

In	tegrating CP a	nd OR
Us	ing CP + relaxation fr	om MILP
	Problem	Speedup
Focacci, Lodi, Milano (1999)	Lesson timetabling	2 to 50 times faster than CP
Refalo (1999)	Piecewise linear costs	2 to 200 times faster than MILP
Hooker & Osorio (1999)	Flow shop scheduling, etc.	4 to 150 times faster than MILP.
Thorsteinsson & Ottosson (2001)		30 to 40 times faster than CP, MILP

	outational Advant grating CP and N	•
Using	CP + relaxation from	n MILP
	Problem	Speedup
Sellmann & Fahle (2001)	Automatic recording	1 to 10 times faster than CP, MILP
Van Hoeve (2001)	Stable set problem	Better than CP in less time
Bollapragada, Ghattas & Hooker (2001)	Structural design (nonlinear)	Up to 600 times faster than MILP. 2 problems: <6 min vs >20 hrs for MILP
Beck & Refalo (2003)	Scheduling with earliness & tardiness costs	Solved 67 of 90, CP solved only 12

Using	CP-based Branch a	nd Price
	Problem	Speedup
Yunes, Moura & de Souza (1999)	Urban transit crew scheduling	Optimal schedule for 210 trips, vs. 120 for traditional branch and price
Easton, Nemhauser & Trick (2002)	Traveling tournament scheduling	First to solve 8-team instance

	egrating CP and N CP/MILP Benders m	
	Problem	Speedup
Jain & Grossmann (2001)	Min-cost planning & scheduing	20 to 1000 times faster than CP, MILP
Thorsteinsson (2001)	Min-cost planning & scheduling	10 times faster than Jain & Grossmann
Timpe (2002)	Polypropylene batch scheduling at BASF	Solved previously insoluble problem in 10 min

In	nputational Advantage tegrating CP and MIL g CP/MILP Benders meth	Р
	Problem	Speedup
Benoist, Gaudin, Rottembourg (2002)	Call center scheduling	Solved twice as many instances as traditional Benders
Hooker (2004)	Min-cost, min-makespan planning & cumulative scheduling	100-1000 times faster than CP, MILP
Hooker (2005)	Min tardiness planning & cumulative scheduling	10-1000 times faster than CP, MILP

Outline of the Tutorial

- Why Integrate OR and CP?
- A Glimpse at CP
- Initial Example: Integrated Methods
- CP Concepts
- CP Filtering Algorithms
- Linear Relaxation and CP
- Mixed Integer/Linear Modeling
- Cutting Planes
- Lagrangean Relaxation and CP
- Dynamic Programming in CP
- CP-based Branch and Price
- CP-based Benders Decomposition

LSE tutorial, June 2007 Slide 9

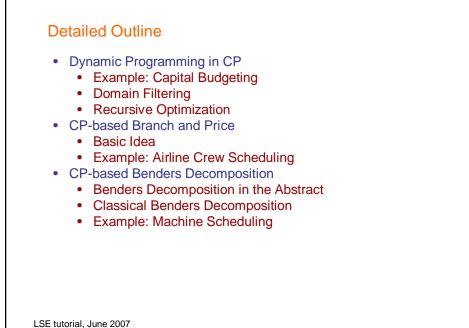
 Outline of the tutorial A Glimpse at CP Early successes Advantages and disadvantages Initial Example: Integrated Methods Freight Transfer Bounds Propagation Cutting Planes Branch-infer-and-relax Tree 	
---	--

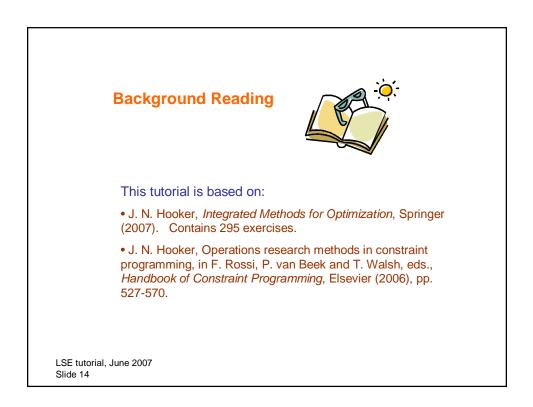
Detailed Outline

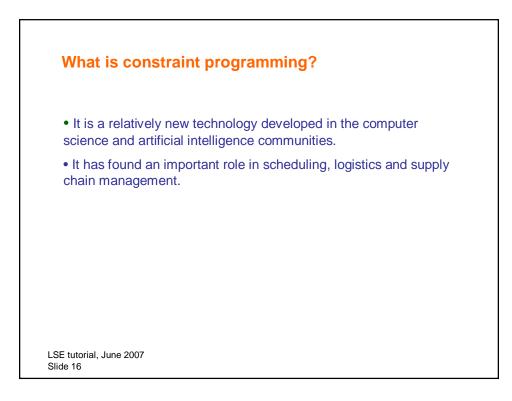
- **CP** Concepts •
 - Consistency
 - Hyperarc Consistency
 - Modeling Examples
- CP Filtering Algorithms •
 - Element
 - Alldiff
 - Disjunctive Scheduling
 - Cumulative Scheduling
- Linear Relaxation and CP •
 - Why relax?
 - Algebraic Analysis of LP
 - Linear Programming Duality
 - LP-Based Domain Filtering
 - Example: Single-Vehicle Routing
- Disjunctions of Linear Systems LSE tutorial, June 2007

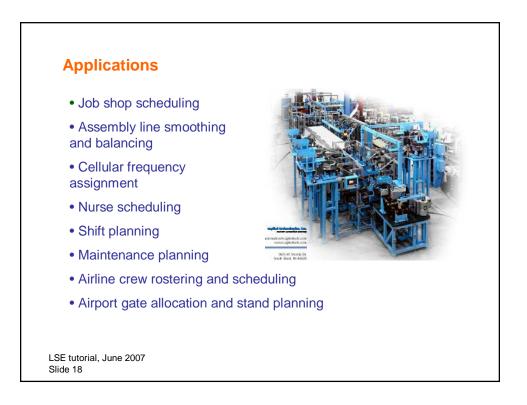
Slide 11

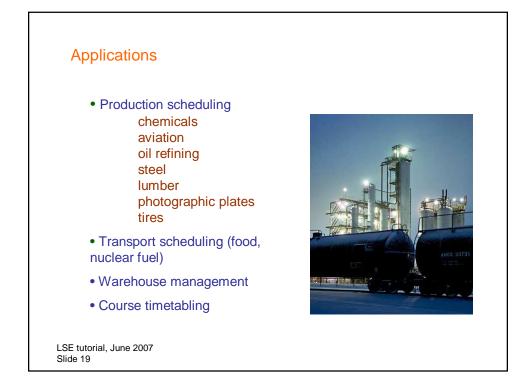
Detailed Outline
 Mixed Integer/Linear Modeling MILP Representability 4.2 Disjunctive Modeling 4.3 Knapsack Modeling Cutting Planes 0-1 Knapsack Cuts Gomory Cuts Mixed Integer Rounding Cuts Example: Product Configuration Lagrangean Relaxation and CP Lagrangean Duality Properties of the Lagrangean Dual
 Example: Fast Linear Programming Domain Filtering Example: Continuous Global Optimization



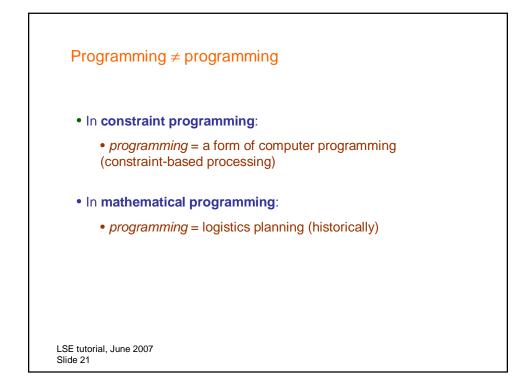


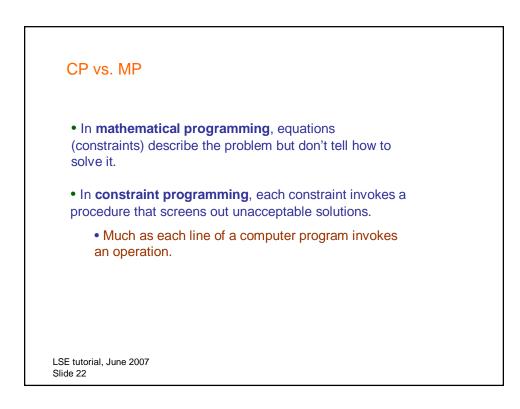


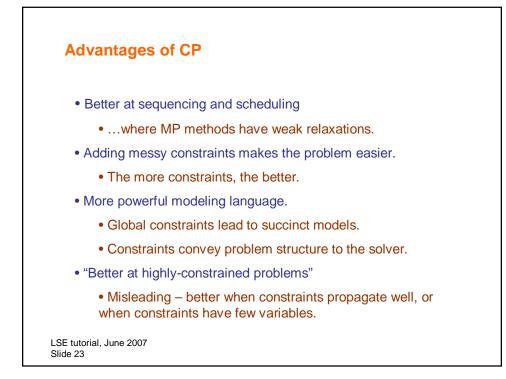


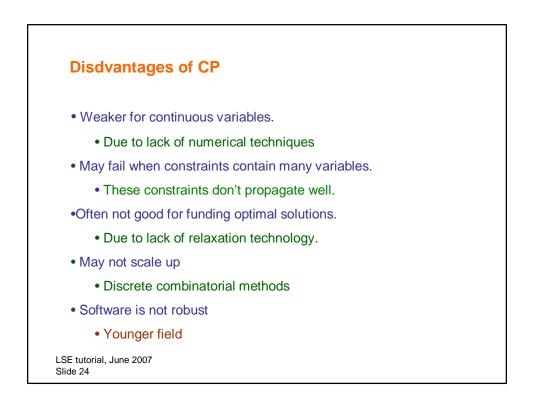


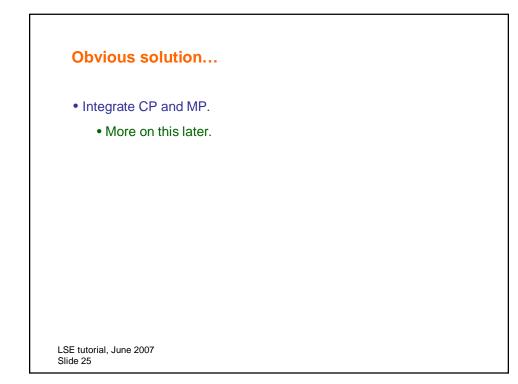
	dvantages
CP vs. Mathematical Prog	aramming
	J. ~
MP	СР
Numerical calculation	Logic processing
Relaxation	Inference (filtering, constraint propagation)
Atomistic modeling (linear inequalities)	High-level modeling (global constraints)
Branching	Branching
Independence of model and algorithm	Constraint-based processing

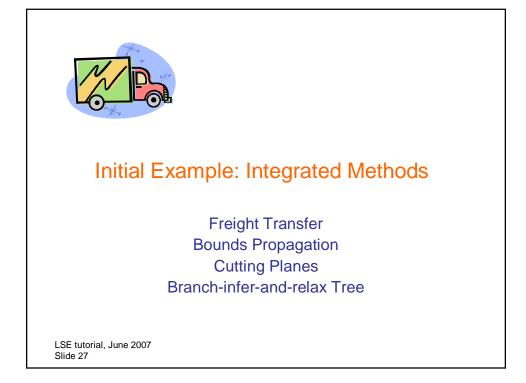


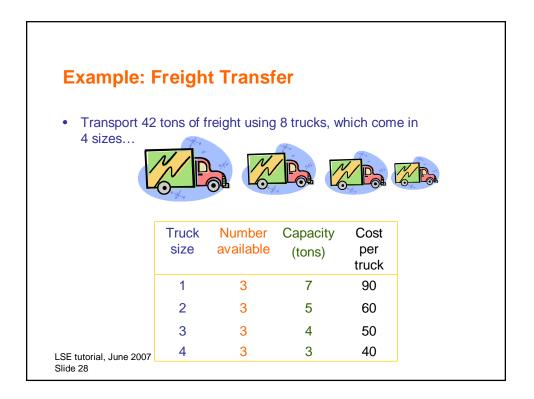




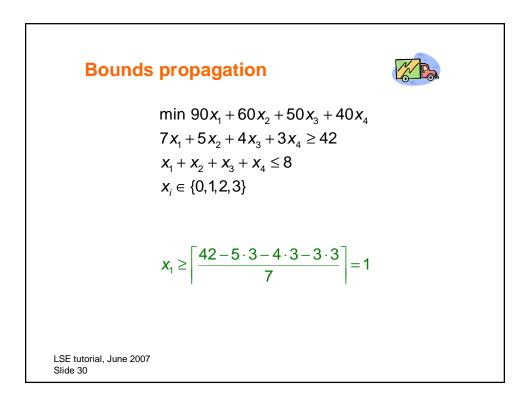


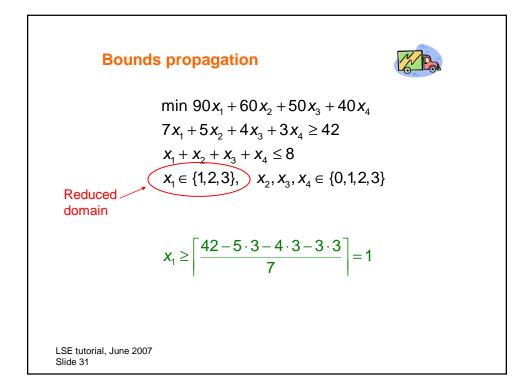


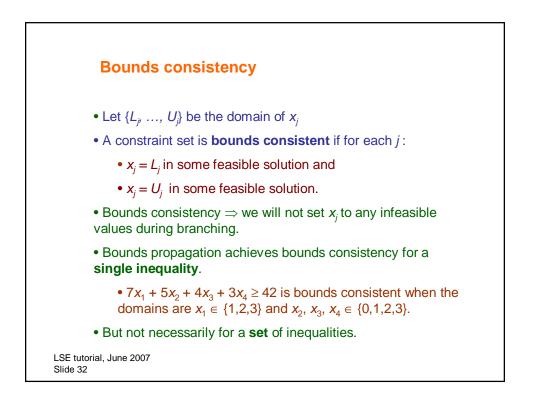


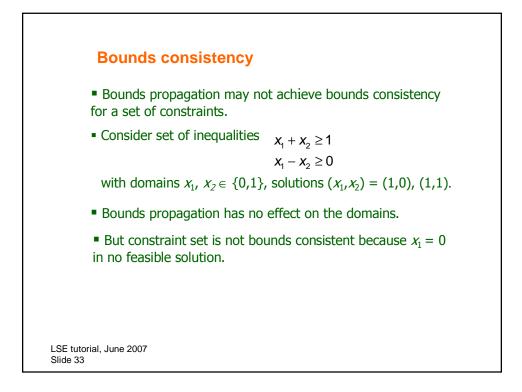


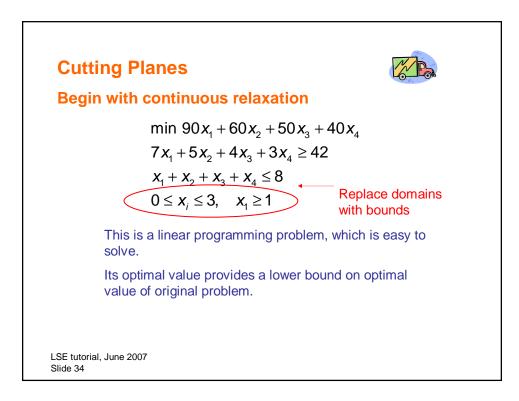
Numt	\	cks of type		(
	min 90	$(x_1 + 60x_2)$	$+50x_{3}+4$	0 <i>x</i> ₄	
	$7x_1 + 5$	$x_{2} + 4x_{3} +$	$3x_4 \ge 42$	\rightarrow	Knapsack
Knapsack		$+ X_3 + X_4 \leq$			covering
packing	$X_i \in \{0,$	0 1			constraint
	Truck type	Number available	Capacity (tons)	Cost per truck	
	1	3	7	90	
	2	3	5	60	
	3	3	4	50	
LSE tutorial, June 2007	4	3	3	40	
Slide 29					

