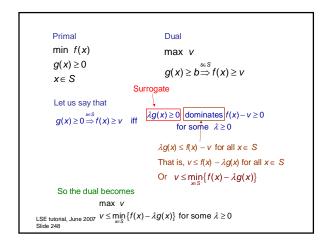
Motivation

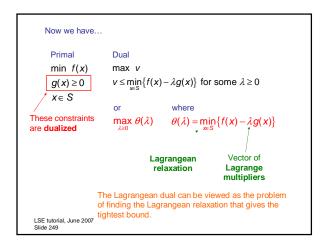
- Lagrangean relaxation can provide better bounds than LP relaxation
- The Lagrangean dual generalizes LP duality.
- It provides **domain filtering** analogous to that based on LP duality.
 - This is a key technique in **continuous global optimization**.
- Lagrangean relaxation gets rid of troublesome constraints by **dualizing** them.
 - That is, moving them into the objective function.
 - The Lagrangean relaxation may **decouple**.











$$\begin{aligned} & \min \ 3x_1 + 4x_2 \\ & -x_1 + 3x_2 \ge 0 \\ & 2x_1 + x_2 - 5 \ge 0 \\ & x_1, x_2 \in \{0, 1, 2, 3\} \end{aligned}$$

The Lagrangean relaxation is

$$\begin{split} &\theta(\lambda_1,\lambda_2) = \min_{x_i \in \{0,...3\}} \left\{ 3x_i + 4x_2 - \lambda_1(-x_1 + 3x_2) - \lambda_2(2x_1 + x_2 - 5) \right\} \\ &= \min_{x_i \in \{0,...3\}} \left\{ (3 + \lambda_1 - 2\lambda_2)x_1 + (4 - 3\lambda_1 - \lambda_2)x_2 + 5\lambda_2 \right\} \end{split}$$

The Lagrangean relaxation is easy to solve for any given λ_1 , λ_2 :

$$x_{_{\! 1}} = \begin{cases} 0 & \text{if } 3 + \lambda_{_{\! 1}} - 2\lambda_{_{\! 2}} \geq 0 \\ 3 & \text{otherwise} \end{cases}$$

$$x_2 = \begin{cases} 0 & \text{if } 4 - 3\lambda_1 - \lambda_2 \ge 0 \\ 3 & \text{otherwise} \end{cases}$$

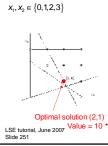
Optimal solution (2,1)

LSE tutorial, June 2007 Slide 250

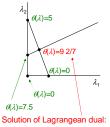
Strongest surrogate

Example

min $3x_1 + 4x_2$ $-x_1 + 3x_2 \ge 0$ $2x_1 + x_2 - 5 \ge 0$ $x_1, x_2 \in \{0, 1, 2, 3\}$



 $\theta(\lambda_1,\lambda_2)$ is piecewise linear and concave.



 $(\lambda_1, \lambda_2) = (5/7, 13/7), \ \theta(\lambda) = 9 \ 2/7$

Note **duality gap** between 10 and 9 2/7 (no strong duality).

Example

min $3x_1 + 4x_2$ $-x_1 + 3x_2 \ge 0$ $2x_1 + x_2 - 5 \ge 0$

 $x_1, x_2 \in \{0, 1, 2, 3\}$

Note: in this example, the Lagrangean dual provides the same bound (9 2/7) as the continuous relaxation of the IP.

This is because the Lagrangean relaxation can be solved as an LP:

 $\theta(\lambda_{1}, \lambda_{2}) = \min_{x \in \mathbb{R}^{3}} \left\{ (3 + \lambda_{1} - 2\lambda_{2})x_{1} + (4 - 3\lambda_{1} - \lambda_{2})x_{2} + 5\lambda_{2} \right\}$ $= \min_{1 \le i \le 3} \left\{ (3 + \lambda_1 - 2\lambda_2) x_1 + (4 - 3\lambda_1 - \lambda_2) x_2 + 5\lambda_2 \right\}$

Lagrangean duality is useful when the Lagrangean relaxation is tighter than an LP but nonetheless easy to solve.

Properties of the Lagrangean dual

Weak duality: For any feasible x^* and any $\lambda^* \geq 0$, $f(x^*) \geq \theta(\lambda^*)$.

In particular, min
$$f(x) \ge \max_{\lambda \ge 0} \theta(\lambda)$$

 $g(x) \ge 0$
 $x \in S$

Concavity: $\theta(\lambda)$ is concave. It can therefore be maximized by local search methods.

