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Why Integrate OR and CP?

Complementary strengths
Computational advantages

Outline of the Tutorial
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Complementary Strengths

• CP:
– Inference methods
– Modeling
– Exploits local structure

• OR:
– Relaxation methods
– Duality theory
– Exploits global structure

Let’s bring them 
together!
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Computational Advantage of 
Integrating CP and OR
Using CP + relaxation from MILP

30 to 40 times 
faster than CP, 

MILP

Product 
configuration

Thorsteinsson & 
Ottosson (2001)

4 to 150 times 
faster than MILP.

Flow shop 
scheduling, etc.

Hooker & Osorio 
(1999)

2 to 200 times 
faster than MILP

Piecewise linear 
costs

Refalo (1999)

2 to 50 times faster 
than CP

Lesson 
timetabling

Focacci, Lodi, 
Milano (1999)

SpeedupProblem
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Computational Advantage of 
Integrating CP and MILP

Using CP + relaxation from MILP

Solved 67 of 90, CP 
solved only 12

Scheduling with 
earliness & 

tardiness costs

Beck & Refalo
(2003)

Up to 600 times 
faster than MILP.

2 problems: <6 min 
vs >20 hrs for MILP 

Structural design 
(nonlinear)

Bollapragada, 
Ghattas & 
Hooker (2001)

Better than CP in 
less time

Stable set 
problem

Van Hoeve
(2001)

1 to 10 times faster 
than CP, MILP

Automatic 
recording

Sellmann & 
Fahle (2001)

SpeedupProblem
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Computational Advantage of 
Integrating CP and MILP

Using CP-based Branch and Price

First to solve 
8-team instance

Traveling 
tournament 
scheduling

Easton, 
Nemhauser & 
Trick (2002)

Optimal schedule 
for 210 trips, vs. 

120 for traditional 
branch and price

Urban transit 
crew scheduling

Yunes, Moura & 
de Souza (1999)

SpeedupProblem
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Computational Advantage of 
Integrating CP and MILP

Using CP/MILP Benders methods

Solved previously 
insoluble problem 

in 10 min

Polypropylene 
batch scheduling 

at  BASF

Timpe (2002)

10 times faster 
than Jain & 
Grossmann

Min-cost planning 
& scheduling

Thorsteinsson
(2001)

20 to 1000 times 
faster than CP, 

MILP

Min-cost planning 
& scheduing

Jain & 
Grossmann 
(2001)

SpeedupProblem
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Computational Advantage of 
Integrating CP and MILP

Using CP/MILP Benders methods

10-1000 times 
faster than CP, 

MILP

Min tardiness 
planning & cumulative 

scheduling

Hooker (2005)

100-1000 times 
faster than CP, 

MILP

Min-cost, 
min-makespan

planning & cumulative 
scheduling

Hooker (2004)

Solved twice as 
many instances 

as traditional 
Benders

Call center schedulingBenoist, Gaudin, 
Rottembourg
(2002)

SpeedupProblem
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Outline of the Tutorial

• Why Integrate OR and CP?
• A Glimpse at CP
• Initial Example: Integrated Methods
• CP Concepts
• CP Filtering Algorithms
• Linear Relaxation and CP
• Mixed Integer/Linear Modeling
• Cutting Planes
• Lagrangean Relaxation and CP
• Dynamic Programming in CP
• CP-based Branch and Price
• CP-based Benders Decomposition
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Detailed Outline

• Why Integrate OR and CP?
• Complementary strengths
• Computational advantages
• Outline of the tutorial

• A Glimpse at CP
• Early successes
• Advantages and disadvantages

• Initial Example: Integrated Methods
• Freight Transfer
• Bounds Propagation
• Cutting Planes
• Branch-infer-and-relax Tree
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Detailed Outline

• CP Concepts
• Consistency
• Hyperarc Consistency
• Modeling Examples

• CP Filtering Algorithms
• Element
• Alldiff
• Disjunctive Scheduling
• Cumulative Scheduling

• Linear Relaxation and CP
• Why relax?
• Algebraic Analysis of LP
• Linear Programming Duality
• LP-Based Domain Filtering
• Example: Single-Vehicle Routing
• Disjunctions of Linear Systems
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Detailed Outline

• Mixed Integer/Linear Modeling
• MILP Representability
• 4.2  Disjunctive Modeling
• 4.3  Knapsack Modeling

• Cutting Planes
• 0-1 Knapsack Cuts
• Gomory Cuts
• Mixed Integer Rounding Cuts
• Example: Product Configuration

• Lagrangean Relaxation and CP
• Lagrangean Duality
• Properties of the Lagrangean Dual
• Example: Fast Linear Programming
• Domain Filtering
• Example: Continuous Global Optimization
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Detailed Outline

• Dynamic Programming in CP
• Example: Capital Budgeting
• Domain Filtering
• Recursive Optimization

• CP-based Branch and Price
• Basic Idea
• Example: Airline Crew Scheduling

• CP-based Benders Decomposition
• Benders Decomposition in the Abstract
• Classical Benders Decomposition
• Example: Machine Scheduling
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Background Reading

This tutorial is based on:

• J. N. Hooker, Integrated Methods for Optimization, Springer 
(2007).   Contains 295 exercises.

• J. N. Hooker, Operations research methods in constraint 
programming, in F. Rossi, P. van Beek and T. Walsh, eds., 
Handbook of Constraint Programming, Elsevier (2006), pp. 
527-570. 
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A Glimpse at Constraint Programming

Early Successes
Advantages and Disadvantages
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What is constraint programming?

• It is a relatively new technology developed in the computer 
science and artificial intelligence communities.

• It has found an important role in scheduling, logistics and supply 
chain management.
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• Container port scheduling 
(Hong Kong and Singapore)• Circuit design (Siemens)

• Real-time control 
(Siemens, Xerox)

Early commercial successes
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Applications

• Job shop scheduling

• Assembly line smoothing 
and balancing 

• Cellular frequency 
assignment

• Nurse scheduling

• Shift planning

• Maintenance planning

• Airline crew rostering and scheduling

• Airport gate allocation and stand planning
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• Production scheduling
chemicals
aviation
oil refining
steel
lumber
photographic plates
tires

• Transport scheduling (food, 
nuclear fuel)

• Warehouse management

• Course timetabling

Applications
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Advantages and Disadvantages

CP vs. Mathematical Programming

Constraint-based 
processing

Independence of model 
and algorithm

BranchingBranching

High-level modeling 
(global constraints)

Atomistic modeling 
(linear inequalities)

Inference (filtering, 
constraint propagation)

Relaxation

Logic processingNumerical calculation

CPMP
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Programming ≠ programming

• In constraint programming :

• programming = a form of computer programming 
(constraint-based processing)

• In mathematical programming :

• programming = logistics planning (historically)
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CP vs. MP

• In mathematical programming , equations 
(constraints) describe the problem but don’t tell how to 
solve it.

• In constraint programming , each constraint invokes a 
procedure that screens out unacceptable solutions.

• Much as each line of a computer program invokes 
an operation.
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Advantages of CP

• Better at sequencing and scheduling

• …where MP methods have weak relaxations.

• Adding messy constraints makes the problem easier.

• The more constraints, the better.

• More powerful modeling language.

• Global constraints lead to succinct models.

• Constraints convey problem structure to the solver.

• “Better at highly-constrained problems”

• Misleading – better when constraints propagate well, or 
when constraints have few variables.
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Disdvantages of CP

• Weaker for continuous variables.

• Due to lack of numerical techniques

• May fail when constraints contain many variables.

• These constraints don’t propagate well. 

•Often not good for funding optimal solutions.

• Due to lack of relaxation technology.

• May not scale up

• Discrete combinatorial methods

• Software is not robust

• Younger field
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Obvious solution…

• Integrate CP and MP.

• More on this later.

LSE tutorial, June 2007         
Slide 26

Trends

• CP is better known in continental Europe, Asia.

• Less known in North America, seen as threat to OR.

• CP/MP integration is growing

• Eclipse, Mozart, OPL Studio, SIMPL, SCIP, BARON

• Heuristic methods increasingly important in CP

• Discrete combinatorial methods

• MP/CP/heuristics may become a single technology.
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Initial Example: Integrated Methods

Freight Transfer
Bounds Propagation

Cutting Planes
Branch-infer-and-relax Tree

LSE tutorial, June 2007         
Slide 28

Example: Freight Transfer

• Transport 42 tons of freight using 8 trucks, which come in 
4 sizes…

40334

50433

60532

90731

Cost 
per 

truck

Capacity
(tons)

Number 
available

Truck 
size
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40334

50433

60532

90731

Cost 
per 

truck

Capacity
(tons)

Number 
available

Truck 
type

+ + +
+ + + ≥

+ + + ≤
∈

1 2 3 4

1 2 3 4

1 2 3 4

min 90 60 50 40

7 5 4 3 42

8

{0,1,2,3}i

x x x x

x x x x

x x x x

x

Number of trucks of type 1

Knapsack 
covering 
constraint

Knapsack 
packing 
constraint
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+ + +
+ + + ≥

+ + + ≤
∈

1 2 3 4

1 2 3 4

1 2 3 4

min 90 60 50 40

7 5 4 3 42

8

{0,1,2,3}i

x x x x

x x x x

x x x x

x

Bounds propagation

− ⋅ − ⋅ − ⋅ ≥ =  
1

42 5 3 4 3 3 3
1

7
x
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+ + +
+ + + ≥

+ + + ≤
∈ ∈

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

min 90 60 50 40

7 5 4 3 42

8

{1,2,3}, , , {0,1,2,3}

x x x x

x x x x

x x x x

x x x x

Bounds propagation

− ⋅ − ⋅ − ⋅ ≥ =  
1

42 5 3 4 3 3 3
1

7
x

Reduced 
domain

LSE tutorial, June 2007         
Slide 32

• Let {Lj, …, Uj} be the domain of xj

• A constraint set is bounds consistent if for each j :

• xj = Lj in some feasible solution and 

• xj = Uj in some feasible solution.