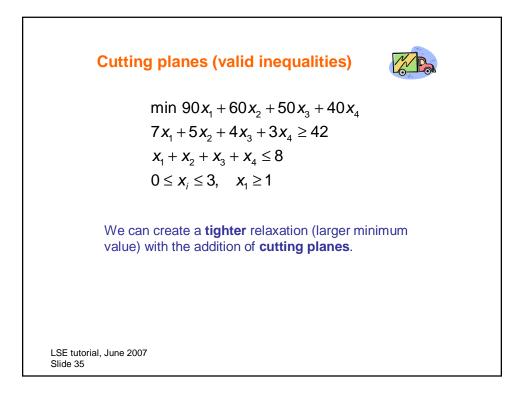


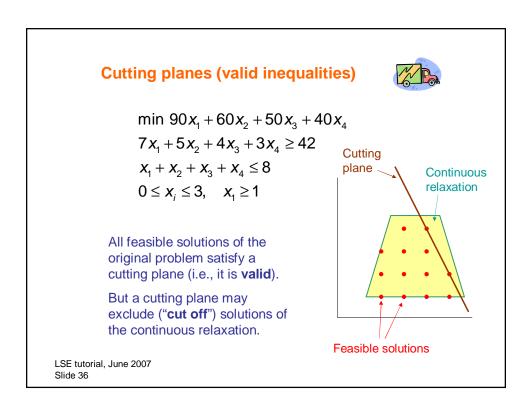


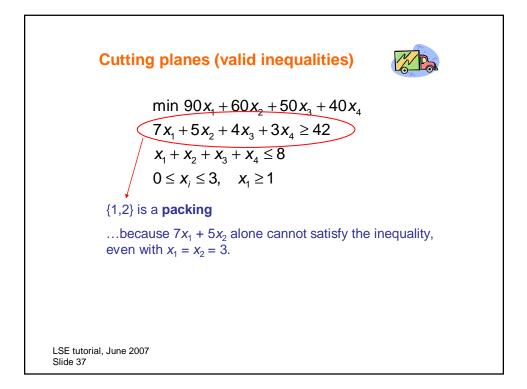


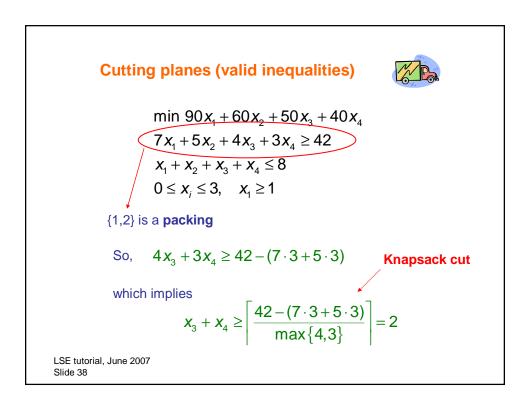


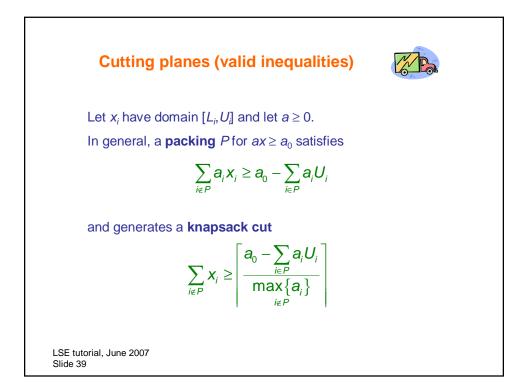


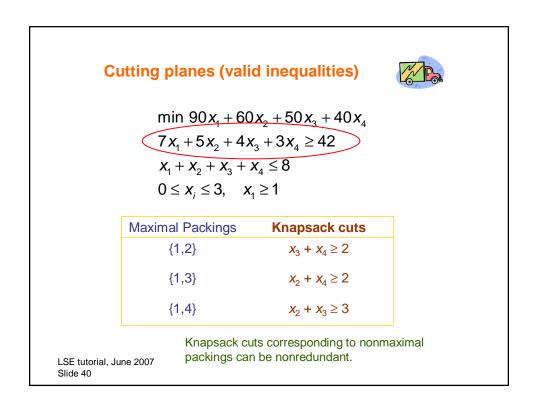


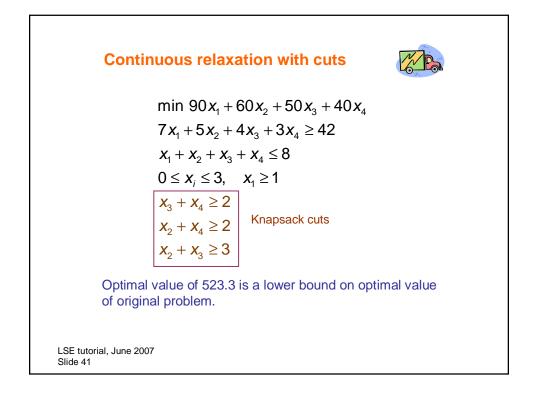


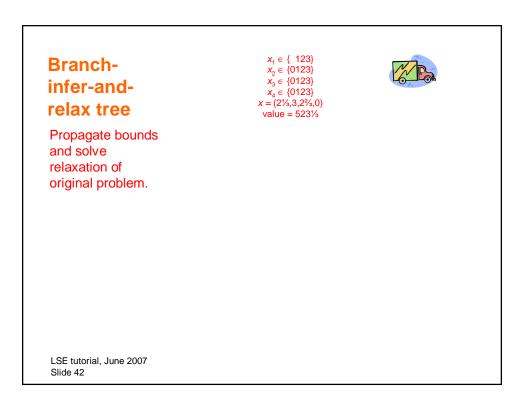


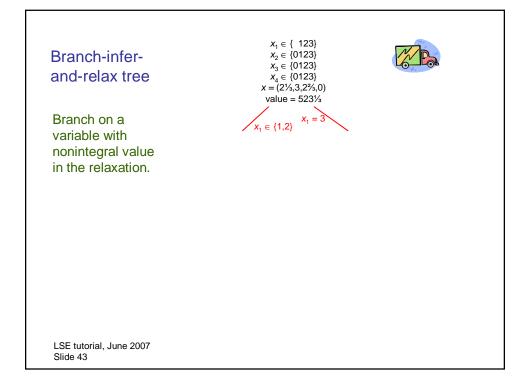


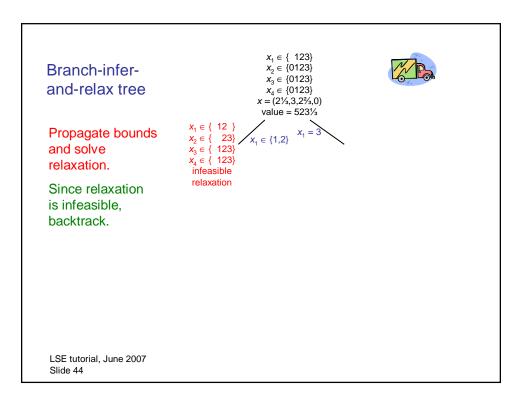


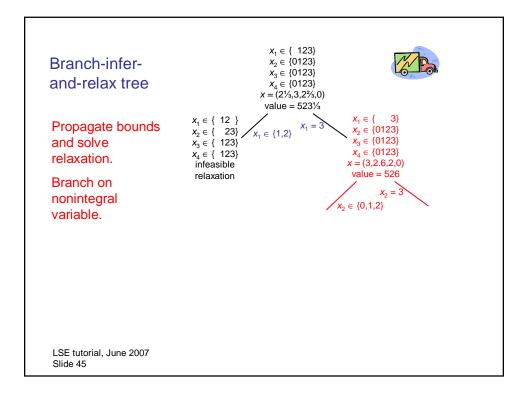


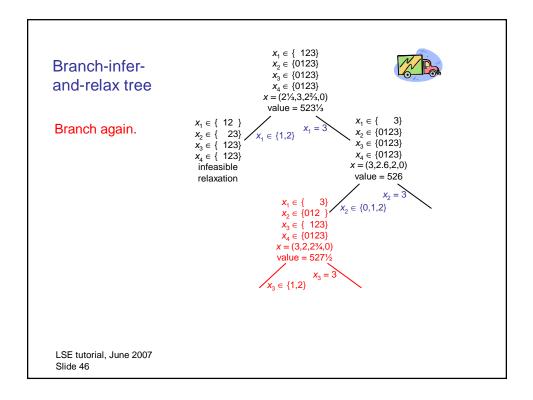


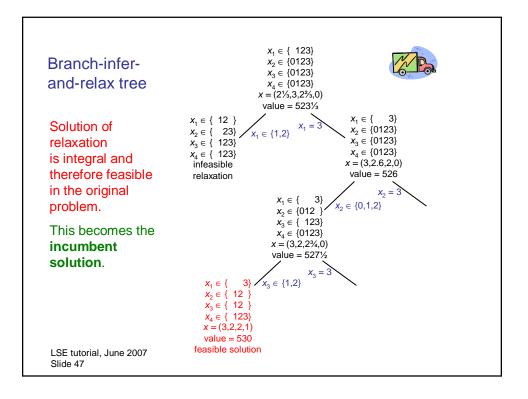


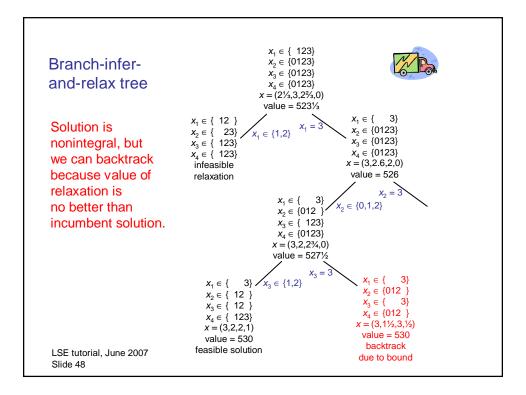


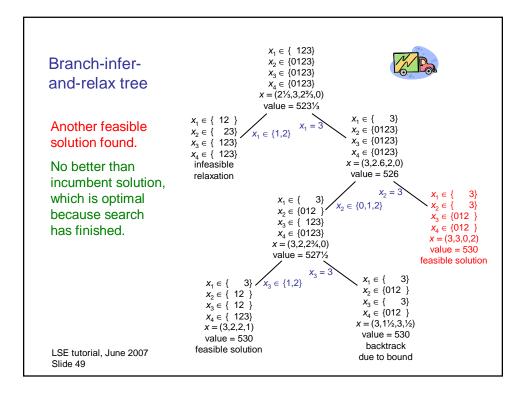


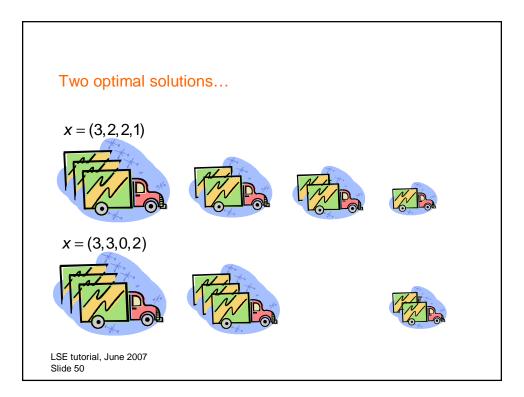


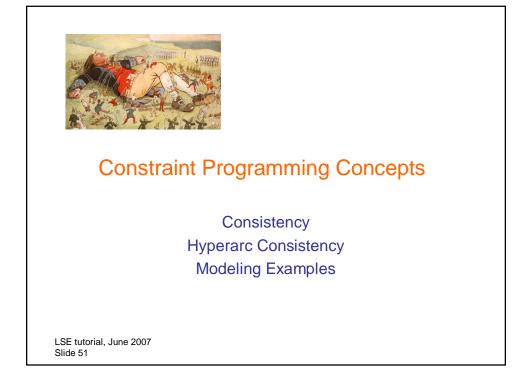


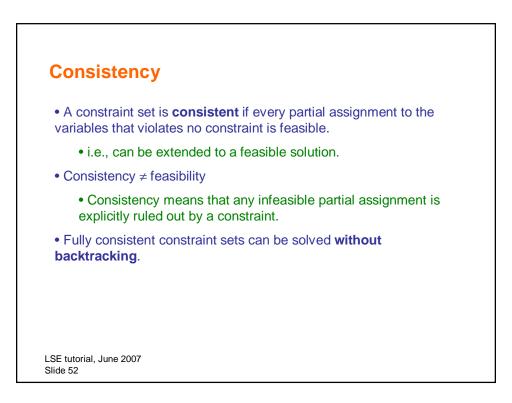


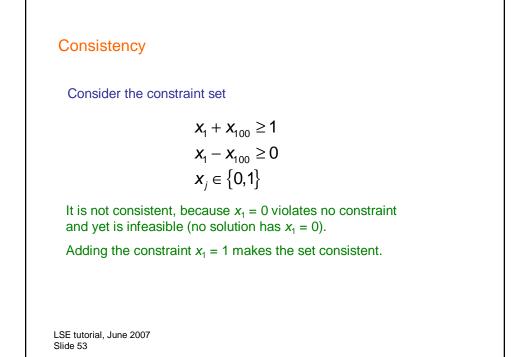


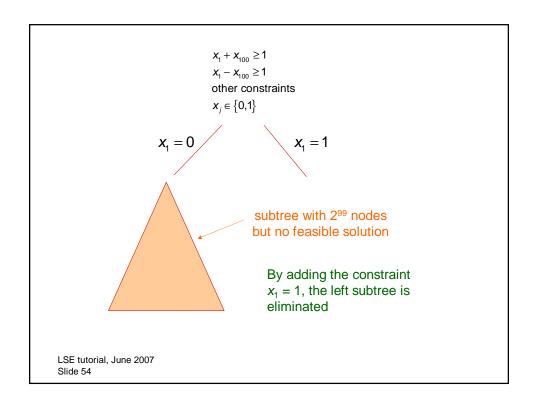


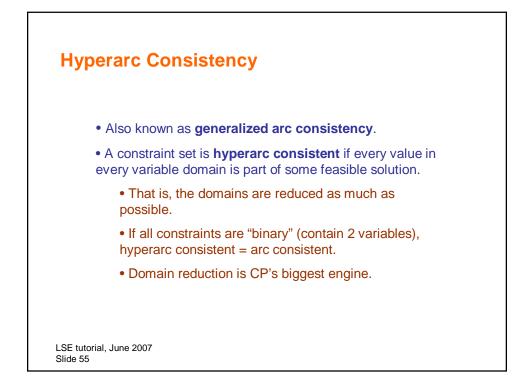


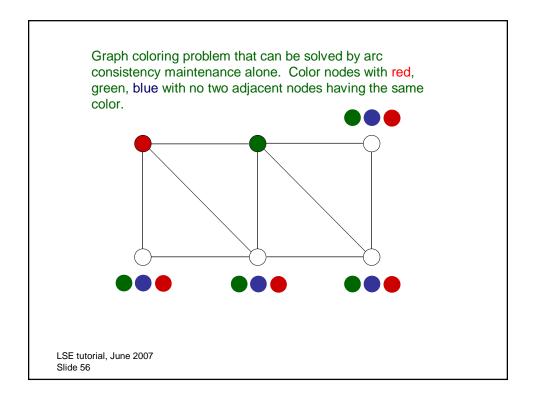


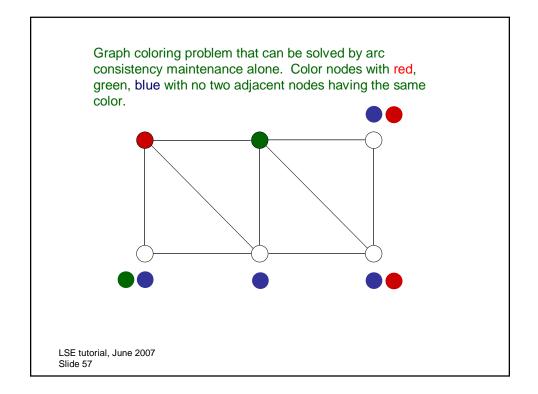


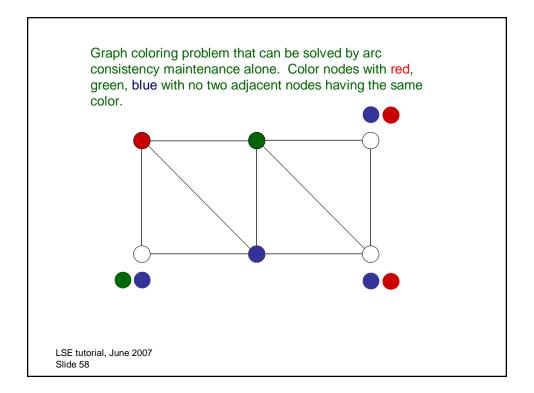


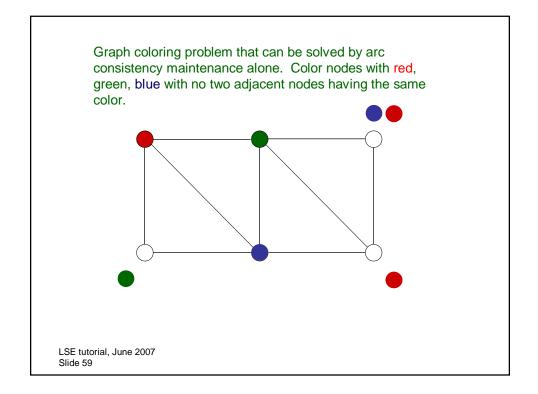


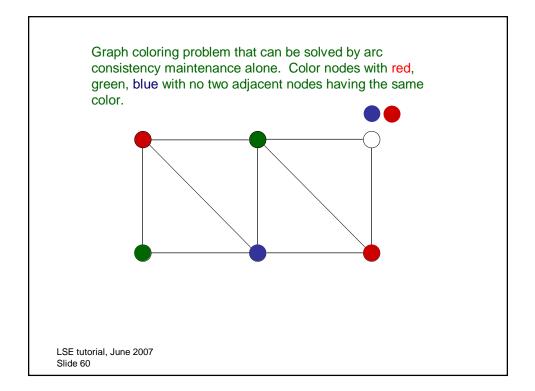


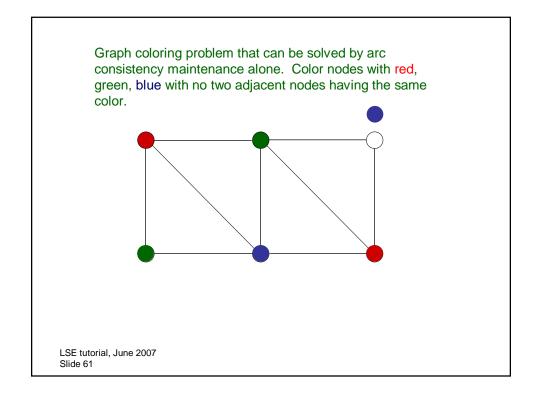


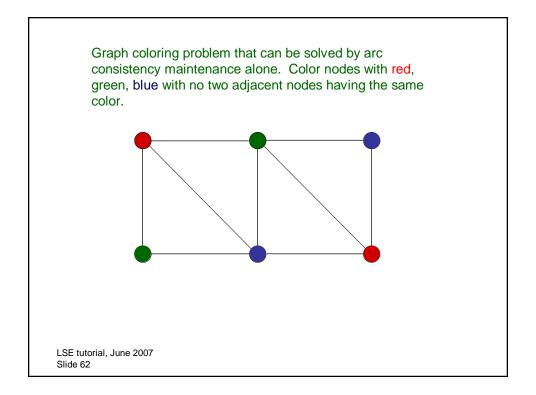


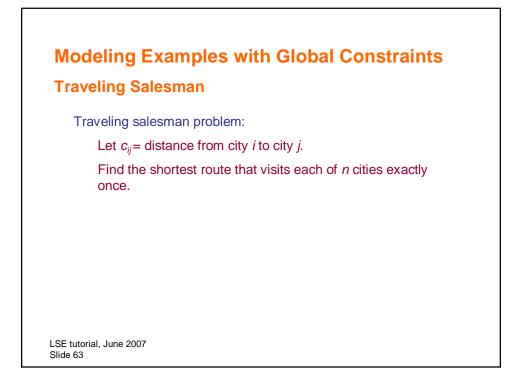


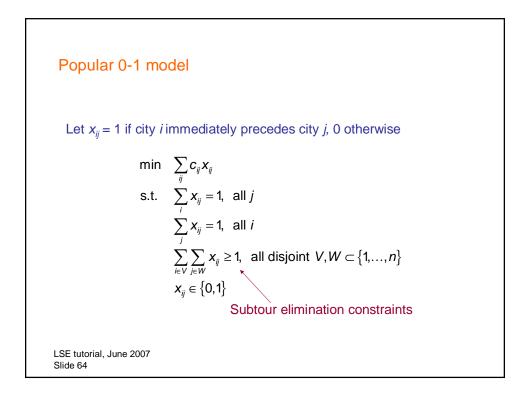


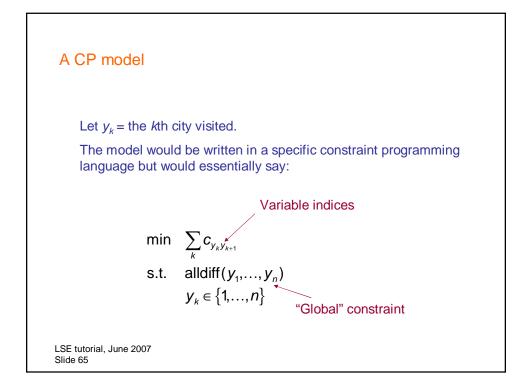


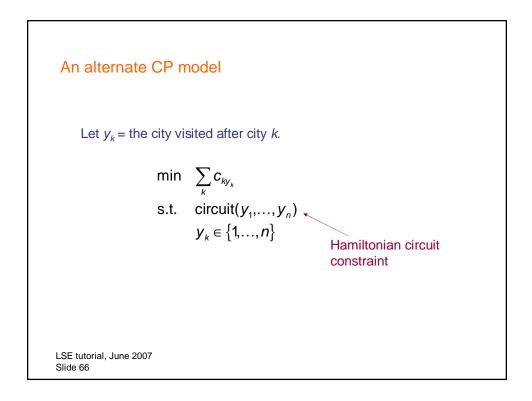


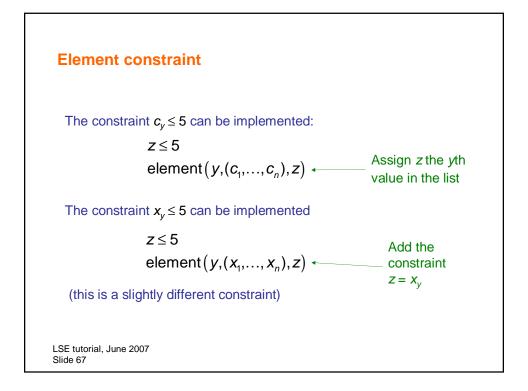


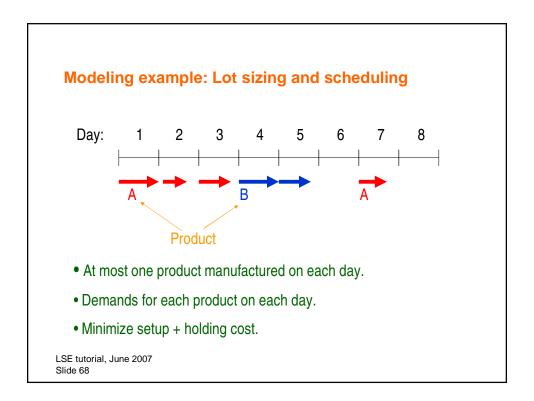




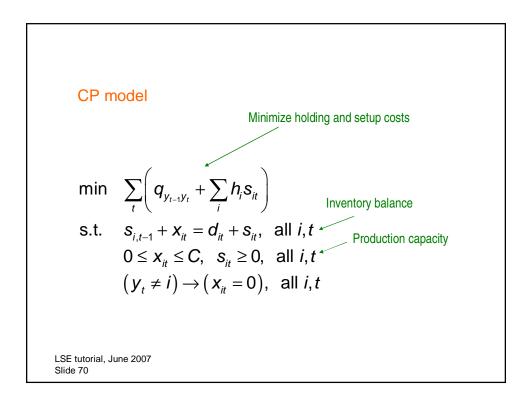


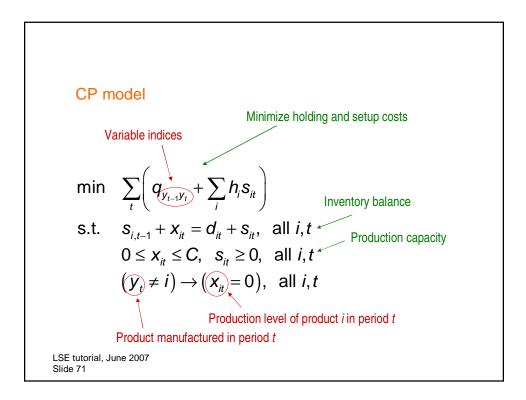


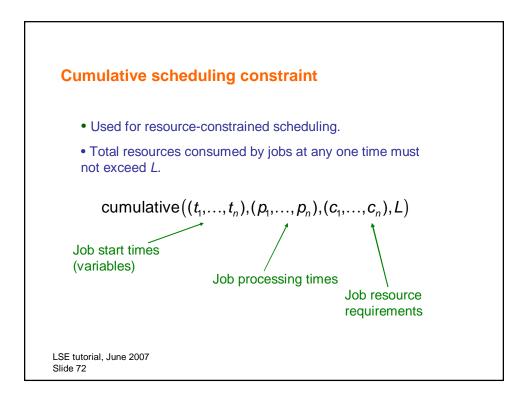


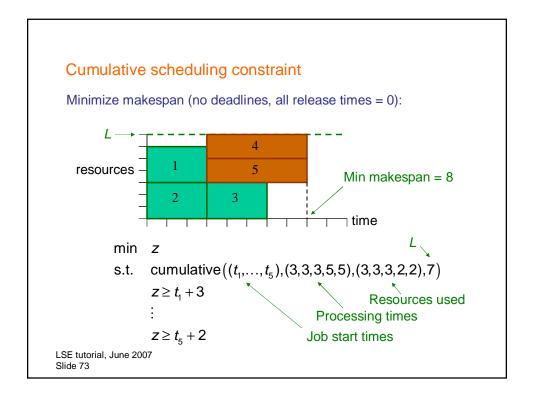


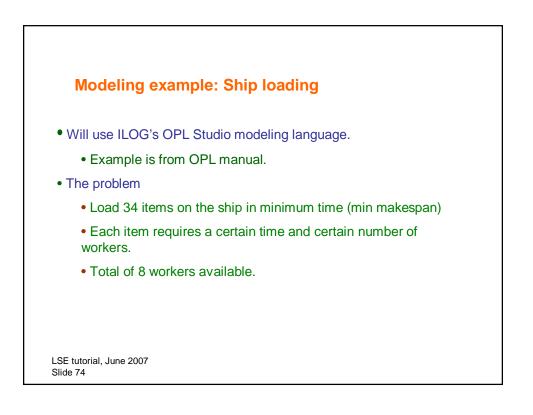
Integer programming model <i>(Wolsey)</i>	$\sum_{t,i} \left(h_{it} \mathbf{s}_{it} + \sum_{j \neq t} q_{ij} \delta_{jjt} \right) \qquad \text{Many variables}$ $s_{i,t-1} + x_{it} = d_{it} + s_{it}, \text{all } i, t$ $z_{it} \geq y_{it} - y_{i,t-1}, \text{all } i, t$ $z_{it} \leq y_{it}, \text{all } i, t$ $z_{it} \leq 1 - y_{i,t-1}, \text{all } i, t$ $\delta_{ijt} \geq y_{i,t-1} + y_{jt} - 1, \text{all } i, j, t$ $\delta_{ijt} \geq y_{i,t-1}, \text{all } i, j, t$ $\delta_{ijt} \geq y_{it}, \text{all } i, j, t$ $x_{it} \leq Cy_{it}, \text{all } i, t$
(woisey)	$\delta_{ijt} \ge y_{jt}$, all i, j, t
	$\sum_{i} y_{it} = 1$, all t
	$y_{it}, z_{it}, \delta_{ijt} \in \{0, 1\}$ $x_{it}, s_{it} \ge 0$
LSE tutorial, June 2007 Slide 69	<i>I</i> (<i>i</i>) - <i>I</i> (<i>i</i>) -





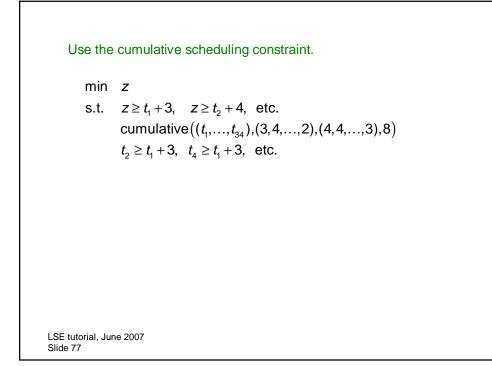






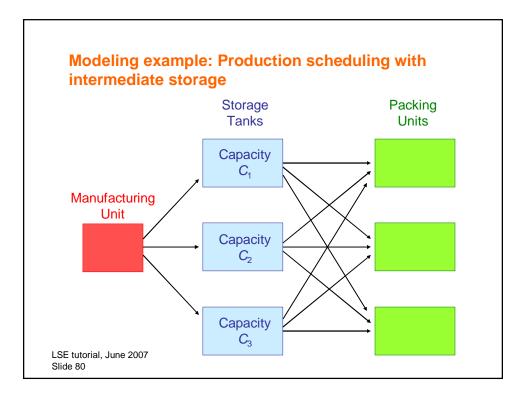
Item	Dura- tion	Labor	Item	Dura- tion	Labor	
1	3	4	18	2	7	Problem dat
2	4	4	19	1	4	
3	4	3	20	1	4	
4	6	4	21	1	4	
5	5	5	22	2	4	
6	2	5	23	4	7	
7	3	4	24	5	8	
8	4	3	25	2	8	
9	3	4	26	1	3	
10	2	8	27	1	3	
11	3	4	28	2	6	
12	2	5	29	1	8	
13	1	4	30	3	3]
14	5	3	31	2	3	
15	2	3	32	1	3]
16	3	3	33	2	3	
17	2	6	34	2	3	

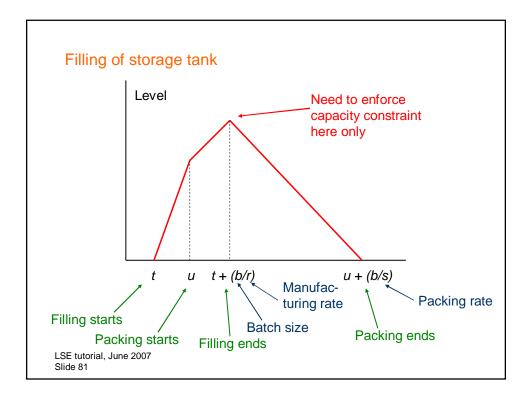
Precedence c	constraints		
$1 \rightarrow 2,4$ $2 \rightarrow 3$ $3 \rightarrow 5,7$ $4 \rightarrow 5$ $5 \rightarrow 6$ $6 \rightarrow 8$ $7 \rightarrow 8$ $8 \rightarrow 9$ $9 \rightarrow 10$ $9 \rightarrow 14$ $10 \rightarrow 11$ $10 \rightarrow 12$	$\begin{array}{c} 11 \rightarrow 13 \\ 12 \rightarrow 13 \\ 13 \rightarrow 15, 16 \\ 14 \rightarrow 15 \\ 15 \rightarrow 18 \\ 16 \rightarrow 17 \\ 17 \rightarrow 18 \\ 18 \rightarrow 19 \\ 18 \rightarrow 20, 21 \\ 19 \rightarrow 23 \\ 20 \rightarrow 23 \\ 21 \rightarrow 22 \end{array}$	$\begin{array}{c} 22 \rightarrow 23 \\ 23 \rightarrow 24 \\ 24 \rightarrow 25 \\ 25 \rightarrow 26, 30, 31, 32 \\ 26 \rightarrow 27 \\ 27 \rightarrow 28 \\ 28 \rightarrow 29 \\ 30 \rightarrow 28 \\ 31 \rightarrow 28 \\ 32 \rightarrow 33 \\ 33 \rightarrow 34 \end{array}$	
LSE tutorial, June 2007 Slide 76			



OF	PL model
in ra in in	<pre>at capacity = 8; at nbTasks = 34; ange Tasks 1nbTasks; at duration[Tasks] = [3,4,4,6,,2]; at totalDuration = sum(t in Tasks) duration[t]; at demand[Tasks] = [4,4,3,4,,3]; aruct Precedences { int before; int after;</pre>
	<pre>inc arcer; Precedences = { <1,2>, <1,4>,, <33,34> }; il, June 2007</pre>

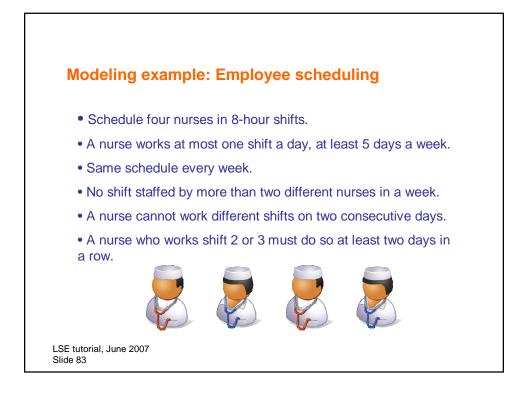
```
scheduleHorizon = totalDuration;
  Activity a[t in Tasks](duration[t]);
  DiscreteResource res(8);
  Activity makespan(0);
  minimize
      makespan.end
  subject to
      forall(t in Tasks)
         a[t] precedes makespan;
      forall(p in setOfPrecedences)
         a[p.before] precedes a[p.after];
      forall(t in Tasks)
         a[t] requires(demand[t]) res;
  };
LSE tutorial, June 2007
Slide 79
```



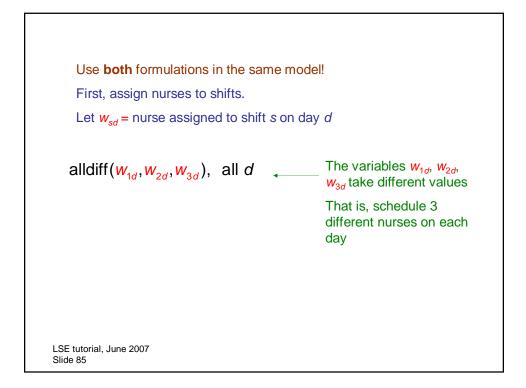


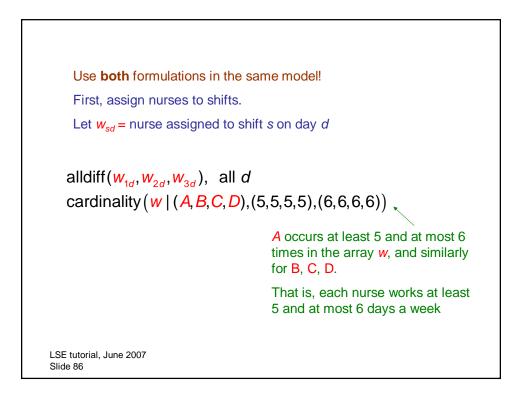
min
$$T \longleftarrow Makespan$$

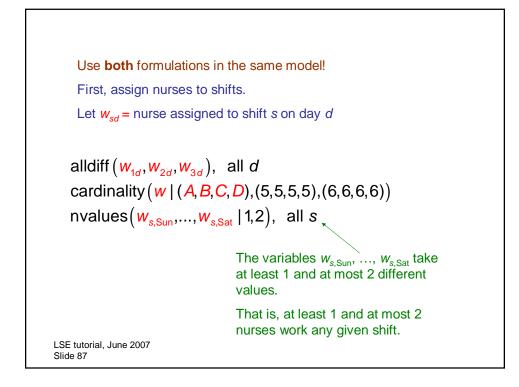
s.t. $T \ge u_j + \frac{b_j}{s_j}$, all j
 $t_j \ge R_j$, all $j \longleftarrow J$ ob release time
cumulative $(t, v, e, m) \longleftarrow m$ storage tanks
 $v_i = u_i + \frac{b_i}{s_i} - t_i$, all $i \longleftarrow J$ ob duration
 $b_i \left(1 - \frac{s_i}{r_i}\right) + s_i u_i \le C_i$, all $i \longleftarrow T$ ank capacity
cumulative $\left(u_i \left(\frac{b_i}{s_1}, \dots, \frac{b_n}{s_n}\right), e, p\right) \longleftarrow p$ packing units
 $u_j \ge t_j \ge 0$
ESE tutorial, June 2007
Side 82