Complementary slackness: If x^* and λ^* are optimal, and there is no duality gap, then $\lambda^*g(x^*)=0$.

LSE tutorial, June 2007 Slide 253

Solving the Lagrangean dual

Let λ^k be the kth iterate, and let $\lambda^{k+1} = \lambda^k + \alpha_k \frac{\xi^k}{t}$

Subgradient of $\theta(\lambda)$ at $\lambda = \lambda^k$

If x^k solves the Lagrangean relaxation for $\lambda = \lambda^k$, then $\xi^k = g(x^k)$.

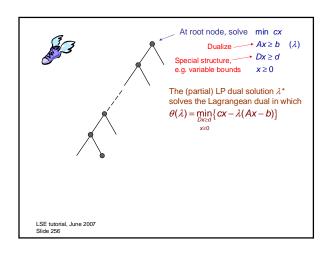
This is because $\theta(\lambda) = f(x^k) + \lambda g(x^k)$ at $\lambda = \lambda^k$.

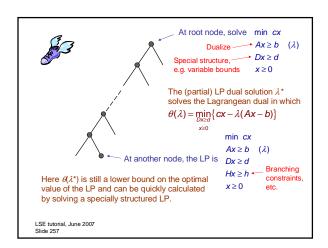
The stepsize $\alpha_{\!\! k}$ must be adjusted so that the sequence converges but not before reaching a maximum.

LSE tutorial, June 2007 Slide 254

Example: Fast Linear Programming

- In CP contexts, it is best to process each node of the search tree very rapidly.
- Lagrangean relaxation may allow very fast calculation of a lower bound on the optimal value of the LP relaxation at each node.
- The idea is to solve the Lagrangean dual at the root node (which is an LP) and use the same Lagrange multipliers to get an LP bound at other nodes.





Domain Filtering Suppose: $\min_{g(x) \geq 0} f(x)$ $g(x) \geq 0$ $x \in S$ has optimal solution x^* , optimal value v^* , and optimal Lagrangean dual solution x^*and $x^* > 0$, which means the i-th constraint is tight (complementary slackness); ...and the problem is a relaxation of a CP problem; ...and we have a feasible solution of the CP problem with value u, so that u is an upper bound on the optimal value. LSE tutorial, June 2007 Slide 258

min f(x) has optimal solution x^* , optimal value v^* , and Supposing $g(x) \ge 0$ has optimal Supposing $(x) \ge 0$ optimal Lagrangean dual solution λ^* : *x*∈ *S*

If x were to change to a value other than x^* , the LHS of i-th constraint $g_i(x) \ge 0$ would change by some amount Δ_i .

Since the constraint is tight, this would increase the optimal value as much as changing the constraint to $g_i(x) - \Delta_i \ge 0$.

So it would increase the optimal value at least $\lambda_i^* \Delta_i$.

(It is easily shown that Lagrange multipliers are marginal costs. Dual multipliers for LP are a special case of Lagrange multipliers.)

LSE tutorial, June 2007 Slide 259

min f(x) has optimal solution x^* , optimal value v^* , and Supposing $g(x) \ge 0$ has optimal Supposing $(x) \ge 0$ optimal Lagrangean dual solution λ^* : *x*∈ *S*

We have found: a change in x that changes $g_i(x)$ by Δ_i increases the optimal value at least $\lambda_i^* \Delta_i$.

Since optimal value of this problem \leq optimal value of the CP \leq U, we have $\lambda_i^*\Delta_i \leq U - v^*$, or $\Delta_i \leq \frac{U - v^*}{\lambda_i^*}$

LSE tutorial, June 2007 Slide 260

Supposing $g(x) \ge 0$ has optimal solution x^* , optimal value v^* , and optimal Lagrangean dual solution λ^* : *x*∈ *S*

We have found: a change in x that changes $g_i(x)$ by Δ_i increases the optimal value at least $\lambda_i^* \Delta_i$.

Since optimal value of this problem \leq optimal value of the CP \leq U, we have $\lambda_i^*\Delta_i \leq U-v^*$, or $\Delta_i \leq \frac{U-v^*}{\lambda_i^*}$

...which can be propagated.