• Bounds consistency ⇒ we will not set xj to any infeasible 
values during branching.

• Bounds propagation achieves bounds consistency for a 
single inequality .

• 7x1 + 5x2 + 4x3 + 3x4 ≥ 42 is bounds consistent when the 
domains are x1 ∈ {1,2,3} and x2, x3, x4 ∈ {0,1,2,3}.

• But not necessarily for a set of inequalities.

Bounds consistency
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� Bounds propagation may not achieve bounds consistency 
for a set of constraints.

� Consider set of inequalities

with domains x1, x2 ∈ {0,1}, solutions (x1,x2) = (1,0), (1,1).

� Bounds propagation has no effect on the domains.  

� But constraint set is not bounds consistent because x1 = 0 
in no feasible solution.

Bounds consistency

1 2

1 2

1

0

x x

x x

+ ≥
− ≥
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+ + +
+ + + ≥

+ + + ≤
≤ ≤ ≥

1 2 3 4

1 2 3 4

1 2 3 4

1

min 90 60 50 40

7 5 4 3 42

8

0 3, 1i

x x x x

x x x x

x x x x

x x

Cutting Planes

Begin with continuous relaxation

Replace domains 
with bounds

This is a linear programming problem, which is easy to 
solve.

Its optimal value provides a lower bound on optimal 
value of original problem.
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+ + +
+ + + ≥

+ + + ≤
≤ ≤ ≥

1 2 3 4

1 2 3 4

1 2 3 4

1

min 90 60 50 40

7 5 4 3 42

8

0 3, 1i

x x x x

x x x x

x x x x

x x

Cutting planes (valid inequalities)

We can create a tighter relaxation (larger minimum 
value) with the addition of cutting planes .
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+ + +
+ + + ≥

+ + + ≤
≤ ≤ ≥

1 2 3 4

1 2 3 4

1 2 3 4

1

min 90 60 50 40

7 5 4 3 42

8

0 3, 1i

x x x x

x x x x

x x x x

x x

Cutting planes (valid inequalities)

All feasible solutions of the 
original problem satisfy a 
cutting plane (i.e., it is valid ).

But a cutting plane may 
exclude (“cut off ”) solutions of 
the continuous relaxation.

Cutting 
plane

Feasible solutions

Continuous 
relaxation
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+ + +
+ + + ≥

+ + + ≤
≤ ≤ ≥

1 2 3 4

1 2 3 4

1 2 3 4

1

min 90 60 50 40

7 5 4 3 42

8

0 3, 1i

x x x x

x x x x

x x x x

x x

Cutting planes (valid inequalities)

{1,2} is a packing

…because 7x1 + 5x2 alone cannot satisfy the inequality, 
even with x1 = x2 = 3.
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+ + +
+ + + ≥

+ + + ≤
≤ ≤ ≥

1 2 3 4

1 2 3 4

1 2 3 4

1

min 90 60 50 40

7 5 4 3 42

8

0 3, 1i

x x x x

x x x x

x x x x

x x

Cutting planes (valid inequalities)

{1,2} is a packing

{ }
 − ⋅ + ⋅+ ≥ = 
 

3 4

42 (7 3 5 3)
2

max 4,3
x x

So, + ≥ − ⋅ + ⋅3 44 3 42 (7 3 5 3)x x

which implies

Knapsack cut
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Cutting planes (valid inequalities)

Let xi have domain [Li,Ui] and let a ≥ 0.

In general, a packing P for ax ≥ a0 satisfies

∉ ∈
≥ −∑ ∑0i i i i

i P i P

a x a a U

and generates a knapsack cut

{ }
∈

∉
∉

 −
 ≥
 
  

∑
∑

0

max

i i
i P

i
i P i

i P

a a U
x

a
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+ + +
+ + + ≥

+ + + ≤
≤ ≤ ≥

1 2 3 4

1 2 3 4

1 2 3 4

1

min 90 60 50 40

7 5 4 3 42

8

0 3, 1i

x x x x

x x x x

x x x x

x x

Cutting planes (valid inequalities)

x2 + x3 ≥ 3{1,4}

x2 + x4 ≥ 2{1,3}

x3 + x4 ≥ 2{1,2}

Knapsack cutsMaximal Packings

Knapsack cuts corresponding to nonmaximal
packings can be nonredundant.
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+ + +
+ + + ≥

+

+ ≥
+ ≥
+ ≥

+ + ≤
≤ ≤ ≥

1 2 3 4

1 2 3 4

1

3 4

2 3

2

1

2 3

4

4

min 90 60 50 40

7 5 4 3 42

8

0 3, 1

2

2

3

i

x x x x

x x x x

x x x

x x

x x

x x

x

x x

Continuous relaxation with cuts

Optimal value of 523.3 is a lower bound on optimal value 
of original problem.

Knapsack cuts
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Branch-
infer-and-
relax tree
Propagate bounds 
and solve 
relaxation of 
original problem.

x1 ∈ {  123}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (2⅓,3,2⅔,0)
value = 523⅓
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Branch on a 
variable with 
nonintegral value 
in the relaxation.

x1 ∈ {  123}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (2⅓,3,2⅔,0)
value = 523⅓

x1 ∈ {1,2}
x1 = 3

Branch-infer-
and-relax tree
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Propagate bounds 
and solve 
relaxation.

Since relaxation 
is infeasible, 
backtrack.

x1 ∈ {  123}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (2⅓,3,2⅔,0)
value = 523⅓

x1 ∈ {  12  }
x2 ∈ {    23}
x3 ∈ {  123}
x4 ∈ {  123}
infeasible
relaxation

x1 ∈ {1,2}
x1 = 3

Branch-infer-
and-relax tree
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Propagate bounds 
and solve 
relaxation.

Branch on 
nonintegral
variable.

x1 ∈ {  123}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (2⅓,3,2⅔,0)
value = 523⅓

x1 ∈ {  12  }
x2 ∈ {    23}
x3 ∈ {  123}
x4 ∈ {  123}
infeasible
relaxation

x1 ∈ {      3}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (3,2.6,2,0)
value = 526

x1 ∈ {1,2}
x1 = 3

x2 ∈ {0,1,2}

x2 = 3

Branch-infer-
and-relax tree
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Branch again.

x1 ∈ {  123}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (2⅓,3,2⅔,0)
value = 523⅓

x1 ∈ {  12  }
x2 ∈ {    23}
x3 ∈ {  123}
x4 ∈ {  123}
infeasible
relaxation

x1 ∈ {      3}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (3,2.6,2,0)
value = 526

x1 ∈ {      3}
x2 ∈ {012  }
x3 ∈ {  123}
x4 ∈ {0123}

x = (3,2,2¾,0)
value = 527½

x1 ∈ {1,2}
x1 = 3

x2 ∈ {0,1,2}

x2 = 3

x3 ∈ {1,2}
x3 = 3

Branch-infer-
and-relax tree
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Solution of 
relaxation 
is integral and 
therefore feasible 
in the original 
problem.

This becomes the 
incumbent 
solution .

x1 ∈ {  123}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (2⅓,3,2⅔,0)
value = 523⅓

x1 ∈ {  12  }
x2 ∈ {    23}
x3 ∈ {  123}
x4 ∈ {  123}
infeasible
relaxation

x1 ∈ {      3}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (3,2.6,2,0)
value = 526

x1 ∈ {      3}
x2 ∈ {012  }
x3 ∈ {  123}
x4 ∈ {0123}

x = (3,2,2¾,0)
value = 527½

x1 ∈ {      3}
x2 ∈ {  12  }
x3 ∈ {  12  }
x4 ∈ {  123}
x = (3,2,2,1)
value = 530

feasible solution

x1 ∈ {1,2}
x1 = 3

x2 ∈ {0,1,2}

x2 = 3

x3 ∈ {1,2}
x3 = 3

Branch-infer-
and-relax tree
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Solution is 
nonintegral, but 
we can backtrack 
because value of 
relaxation is 
no better than 
incumbent solution.

x1 ∈ {  123}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (2⅓,3,2⅔,0)
value = 523⅓

x1 ∈ {  12  }
x2 ∈ {    23}
x3 ∈ {  123}
x4 ∈ {  123}
infeasible
relaxation

x1 ∈ {      3}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (3,2.6,2,0)
value = 526

x1 ∈ {      3}
x2 ∈ {012  }
x3 ∈ {  123}
x4 ∈ {0123}

x = (3,2,2¾,0)
value = 527½

x1 ∈ {      3}
x2 ∈ {  12  }
x3 ∈ {  12  }
x4 ∈ {  123}
x = (3,2,2,1)
value = 530

feasible solution

x1 ∈ {      3}
x2 ∈ {012  }
x3 ∈ {      3}
x4 ∈ {012  }

x = (3,1½,3,½)
value = 530
backtrack

due to bound

x1 ∈ {1,2}
x1 = 3

x2 ∈ {0,1,2}

x2 = 3

x3 ∈ {1,2}
x3 = 3

Branch-infer-
and-relax tree
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Another feasible 
solution found.