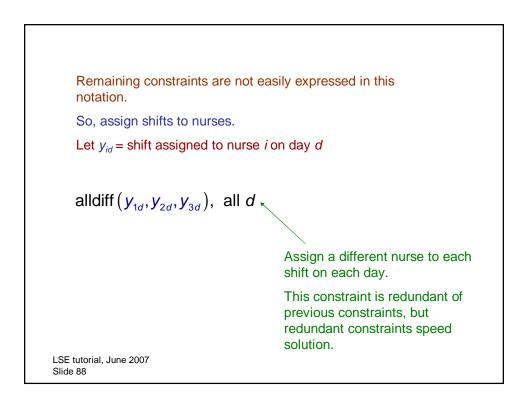


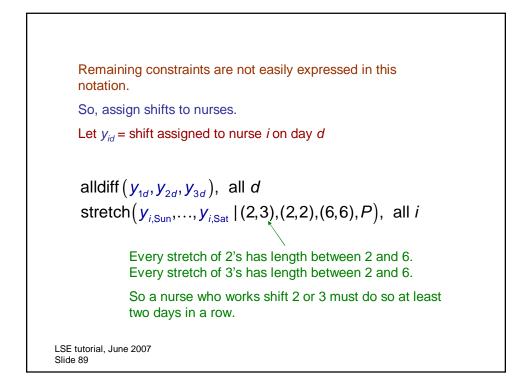
					m			
Assia	n nurse	e to a	shifte					
Assig	ii iiuise	Sun	Mon	Tue	Wed	Thu	Fri	Sat
	Shift 1	A	B	A	A	A	A	A
	Shift 2	C	C	C	B	В	B	B
	Shift 3	D	D	D	D	С	С	D
								1
Assig	n shifts	to nu	urses					1
Assig	n shifts	to nu Sun	Jrses Mon	Tue	Wed	Thu	Fri	Sat
Assig	n shifts Nurse A			Tue 1	Wed	Thu 1	Fri 1	Sat
Assig		Sun	Mon					
Assig	Nurse A	Sun 1	Mon 0	1	1	1	1	1

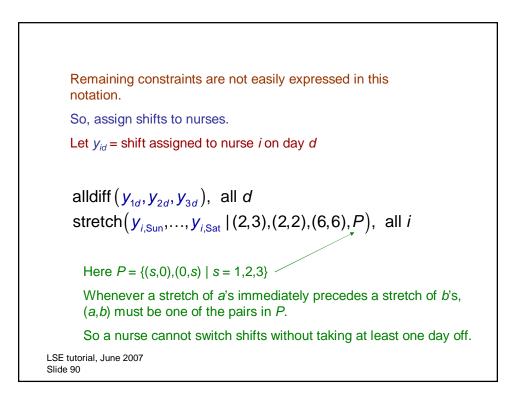












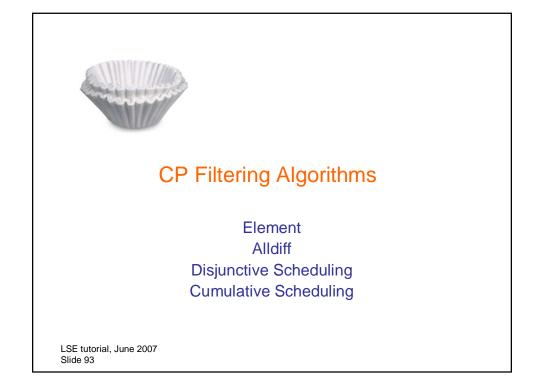
Now we must connect the w_{sd} variables to the y_{id} variables. Use **channeling constraints**:

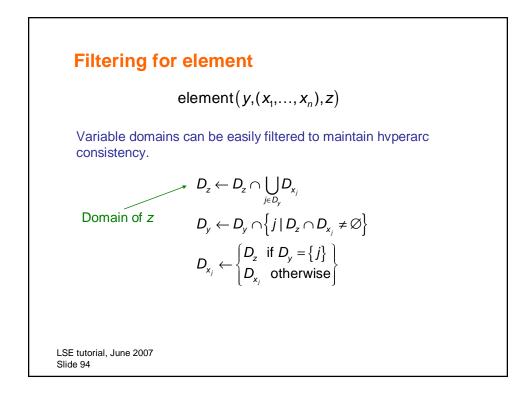
$$w_{y_{id}d} = i$$
, all i, d
 $y_{w_{sd}d} = s$, all s, d

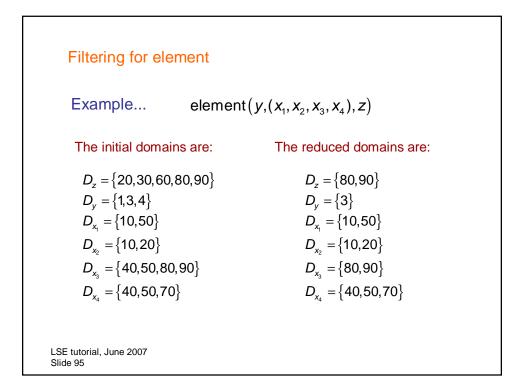
Channeling constraints increase propagation and make the problem easier to solve.

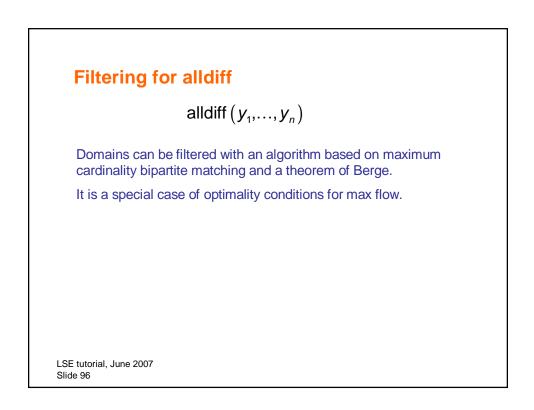
LSE tutorial, June 2007 Slide 91

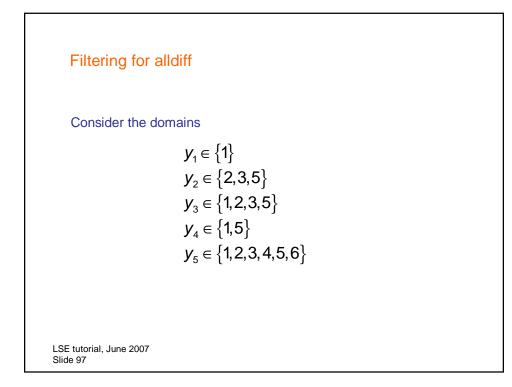
The complete model is: alldiff (w_{1d} , w_{2d} , w_{3d}), all dcardinality ($w \mid (A, B, C, D)$, (5,5,5,5), (6,6,6,6)) nvalues ($w_{s,Sun}$,..., $w_{s,Sat} \mid 1,2$), all salldiff (y_{1d} , y_{2d} , y_{3d}), all dstretch ($y_{i,Sun}$,..., $y_{i,Sat} \mid (2,3), (2,2), (6,6), P$), all i $w_{y_{idd}} = i$, all i, d $y_{w_{sd}} = s$, all s, dLSE tutorial, June 2007 Side 92

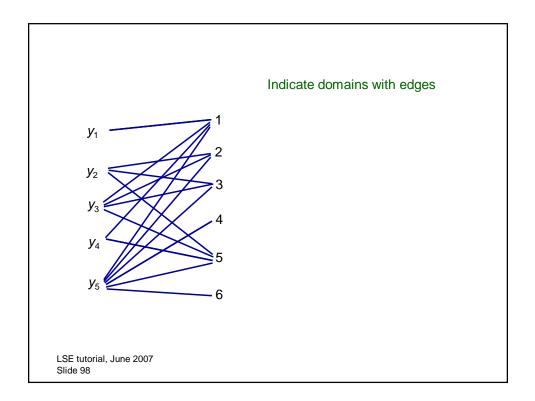


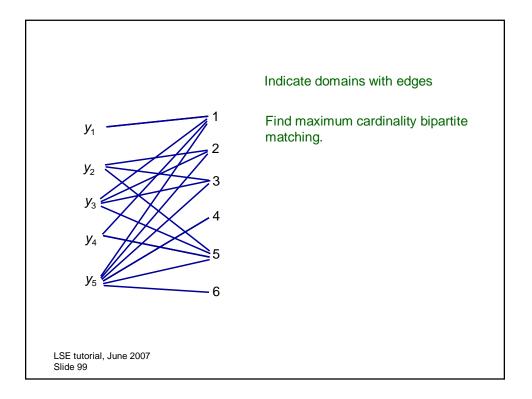


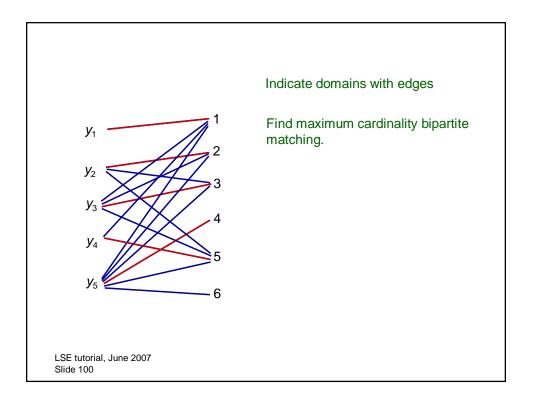


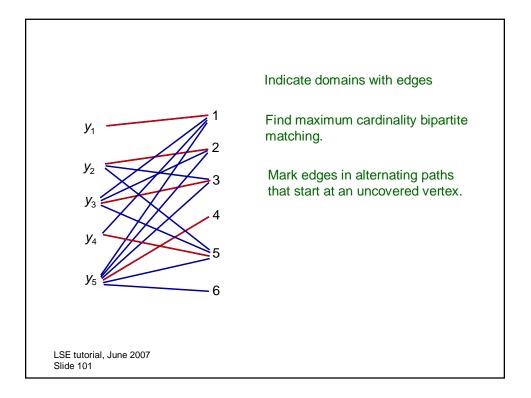


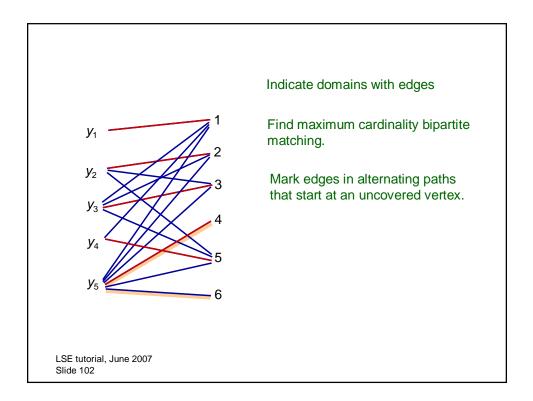


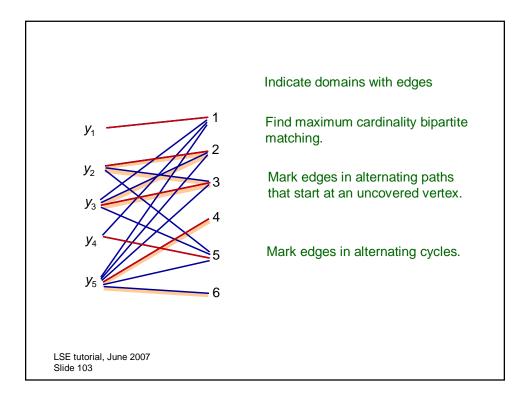


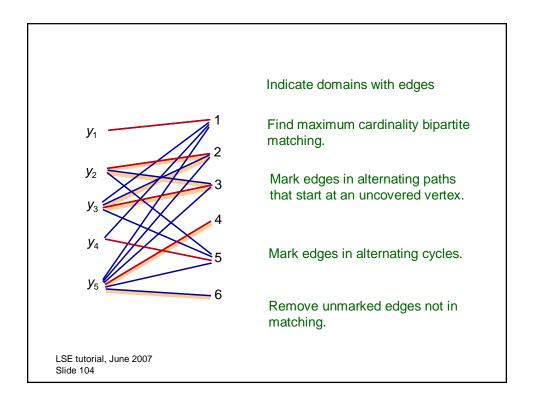


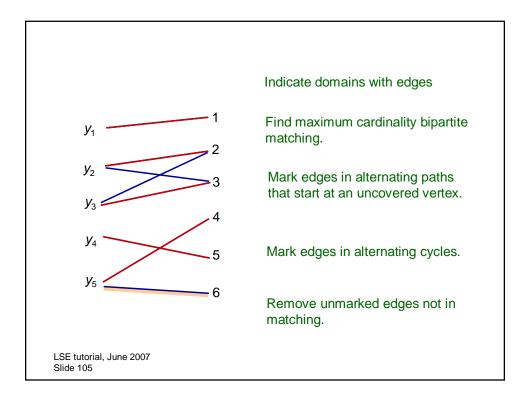


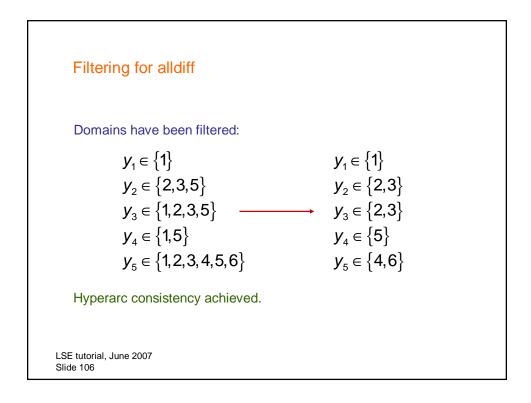


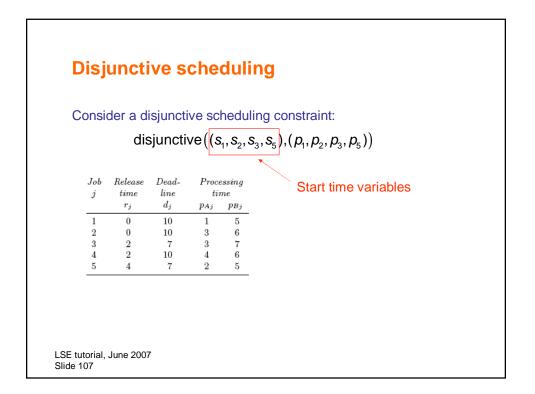


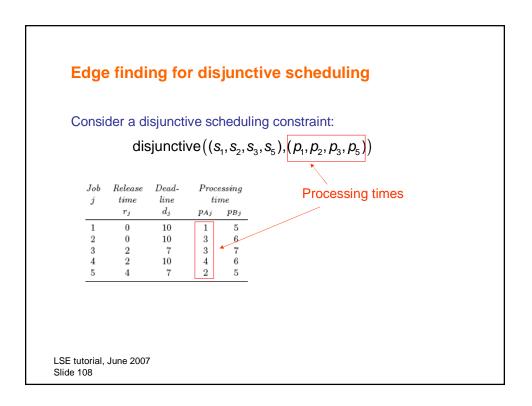


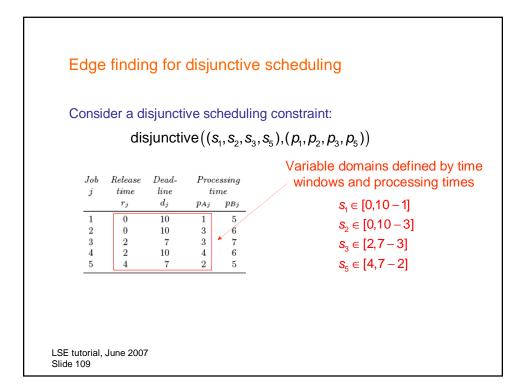


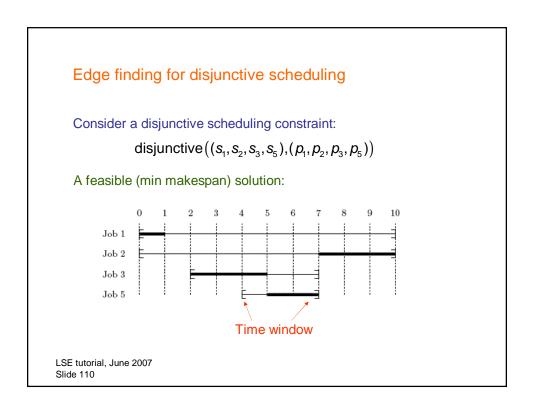


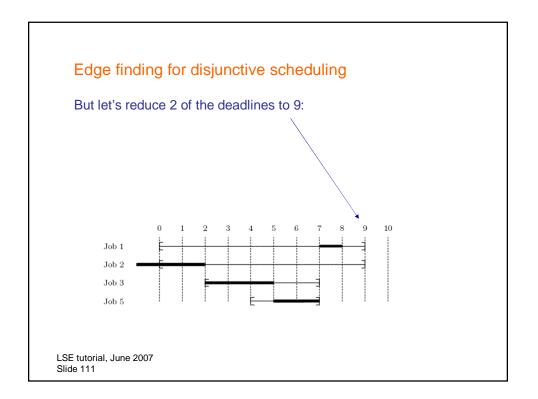


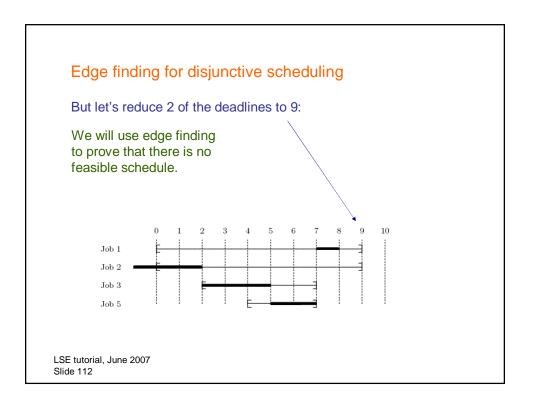


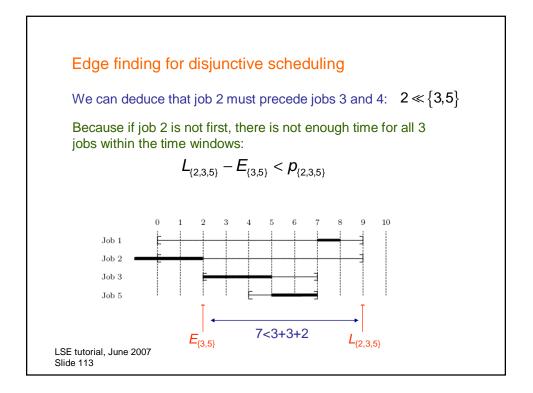


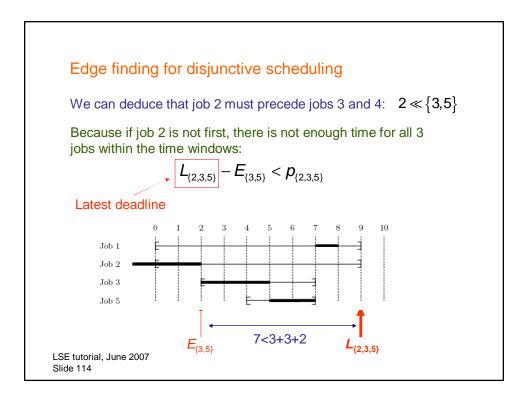


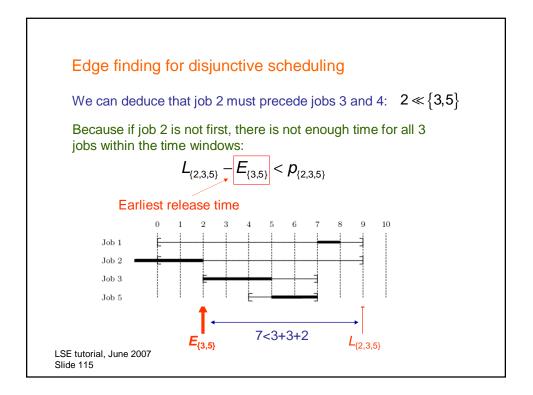


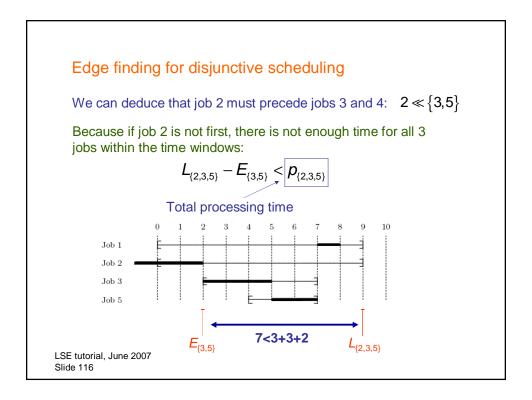


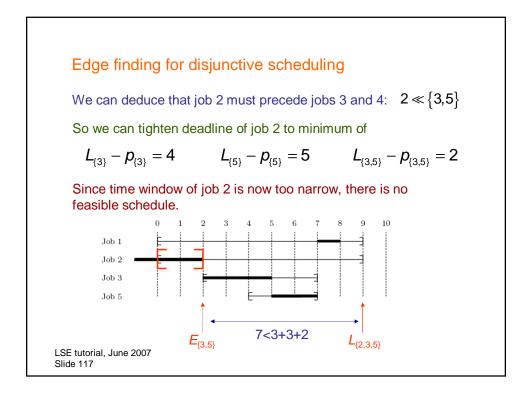


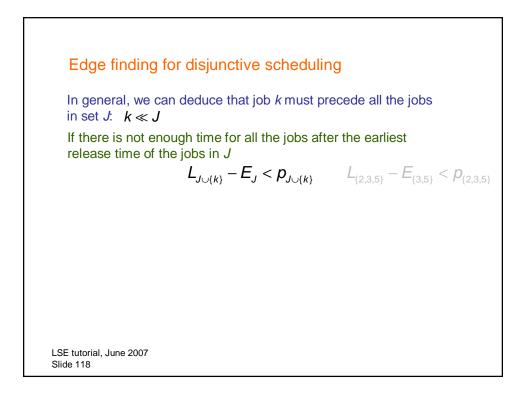


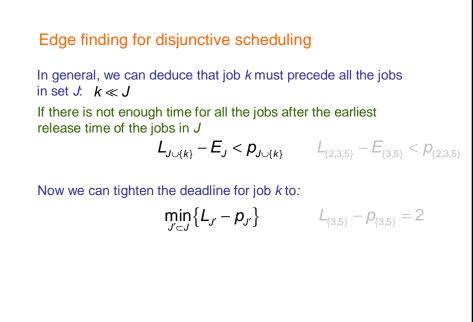




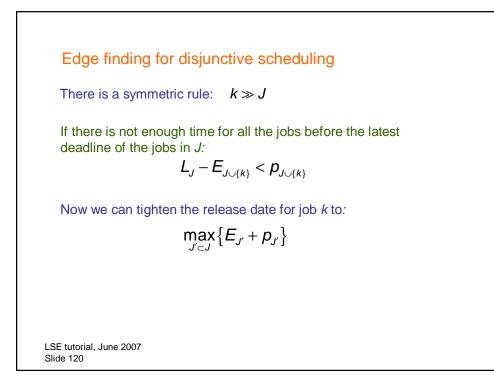


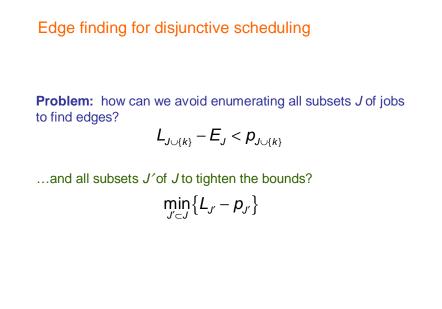




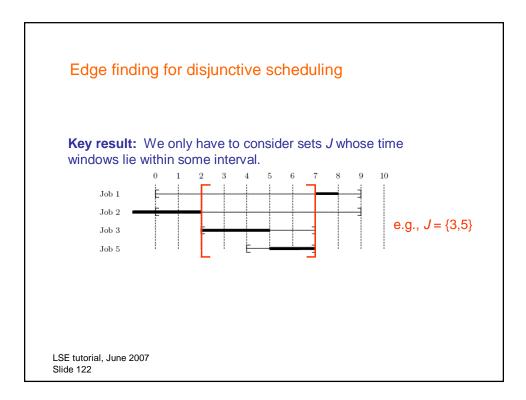


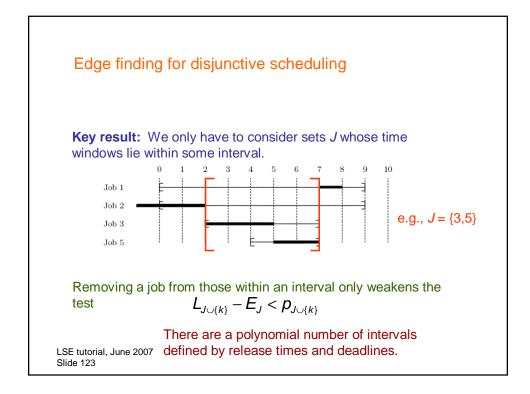
LSE tutorial, June 2007 Slide 119

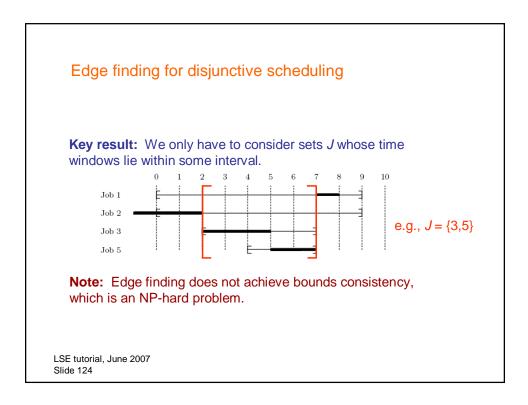


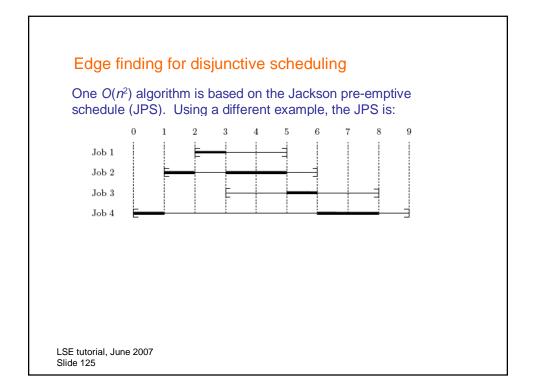


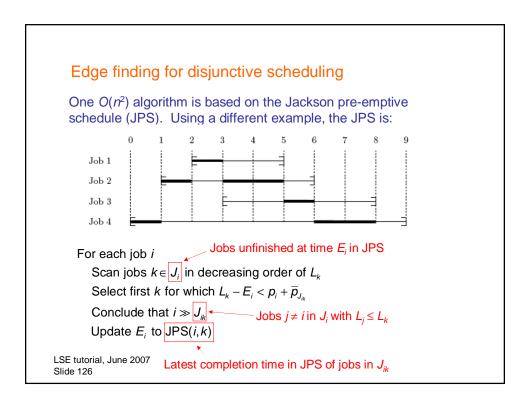
LSE tutorial, June 2007 Slide 121

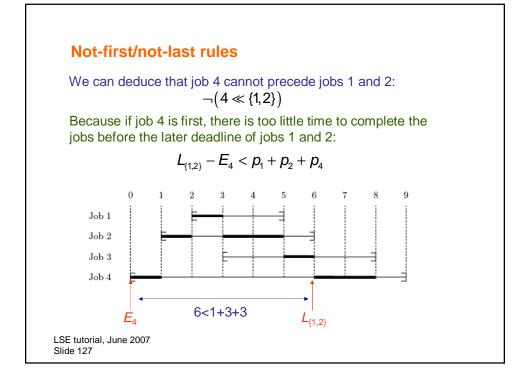


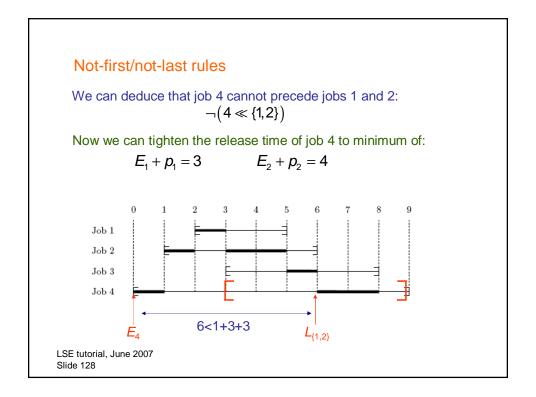












Not-first/not-last rules

In general, we can deduce that job *k* cannot precede all the jobs in *J*: $\neg(k \ll J)$

if there is too little time after release time of job *k* to complete all jobs before the latest deadline in *J*:

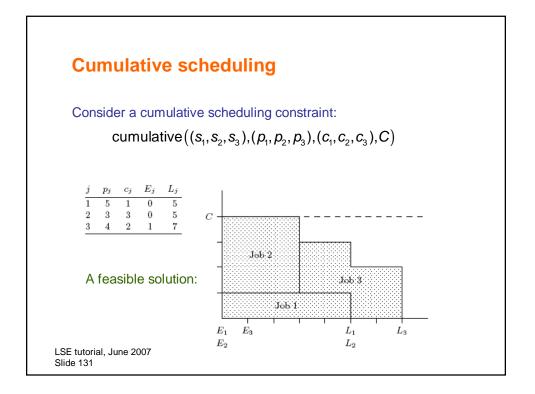
$$L_J - E_k < p_J$$

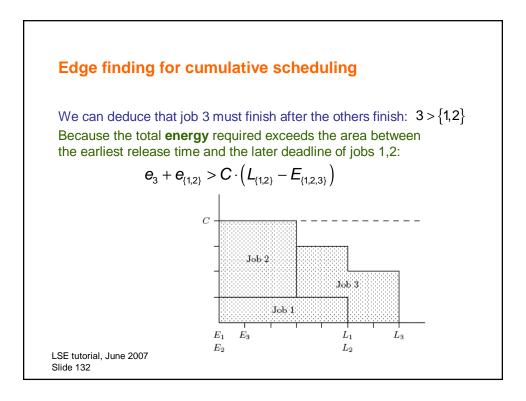
Now we can update E_i to

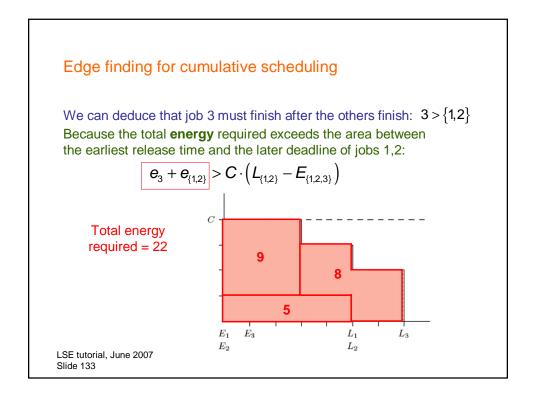
$$\min_{j\in J} \{E_j + p_j\}$$

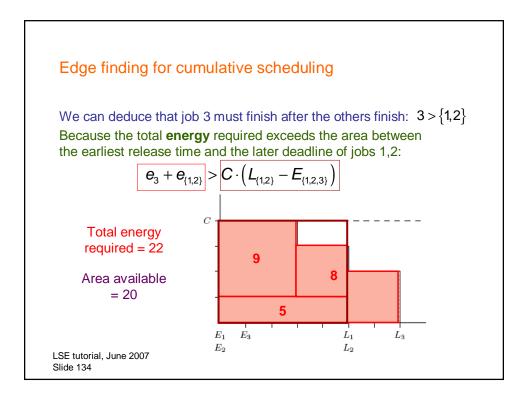
LSE tutorial, June 2007 Slide 129

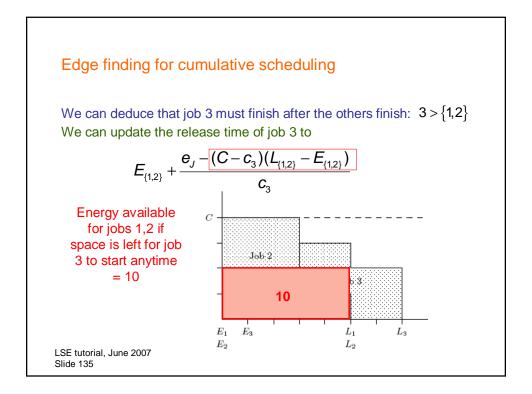
<text><text><text><equation-block><equation-block><equation-block><equation-block><equation-block><text>

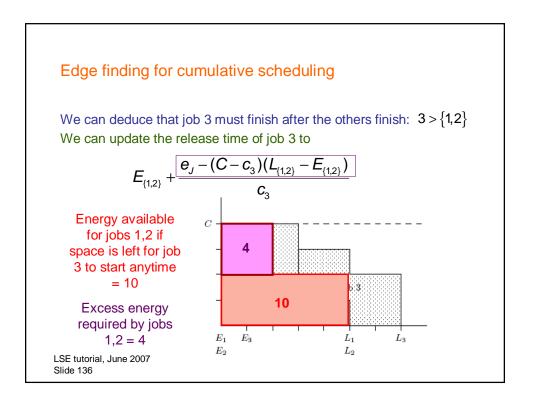


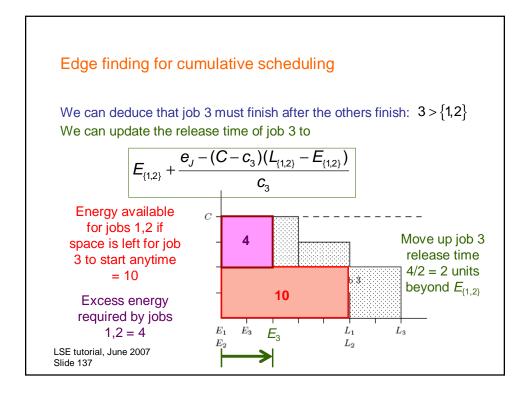


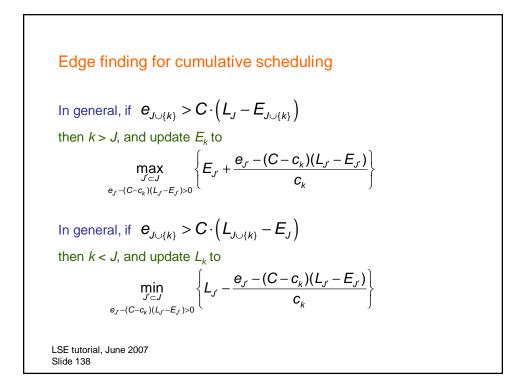


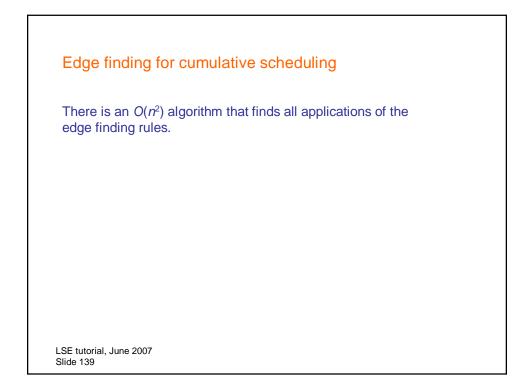


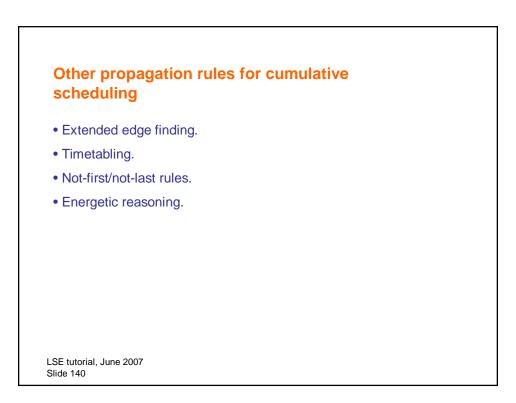


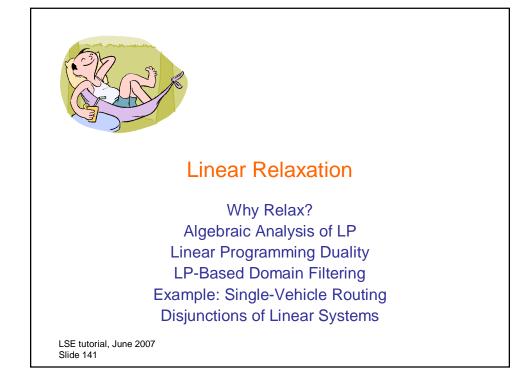


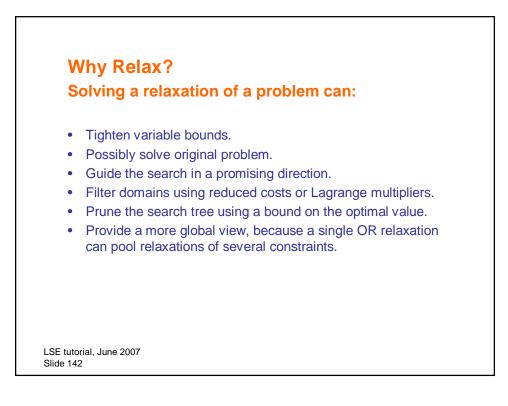


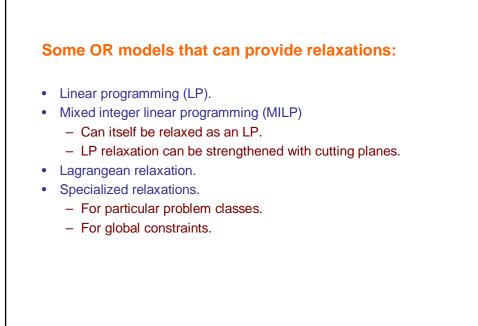




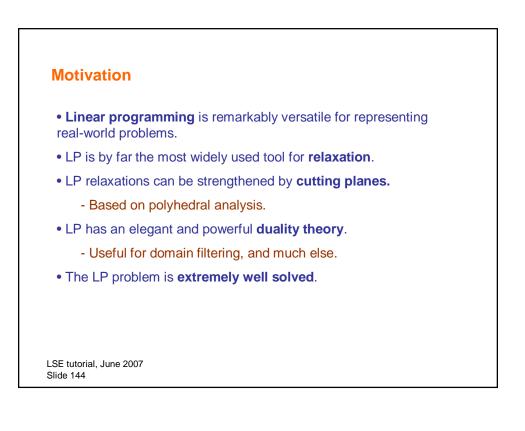


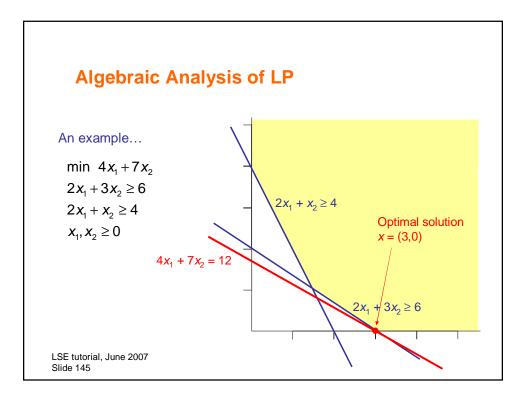




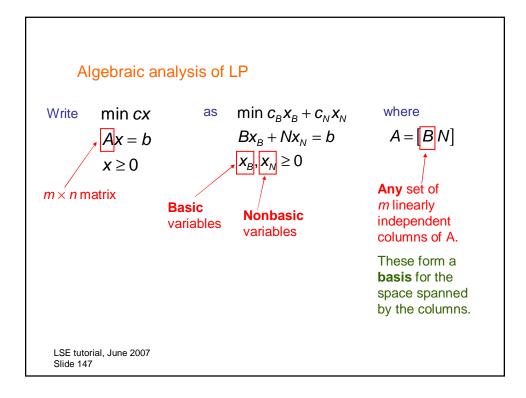


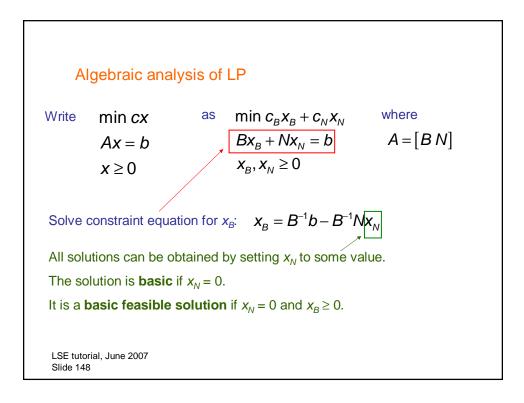
LSE tutorial, June 2007 Slide 143

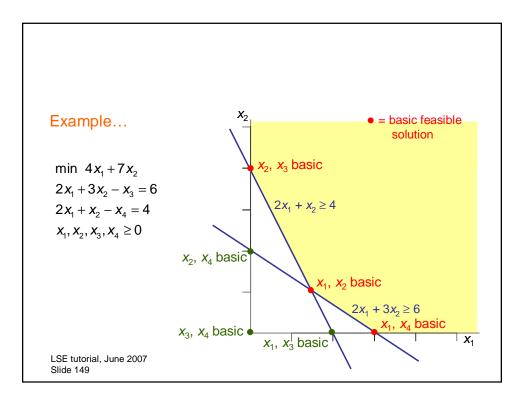


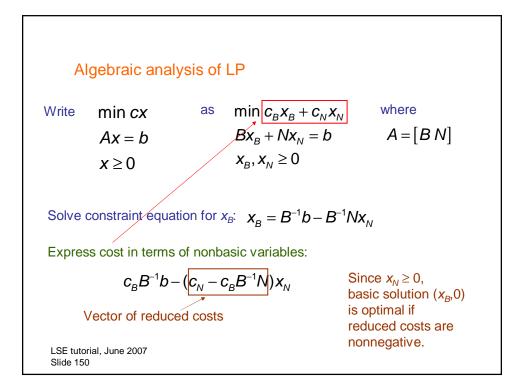


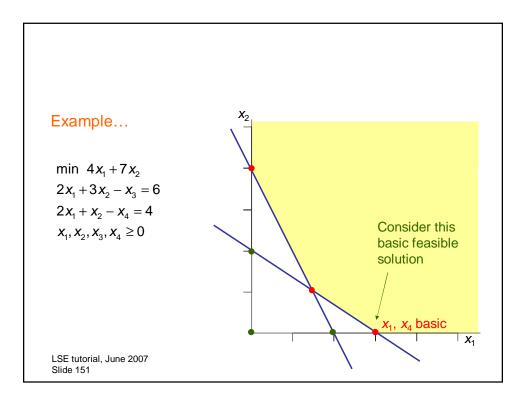
Algebraic Analysis	of LP	
Rewrite min $4x_1 + 7x_2$	as min $4x_1 + 7x_2$	
$2x_1 + 3x_2 \ge 6$	$2x_1 + 3x_2 - x_3 = 6$	
$2x_1 + x_2 \ge 4$ $x_1, x_2 \ge 0$	$2x_1 + x_2 - x_4 = 4$ x_1, x_2, x_3, x_4 \ge 0	
	he former mine out	
In general an LP has t	the form min cx Ax = b	
	$x \ge 0$	
LSE tutorial, June 2007 Slide 146		

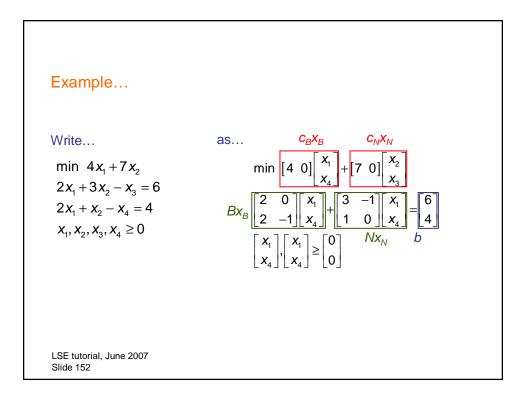


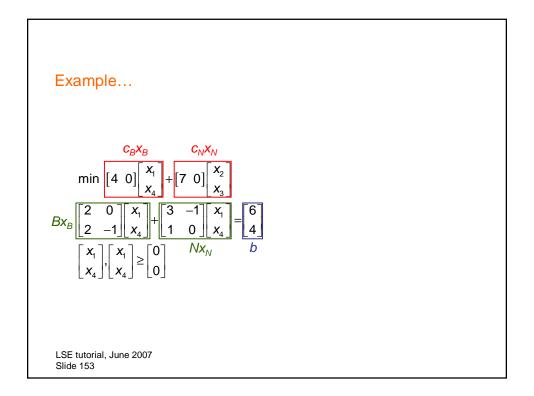


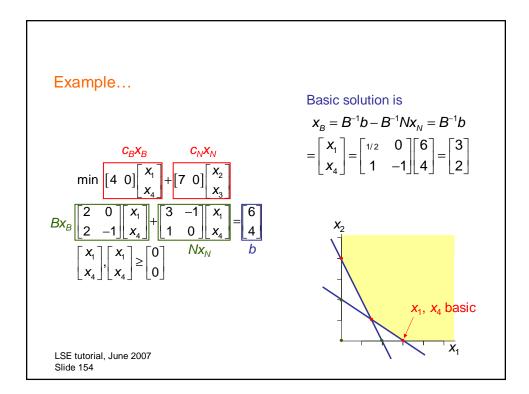


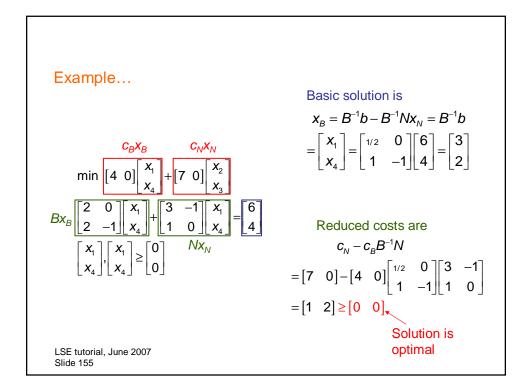


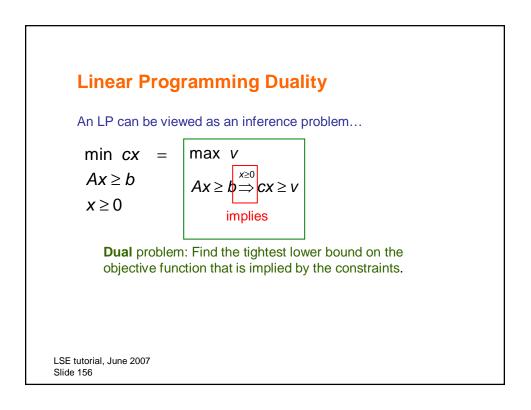


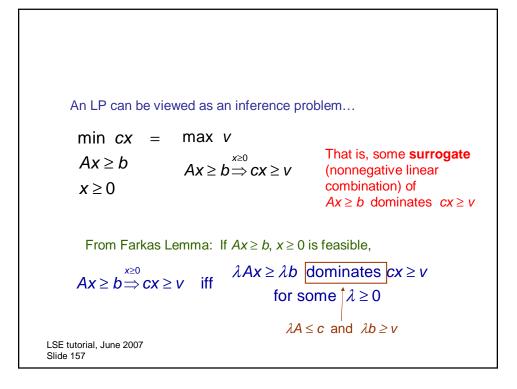


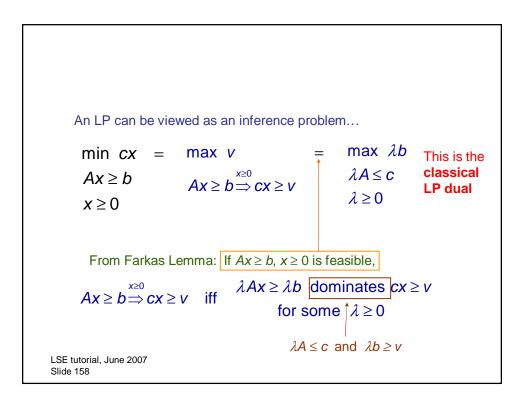


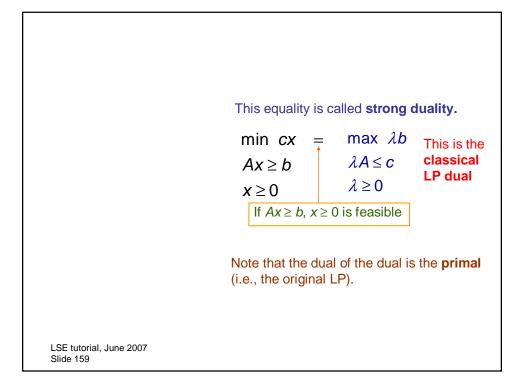




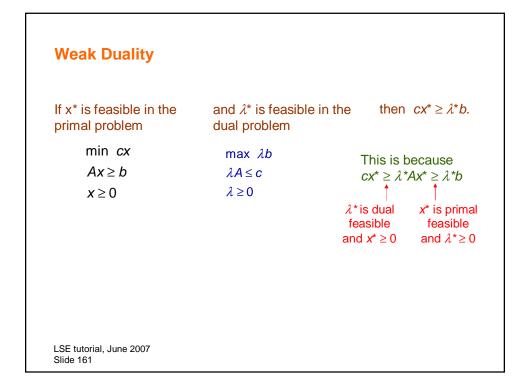




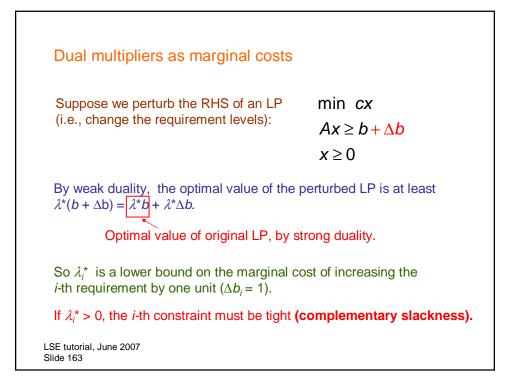


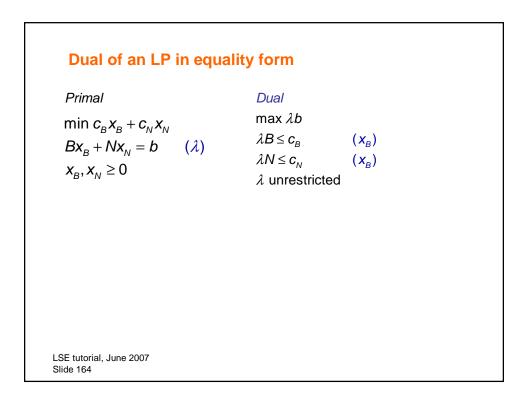


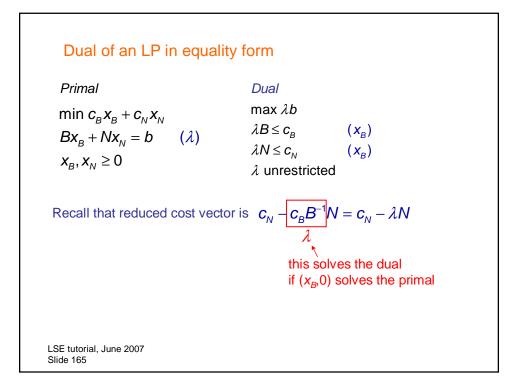
Example			
Primal	Dual		
min $4x_1 + 7x_2$	$= \max 6\lambda_1 + 4\lambda_2 = 12$		
$2x_1 + 3x_2 \ge 6$	$(\lambda_1) \qquad 2\lambda_1 + 2\lambda_2 \le 4 \qquad (x_1)$		
$2x_1 + x_2 \ge 4$	$(\lambda_1) \qquad \qquad 3\lambda_1 + \lambda_2 \le 7 \qquad (x_2)$		
$\boldsymbol{x}_1, \boldsymbol{x}_2 \ge \boldsymbol{0}$	$\lambda_1, \lambda_2 \ge 0$		
	A dual solution is $(\lambda_1, \lambda_2) = (2, 0)$		
	$2x_1 + 3x_2 \ge 6 \cdot (\lambda_1 = 2)$		
	$2x_1 + 3x_2 \ge 6 \cdot (\lambda_1 = 2)$ $2x_1 + x_2 \ge 4 \cdot (\lambda_2 = 0)$ Dual multipliers		
	$4x_1 + 6x_2 \ge 12$		
	dominates		
LSE tutorial, June 2007 Slide 160	$4x_1 + 7x_2 \ge 12$		