Since $\Delta_i = g_i(x) - g_i(x^*) = g_i(x)$, this implies the inequality $g_i(x) \leq \frac{U-v^*}{\lambda_i^*}$

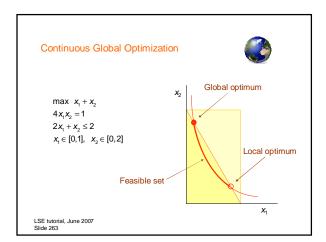
LSE tutorial, June 2007 Slide 261

87

Example: Continuous Global Optimization

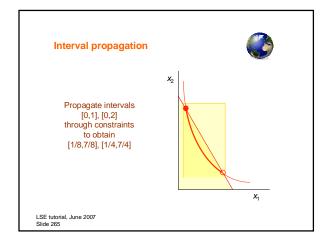
- Some of the best continuous global solvers (e.g., BARON) combine OR-style relaxation with CP-style interval arithmetic and domain filtering.
- The use of Lagrange multipliers for domain filtering is a key technique in these solvers.

LSE tutorial, June 2007 Slide 262



To solve it:

- **Search**: split interval domains of x_1, x_2 .
 - Each node of search tree is a problem restriction.
- Propagation: Interval propagation, domain filtering.
 - Use Lagrange multipliers to infer valid inequality for propagation.
 - Reduced-cost variable fixing is a special case.
- Relaxation: Use function factorization to obtain linear continuous relaxation.



Relaxation (function factorization)

Factor complex functions into elementary functions that have known linear relaxations.

Write $4x_1x_2 = 1$ as 4y = 1 where $y = x_1x_2$.

This factors $4x_1x_2$ into linear function 4y and bilinear function x_1x_2 .

Linear function 4*y* is its own linear relaxation.

LSE tutorial, June 2007 Slide 266

Relaxation (function factorization)

Factor complex functions into elementary functions that have known linear relaxations.

Write $4x_1x_2 = 1$ as 4y = 1 where $y = x_1x_2$.

This factors $4x_1x_2$ into linear function 4y and bilinear function x_1x_2 .

Linear function 4y is its own linear relaxation.

Bilinear function $y = x_1x_2$ has relaxation:

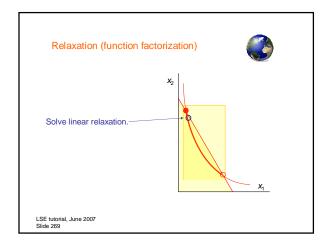
$$\begin{split} \underline{x}_2 x_1 + \underline{x}_1 x_2 - \underline{x}_1 \underline{x}_2 &\leq y \leq \underline{x}_2 x_1 + \overline{x}_1 x_2 - \overline{x}_1 \underline{x}_2 \\ \overline{x}_2 x_1 + \overline{x}_1 x_2 - \overline{x}_1 \overline{x}_2 &\leq y \leq \overline{x}_2 x_1 + \underline{x}_1 x_2 - \underline{x}_1 \overline{x}_2 \end{split}$$

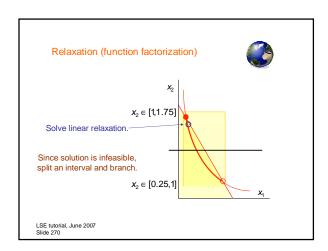
where domain of x_i is $[\underline{X}_i, \overline{X}_i]$

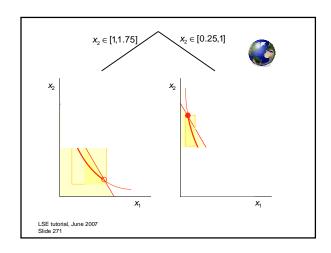
Relaxation (function factorization)

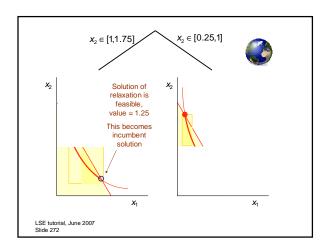
The linear relaxation becomes:

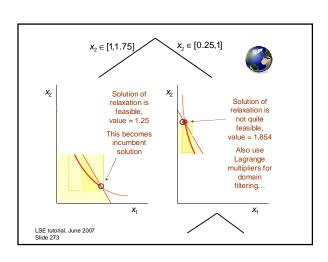
 $\begin{aligned} & \min \ \, x_1 + x_2 \\ & 4y = 1 \\ & 2x_1 + x_2 \leq 2 \\ & \underline{x}_2 x_1 + \underline{x}_1 x_2 - \underline{x}_1 \underline{x}_2 \leq y \leq \underline{x}_2 x_1 + \overline{x}_1 x_2 - \overline{x}_1 \underline{x}_2 \\ & \overline{x}_2 x_1 + \overline{x}_1 x_2 - \overline{x}_1 \overline{x}_2 \leq y \leq \overline{x}_2 x_1 + \underline{x}_1 x_2 - \underline{x}_1 \overline{x}_2 \\ & \underline{x}_j \leq x_j \leq \overline{x}_j, \ \, j = 1,2 \end{aligned}$