No better than 
incumbent solution, 
which is optimal 
because search 
has finished.

x1 ∈ {  123}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (2⅓,3,2⅔,0)
value = 523⅓

x1 ∈ {  12  }
x2 ∈ {    23}
x3 ∈ {  123}
x4 ∈ {  123}
infeasible
relaxation

x1 ∈ {      3}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (3,2.6,2,0)
value = 526

x1 ∈ {      3}
x2 ∈ {012  }
x3 ∈ {  123}
x4 ∈ {0123}

x = (3,2,2¾,0)
value = 527½

x1 ∈ {      3}
x2 ∈ {      3}
x3 ∈ {012  }
x4 ∈ {012  }
x = (3,3,0,2)
value = 530

feasible solution

x1 ∈ {      3}
x2 ∈ {  12  }
x3 ∈ {  12  }
x4 ∈ {  123}
x = (3,2,2,1)
value = 530

feasible solution

x1 ∈ {      3}
x2 ∈ {012  }
x3 ∈ {      3}
x4 ∈ {012  }

x = (3,1½,3,½)
value = 530
backtrack

due to bound

x1 ∈ {1,2}
x1 = 3

x2 ∈ {0,1,2}

x2 = 3

x3 ∈ {1,2}
x3 = 3

Branch-infer-
and-relax tree
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Two optimal solutions…

= (3,2,2,1)x

= (3,3,0,2)x
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Constraint Programming Concepts

Consistency
Hyperarc Consistency
Modeling Examples
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Consistency

• A constraint set is consistent if every partial assignment to the 
variables that violates no constraint is feasible.

• i.e., can be extended to a feasible solution.  

• Consistency ≠ feasibility

• Consistency means that any infeasible partial assignment is 
explicitly ruled out by a constraint.

• Fully consistent constraint sets can be solved without 
backtracking .
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Consistency

Consider the constraint set

It is not consistent, because x1 = 0 violates no constraint 
and yet is infeasible (no solution has x1 = 0).

Adding the constraint x1 = 1 makes the set consistent.

{ }

1 100

1 100

1

0

0,1j

x x

x x

x

+ ≥
− ≥
∈

LSE tutorial, June 2007         
Slide 54

subtree with 299 nodes
but no feasible solution

By adding the constraint 
x1 = 1, the left subtree is 
eliminated 

{ }

1 100

1 100

1

1

other constraints

0,1j

x x

x x

x

+ ≥
− ≥

∈

1 0x = 1 1x =
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Hyperarc Consistency

• Also known as generalized arc consistency .

• A constraint set is hyperarc consistent if every value in 
every variable domain is part of some feasible solution.

• That is, the domains are reduced as much as 
possible.

• If all constraints are “binary” (contain 2 variables), 
hyperarc consistent = arc consistent.

• Domain reduction is CP’s biggest engine.
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Graph coloring problem that can be solved by arc 
consistency maintenance alone.  Color nodes with red, 
green, blue with no two adjacent nodes having the same 
color.
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Graph coloring problem that can be solved by arc 
consistency maintenance alone.  Color nodes with red, 
green, blue with no two adjacent nodes having the same 
color.
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Graph coloring problem that can be solved by arc 
consistency maintenance alone.  Color nodes with red, 
green, blue with no two adjacent nodes having the same 
color.
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Graph coloring problem that can be solved by arc 
consistency maintenance alone.  Color nodes with red, 
green, blue with no two adjacent nodes having the same 
color.
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Graph coloring problem that can be solved by arc 
consistency maintenance alone.  Color nodes with red, 
green, blue with no two adjacent nodes having the same 
color.
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Graph coloring problem that can be solved by arc 
consistency maintenance alone.  Color nodes with red, 
green, blue with no two adjacent nodes having the same 
color.

LSE tutorial, June 2007         
Slide 62

Graph coloring problem that can be solved by arc 
consistency maintenance alone.  Color nodes with red, 
green, blue with no two adjacent nodes having the same 
color.
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Modeling Examples with Global Constraints

Traveling Salesman 

Traveling salesman problem:

Let cij = distance from city i to city j.  

Find the shortest route that visits each of n cities exactly 
once.
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Popular 0-1 model

Let xij = 1 if city i immediately precedes city j, 0 otherwise

{ }

{ }

min

s.t. 1,  all 

1,  all 

1,   all disjoint , 1, ,

0,1

ij ij
ij

ij
i

ij
j

ij
i V j W

ij

c x

x j

x i

x V W n

x
∈ ∈

=

=

≥ ⊂

∈

∑

∑

∑

∑∑ …

Subtour elimination constraints
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A CP model

Let yk = the kth city visited.

The model would be written in a specific constraint programming 
language but would essentially say:

Variable indices

“Global” constraint
{ }

1

1

min

s.t. alldiff( , , )

1, ,

k ky y
k

n

k

c

y y

y n

+

∈

∑

…

…
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{ }
1

min

s.t. circuit( , , )

1, ,

kky
k

n

k

c

y y

y n∈

∑

…

…

An alternate CP model

Let yk = the city visited after city k.

Hamiltonian circuit 
constraint
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The constraint xy ≤ 5 can be implemented

Element constraint

The constraint cy ≤ 5 can be implemented:

Assign z the yth
value in the list

(this is a slightly different constraint)

Add the 
constraint 
z = xy

( )1

5

element ,( , , ),n

z

y c c z

≤
…

( )1

5

element ,( , , ),n

z

y x x z

≤
…
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Day: 1         2         3         4         5         6         7   8

A B A

Product

• At most one product manufactured on each day.

• Demands for each product on each day.

• Minimize setup + holding cost.

Modeling example: Lot sizing and scheduling
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,

, 1

, 1

, 1

, 1

, 1

min

s.t. ,   all ,

,   all ,

,   all ,

1 ,  all ,

1,  all , ,

,   all , ,

,   all , ,

it it ij ijt
t i j t

i t it it it

it it i t

it it

it i t

ijt i t jt

ijt i t

ijt jt

i

h s q

s x d s i t

z y y i t

z y i t

z y i t

y y i j t

y i j t

y i j t

x

δ

δ
δ
δ

≠

−

−

−

−

−

 
+ 

 

+ = +
≥ −
≤
≤ −
≥ + −
≥
≥

∑ ∑

,   all ,

1,  all 

, , {0,1}

, 0

t it

it
i

it it ijt

it it

Cy i t

y t

y z

x s

δ

≤
=

∈
≥

∑

Integer
programming
model

(Wolsey)

Many variables
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( ) ( )

1

, 1

min

s.t. ,   all ,

0 ,   0,   all ,

0 ,   all ,

t ty y i it
t i

i t it it it

it it

t it

q h s

s x d s i t

x C s i t

y i x i t

−

−

 + 
 

+ = +
≤ ≤ ≥

≠ → =

∑ ∑

CP model
Minimize holding and setup costs

Inventory balance

Production capacity
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( ) ( )

1

, 1

min

s.t. ,   all ,

0 ,   0,   all ,

0 ,   all ,

t ty y i it
t i

i t it it it

it it

t it

q h s

s x d s i t

x C s i t

y i x i t

−

−

 + 
 

+ = +
≤ ≤ ≥

≠ → =

∑ ∑

CP model
Minimize holding and setup costs

Variable indices

Product manufactured in period t

Production level of product i in period t

Inventory balance

Production capacity
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• Used for resource-constrained scheduling.

• Total resources consumed by jobs at any one time must 
not exceed L.

Job start times
(variables)

Job processing times
Job resource 
requirements

Cumulative scheduling constraint

( )1 1 1cumulative ( , , ),( , , ),( , , ),n n nt t p p c c L… … …
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( )1 5

1

5

min

s.t. cumulative ( , , ),(3,3,3,5,5),(3,3,3,2,2),7

3

2

z

t t

z t

z t

≥ +

≥ +

…

⋮

Minimize makespan (no deadlines, all release times = 0):

Min makespan = 8

L

1

2 3

4

5

time

resources

Job start times

Processing times
Resources used

L

Cumulative scheduling constraint 

LSE tutorial, June 2007         
Slide 74

• Will use ILOG’s OPL Studio modeling language.