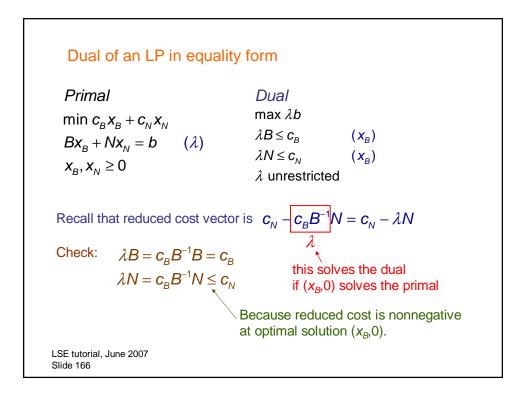


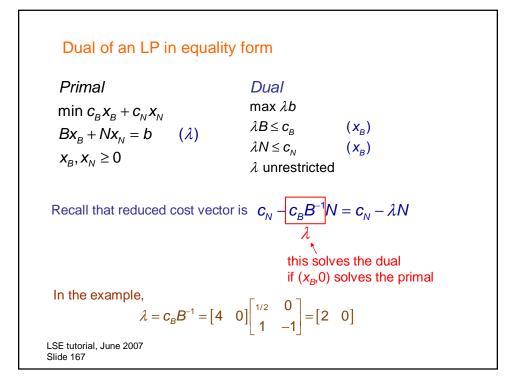
Dual multipliers as marginal costs		
Suppose we perturb the RHS of an LP (i.e., change the requirement levels):	$min \ cx$ $Ax \ge b + \Delta b$ $x \ge 0$	
The dual of the perturbed LP has the same constraints at the original LP:	$\max \lambda(b + \Delta b)$ $\lambda A \le c$ $\lambda \ge 0$	
So an optimal solution λ^* of the original dual is feasible in the perturbed dual.		
LSE tutorial, June 2007 Slide 162		

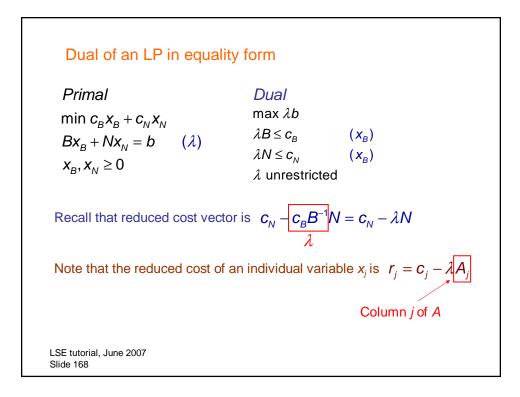


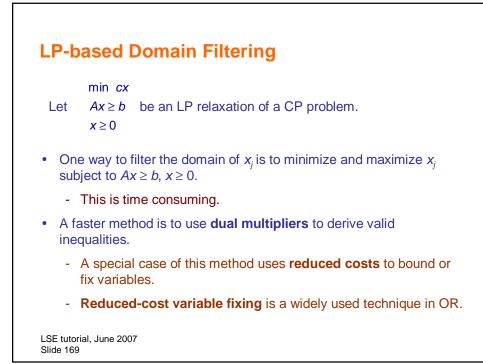




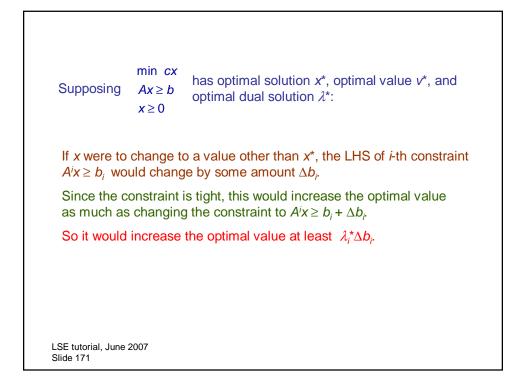


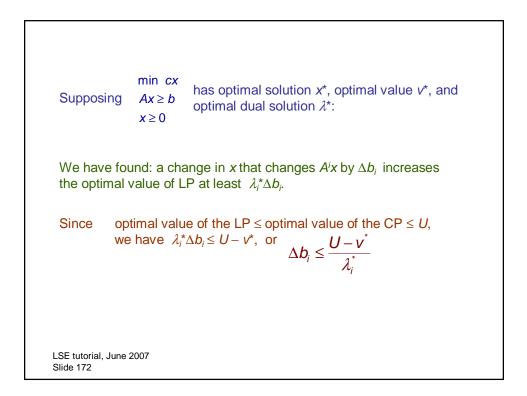


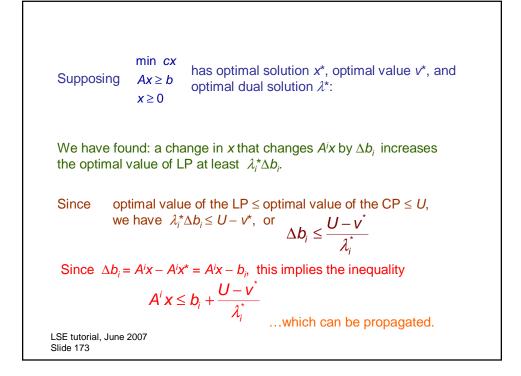




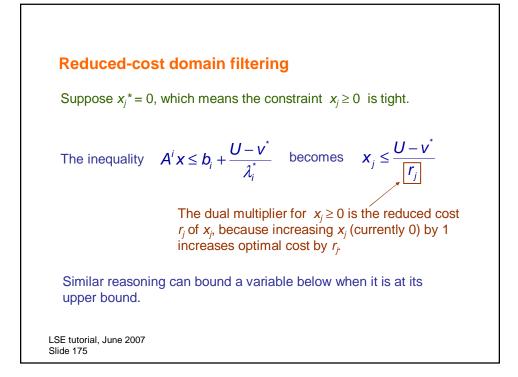
Suppose:		
$ \begin{array}{l} \min \ cx \\ Ax \ge b \\ x \ge 0 \end{array} $	has optimal solution x^* , optimal value v^* , and optimal dual solution λ^* .	
	 * > 0, which means the <i>i</i>-th constraint is tight nentary slackness); 	
and th	e LP is a relaxation of a CP problem;	
and we have a feasible solution of the CP problem with value U , so that U is an upper bound on the optimal value.		
LSE tutorial, June 200 Slide 170	7	

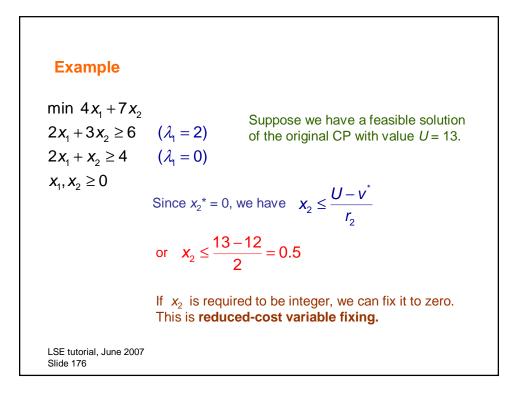


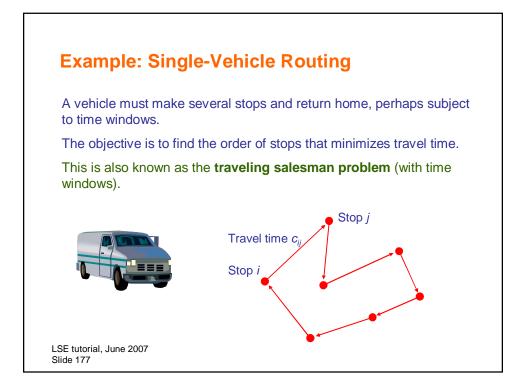


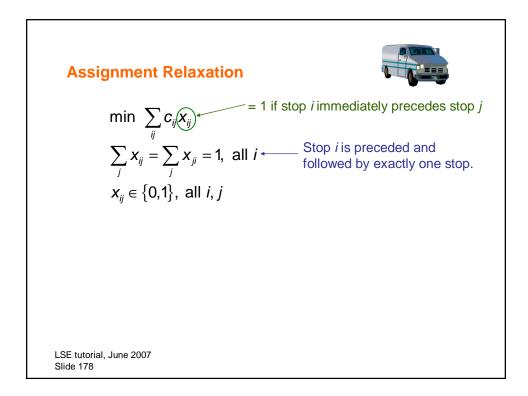


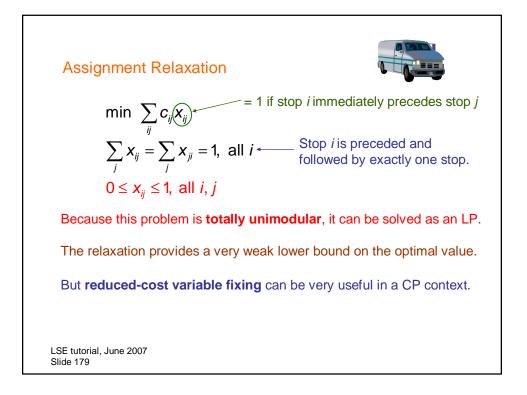
Examplemin $4x_1 + 7x_2$
 $2x_1 + 3x_2 \ge 6$
 $(\lambda_1 = 2)$ Suppose we have a feasible solution
of the original CP with value U = 13. $2x_1 + x_2 \ge 4$
 $(\lambda_1 = 0)$ Since the first constraint is tight, we can propagate
the inequality $x_1, x_2 \ge 0$ Since the first constraint is tight, we can propagate
the inequalityor $2x_1 + 3x_2 \le 6 + \frac{13 - 12}{2} = 6.5$ LSE tutorial, June 2007
Slide 174

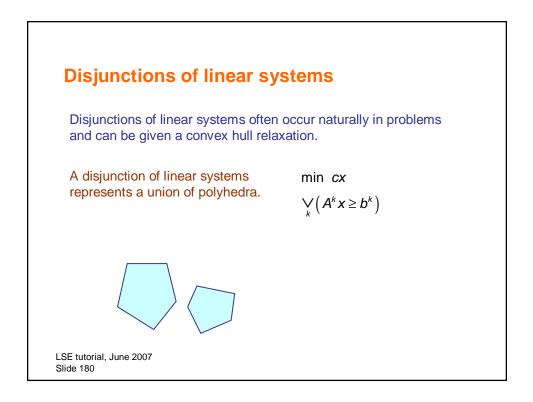


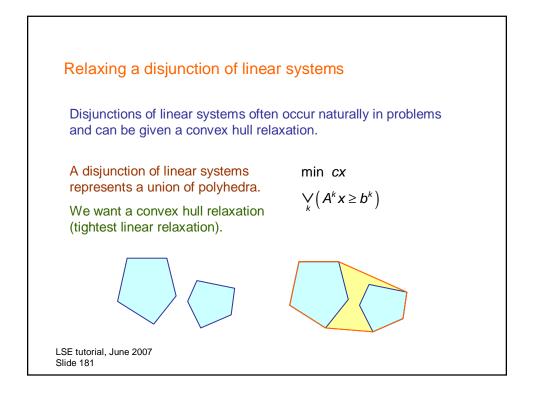




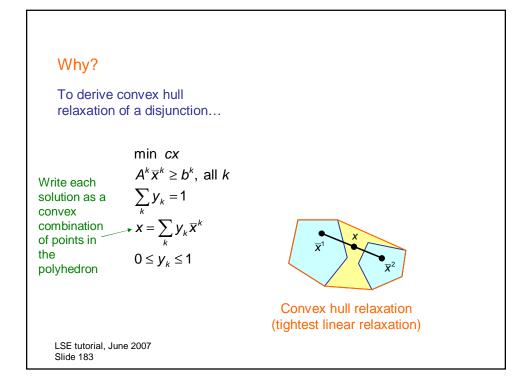


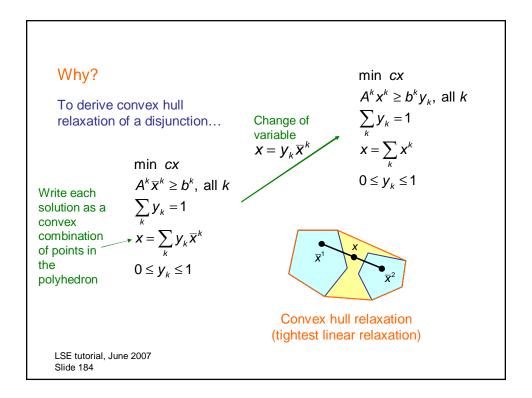


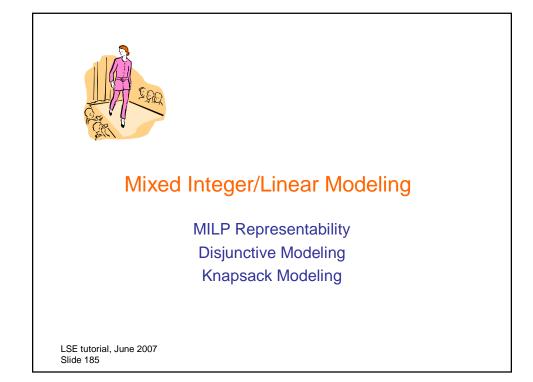




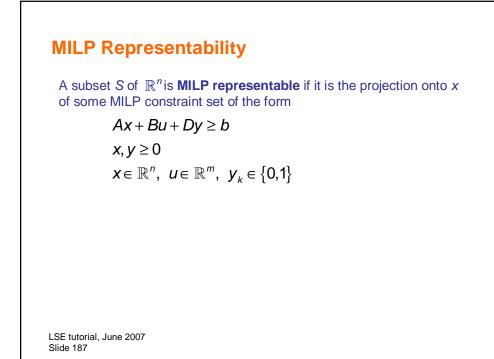
Relaxing a disjunction of linear systems		
Disjunctions of linear systems often occur naturally in problems and can be given a convex hull relaxation.		
The closure of the convex hull of	$\min_{k} cx$ $\bigvee_{k} (A^{k}x \ge b^{k})$	
is described by	min cx $A^{k}x^{k} \ge b^{k}y_{k}$, all k $\sum_{k} y_{k} = 1$ $x = \sum_{k} x^{k}$	
LSE tutorial, June 2007 Slide 182	$0 \le y_k \le 1$	

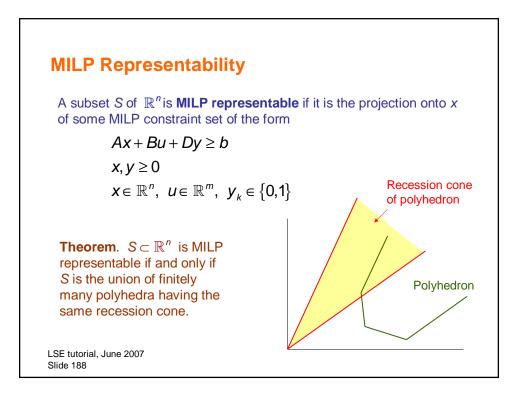


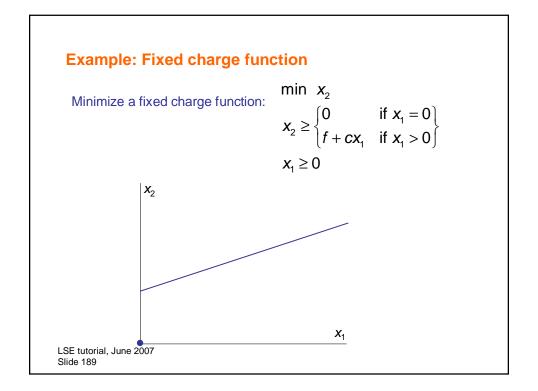


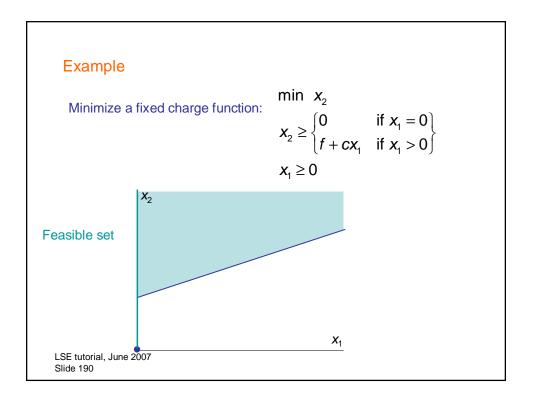


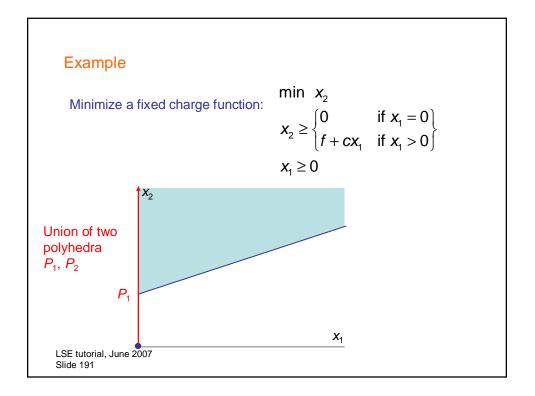
Motivation	
A mixed integer/linear programming	min cx+dy
(MILP) problem has the form	$Ax + by \ge b$
	$x, y \ge 0$
	y integer
• We can relax a CP problem by modeling son	ne constraints with an MILP.
 If desired, we can then relax the MILP by dro to obtain an LP. 	opping the integrality constraint,
• The LP relaxation can be strengthened with	cutting planes.
• The first step is to learn how to write MILP n	nodels.

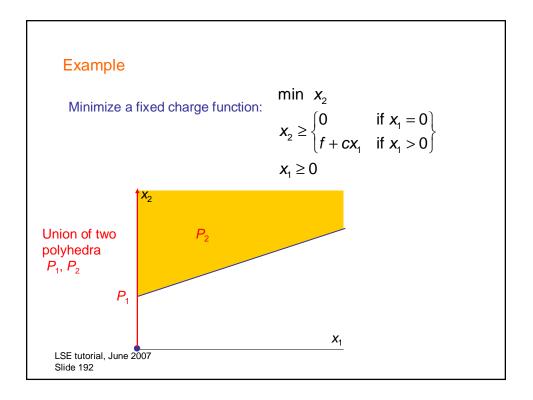


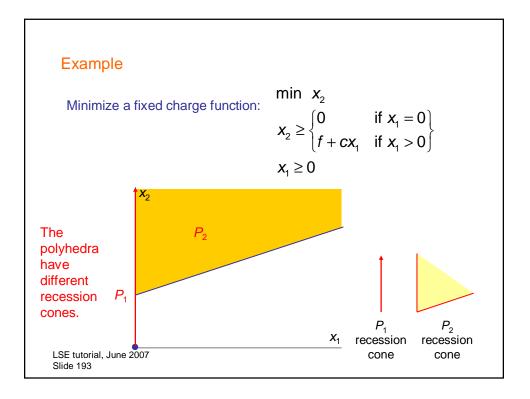


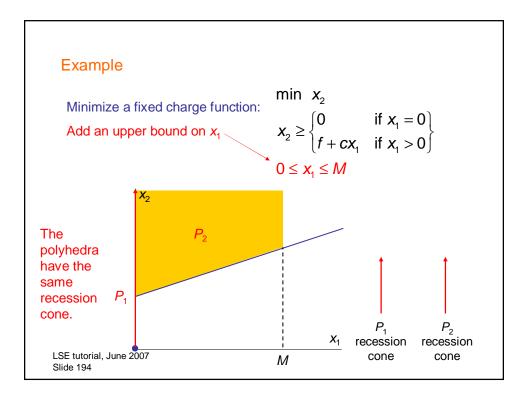


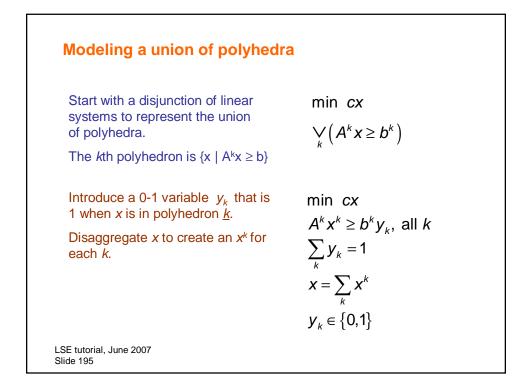


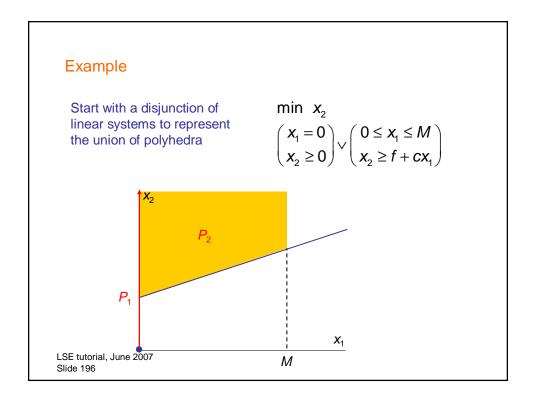


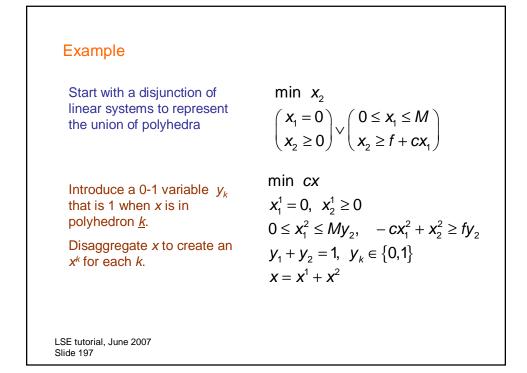




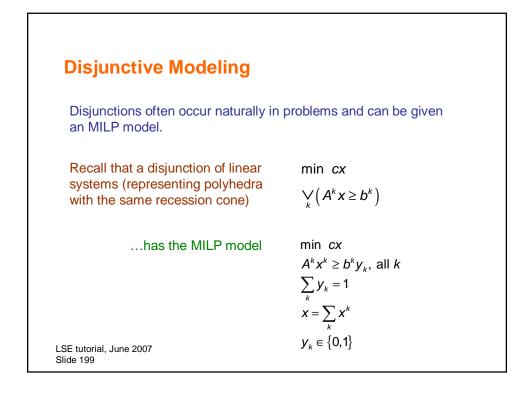


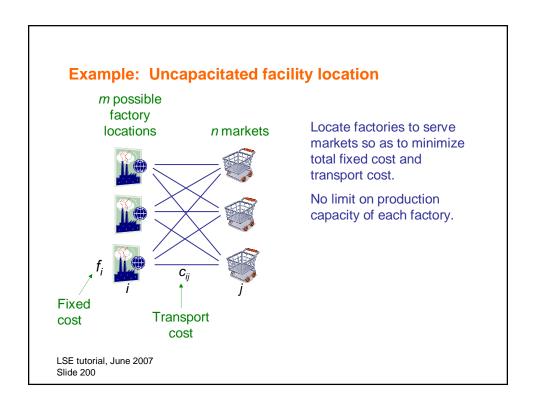


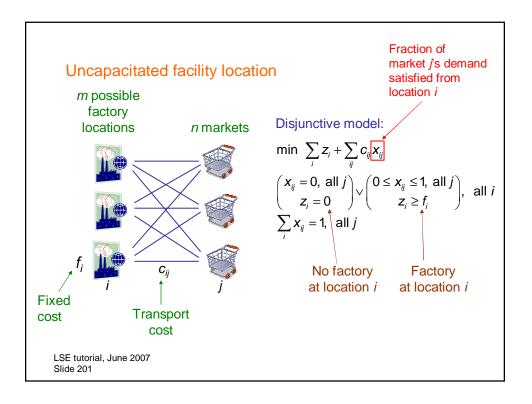


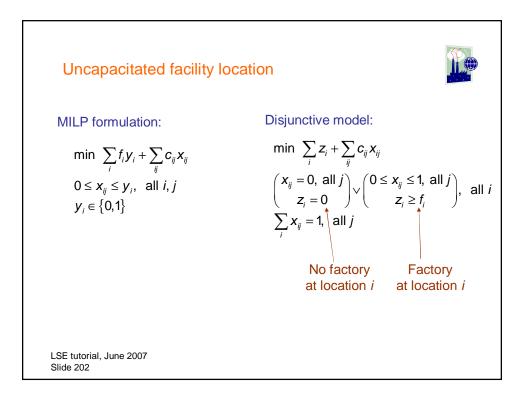


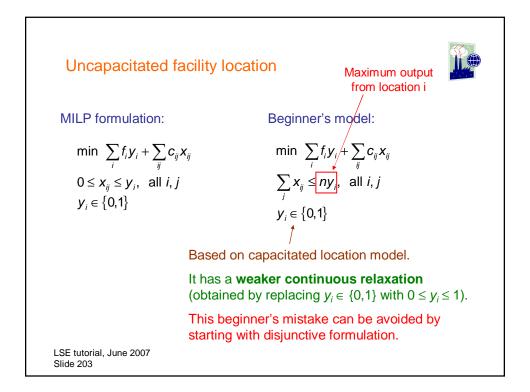
Example		
To simplify: Replace x_1^2 w Replace x_2^2 w Replace y_2 w	with x_2 .	min x_2 $x_1^1 = 0, x_2^1 \ge 0$ $0 \le x_1^2 \le My_2, -cx_1^2 + x_2^2 \ge fy_2$ $y_1 + y_2 = 1, y_k \in \{0, 1\}$ $x = x^1 + x^2$
This yields	$ \begin{array}{l} \min \ x_2 \\ 0 \leq x_1 \leq My \\ x_2 \geq fy + cx_1 \\ y \in \{0, 1\} \end{array} $	or min $fy + cx$ $0 \le x \le My$ $y \in \{0,1\}$ "Big M"
LSE tutorial, June 200 Slide 198	70	