Relaxation (function factorization)

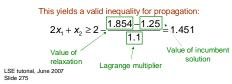
Associated Lagrange multiplier in solution of relaxation is $\lambda_2 = 1.1$ $\min \ x_1 + x_2$ 4y = 1 $2x_1 + x_2 \leq 2$

 $\underline{x}_2 x_1 + \underline{x}_1 x_2 - \underline{x}_1 \underline{x}_2 \leq y \leq \underline{x}_2 x_1 + \overline{x}_1 x_2 - \overline{x}_1 \underline{x}_2$ $\overline{X}_2X_1 + \overline{X}_1X_2 - \overline{X}_1\overline{X}_2 \le y \le \overline{X}_2X_1 + \underline{X}_1X_2 - \underline{X}_1\overline{X}_2$ $\underline{x}_{j} \leq x_{j} \leq \overline{x}_{j}, \quad j = 1,2$

LSE tutorial, June 2007 Slide 274

Relaxation (function factorization)

Associated Lagrange multiplier in solution of relaxation is $\lambda_2 = 1.1$ $\min \ x_1 + x_2$ 4y = 1 $2x_1 + x_2 \le 2$ $\underline{x}_2 x_1 + \underline{x}_1 x_2 - \underline{x}_1 \underline{x}_2 \le y \le \underline{x}_2 x_1 + \overline{x}_1 x_2 - \overline{x}_1 \underline{x}_2$ $\overline{X}_2X_1+\overline{X}_1X_2-\overline{X}_1\overline{X}_2\leq y\leq \overline{X}_2X_1+\underline{X}_1X_2-\underline{X}_1\overline{X}_2$ $\underline{x}_j \le x_j \le \overline{x}_j, \quad j = 1, 2$



Dynamic Programming in CP

Example: Capital Budgeting Domain Filtering Recursive Optimization

Motivation

- Dynamic programming (DP) is a highly versatile technique that can exploit recursive structure in a problem.
- **Domain filtering** is straightforward for problems modeled as a DP
- DP is also important in designing **filters** for some global constraints, such as the *stretch* constraint (employee scheduling).
- Nonserial DP is related to bucket elimination in CP and exploits the structure of the primal graph.
- DP modeling is the **art** of keeping the state space small while maintaining a Markovian property.
- We will examine only one simple example of serial DP.

LSE tutorial, June 2007 Slide 277

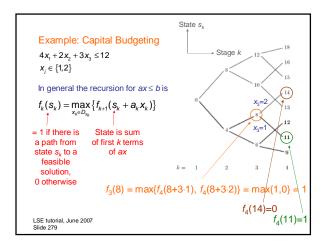
Example: Capital Budgeting

We wish to built power plants with a total cost of at most 12 million Euros.

There are three types of plants, costing 4, 2 or 3 million Euros each. We must build one or two of each type.

The problem has a simple knapsack packing model:

$$4x_1 + 2x_2 + 3x_3 \le 12$$
Number of actories of type i $x_j \in \{1,2\}$



Example: Capital Budgeting

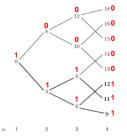
$$4x_1 + 2x_2 + 3x_3 \le 12$$
$$x_j \in \{1, 2\}$$

In general the recursion for $ax \le b$ is

$$f_{k}(s_{k}) = \max_{x_{k} \in D_{x_{k}}} \{f_{k+1}(s_{k} + a_{k}x_{k})\}$$

Boundary condition:

$$f_{n+1}(s_{n+1}) = \begin{cases} 1 & \text{if } s_{n+1} \le b \\ 0 & \text{otherwise} \end{cases}$$



 $f_k(s_k)$ for each state s_k

LSE tutorial, June 2007 Slide 280

Example: Capital Budgeting

$$4x_1 + 2x_2 + 3x_3 \le 12$$
$$x_j \in \{1, 2\}$$

The problem is feasible.

Each path to 0 is a feasible solution.

Path 1: x = (1,2,1)

Path 2: x = (1,1,2)

Path 3: x = (1,1,1)

Possible costs are 9,11,12.