• Example is from OPL manual.

• The problem

• Load 34 items on the ship in minimum time (min makespan)

• Each item requires a certain time and certain number of 
workers.

• Total of 8 workers available.

Modeling example: Ship loading



38

LSE tutorial, June 2007         
Slide 75

6217

3316

3215

3514

4113

5212

4311

8210

439

348

437

526

555

464

343

442

431

LaborDura-
tion

Item

3234

3233

3132

3231

3330

8129

6228

3127

3126

8225

8524

7423

4222

4121

4120

4119

7218

LaborDura-
tion

Item

Problem data
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1 → 2,4
2 →3
3 →5,7
4 →5
5 →6
6 →8
7 →8
8 →9
9 →10
9 →14
10 →11
10 →12

11 →13
12 →13
13 →15,16
14 →15
15 →18
16 →17
17 →18
18 →19
18 →20,21
19 →23
20 → 23
21 → 22

22 →23
23 →24
24 →25
25 →26,30,31,32
26 → 27
27 → 28
28 → 29
30 → 28
31 → 28
32 → 33
33 → 34

Precedence constraints
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Use the cumulative scheduling constraint.

( )
1 2

1 34

2 1 4 1

min

s.t. 3, 4,  etc.

cumulative ( , , ),(3,4, ,2),(4,4, ,3),8

3,   3,  etc.

z

z t z t

t t

t t t t

≥ + ≥ +

≥ + ≥ +
… … …
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int capacity = 8;
int nbTasks = 34;
range Tasks 1..nbTasks;
int duration[Tasks] = [3,4,4,6,…,2];
int totalDuration = 

sum(t in Tasks) duration[t];
int demand[Tasks] = [4,4,3,4,…,3];
struct Precedences {

int before;
int after;

}
{Precedences} setOfPrecedences = {

<1,2>, <1,4>, …, <33,34> };

OPL model
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scheduleHorizon = totalDuration;
Activity a[t in Tasks](duration[t]);
DiscreteResource res(8);
Activity makespan(0);
minimize

makespan.end
subject to

forall(t in Tasks)
a[t] precedes makespan;

forall(p in setOfPrecedences)
a[p.before] precedes a[p.after];

forall(t in Tasks)
a[t] requires(demand[t]) res;

};
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Capacity
C1

Capacity
C2

Capacity
C3

Manufacturing
Unit

Storage
Tanks

Packing
Units

Modeling example: Production scheduling with 
intermediate storage
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Level

t u t + (b/r) u + (b/s)

Filling starts

Packing starts Filling ends
Packing ends

Batch size

Manufac-
turing rate Packing rate

Need to enforce 
capacity constraint 
here only

Filling of storage tank 
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( )

1

1

min

s.t. ,   all 

,   all 

cumulative , , ,

,   all 

1 ,   all 

cumulative , , , , ,

0

j
j

j

j j

i
i i i

i

i
i i i i

i

n

n

j j

T

b
T u j

s

t R j

t v e m

b
v u t i

s

s
b s u C i

r

b b
u e p

s s

u t

≥ +

≥

= + −

 
− + ≤ 

 

  
   

  

≥ ≥

…

Makespan

Job release time

m storage tanks

Job duration

Tank capacity

p packing units

e = (1,…,1)
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Modeling example: Employee scheduling 

• Schedule four nurses in 8-hour shifts.

• A nurse works at most one shift a day, at least 5 days a week.

• Same schedule every week.

• No shift staffed by more than two different nurses in a week.

• A nurse cannot work different shifts on two consecutive days.

• A nurse who works shift 2 or 3 must do so at least two days in 
a row.
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Two ways to view the problem

DCCDDDDShift 3

BBBBCCCShift 2

AAAAABAShift 1

SatFriThuWedTueMonSun

Assign nurses to shifts

3003333Nurse D

0330222Nurse C

2222010Nurse B

1111101Nurse A

SatFriThuWedTueMonSun

Assign shifts to nurses

0 = day off
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Use both formulations in the same model!

First, assign nurses to shifts.

Let wsd = nurse assigned to shift s on day d

1 2 3alldiff( , , ),   all d d dw w w d The variables w1d, w2d, 
w3d take different values

That is, schedule 3 
different nurses on each 
day
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( )
1 2 3alldiff( , , ),   all 

cardinality | ( , , , ),(5,5,5,5),(6,6,6,6)
d d dw w w

w A B C

d

D

A occurs at least 5 and at most 6 
times in the array w, and similarly 
for B, C, D.

That is, each nurse works at least 
5 and at most 6 days a week

Use both formulations in the same model!

First, assign nurses to shifts.

Let wsd = nurse assigned to shift s on day d
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( )
( )

( )

1 2 3

,Sun ,Sat

alldiff , , ,   all 

cardinality | ( , , , ),(5,5,5,5),(6,6,6,6)

nvalues ,..., |1,2 ,  all 

d d d

s s

w w w

w

d

A B C D

w w s

The variables ws,Sun, …, ws,Sat take 
at least 1 and at most 2 different 
values.

That is, at least 1 and at most 2 
nurses work any given shift.

Use both formulations in the same model!

First, assign nurses to shifts.

Let wsd = nurse assigned to shift s on day d
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Remaining constraints are not easily expressed in this 
notation.  

So, assign shifts to nurses.

Let yid = shift assigned to nurse i on day d

( )1 2 3,alldiff ,  all ,d d dy y y d

Assign a different nurse to each 
shift on each day.

This constraint is redundant of 
previous constraints, but 
redundant constraints speed 
solution.
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( )
( )

1 2 3

,Sun ,Sat

alldiff ,  all 

stretch , , | (2,3),(2,2),(6,6), ,  all 

, ,d d d

i i

y

P i

y

y y

dy

…

Every stretch of 2’s has length between 2 and 6.
Every stretch of 3’s has length between 2 and 6.

So a nurse who works shift 2 or 3 must do so at least 
two days in a row.  

Remaining constraints are not easily expressed in this 
notation.  

So, assign shifts to nurses.

Let yid = shift assigned to nurse i on day d
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( )
( )

1 2 3

,Sun ,Sat

alldiff ,  all 

stretch , , | (2,3),(2,2),(6,6), ,  all 

, ,d d d

i i

y

P i

y

y y

dy

…

Here P = {(s,0),(0,s) | s = 1,2,3}

Whenever a stretch of a’s immediately precedes a stretch of b’s, 
(a,b) must be one of the pairs in P.

So a nurse cannot switch shifts without taking at least one day off.

Remaining constraints are not easily expressed in this 
notation.  

So, assign shifts to nurses.

Let yid = shift assigned to nurse i on day d
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Now we must connect the wsd variables to the yid variables.

Use channeling constraints :

,   all ,

,   all ,
i

d

d

s

d

w

y

dy

i iw d

s s d

=

=

Channeling constraints increase propagation and make the 
problem easier to solve.
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The complete model is:

,   all ,

,   all ,
i

d

d

s

d

w

y

dy

i iw d

s s d

=

=

( )
( )

( )

1 2 3

,Sun ,Sat

alldiff , , ,   all 

cardinality | ( , , , ),(5,5,5,5),(6,6,6,6)

nvalues ,..., |1,2 ,  all 

d d d

s s

w w w

w

d

A B C D

w w s

( )
( )

1 2 3

,Sun ,Sat

alldiff ,  all 

stretch , , | (2,3),(2,2),(6,6), ,  all 

, ,d d d

i i

y

P i

y

y y

dy

…
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CP Filtering Algorithms

Element
Alldiff

Disjunctive Scheduling
Cumulative Scheduling
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Filtering for element

Variable domains can be easily filtered to maintain hvperarc
consistency.

Domain of z

( )1element ,( , , ),ny x x z…

{ }
{ }

|

  if 

  otherwise

j

y

j

j

j

z z x
j D

y y z x

z y
x

x

D D D

D D j D D

D D j
D

D

∈

← ∩

← ∩ ∩ ≠ ∅

 = ←  
  

∪



48

LSE tutorial, June 2007         
Slide 95

Example...

The initial domains are: The reduced domains are:

( )1 2 3 4element ,( , , , ),y x x x x z

{ }
{ }
{ }
{ }
{ }
{ }

1

2

3

4

20,30,60,80,90

1,3,4

10,50

10,20

40,50,80,90

40,50,70

z

y

x

x

x

x

D

D

D

D

D

D

=
=
=

=

=

=

{ }
{ }
{ }
{ }
{ }
{ }

1

2

3

4

80,90

3

10,50

10,20

80,90

40,50,70

z

y

x

x

x

x

D

D

D

D

D

D

=
=
=

=

=

=

Filtering for element
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Filtering for alldiff

Domains can be filtered with an algorithm based on maximum 
cardinality bipartite matching and a theorem of Berge.

It is a special case of optimality conditions for max flow.