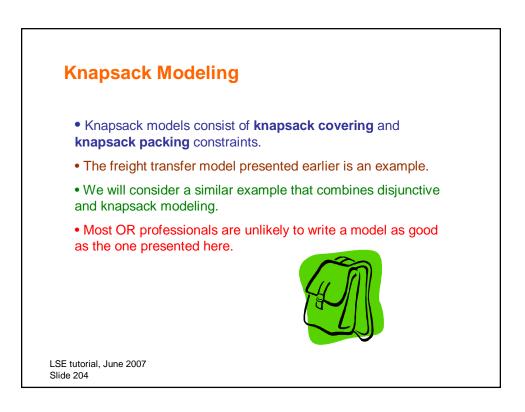


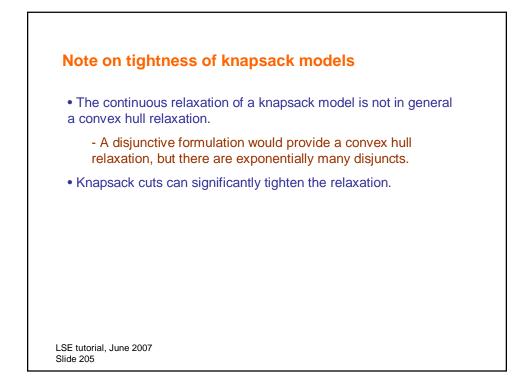


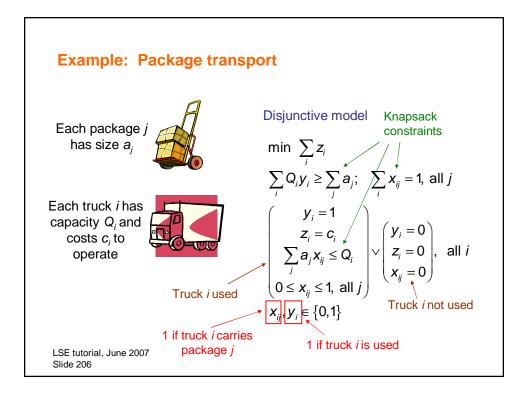


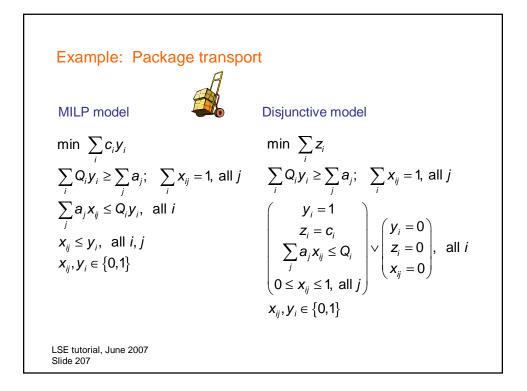


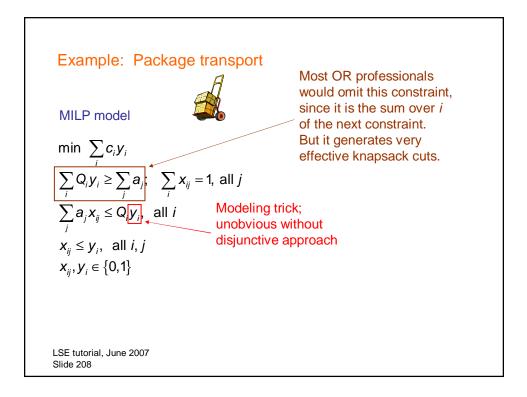


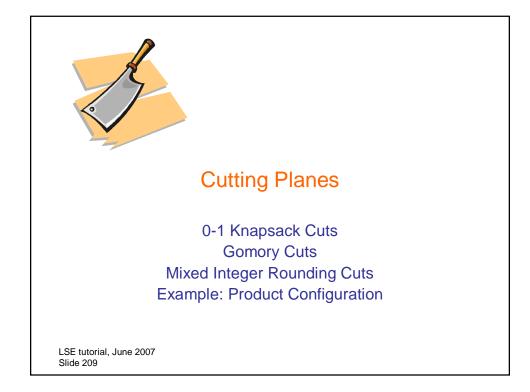


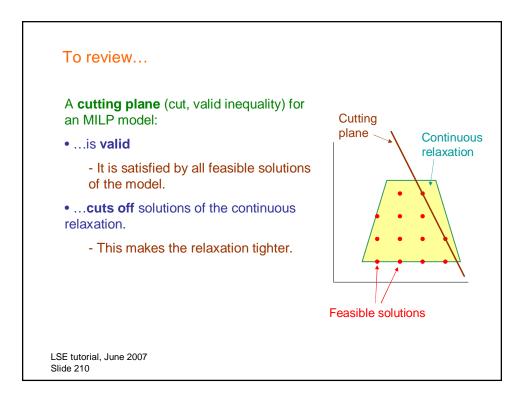


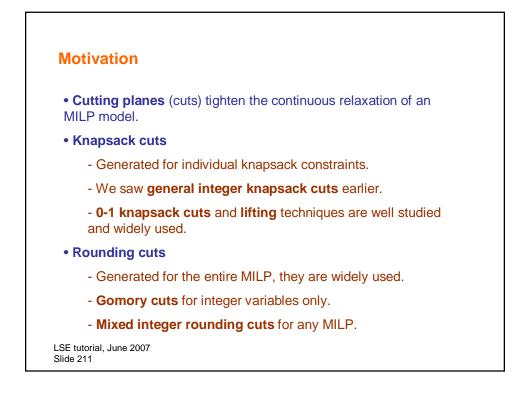


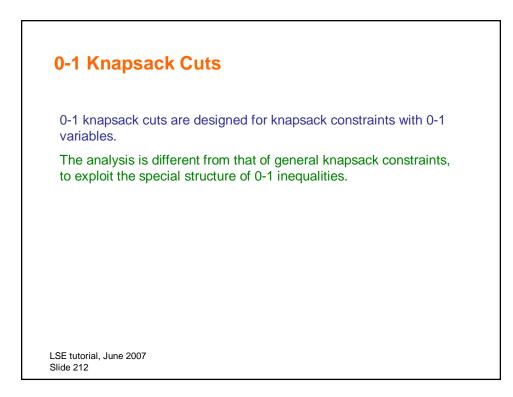


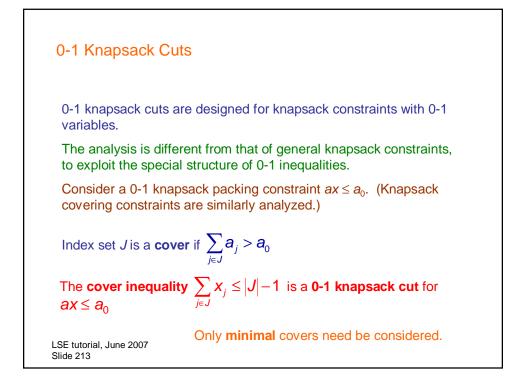




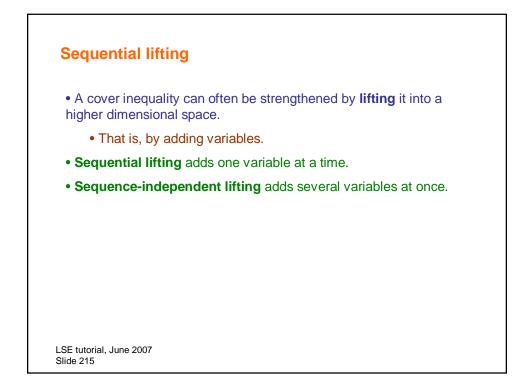


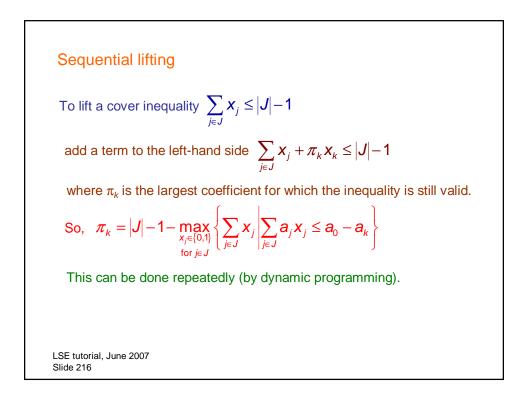




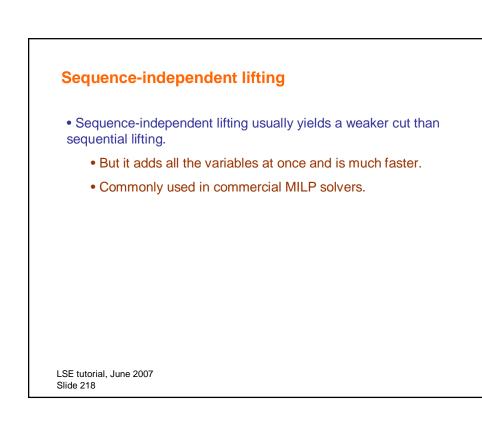


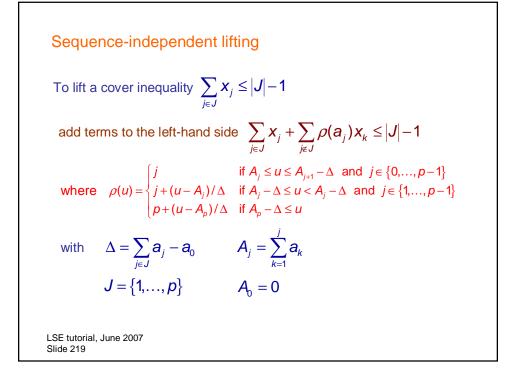
Example	
J = {1,2,3,4} is a cove	
$0\mathbf{x}_{1} + 3\mathbf{x}_{2}$	$+5x_3 + 5x_4 + 8x_5 + 3x_6 \le 17$
This gives rise to the	cover inequality $x_1 + x_2 + x_3 + x_4 \le 3$
Index set <i>J</i> is a cover	r if $\sum_{j \in J} a_j > a_0$
The cover inequality $ax \le a_0$	$\sum_{j \in J} x_j \leq J - 1$ is a 0-1 knapsack cut for
LSE tutorial, June 2007 Slide 214	Only minimal covers need be considered.

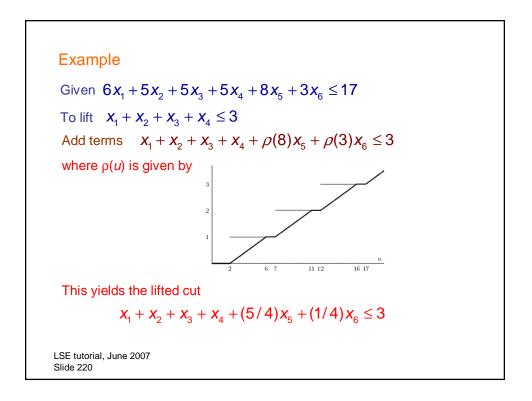


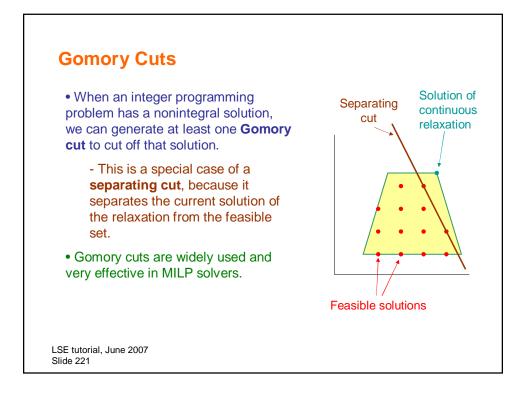


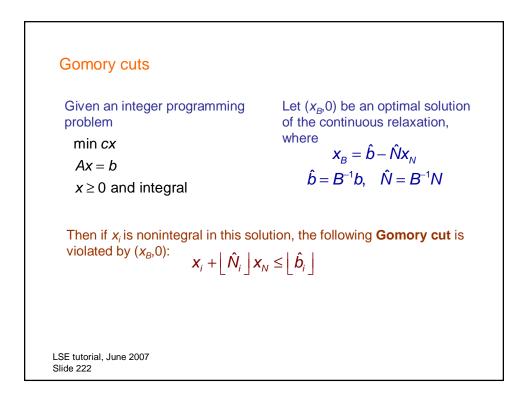
Example Given $6x_1 + 5x_2 + 5x_3 + 5x_4 + 8x_5 + 3x_6 \le 17$ To lift $x_1 + x_2 + x_3 + x_4 \le 3$ add a term to the left-hand side $x_1 + x_2 + x_3 + x_4 + \pi_5 x_5 \le 3$ where $\pi_5 = 3 - \max_{\substack{x_1 \in \{0,1\}\\\text{for } j \in \{1,2,3,4\}}} \{x_1 + x_2 + x_3 + x_4 | 6x_1 + 5x_2 + 5x_3 + 5x_4 \le 17 - 8\}$ Further lifting leaves the cut unchanged. But if the variables are added in the order x_6 , x_5 , the result is different: $x_1 + x_2 + x_3 + x_4 + x_5 + x_6 \le 3$ LSE tutorial, June 2007 Slide 217

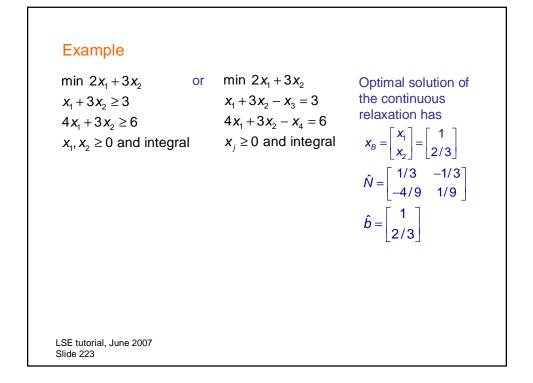




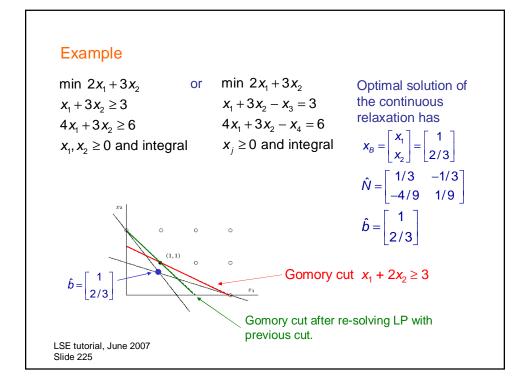


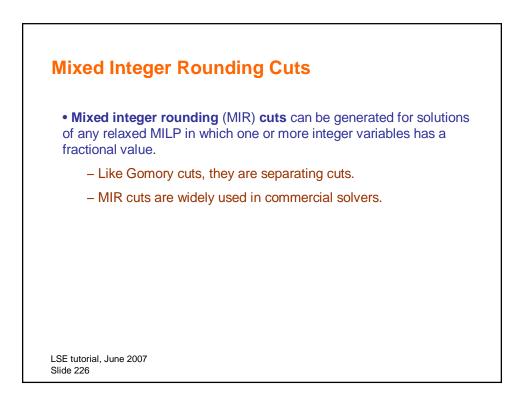


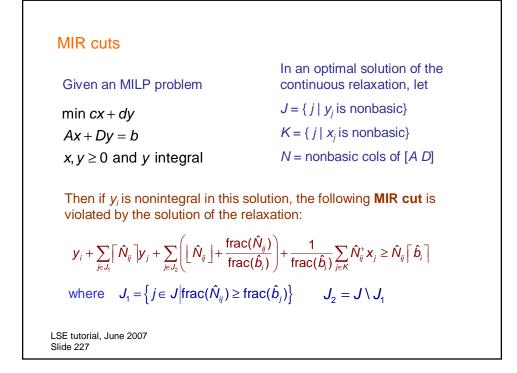


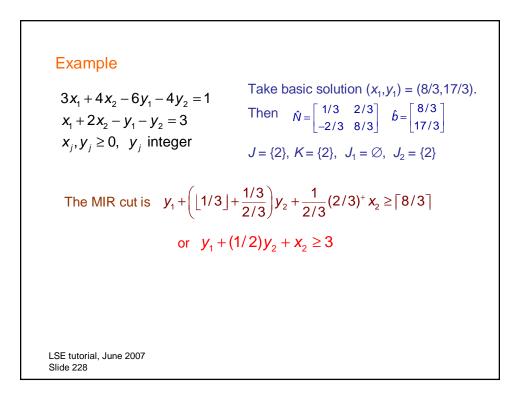


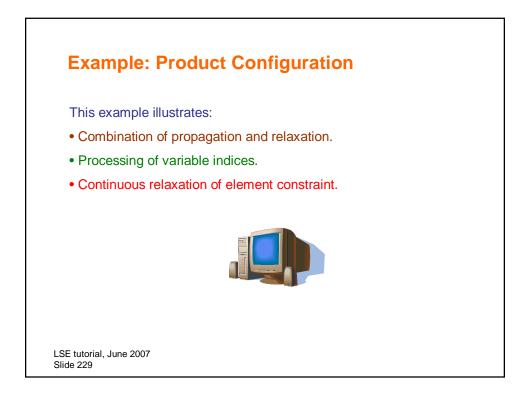
Examplemin $2x_1 + 3x_2$ ormin $2x_1 + 3x_2$ $x_1 + 3x_2 \ge 3$ $x_1 + 3x_2 - x_3 = 3$ $4x_1 + 3x_2 \ge 6$ $4x_1 + 3x_2 - x_4 = 6$ $x_1, x_2 \ge 0$ and integral $x_j \ge 0$ and integralThe Gomory cut $x_i + \lfloor \hat{N}_i \rfloor x_N \le \lfloor \hat{D}_i \rfloor$ is $x_2 + \lfloor [-4/9 \ 1/9] \rfloor \lfloor \begin{bmatrix} x_3 \\ x_4 \end{bmatrix} \le \lfloor 2/3 \rfloor$ or $x_2 - x_3 \le 0$ In x_1, x_2 space this is $x_1 + 2x_2 \ge 3$