LSE tutorial, June 2007 Slide 281

 $f_k(s_k)$ for each state s_k

Domain Filtering

$$4x_1 + 2x_2 + 3x_3 \le 12$$

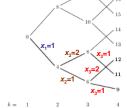
$$x_{j} \in \{1, 2\}$$

To filter domains: observe what values of x_k occur on feasible paths.

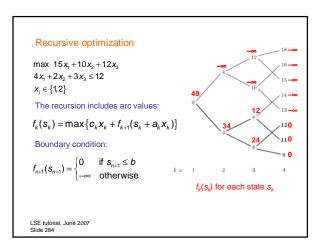
$$D_{x_3} = \{1,2\}$$

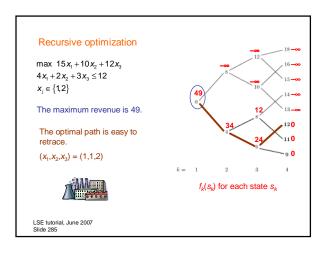
$$D_{x_2} = \{1,2\}$$

$$D_{x_1} = \{1\}$$



Recursive Optimization
$$\max_{x_1 \in \mathcal{X}_1} + 10x_2 + 12x_3 - \max_{x_2 \in \mathcal{X}_2} + 12x_3 - \max_{x_3 \in \mathcal{X}_3} + 12x_3 - 2x_3 - 2x_3$$





CP-based Branch and Price

Basic Idea
Example: Airline Crew Scheduling

LSE tutorial, June 2007 Slide 286

Motivation

- Branch and price allows solution of integer programming problems with a huge number of variables.
- The problem is solved by a branch-and-relax method. The difference lies in how the LP relaxation is solved.
- Variables are added to the LP relaxation only as needed.
- Variables are **priced** to find which ones should be added.
- CP is useful for solving the pricing problem, particularly when constraints are complex.
- CP-based branch and price has been successfully applied to airline crew scheduling, transit scheduling, and other transportation-related problems.

LSE tutorial, June 2007 Slide 287

Basic Idea

Suppose the LP relaxation of an integer programming problem has a huge number of variables:

min cx Ax = b $x \ge 0$

 $x_i \ge 0$

We will solve a **restricted master problem**, which has a small subset of the variables:

 $\min \sum_{j \in J} c_j x_j$ $\sum_{j \in J} A_j x_j = b \quad (\lambda)$

Column j of A

Adding x_k to the problem would improve the solution if x_k has a negative reduced cost: $r_k = c_k - \lambda A_k < 0$

Basic Idea

Adding x_k to the problem would improve the solution if x_k has a Adding x_k to the problem negative reduced cost: $r_k = c_k - \lambda A_k < 0$

Computing the reduced cost of x_k is known as **pricing** x_k .

Cost of column y

So we solve the pricing problem: $\min |c_y| - \lambda y$ y is a column of A

If the solution y^* satisfies $c_{y'}-\lambda y^*<0$, then we can add column y to the restricted master problem.

LSE tutorial, June 2007 Slide 289

Basic Idea

The pricing problem $\max \lambda y$

y is a column of A

need not be solved to optimality, so long as we find a column with negative reduced cost.

However, when we can no longer find an improving column, we solved the pricing problem to optimality to make sure we have the optimal solution of the LP.

If we can state constraints that the columns of A must satisfy, CP may be a good way to solve the pricing problem.

LSE tutorial, June 2007 Slide 290

Example: Airline Crew Scheduling

We want to assign crew members to flights to minimize cost while covering the flights and observing complex work rules.

j	s_j	f_j	
1	0	3	
2	1	3	
3	5	8	
4	6	9	
5	10	12	
6	14	16	
	1	1	
Start		Finish	
time		time	

LSE tutorial, June 2007 Slide 291

A **roster** is the sequence of flights assigned to a single crew member.

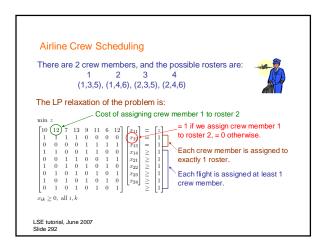
The gap between two consecutive flights in a roster must be from 2 to 3 hours. Total flight time for a roster must be between 6 and 10 hours.

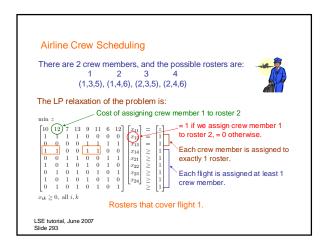
For example, flight 1 cannot immediately precede 6 flight 4 cannot immediately precede 5.