( )1alldiff , , ny y…
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Filtering for alldiff

Consider the domains

{ }
{ }
{ }
{ }
{ }

1

2

3

4

5

1

2,3,5

1,2,3,5

1,5

1,2,3,4,5,6

y

y

y

y

y

∈
∈
∈
∈
∈
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y1

y2

y3

y4

y5

1

2

3

4

5

6

Indicate domains with edges
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y1

y2

y3

y4

y5

1

2

3

4

5

6

Indicate domains with edges

Find maximum cardinality bipartite 
matching.
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y1

y2

y3

y4

y5

1

2

3

4

5

6

Indicate domains with edges

Find maximum cardinality bipartite 
matching.
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y1

y2

y3

y4

y5

1

2

3

4

5

6

Indicate domains with edges

Find maximum cardinality bipartite 
matching.

Mark edges in alternating paths 
that start at an uncovered vertex.
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y1

y2

y3

y4

y5

1

2

3

4

5

6

Indicate domains with edges

Find maximum cardinality bipartite 
matching.

Mark edges in alternating paths 
that start at an uncovered vertex.
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y1

y2

y3

y4

y5

1

2

3

4

5

6

Indicate domains with edges

Find maximum cardinality bipartite 
matching.

Mark edges in alternating paths 
that start at an uncovered vertex.

Mark edges in alternating cycles.
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y1

y2

y3

y4

y5

1

2

3

4

5

6

Indicate domains with edges

Find maximum cardinality bipartite 
matching.

Mark edges in alternating paths 
that start at an uncovered vertex.

Mark edges in alternating cycles.

Remove unmarked edges not in 
matching.
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y1

y2

y3

y4

y5

1

2

3

4

5

6

Indicate domains with edges

Find maximum cardinality bipartite 
matching.

Mark edges in alternating paths 
that start at an uncovered vertex.

Mark edges in alternating cycles.

Remove unmarked edges not in 
matching.
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Filtering for alldiff

Domains have been filtered:

{ }
{ }
{ }
{ }
{ }

1

2

3

4

5

1

2,3,5

1,2,3,5

1,5

1,2,3,4,5,6

y

y

y

y

y

∈
∈
∈
∈
∈

{ }
{ }
{ }
{ }
{ }

1

2

3

4

5

1

2,3

2,3

5

4,6

y

y

y

y

y

∈
∈
∈
∈
∈

Hyperarc consistency achieved.
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Disjunctive scheduling

Consider a disjunctive scheduling constraint:

( )1 2 3 5 1 2 3 5disjunctive ( , , , ),( , , , )s s s s p p p p

Start time variables
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Edge finding for disjunctive scheduling

Consider a disjunctive scheduling constraint:

( )1 2 3 5 1 2 3 5disjunctive ( , , , ),( , , , )s s s s p p p p

Processing times
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Edge finding for disjunctive scheduling

Consider a disjunctive scheduling constraint:

( )1 2 3 5 1 2 3 5disjunctive ( , , , ),( , , , )s s s s p p p p

Variable domains defined by time 
windows and processing times

1

2

3

5

[0,10 1]

[0,10 3]

[2,7 3]

[4,7 2]

s

s

s

s

∈ −
∈ −
∈ −
∈ −
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Edge finding for disjunctive scheduling

Consider a disjunctive scheduling constraint:

( )1 2 3 5 1 2 3 5disjunctive ( , , , ),( , , , )s s s s p p p p

A feasible (min makespan) solution:

Time window
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Edge finding for disjunctive scheduling

But let’s reduce 2 of the deadlines to 9:
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Edge finding for disjunctive scheduling

But let’s reduce 2 of the deadlines to 9:

We will use edge finding 
to prove that there is no 
feasible schedule.
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Edge finding for disjunctive scheduling

We can deduce that job 2 must precede jobs 3 and 4: { }2 3,5≪

Because if job 2 is not first, there is not enough time for all 3 
jobs within the time windows:

{2,3,5} {3,5} {2,3,5}L E p− <

L{2,3,5}E{3,5}
7<3+3+2
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Edge finding for disjunctive scheduling

We can deduce that job 2 must precede jobs 3 and 4: { }2 3,5≪

Because if job 2 is not first, there is not enough time for all 3 
jobs within the time windows:

{2,3,5} {3,5} {2,3,5}L E p− <

L{2,3,5}E{3,5}
7<3+3+2

Latest deadline
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Edge finding for disjunctive scheduling

We can deduce that job 2 must precede jobs 3 and 4: { }2 3,5≪

Because if job 2 is not first, there is not enough time for all 3 
jobs within the time windows:

{2,3,5} {3,5} {2,3,5}L E p− <

L{2,3,5}E{3,5}
7<3+3+2

Earliest release time
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Edge finding for disjunctive scheduling

We can deduce that job 2 must precede jobs 3 and 4: { }2 3,5≪

Because if job 2 is not first, there is not enough time for all 3 
jobs within the time windows:

{2,3,5} {3,5} {2,3,5}L E p− <

L{2,3,5}E{3,5}
7<3+3+2

Total processing time



59

LSE tutorial, June 2007         
Slide 117

Edge finding for disjunctive scheduling

We can deduce that job 2 must precede jobs 3 and 4: { }2 3,5≪

So we can tighten deadline of job 2 to minimum of 

{3} {3} 4L p− =

L{2,3,5}E{3,5}
7<3+3+2

Since time window of job 2 is now too narrow, there is no 
feasible schedule.

{5} {5} 5L p− = {3,5} {3,5} 2L p− =
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Edge finding for disjunctive scheduling

In general, we can deduce that job k must precede all the jobs 
in set J: k J≪
If there is not enough time for all the jobs after the earliest 
release time of the jobs in J

{ } { }J k J J kL E p∪ ∪− < {2,3,5} {3,5} {2,3,5}L E p− <
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Edge finding for disjunctive scheduling

In general, we can deduce that job k must precede all the jobs 
in set J: k J≪
If there is not enough time for all the jobs after the earliest 
release time of the jobs in J

{ } { }J k J J kL E p∪ ∪− < {2,3,5} {3,5} {2,3,5}L E p− <

Now we can tighten the deadline for job k to:

{ }min J JJ J
L p′ ′′⊂

− {3,5} {3,5} 2L p− =
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Edge finding for disjunctive scheduling

There is a symmetric rule: k J≫

If there is not enough time for all the jobs before the latest 
deadline of the jobs in J:

{ } { }J J k J kL E p∪ ∪− <

Now we can tighten the release date for job k to:

{ }max J JJ J
E p′ ′′⊂

+
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Edge finding for disjunctive scheduling

Problem:  how can we avoid enumerating all subsets J of jobs 
to find edges?

{ } { }J k J J kL E p∪ ∪− <

…and all subsets J′ of J to tighten the bounds?

{ }min J JJ J
L p′ ′′⊂

−
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Edge finding for disjunctive scheduling

Key result:  We only have to consider sets J whose time 
windows lie within some interval.  

{ }min J JJ J
L p′ ′′⊂

−

e.g., J = {3,5}
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Edge finding for disjunctive scheduling

Key result:  We only have to consider sets J whose time 
windows lie within some interval.  

Removing a job from those within an interval only weakens the 
test

{ }min J JJ J
L p′ ′′⊂

−

e.g., J = {3,5}

{ } { }J k J J kL E p∪ ∪− <

There are a polynomial number of intervals 
defined by release times and deadlines.
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Edge finding for disjunctive scheduling

Key result:  We only have to consider sets J whose time 
windows lie within some interval.  

{ }min J JJ J
L p′ ′′⊂

−

e.g., J = {3,5}

Note:  Edge finding does not achieve bounds consistency, 
which is an NP-hard problem.
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Edge finding for disjunctive scheduling

One O(n2) algorithm is based on the Jackson pre-emptive 
schedule (JPS).  Using a different example, the JPS is:
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Edge finding for disjunctive scheduling

One O(n2) algorithm is based on the Jackson pre-emptive 
schedule (JPS).  Using a different example, the JPS is:

For each job 

Scan jobs  in decreasing order of 

Select first  for which 

Conclude that 

Update  to JPS( , )

ik

i k

k i i J

ik

i

i

k J L

k L E p p

i J

E i k

∈
− < +

≫

Jobs unfinished at time Ei in JPS

Jobs j ≠ i in Ji with Lj ≤ Lk

Latest completion time in JPS of jobs in Jik
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Not-first/not-last rules

We can deduce that job 4 cannot precede jobs 1 and 2:

{1,2} 4 1 2 4L E p p p− < + +

( )4 {1,2}¬ ≪

Because if job 4 is first, there is too little time to complete the 
jobs before the later deadline of jobs 1 and 2:

L{1,2}E4
6<1+3+3
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Not-first/not-last rules

We can deduce that job 4 cannot precede jobs 1 and 2:

1 1 3E p+ =
Now we can tighten the release time of job 4 to minimum of:

L{1,2}E4
6<1+3+3

2 2 4E p+ =

( )4 {1,2}¬ ≪
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Not-first/not-last rules

In general, we can deduce that job k cannot precede all the 
jobs in J:

J k JL E p− <

( )k J¬ ≪

if there is too little time after release time of job k to complete 
all jobs before the latest deadline in J:

Now we can update Ei to 

{ }min j jj J
E p

∈
+
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Not-first/not-last rules

In general, we can deduce that job k cannot precede all the 
jobs in J:

J k JL E p− <

( )k J¬ ≪

if there is too little time after release time of job k to complete 
all jobs before the latest deadline in J:

Now we can update Ei to 

{ }min j jj J
E p

∈
+

There is a symmetric not-last rule.