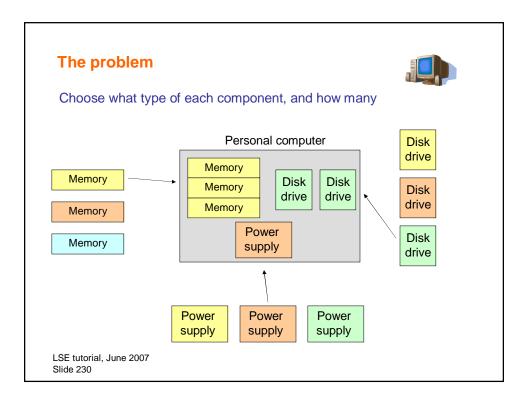


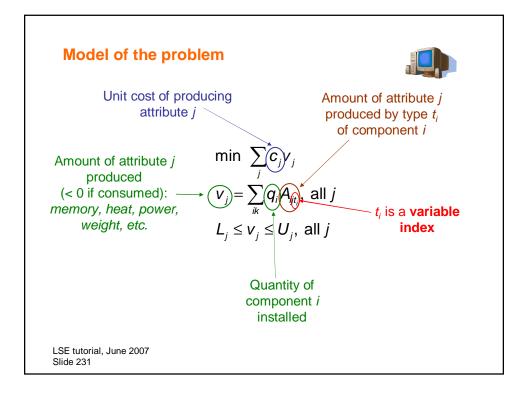


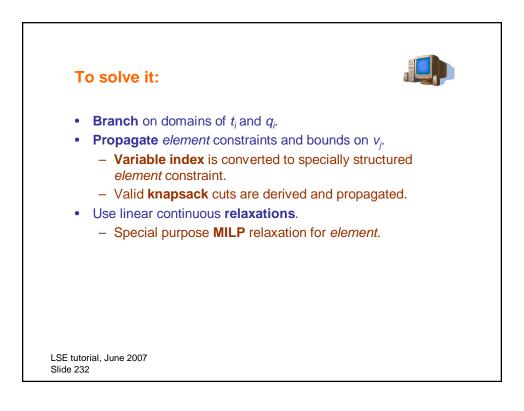


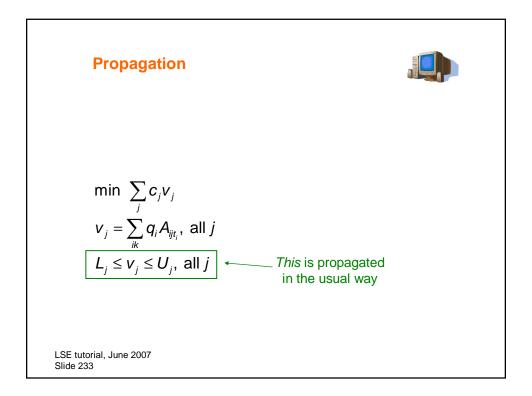


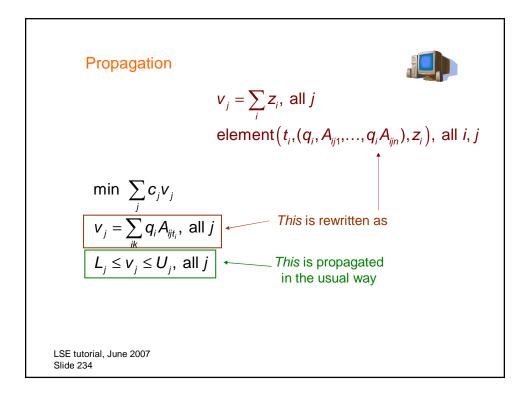


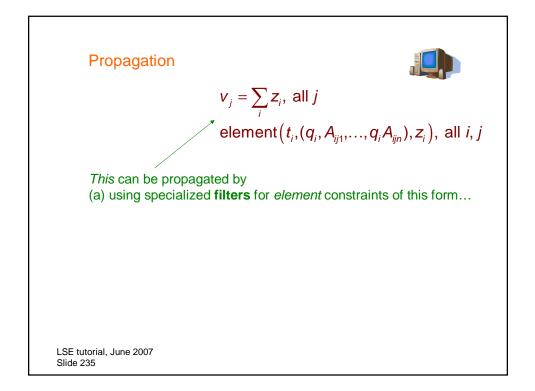


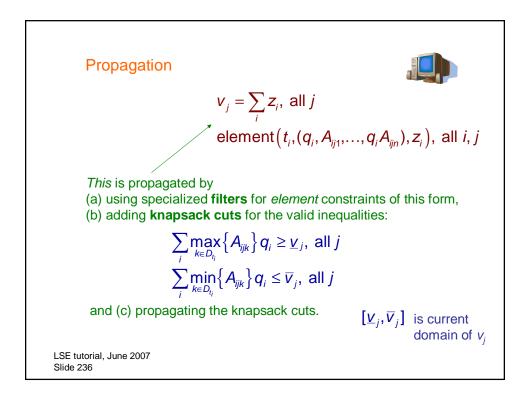


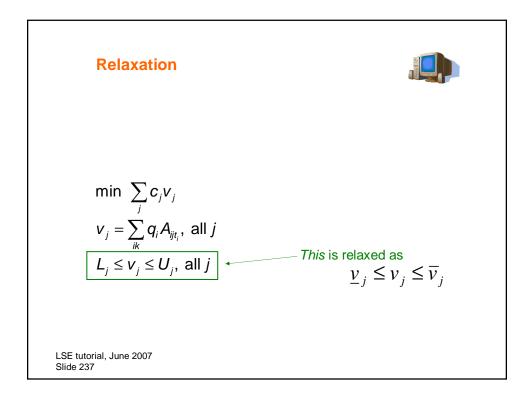


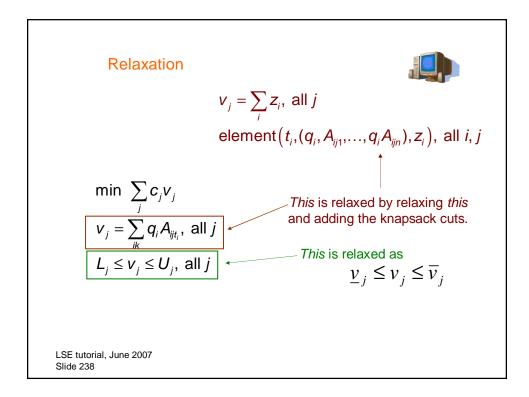


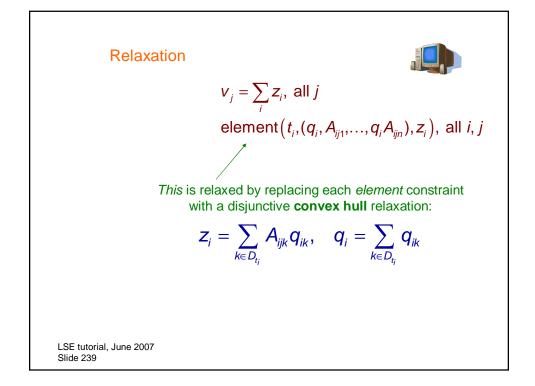


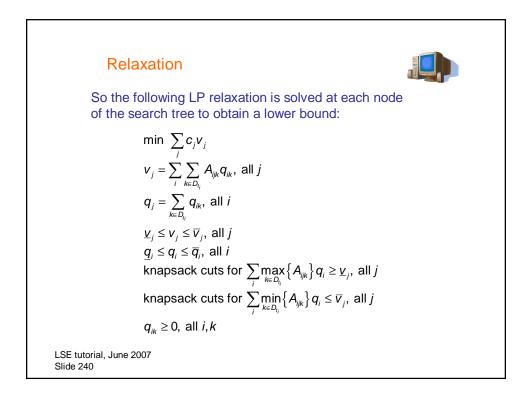


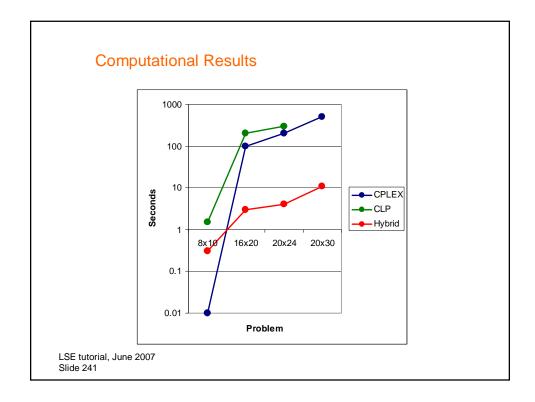




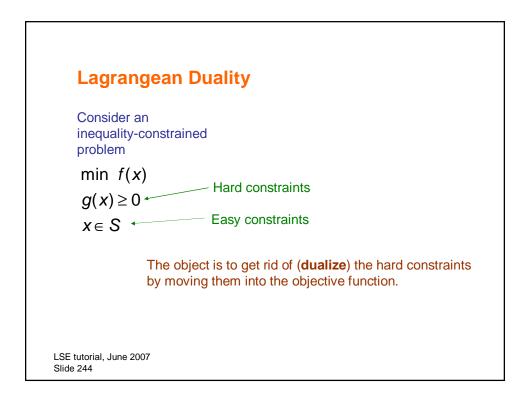


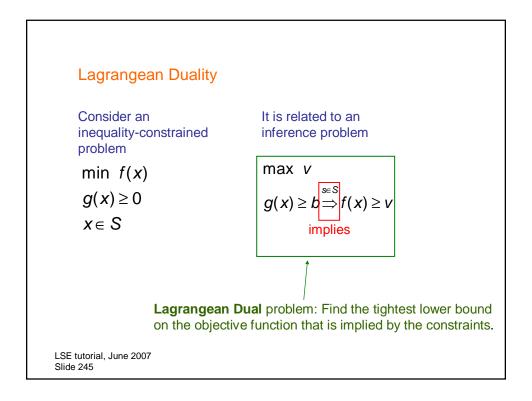


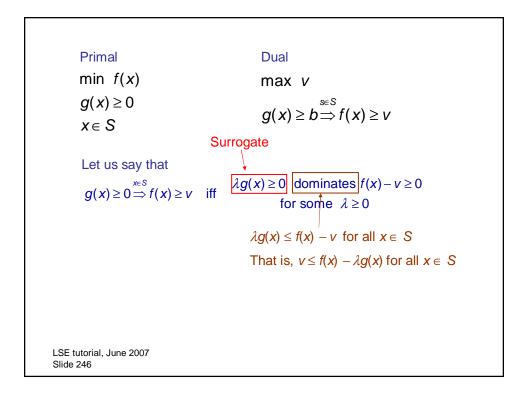


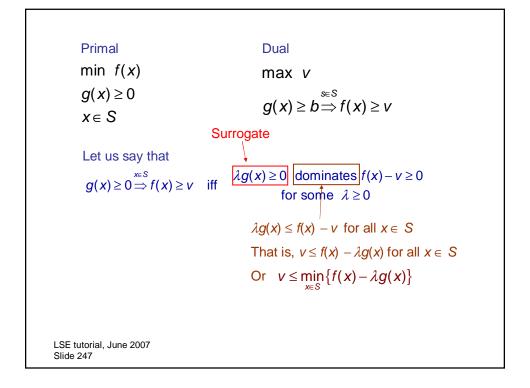


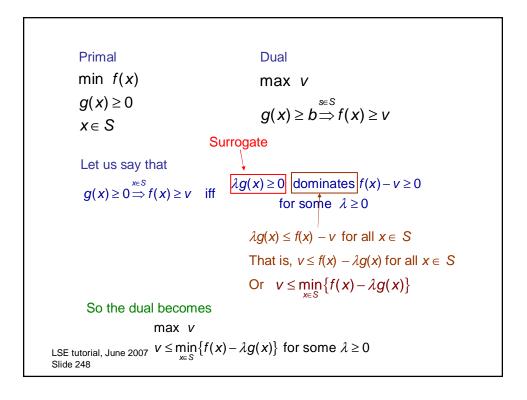


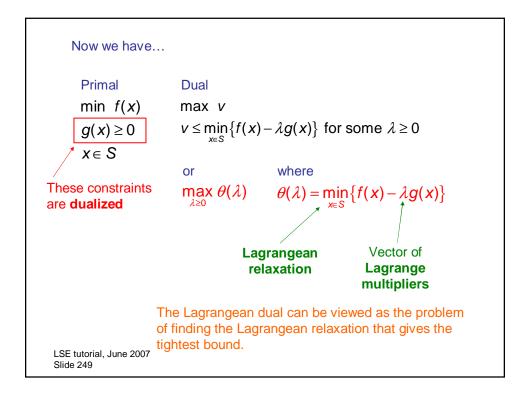


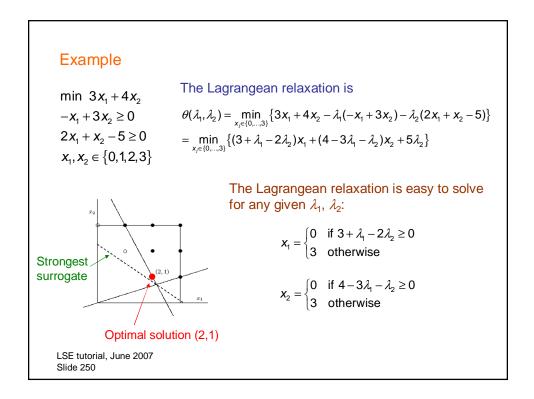


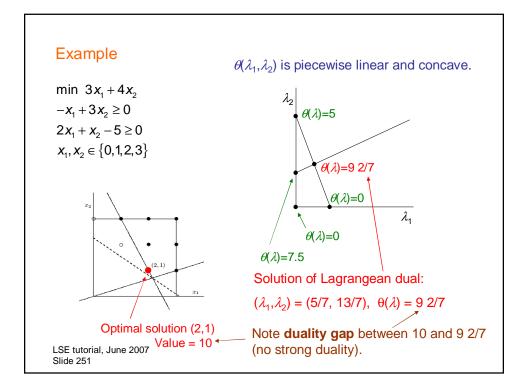




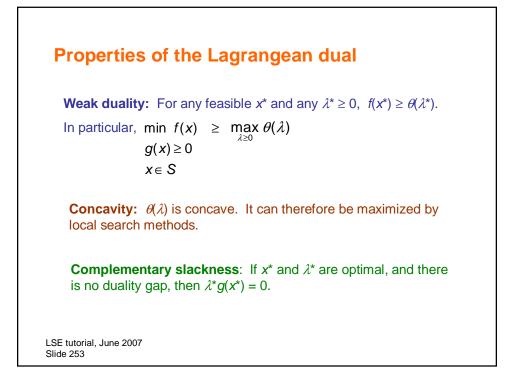


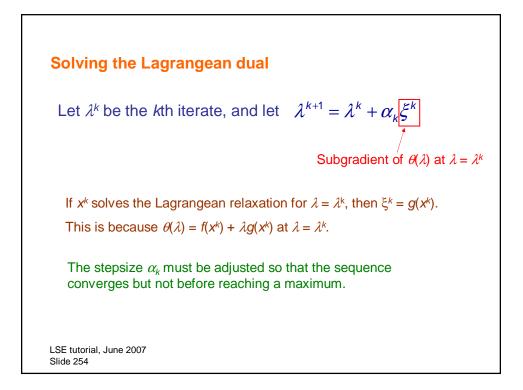


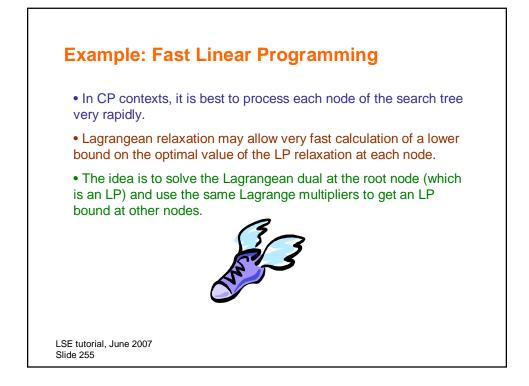


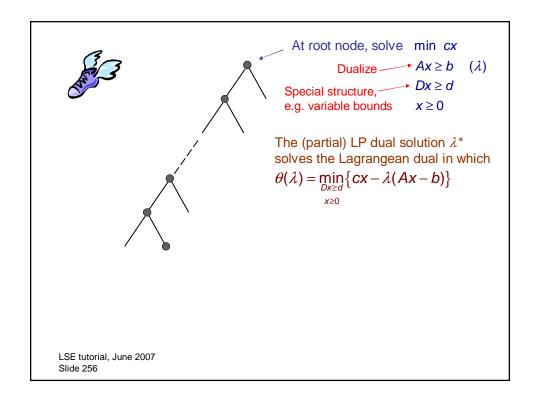


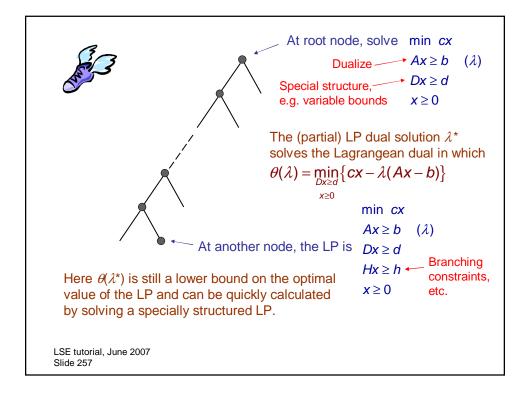
Example	
$\min \ 3x_1 + 4x_2 \\ -x_1 + 3x_2 \ge 0$	Note: in this example, the Lagrangean dual provides the same bound (9 2/7) as the continuous relaxation of the IP.
$2x_1 + x_2 - 5 \ge 0$ $x_1, x_2 \in \{0, 1, 2, 3\}$	This is because the Lagrangean relaxation can be solved as an LP:
	$\theta(\lambda_1,\lambda_2) = \min_{x_j \in \{0,\dots,3\}} \left\{ (3+\lambda_1-2\lambda_2)x_1 + (4-3\lambda_1-\lambda_2)x_2 + 5\lambda_2 \right\}$
	$= \min_{0 \le x_1 \le 3} \{ (3 + \lambda_1 - 2\lambda_2) x_1 + (4 - 3\lambda_1 - \lambda_2) x_2 + 5\lambda_2 \}$
	Lagrangean duality is useful when the Lagrangean relaxation is tighter than an LP but nonetheless easy to solve.
LSE tutorial, June 2007 Slide 252	