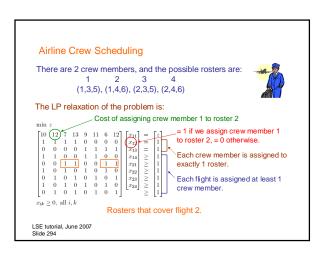
The possible rosters are:

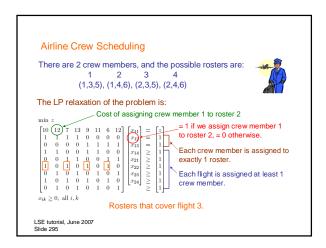
(1,3,5), (1,4,6), (2,3,5), (2,4,6)

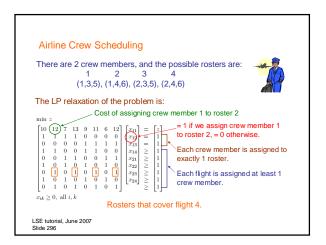
97

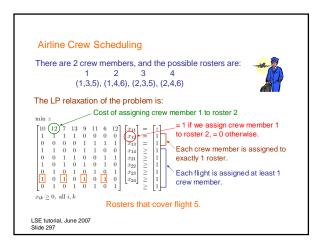


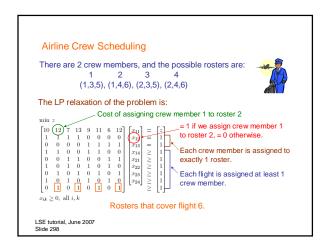


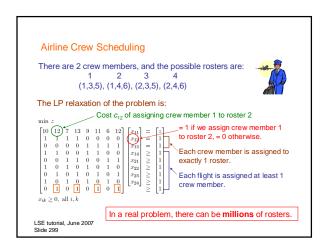


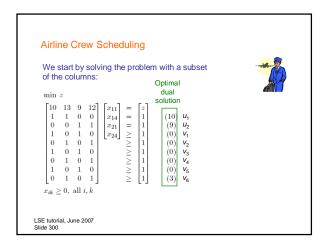


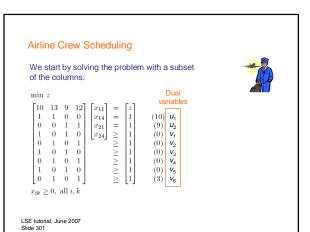


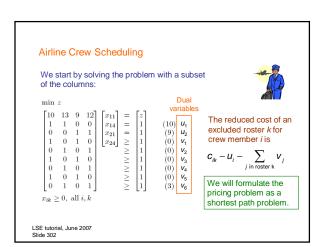


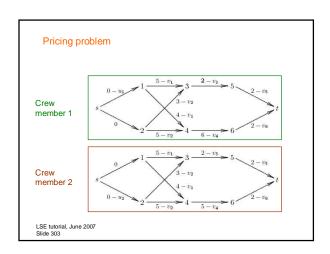


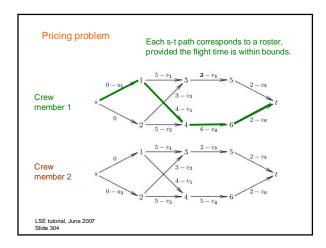


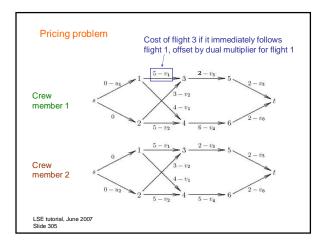


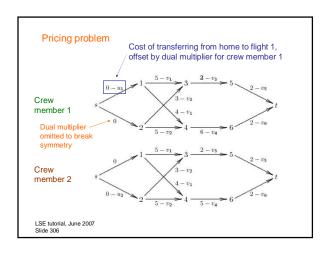


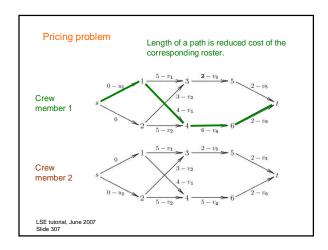


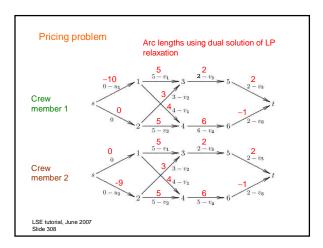


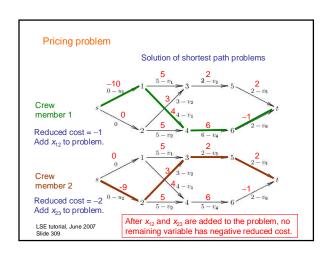


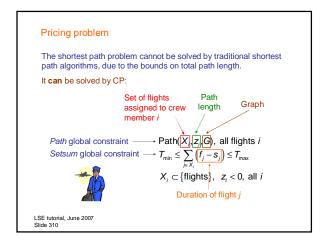












LSE tutorial, June 2007 Slide 311

CP-based Benders Decomposition

Benders Decomposition in the Abstract Classical Benders Decomposition Example: Machine Scheduling

Motivation

- Benders decomposition allows us to apply CP and OR to different parts of the problem.
- It searches over values of certain variables that, when fixed, result in a much simpler **subproblem**.
- The search learns from past experience by accumulating **Benders cuts** (a form of nogood).
- The technique can be **generalized** far beyond the original OR conception
- Generalized Benders methods have resulted in the **greatest speedups** achieved by combining CP and OR.

LSE tutorial, June 2007 Slide 313

Benders Decomposition in the Abstract

Benders decomposition can be applied to problems of the form

When x is fixed to some value, the resulting **subproblem** is much easier:

min f(x,y) S(x,y) $x \in D_x$, $y \in D_y$ $\begin{array}{ll} \text{min} & f(\overline{x},y) & & \dots \text{perhaps} \\ S(\overline{x},y) & \text{because it} \\ y \in D_y & \text{decouples into} \\ \text{smaller problems.} \end{array}$

For example, suppose \boldsymbol{x} assigns jobs to machines, and \boldsymbol{y} schedules the jobs on the machines.

When x is fixed, the problem decouples into a separate scheduling subproblem for each machine.

LSE tutorial, June 2007 Slide 314

Benders Decomposition

We will search over assignments to x. This is the **master problem**.