The rules can be applied in polynomial time, although an 
efficient algorithm is quite complicated.
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Cumulative scheduling

Consider a cumulative scheduling constraint:

( )1 2 3 1 2 3 1 2 3cumulative ( , , ),( , , ),( , , ),s s s p p p c c c C

A feasible solution:
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Edge finding for cumulative scheduling

We can deduce that job 3 must finish after the others finish: { }3 1,2>
Because the total energy required exceeds the area between 
the earliest release time and the later deadline of jobs 1,2:

( )3 {1,2} {1,2} {1,2,3}e e C L E+ > ⋅ −
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Edge finding for cumulative scheduling

We can deduce that job 3 must finish after the others finish: { }3 1,2>
Because the total energy required exceeds the area between 
the earliest release time and the later deadline of jobs 1,2:

( )3 {1,2} {1,2} {1,2,3}e e C L E+ > ⋅ −

Total energy 
required = 22

9

5

8
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Edge finding for cumulative scheduling

We can deduce that job 3 must finish after the others finish: { }3 1,2>
Because the total energy required exceeds the area between 
the earliest release time and the later deadline of jobs 1,2:

( )3 {1,2} {1,2} {1,2,3}e e C L E+ > ⋅ −

Total energy 
required = 22

9

5

8Area available 
= 20
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Edge finding for cumulative scheduling

We can deduce that job 3 must finish after the others finish: { }3 1,2>
We can update the release time of job 3 to

3 {1,2} {1,2}
{1,2}

3

( )( )Je C c L E
E

c

− − −
+

Energy available 
for jobs 1,2 if 

space is left for job 
3 to start anytime

= 10

10
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Edge finding for cumulative scheduling

We can deduce that job 3 must finish after the others finish: { }3 1,2>
We can update the release time of job 3 to

3 {1,2} {1,2}
{1,2}

3

( )( )Je C c L E
E

c

− − −
+

Energy available 
for jobs 1,2 if 

space is left for job 
3 to start anytime 

= 10

10Excess energy 
required by jobs 

1,2 = 4

4
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Edge finding for cumulative scheduling

We can deduce that job 3 must finish after the others finish: { }3 1,2>
We can update the release time of job 3 to

3 {1,2} {1,2}
{1,2}

3

( )( )Je C c L E
E

c

− − −
+

Energy available 
for jobs 1,2 if 

space is left for job 
3 to start anytime 

= 10

10Excess energy 
required by jobs 

1,2 = 4

4 Move up job 3 
release time 
4/2 = 2 units 
beyond E{1,2}

E3
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Edge finding for cumulative scheduling

In general, if ( ){ } { }J k J J ke C L E∪ ∪> ⋅ −

then k > J, and update Ek to 

( )( ) 0

( )( )
max

J k J J

J k J J
JJ J

k
e C c L E

e C c L E
E

c
′ ′ ′

′ ′ ′
′′⊂

− − − >

 − − −+ 
 

In general, if ( ){ } { }J k J k Je C L E∪ ∪> ⋅ −

then k < J, and update Lk to 

( )( ) 0

( )( )
min

J k J J

J k J J
JJ J

ke C c L E

e C c L E
L

c
′ ′ ′

′ ′ ′
′′⊂

− − − >

 − − −− 
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Edge finding for cumulative scheduling

There is an O(n2) algorithm that finds all applications of the 
edge finding rules.
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Other propagation rules for cumulative 
scheduling

• Extended edge finding.

• Timetabling.

• Not-first/not-last rules.

• Energetic reasoning.
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Linear Relaxation

Why Relax?
Algebraic Analysis of LP

Linear Programming Duality
LP-Based Domain Filtering

Example: Single-Vehicle Routing
Disjunctions of Linear Systems
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Why Relax?
Solving a relaxation of a problem can:

• Tighten variable bounds.
• Possibly solve original problem.
• Guide the search in a promising direction.
• Filter domains using reduced costs or Lagrange multipliers.
• Prune the search tree using a bound on the optimal value.
• Provide a more global view, because a single OR relaxation 

can pool relaxations of several constraints.
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Some OR models that can provide relaxations:

• Linear programming (LP).
• Mixed integer linear programming (MILP)

– Can itself be relaxed as an LP.
– LP relaxation can be strengthened with cutting planes.

• Lagrangean relaxation.
• Specialized relaxations.

– For particular problem classes.
– For global constraints.
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Motivation

• Linear programming is remarkably versatile for representing 
real-world problems.

• LP is by far the most widely used tool for relaxation .

• LP relaxations can be strengthened by cutting planes.

- Based on polyhedral analysis.

• LP has an elegant and powerful duality theory . 

- Useful for domain filtering, and much else.

• The LP problem is extremely well solved .
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1 2

1 2

1 2

1 2

min 4 7

2 3 6

2 4

, 0

x x

x x

x x

x x

+
+ ≥
+ ≥

≥

2x1 + 3x2 ≥ 6

2x1 + x2 ≥ 4

An example…

4x1 + 7x2 = 12

Optimal solution
x = (3,0)

Algebraic Analysis of LP 
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1 2

1 2

1 2

1 2

min 4 7

2 3 6

2 4

, 0

x x

x x

x x

x x

+
+ ≥
+ ≥

≥

Rewrite

1 2

1 2 3

1 2 4

1 2 3 4

min 4 7

2 3 6

2 4

, , , 0

x x

x x x

x x x

x x x x

+
+ − =
+ − =

≥

as

In general an LP has the form min

0

cx

Ax b

x

=
≥

Algebraic Analysis of LP
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Algebraic analysis of LP

Write as

=
≥

min

0

cx

Ax b

x

+
+ =

≥

min

, 0

B B N N

B N

B N

c x c x

Bx Nx b

x x

m × n matrix
Basic
variables

where

[ ]=A B N

Any set of 
m linearly 
independent 
columns of A.

These form a 
basis for the 
space spanned 
by the columns.

Nonbasic
variables
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Algebraic analysis of LP

Write as

=
≥

min

0

cx

Ax b

x

+
+ =

≥

min

, 0

B B N N

B N

B N

c x c x

Bx Nx b

x x

where

[ ]=A B N

Solve constraint equation for xB: − −= −1 1
B Nx B b B Nx

All solutions can be obtained by setting xN to some value.

The solution is basic if xN = 0.

It is a basic feasible solution if xN = 0 and xB ≥ 0.
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1 2

1 2 3

1 2 4

1 2 3 4

min 4 7

2 3 6

2 4

, , , 0

x x

x x x

x x x

x x x x

+
+ − =
+ − =

≥

2x1 + 3x2 ≥ 6

2x1 + x2 ≥ 4

Example…

x2, x3 basic

x1, x2 basic

x1, x4 basic

x2, x4 basic

x3, x4 basic
x1, x3 basic

= basic feasible    
solution

x1

x2
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Algebraic analysis of LP

Write as

=
≥

min

0

cx

Ax b

x

+
+ =

≥

min

, 0

B B N N

B N

B N

c x c x

Bx Nx b

x x

where

[ ]=A B N

Solve constraint equation for xB: − −= −1 1
B Nx B b B Nx

Express cost in terms of nonbasic variables:

− −− −1 1( )B N B Nc B b c c B N x

Vector of reduced costs

Since xN ≥ 0, 
basic solution (xB,0) 
is optimal if 
reduced costs are 
nonnegative.
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1 2

1 2 3

1 2 4

1 2 3 4

min 4 7

2 3 6

2 4

, , , 0

x x

x x x

x x x

x x x x

+
+ − =
+ − =

≥

Example…

x1, x4 basic

Consider this 
basic feasible 
solution

x1

x2
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Example…

[ ] [ ]   +   
   

−        + =        −        

     ≥     
    

21

34

1 1

4 4

1 1

4 4

min 4 0 7 0

2 0 3 1 6

2 1 1 0 4

0
,

0

xx

xx

x x

x x

x x

x x

Write… as… cBxB cNxN

BxB

NxN b

1 2

1 2 3

1 2 4

1 2 3 4

min 4 7

2 3 6

2 4

, , , 0

x x

x x x

x x x

x x x x

+
+ − =
+ − =

≥
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[ ] [ ]   +   
   

−        + =        −        

     ≥     
    

21

34

1 1

4 4

1 1

4 4

min 4 0 7 0

2 0 3 1 6

2 1 1 0 4

0
,

0

xx

xx

x x

x x

x x

x x

Example…

b

cBxB cNxN

BxB

NxN
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Example…

− − −= − =

       = = =       −      

1 1 1

1/ 21

4

0 6 3

1 1 4 2

B Nx B b B Nx B b

x

x

Basic solution is

x1, x4 basic

x2

x1

[ ] [ ]   +   
   

−        + =        −        

     ≥     
    

21

34

1 1

4 4

1 1

4 4

min 4 0 7 0

2 0 3 1 6

2 1 1 0 4

0
,

0

xx

xx

x x

x x

x x

x x

cBxB cNxN

BxB

NxN b
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[ ] [ ]