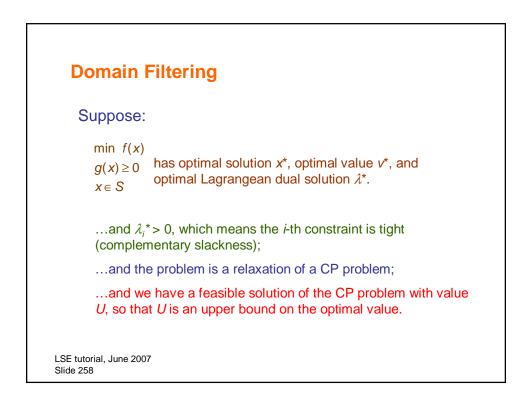


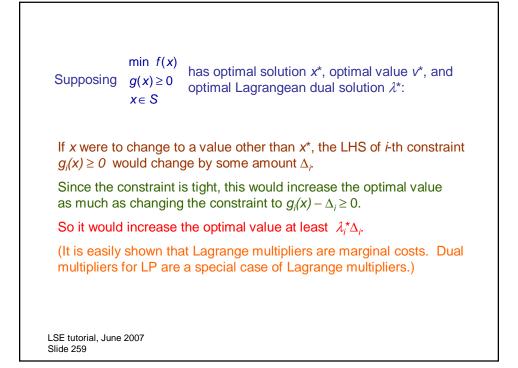


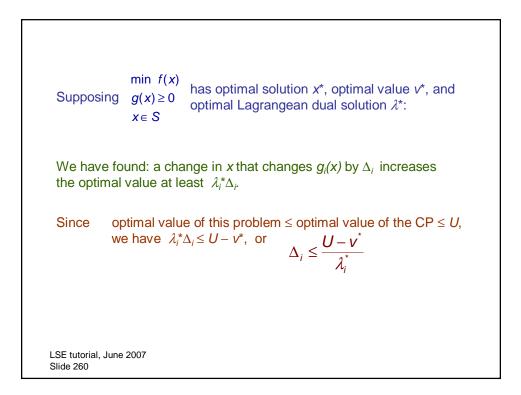


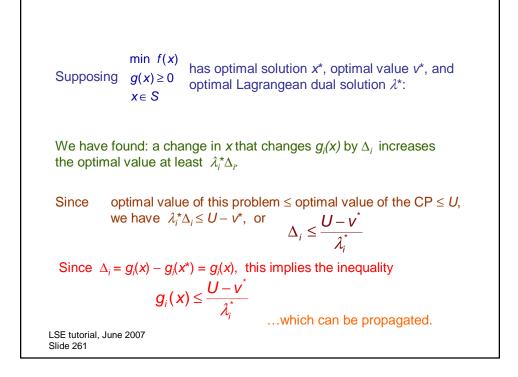


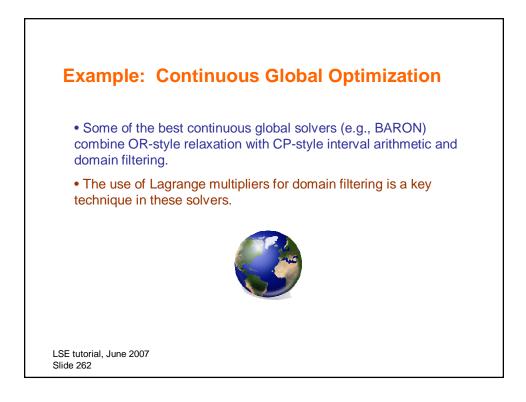


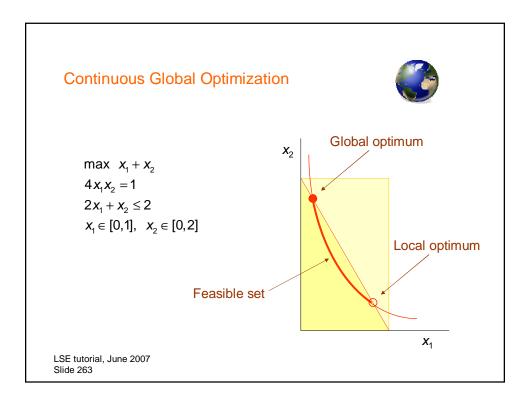


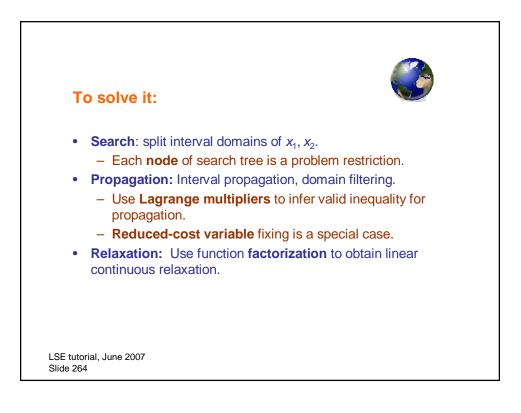


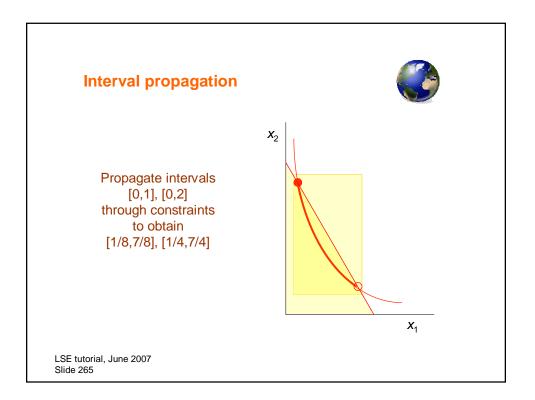


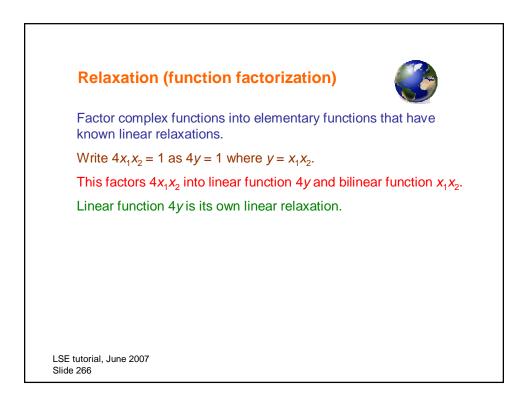


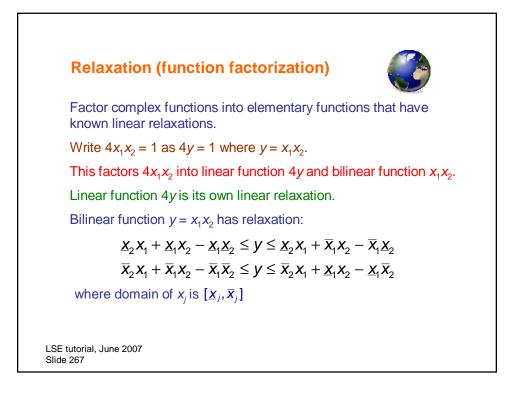


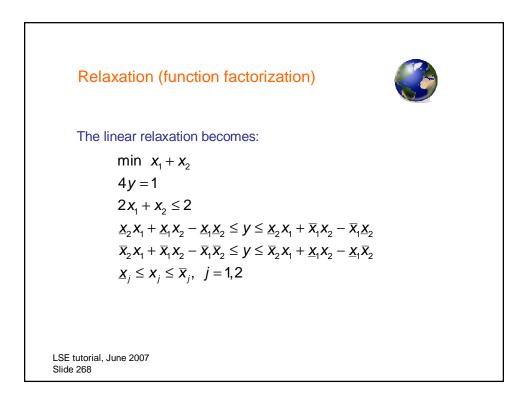


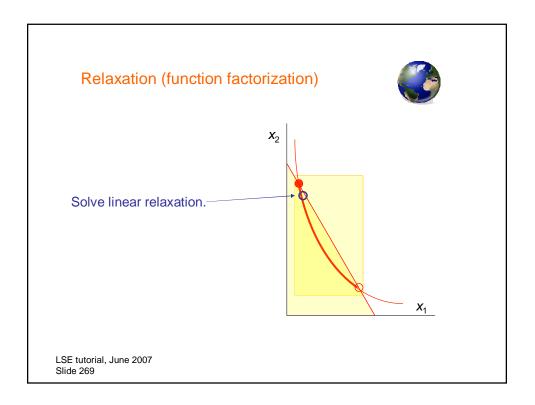


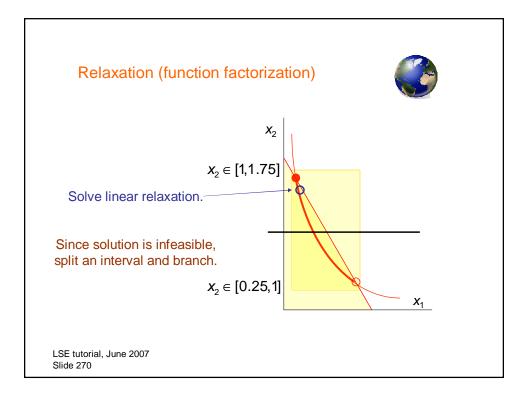


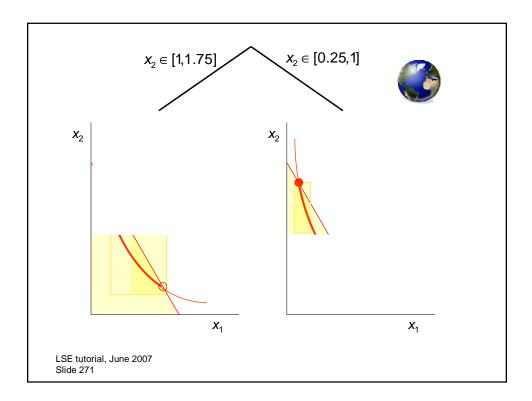


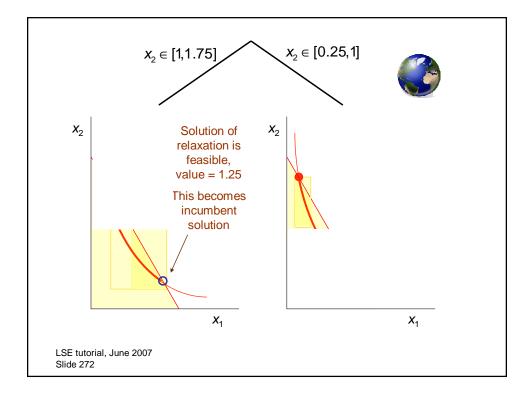


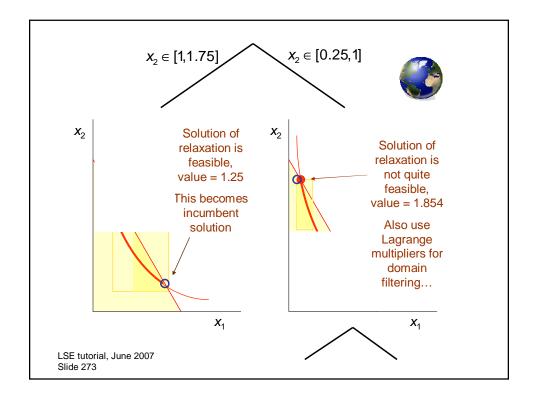


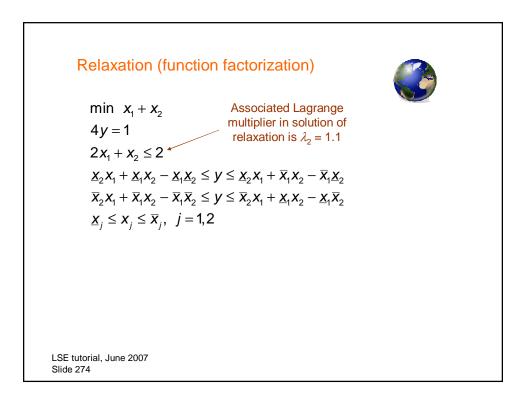


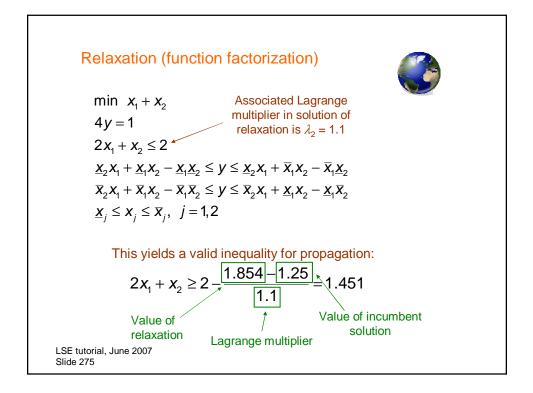


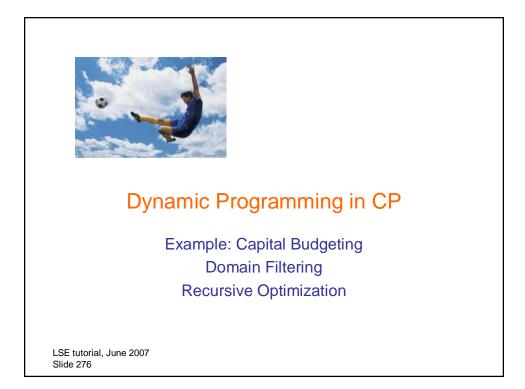


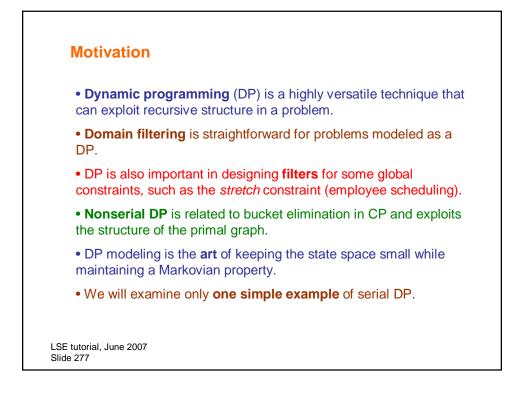


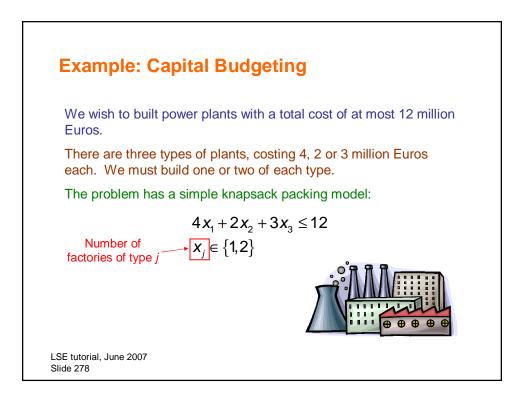


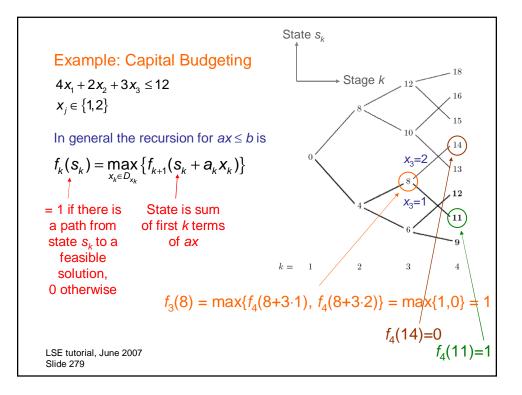


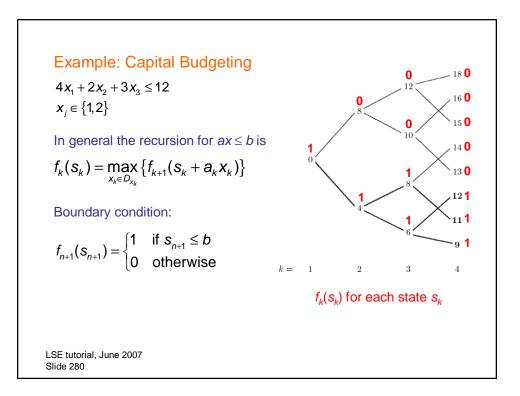


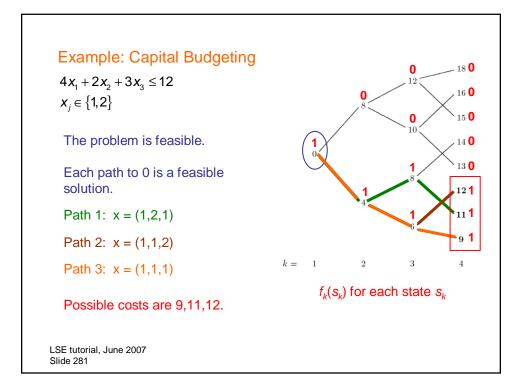


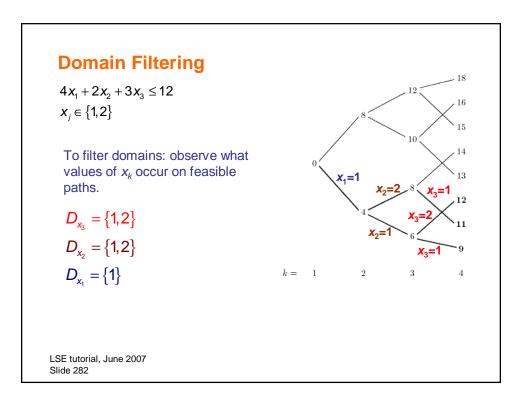


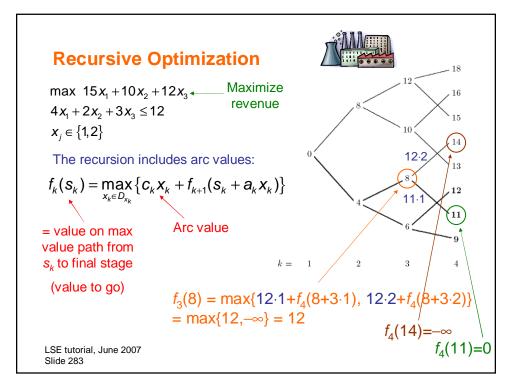


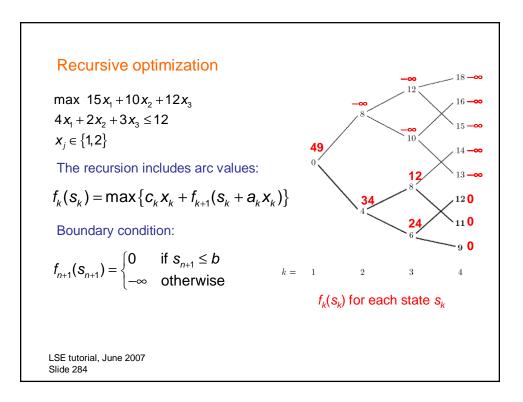


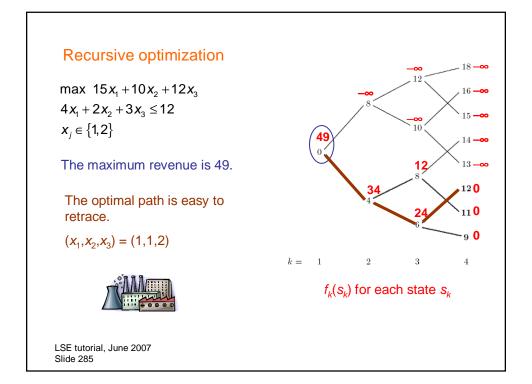


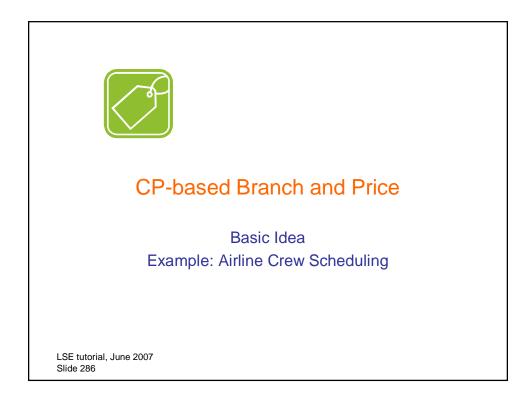


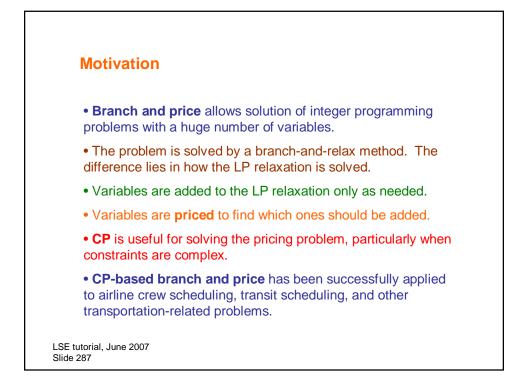


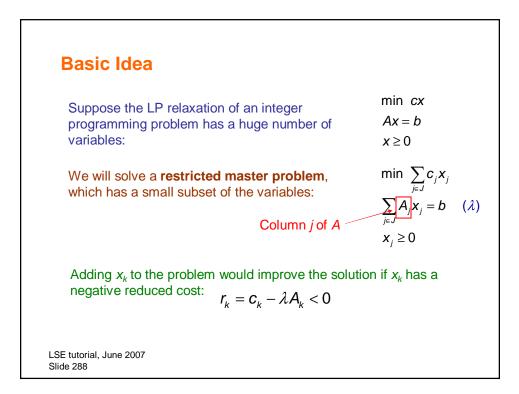


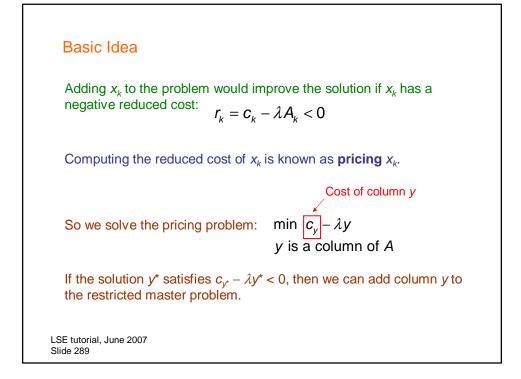


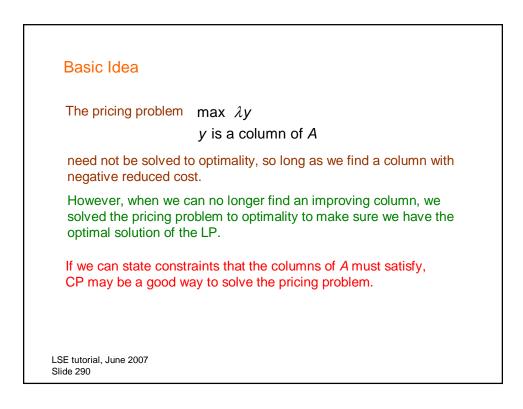


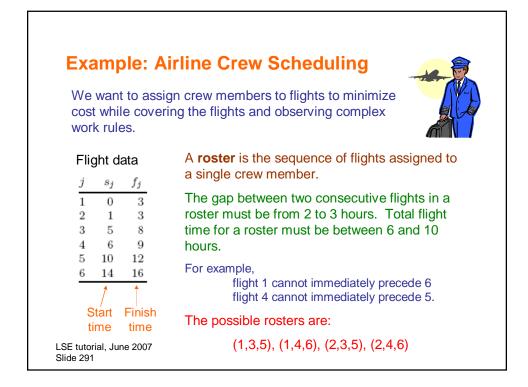


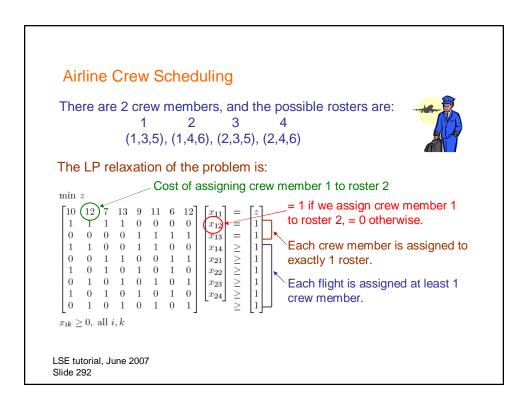


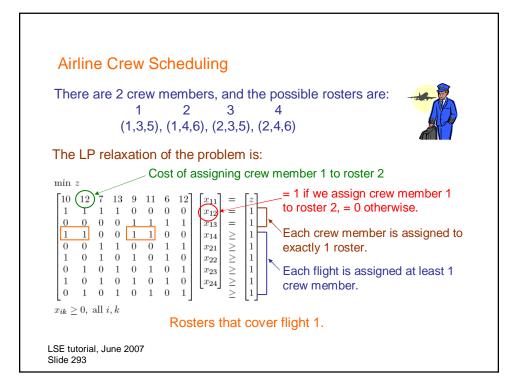


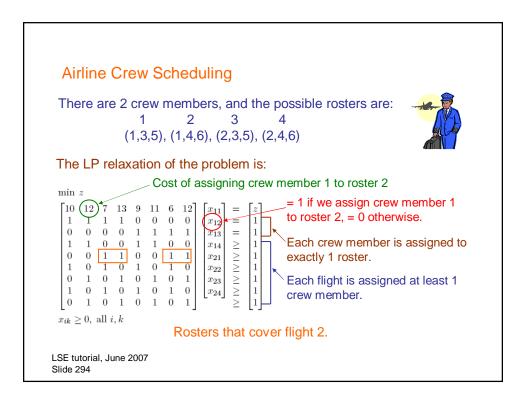


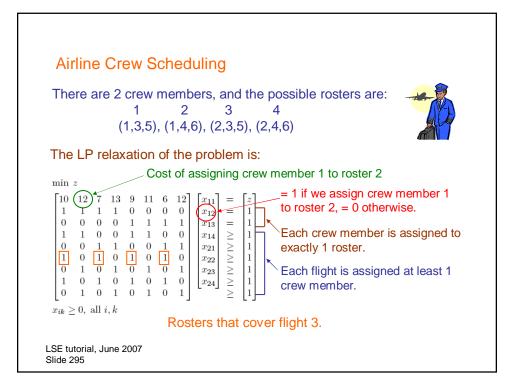


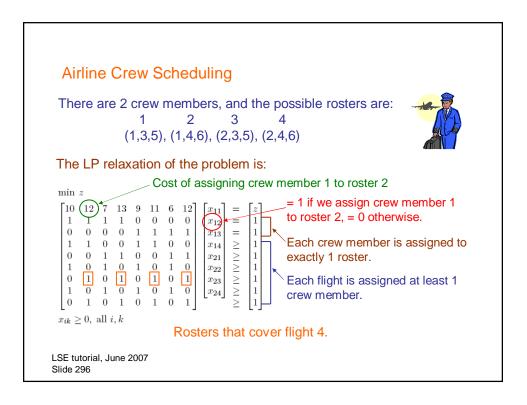


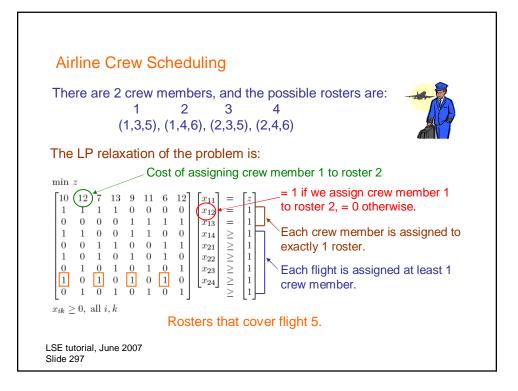


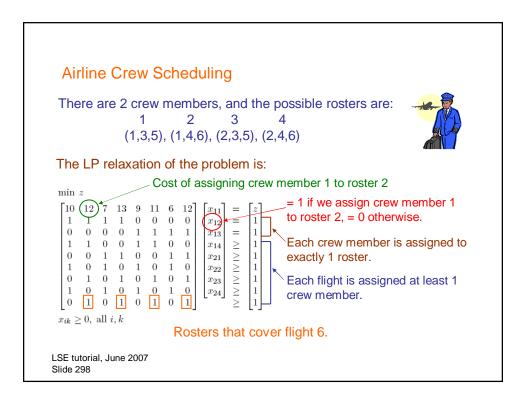


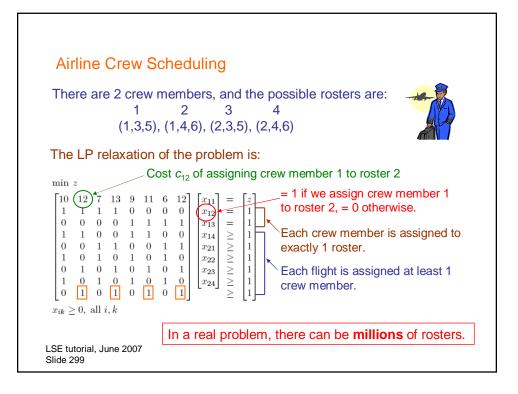


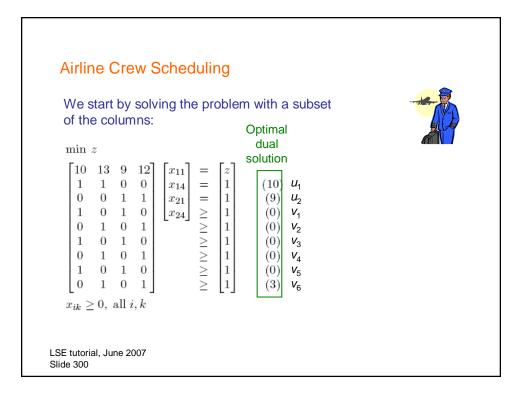


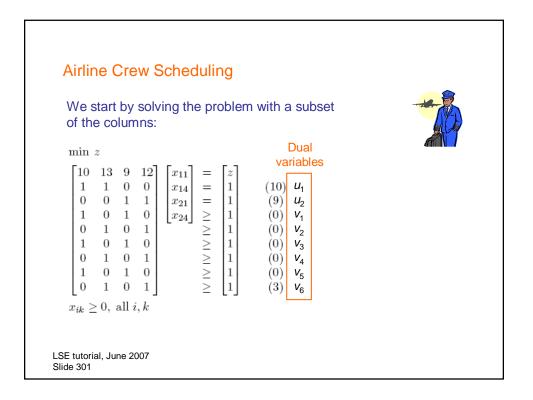


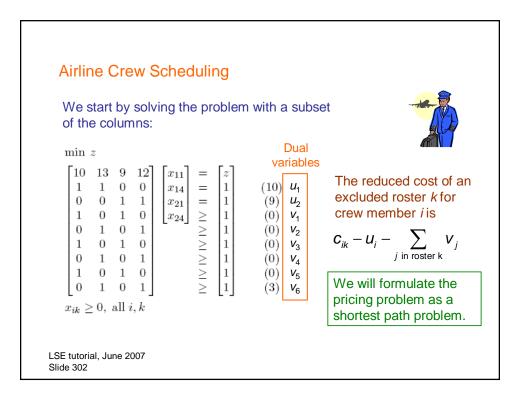


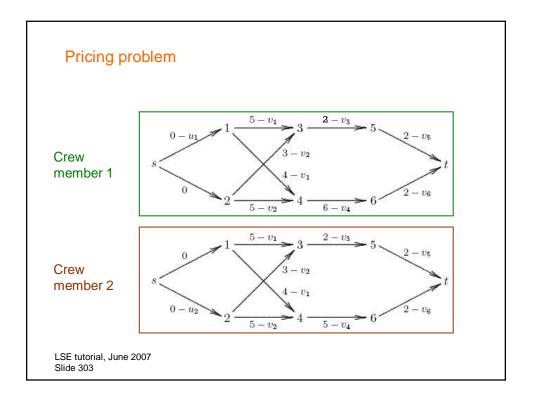


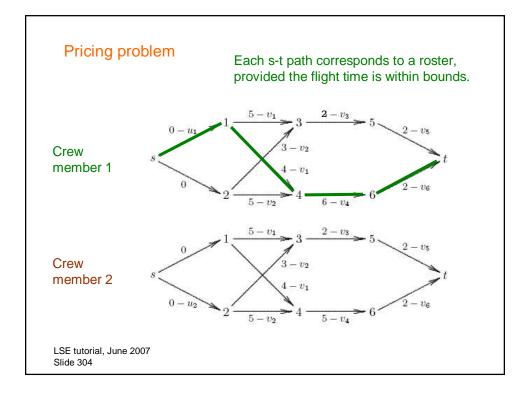


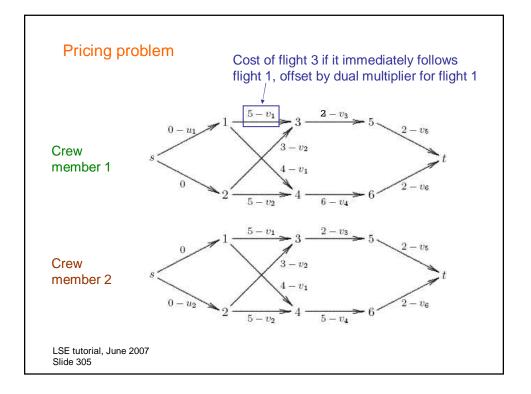


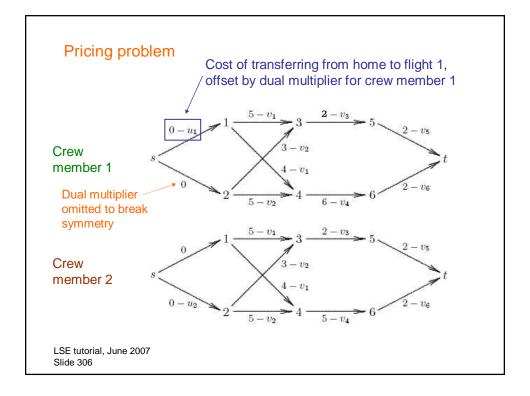


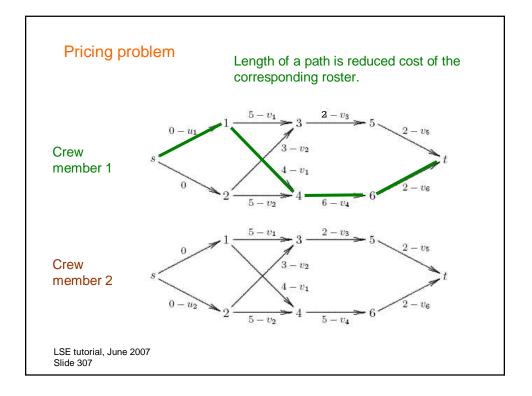


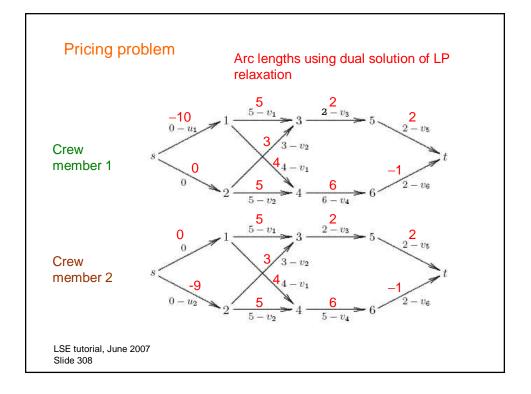


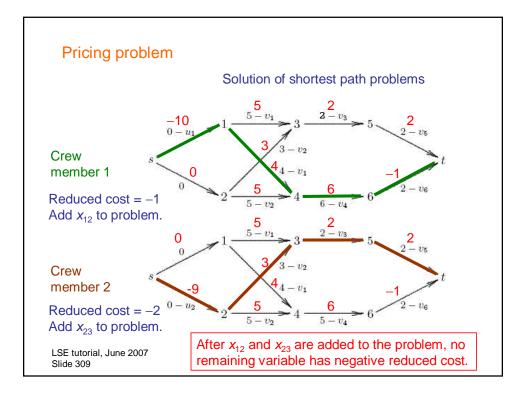


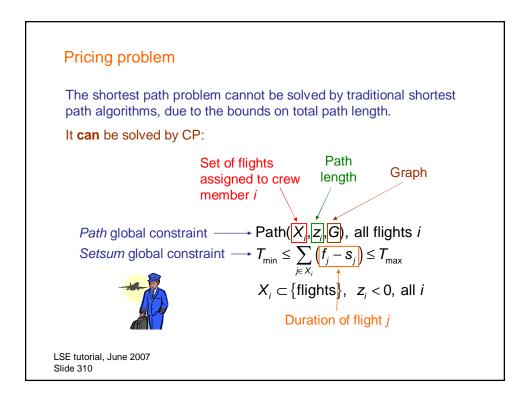


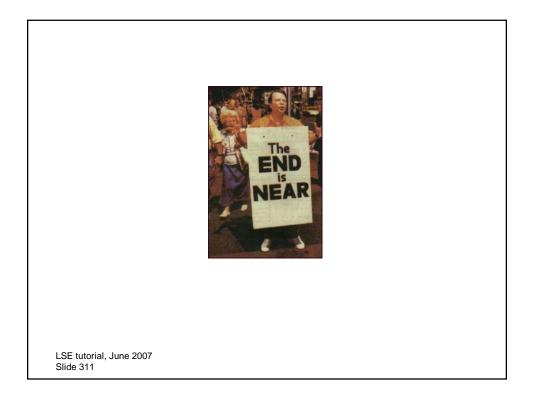


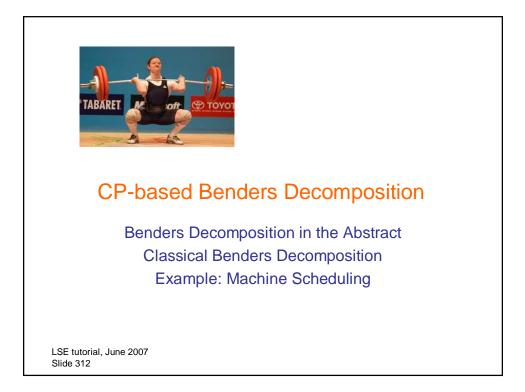


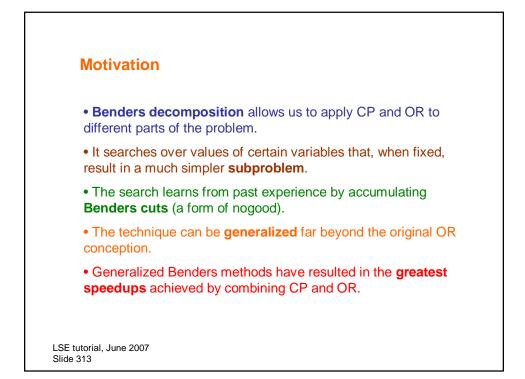




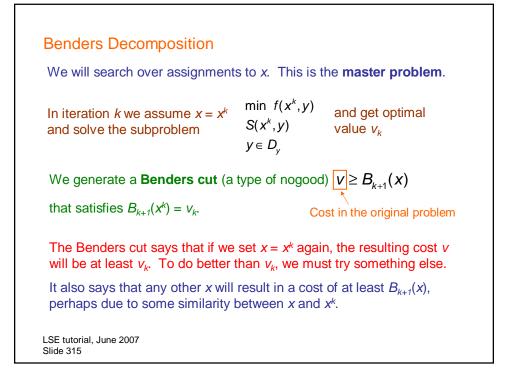


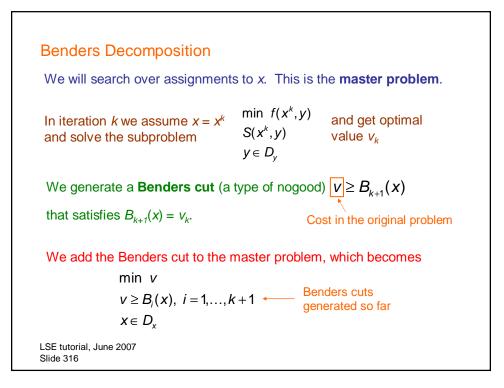






Benders Decompos	sition in the Ab	stract
Benders decomposition can be applied to problems of the form	When x is fixed to s value, the resulting subproblem is mu easier:	
min $f(x, y)$	min $f(\overline{x}, y)$	norbono
S(x,y)	$S(\overline{x}, y)$	perhaps because it
$x \in D_x, y \in D_y$	$y \in D_y$	decouples into smaller problems.
For example, suppose <i>x</i> as the jobs on the machines.	ssigns jobs to machine	es, and <i>y</i> schedules
When <i>x</i> is fixed, the problem subproblem for each mach		parate scheduling
LSE tutorial, June 2007 Slide 314		





Benders Decomposition

We now solve the master problem $\begin{array}{l} \min \ v \\ v \geq B_i(x), \ i = 1, \dots, k+1 \\ x \in D_x \end{array} \begin{array}{l} \text{to get the next} \\ \text{trial value } x^{k+1}. \end{array}$

The master problem is a relaxation of the original problem, and its optimal value is a **lower bound** on the optimal value of the original problem.

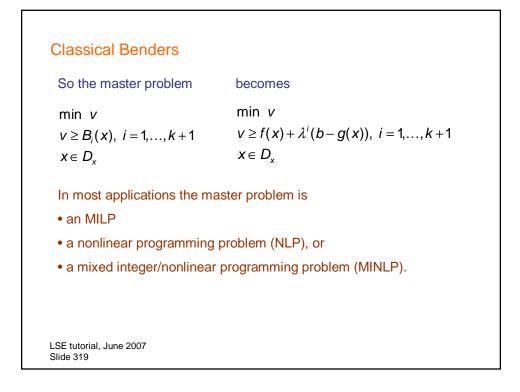
The subproblem is a restriction, and its optimal value is an **upper bound**.

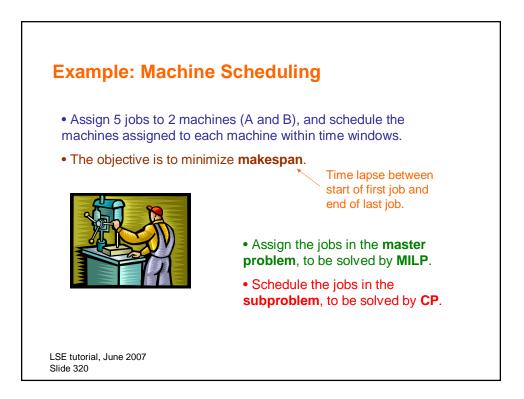
The process continues until the bounds meet.

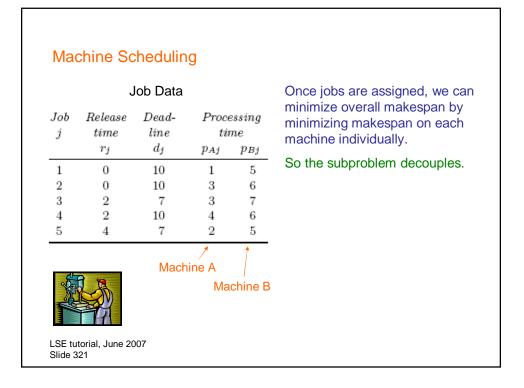
The Benders cuts partially define the **projection** of the feasible set onto *x*. We hope not too many cuts are needed to find the optimum.

LSE tutorial, June 2007 Slide 317

Classical Bende	rs Decompositi	on
The classical method applies to problems of the form	and the subproblem is an LP	whose dual is
$ \begin{array}{l} \min \ f(x) + cy \\ g(x) + Ay \ge b \\ x \in D_x, \ y \ge 0 \end{array} $	$ \min f(x^k) + cy Ay \ge b - g(x^k) (\lambda) y \ge 0 $	$\max f(x^{k}) + \lambda (b - g(x^{k}))$ $\lambda A \le c$ $\lambda \ge 0$
	$f(x) = f(x) + \lambda^k (b - g(x))$ is alue v of the original pro-	
	f <i>x</i> , λ^k remains feasible emains a lower bound of	-
LSE tutorial, June 2007 Slide 318		







Job Data					Once jobs are assigned, we can	
Job j	Release time	Dead- line		essing me	minimize overall makespan by minimizing makespan on each machine individually.	
	r_j	d_{j}	p_{Aj}	p_{Bj}	So the subproblem decouples.	
1	0	10	1	5	So the subproblem decouples.	
2	0	10	3	6		
3	2	7	3	7		
4	2	10	4	6	Minimum makespan	
5	4	7	2	5	schedule for jobs 1, 2, 3, 5 on machine A	
				0 1	2 3 4 5 6 7 8 9	
S.	A N		Job 1			
	R III		Job 2			