In iteration k we assume $x = x^k$ $\begin{cases} & \text{min } f(x^k, y) \\ & S(x^k, y) \end{cases}$ and get optimal and solve the subproblem $\begin{cases} & x^k \\ & y \in D_v \end{cases}$ value v_k

We generate a **Benders cut** (a type of nogood) $V \ge B_{k+1}(x)$

that satisfies $B_{k+1}(x^k) = v_k$. Cost in the original problem

The Benders cut says that if we set $x = x^k$ again, the resulting cost v will be at least v_k . To do better than v_k , we must try something else.

It also says that any other x will result in a cost of at least $B_{k+1}(x)$, perhaps due to some similarity between x and x^k .

Benders Decomposition

We will search over assignments to x. This is the **master problem**.

In iteration k we assume $x = x^k$ $\begin{cases} \min f(x^k, y) \\ S(x^k, y) \end{cases}$ and get optimal value v_k $y \in D_v$

We generate a **Benders cut** (a type of nogood) $v \ge B_{k+1}(x)$ that satisfies $B_{k+1}(x) = V_k$. Cost in the original problem

We add the Benders cut to the master problem, which becomes

min v $v \ge B_i(x), i = 1,...,k+1$ Benders cuts generated so far $x \in D_x$

LSE tutorial, June 2007 Slide 316

Benders Decomposition

The master problem is a relaxation of the original problem, and its optimal value is a **lower bound** on the optimal value of the original problem.

The subproblem is a restriction, and its optimal value is an **upper**

The process continues until the bounds meet.

The Benders cuts partially define the **projection** of the feasible set onto *x*. We hope not too many cuts are needed to find the optimum.

LSE tutorial, June 2007 Slide 317

Classical Benders Decomposition

Let λ^k solve the dual.

By strong duality, $B_{k+1}(x) = f(x) + \lambda^k(b-g(x))$ is the tightest lower bound on the optimal value v of the original problem when $x = x^k$.

Even for other values of x, \mathcal{A}^k remains feasible in the dual. So by weak duality, $\mathcal{B}_{k+1}(x)$ remains a lower bound on v.

Classical Benders

So the master problem

becomes

min v

min v

$$v \geq B_i(x), \ i=1,\dots,k+1$$

$$v \ge f(x) + \lambda^{i}(b - g(x)), i = 1,..., k + 1$$

 $x \in D_{x}$

 $x \in D_x$

In most applications the master problem is

- an MILP
- a nonlinear programming problem (NLP), or
- a mixed integer/nonlinear programming problem (MINLP).