[ ] [ ]

1

1/2 0 3 1
7 0 4 0

1 1 1 0

1 2 0 0

N Bc c B N−−
−   = −    −   

≥=

Example…
Basic solution is

Reduced costs are

Solution is 
optimal

[ ] [ ]   +   
   

−        + =        −        

     ≥     
    

21

34

1 1

4 4

1 1

4 4

min 4 0 7 0

2 0 3 1 6

2 1 1 0 4

0
,

0

xx

xx

x x

x x

x x

x x

cBxB cNxN

BxB

NxN

− − −= − =

       = = =       −      

1 1 1

1/ 21

4

0 6 3

1 1 4 2

B Nx B b B Nx B b

x

x
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Linear Programming Duality

An LP can be viewed as an inference problem…

≥
≥ ⇒ ≥

0

max
x

v

Ax b cx v

=
≥

≥

min

0

cx

Ax b

x
implies

Dual problem: Find the tightest lower bound on the 
objective function that is implied by the constraints.
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An LP can be viewed as an inference problem…

≥
≥ ⇒ ≥

0

max
x

v

Ax b cx v

=
≥

≥

min

0

cx

Ax b

x

From Farkas Lemma:  If Ax ≥ b, x ≥ 0 is feasible,

0   dominates 
iff   

for some  0 

x Ax b cx v
Ax b cx v

λ λ
λ

≥ ≥ ≥
≥ ⇒ ≥

≥

λA ≤ c  and  λb ≥ v

That is, some surrogate 
(nonnegative linear 
combination) of  
Ax ≥ b dominates  cx ≥ v
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An LP can be viewed as an inference problem…

≥
≥ ⇒ ≥

0

max
x

v

Ax b cx v

=
≥

≥

min

0

cx

Ax b

x

From Farkas Lemma:  If Ax ≥ b, x ≥ 0 is feasible,

0   dominates 
iff   

for some  0 

x Ax b cx v
Ax b cx v

λ λ
λ

≥ ≥ ≥
≥ ⇒ ≥

≥

λA ≤ c  and  λb ≥ v

λ
λ
λ

≤
≥

max

0

b

A c
= This is the 

classical 
LP dual
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This equality is called strong duality.

=
≥

≥

min

0

cx

Ax b

x
If Ax ≥ b, x ≥ 0 is feasible

λ
λ
λ

≤
≥

max

0

b

A c
This is the 
classical 
LP dual

Note that the dual of the dual is the primal
(i.e., the original LP).
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λ
λ

+ =
+ ≥
+ ≥

≥

1

1 2

1 2

1 2

1 2

1

min 4 7

2 3 ( )

( )

6

2 4

, 0

x x

x x

x x

x x

Example

1 2

1

21 2

2

12

1

(

max 6 4

)

(

12

2 2 4

3 7

,

)

0

x

x

λ λ
λ λ
λ λ

λ λ

+ =
+ ≤
+ ≤

≥

A dual solution is (λ1,λ2) = (2,0)

Primal Dual

2

2

1

1 2

1( 2)

(

6

0)

2 3

2 4

x x

x x

λ
λ

⋅
⋅

+
+

=
=

≥
≥

1 24 6 12x x+ ≥

1 24 7 12x x+ ≥
dominates

Dual multipliers

Surrogate

Tightest bound on cost
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Weak Duality

If x* is feasible in the 
primal problem

min

0

cx

Ax b

x

≥
≥

λ
λ
λ

≤
≥

max

0

b

A c

and λ* is feasible in the 
dual problem

then  cx* ≥ λ*b.  

This is because  
cx* ≥ λ*Ax* ≥ λ*b

λ* is dual 
feasible 

and x* ≥ 0

x* is primal 
feasible 

and λ* ≥ 0
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Dual multipliers as marginal costs

min

0

cx

Ax b b

x

≥ ∆
≥

+
Suppose we perturb the RHS of an LP 
(i.e., change the requirement levels):

The dual of the perturbed LP has the 
same constraints at the original LP:

max (

0

)bb

A c

λ
λ
λ

≤
∆

≥

+

So an optimal solution λ* of the original dual is feasible in the 
perturbed dual.
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Dual multipliers as marginal costs

min

0

cx

Ax b b

x

≥ ∆
≥

+
Suppose we perturb the RHS of an LP 
(i.e., change the requirement levels):

By weak duality,  the optimal value of the perturbed LP is at least 
λ*(b + ∆b) = λ*b + λ*∆b.

So λi*  is a lower bound on the marginal cost of increasing the 
i-th requirement by one unit (∆bi = 1). 

Optimal value of original LP, by strong duality.

If λi* > 0, the i-th constraint must be tight (complementary slackness).
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Dual of an LP in equality form

Primal Dual

λ
+

+ =
≥

m n

, 0

)

i

(
B B N N

B N

B N

c x c x

Bx Nx b

x x

(

max

 unrestric

)

d

)

te

(
B

N

B

B

x

b

B c

c xN

λ
λ
λ
λ

≤
≤
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Dual of an LP in equality form

Primal Dual

Recall that reduced cost vector is 1
N Bc c B N−− Nc Nλ= −

this solves the dual
if (xB,0) solves the primal

λ

λ
+

+ =
≥

m n

, 0

)

i

(
B B N N

B N

B N

c x c x

Bx Nx b

x x

(

max

 unrestric

)

d

)

te

(
B

N

B

B

x

b

B c

c xN

λ
λ
λ
λ

≤
≤
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Dual of an LP in equality form

Primal Dual

Check: 1

1
B B

B N

B c B B c

N c B N c

λ
λ

−

−

= =
= ≤

Because reduced cost is nonnegative 
at optimal solution (xB,0). 

Recall that reduced cost vector is 1
N Bc c B N−− Nc Nλ= −

this solves the dual
if (xB,0) solves the primal

λ

λ
+

+ =
≥

m n

, 0

)

i

(
B B N N

B N

B N

c x c x

Bx Nx b

x x

(

max

 unrestric

)

d

)

te

(
B

N

B

B

x

b

B c

c xN

λ
λ
λ
λ

≤
≤
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Dual of an LP in equality form

λ
+

+ =
≥

m n

, 0

)

i

(
B B N N

B N

B N

c x c x

Bx Nx b

x x

Primal Dual

(

max

 unrestric

)

d

)

te

(
B

N

B

B

x

b

B c

c xN

λ
λ
λ
λ

≤
≤

[ ] [ ]1/ 21 0
4 0 2 0

1 1Bc Bλ −  = = = − 

In the example, 

Recall that reduced cost vector is 1
N Bc c B N−− Nc Nλ= −

this solves the dual
if (xB,0) solves the primal

λ
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Dual of an LP in equality form

λ
+

+ =
≥

m n

, 0

)

i

(
B B N N

B N

B N

c x c x

Bx Nx b

x x

Primal Dual

(

max

 unrestric

)

d

)

te

(
B

N

B

B

x

b

B c

c xN

λ
λ
λ
λ

≤
≤

Note that the reduced cost of an individual variable xj is

Recall that reduced cost vector is 1
N Bc c B N−− Nc Nλ= −

λ

j j jr c Aλ= −

Column j of A
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� One way to filter the domain of xj is to minimize and maximize xj

subject to Ax ≥ b, x ≥ 0.  

- This is time consuming.

� A faster method is to use dual multipliers to derive valid 
inequalities.

- A special case of this method uses reduced costs to bound or 
fix variables.

- Reduced-cost variable fixing is a widely used technique in OR.

LP-based Domain Filtering

min

0

cx

Ax b

x

≥
≥

Let be an LP relaxation of a CP problem.
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min

0

cx

Ax b

x

≥
≥

Suppose:

has optimal solution x*, optimal value v*, and 
optimal dual solution λ*.

…and λi* > 0, which means the i-th constraint is tight 
(complementary slackness);

…and the LP is a relaxation of a CP problem;

…and we have a feasible solution of the CP problem with value 
U, so that U is an upper bound on the optimal value.
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min

0

cx

Ax b

x

≥
≥

Supposing has optimal solution x*, optimal value v*, and 
optimal dual solution λ*:

If x were to change to a value other than x*, the LHS of i-th constraint 
Aix ≥ bi would change by some amount ∆bi.  

Since the constraint is tight, this would increase the optimal value 
as much as changing the constraint to Aix ≥ bi + ∆bi.  

So it would increase the optimal value at least  λi*∆bi.
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We have found: a change in x that changes Aix by ∆bi increases 
the optimal value of LP at least  λi*∆bi.