LSE tutorial, June 2007 Slide 319

Example: Machine Scheduling

- Assign 5 jobs to 2 machines (A and B), and schedule the machines assigned to each machine within time windows.
- The objective is to minimize makespan.

Time lapse between start of first job and end of last job.

- Assign the jobs in the master problem, to be solved by MILP.
- Schedule the jobs in the **subproblem**, to be solved by **CP**.

LSE tutorial, June 2007 Slide 320

Machine Scheduling

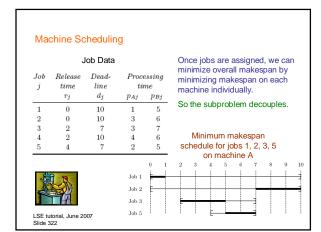
Job Data

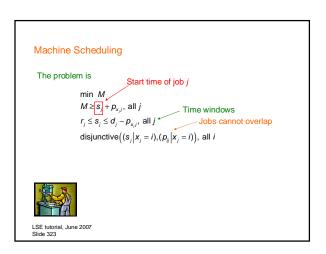
Job j	Release $time$	Dead- line	Processing time	
,	r_j	d_j	p_{Aj}	p_{Bj}
1	0	10	1	5
2	0	10	3	6
3	2	7	3	7
4	2	10	4	6
5	4	7	2	5
			1	1
		Mach	ine A	

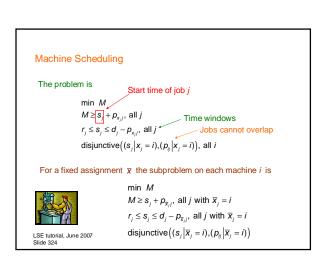
Machine B

Once jobs are assigned, we can minimize overall makespan by minimizing makespan on each machine individually.

So the subproblem decouples.







Benders cuts

Suppose we assign jobs 1,2,3,5 to machine A in iteration *k*.

We can prove that 10 is the optimal makespan by proving that the schedule is infeasible with makespan 9.

Edge finding derives infeasibility by reasoning only with jobs 2,3,5.

So these jobs alone create a minimum makespan of 10.

So we have a Benders cut

rs cut

$$v \ge B_{k+1}(x) = \begin{cases} 10 & \text{if } x_2 = x_3 = x_4 = A \\ 0 & \text{otherwise} \end{cases}$$

LSE tutorial, June 2007 Slide 325

Benders cuts

We want the master problem to be an MILP, which is good for assignment problems.

So we write the Benders cut

$$v \ge B_{k+1}(x) = \begin{cases} 10 & \text{if } x_2 = x_3 = x_4 = A \\ 0 & \text{otherwise} \end{cases}$$

Using 0-1 variables: $v \ge 10(x_{A2} + x_{A3} + x_{A5} - 2)$ $v \ge 0$ = 1 if job 5 is assigned to machine A

LSE tutorial, June 2007 Slide 326

Master problem

The master problem is an MILP:

min
$$v$$
 Constraints derived from time windows
$$\sum_{j=1}^{5} \rho_{A_j} x_{A_j} \le 10, \text{ etc.}$$
 Constraints derived from release times
$$\sum_{j=1}^{5} \rho_{B_j} x_{B_j} \le 10, \text{ etc.}$$

$$v \ge \sum_{j=1}^{5} \rho_{g_j} x_{g_j}, \quad v \ge 2 + \sum_{j=3}^{5} \rho_{g_j} x_{g_j}, \text{ etc.}, \quad i = A, B$$

$$v \ge 10(x_{A2} + x_{A3} + x_{A5} - 2)$$

$$v \ge 8x_{B4}$$
 Benders cut from machine A
$$x_j \in \{0,1\}$$
 Benders cut from machine B

Stronger Benders cuts

If all release times are the same, we can strengthen the Benders cuts.

We are now using the cut

$$v \ge M_{ik} \left(\sum_{j \in J_{ik}} x_{ij} - \left| J_{ik} \right| + 1 \right)$$

Min makespan on machine *i* in iteration *k*

Set of jobs assigned to machine *i* in

A stronger cut provides a useful bound even if only some of the jobs in J_{ik} are assigned to machine i: $v \ge M_{ik} - \sum_{j \in J_{ik}} (1 - x_{ij}) p_{ij}$

These results can be generalized to cumulative scheduling.

LSE tutorial, June 2007 Slide 328