Since      optimal value of the LP ≤ optimal value of the CP ≤ U,  
we have  λi*∆bi ≤ U − v*,  or *

*i
i

U v
b

λ
−∆ ≤

min

0

cx

Ax b

x

≥
≥

Supposing has optimal solution x*, optimal value v*, and 
optimal dual solution λ*:
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Since  ∆bi = Aix − Aix* = Aix − bi,  this implies the inequality
*

*
i

i
i

U v
A x b

λ
−≤ +

…which can be propagated.

min

0

cx

Ax b

x

≥
≥

Supposing has optimal solution x*, optimal value v*, and 
optimal dual solution λ*:

We have found: a change in x that changes Aix by ∆bi increases 
the optimal value of LP at least  λi*∆bi.

Since      optimal value of the LP ≤ optimal value of the CP ≤ U,  
we have  λi*∆bi ≤ U − v*,  or *

*i
i

U v
b

λ
−∆ ≤
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1 2

1 2

1 2

2

1

1

1

( 2

min

)

4 7

2 3 6

2 4

, 0

( 0)

x x

x x

x x

x x

λ
λ

=
+

+ =
+ ≥

≥
≥

Example

Suppose we have a feasible solution 
of the original CP with value U = 13.

*
1

1 *
1

U v
A x b

λ
−≤ +

1 2

13 12
2 3 6 6.5

2
x x

−+ ≤ + =

Since the first constraint is tight, we can propagate 
the inequality

or
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Reduced-cost domain filtering

Suppose xj* = 0, which means the constraint  xj ≥ 0  is tight.  

*

*
i

i
i

U v
A x b

λ
−≤ + becomes

*

j
j

U v
x

r
−≤The inequality

The dual multiplier for  xj ≥ 0 is the reduced cost 
rj of xj, because increasing xj (currently 0) by 1 
increases optimal cost by rj.

Similar reasoning can bound a variable below when it is at its 
upper bound.
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1 2

1 2

1 2

2

1

1

1

( 2

min

)

4 7

2 3 6

2 4

, 0

( 0)

x x

x x

x x

x x

λ
λ

=
+

+ =
+ ≥

≥
≥

Example

Suppose we have a feasible solution 
of the original CP with value U = 13.

Since x2* = 0, we have

or

*

2
2

U v
x

r
−≤

2

13 12
0.5

2
x

−≤ =

If  x2 is required to be integer, we can fix it to zero.  
This is reduced-cost variable fixing.
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Example: Single-Vehicle Routing

A vehicle must make several stops and return home, perhaps subject 
to time windows.

The objective is to find the order of stops that minimizes travel time.

This is also known as the traveling salesman problem (with time 
windows).

Stop i

Stop j

Travel time cij
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Assignment Relaxation

{ }

min

1, all 

0,1 , all ,

ij ij
ij

ij ji
j j

ij

c x

x x i

x i j

= =

∈

∑

∑ ∑

= 1 if stop i immediately precedes stop j

Stop i is preceded and 
followed by exactly one stop.
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Assignment Relaxation

min

1, al

0 1,  all ,

l 

ij ij
ij

ij ji
j j

ij

c

x

i j

x i

x

x

= =

≤ ≤

∑

∑ ∑

= 1 if stop i immediately precedes stop j

Stop i is preceded and 
followed by exactly one stop.

Because this problem is totally unimodular , it can be solved as an LP.

The relaxation provides a very weak lower bound on the optimal value.

But reduced-cost variable fixing can be very useful in a CP context.
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Disjunctions of linear systems often occur naturally in problems
and can be given a convex hull relaxation.

A disjunction of linear systems 
represents a union of polyhedra. ( )

min

k k

k

cx

A x b≥∨

Disjunctions of linear systems
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Disjunctions of linear systems often occur naturally in problems
and can be given a convex hull relaxation.

A disjunction of linear systems 
represents a union of polyhedra.

We want a convex hull relaxation
(tightest linear relaxation).

( )
min

k k

k

cx

A x b≥∨

Relaxing a disjunction of linear systems
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Relaxing a disjunction of linear systems

Disjunctions of linear systems often occur naturally in problems
and can be given a convex hull relaxation.

The closure of the convex hull of

( )
min

k k

k

cx

A x b≥∨

min

, all 

1

0 1

k k k
k

k
k

k

k

k

cx

A x b y k

y

x x

y

≥
=

=

≤ ≤

∑

∑

…is described by
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Why?

Convex hull relaxation
(tightest linear relaxation)

To derive convex hull 
relaxation of a disjunction…

min

, all 

1

0 1

k k k

k
k

k
k

k

k

cx

A x b k

y

x y x

y

≥
=

=

≤ ≤

∑

∑

Write each 
solution as a 
convex 
combination 
of points in 
the 
polyhedron

x
1x

2x
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Why?

Convex hull relaxation
(tightest linear relaxation)

min

, all 

1

0 1

k k k
k

k
k

k

k

k

cx

A x b y k

y

x x

y

≥
=

=

≤ ≤

∑

∑

To derive convex hull 
relaxation of a disjunction…

min

, all 

1

0 1

k k k

k
k

k
k

k

k

cx

A x b k

y

x y x

y

≥
=

=

≤ ≤

∑

∑

Write each 
solution as a 
convex 
combination 
of points in 
the 
polyhedron

x
1x

2x

Change of 
variable

k
kx y x=
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Mixed Integer/Linear Modeling

MILP Representability
Disjunctive Modeling
Knapsack Modeling
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Motivation

• We can relax a CP problem by modeling some constraints with an MILP.

• If desired, we can then relax the MILP by dropping the integrality constraint, 
to obtain an LP.

• The LP relaxation can be strengthened with cutting planes .

• The first step is to learn how to write MILP models.

A mixed integer/linear programming 
(MILP) problem has the form

min

, 0

 integer

cx dy

Ax by b

x y

y

+
+ ≥
≥
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MILP Representability

A subset S of    is MILP representable if it is the projection onto x
of some MILP constraint set of the form

{ }

+ + ≥
≥

∈ ∈ ∈R R

, 0

, , 0,1n m
k

Ax Bu Dy b

x y

x u y

R
n
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MILP Representability

A subset S of    is MILP representable if it is the projection onto x
of some MILP constraint set of the form

{ }

+ + ≥
≥

∈ ∈ ∈R R

, 0

, , 0,1n m
k

Ax Bu Dy b

x y

x u y

R
n

Theorem .  S ⊂ is MILP 
representable if and only if 
S is the union of finitely 
many polyhedra having the 
same recession cone.

n
R

Polyhedron

Recession cone 
of polyhedron
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Example: Fixed charge function

Minimize a fixed charge function:

x1

x2

2

1
2

1 1

1

min

0 if 0

if 0

0

x

x
x

f cx x

x

= ≥  + > 

≥
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Example

Minimize a fixed charge function: 2

1
2

1 1

1

min

0 if 0

if 0

0

x

x
x

f cx x

x

= ≥  + > 

≥

x1

x2

Feasible set
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Example

Minimize a fixed charge function: 2

1
2

1 1

1

min

0 if 0

if 0

0

x

x
x

f cx x

x

= ≥  + > 

≥

x1

x2

Union of two 
polyhedra
P1, P2

P1
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Example

Minimize a fixed charge function: 2

1
2

1 1

1

min

0 if 0

if 0

0

x

x
x

f cx x

x

= ≥  + > 

≥

x1

x2

Union of two 
polyhedra
P1, P2

P1

P2
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Example

Minimize a fixed charge function: 2

1
2

1 1

1

min

0 if 0

if 0

0

x

x
x

f cx x

x

= ≥  + > 

≥

x1

x2

The 
polyhedra
have 
different 
recession 
cones.

P1

P1
recession

cone

P2

P2
recession

cone
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Example

Minimize a fixed charge function:

Add an upper bound on x1

2

1
2

1 1

1

min

0 if 0

if

0

 0

x

x
x

f cx x

x M

=

≤

≥  + >

≤


x1

x2

The 
polyhedra
have the 
same 
recession 
cone.

P1

P1
recession

cone

P2

P2
recession

coneM
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Modeling a union of polyhedra

Start with a disjunction of linear 
systems to represent the union 
of polyhedra.

The kth polyhedron is {x | Akx ≥ b}

( )
min

k k

k

cx

A x b≥∨

Introduce a 0-1 variable  yk that is 
1 when x is in polyhedron k.

Disaggregate x to create an xk for 
each k.  

{ }

min

, all 

1

0,1

k k k
k

k
k

k

k

k

cx

A x b y k

y

x x

y

≥
=

=

∈

∑

∑
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Example

Start with a disjunction of 
linear systems to represent 
the union of polyhedra

2

1 1

2 2 1

min

0 0

0

x

x x M

x x f cx

= ≤ ≤   
∨   ≥ ≥ +   

x1

x2

P1

P2

M
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Example

Start with a disjunction of 
linear systems to represent 
the union of polyhedra

2

1 1

2 2 1

min

0 0

0

x

x x M

x x f cx

= ≤ ≤   
∨   ≥ ≥ +   

{ }

1 1
1 2

2 2 2
1 2 1 2 2

1 2
1 2

min

0,  0

0 ,   

1,  0,1k

cx

x x

x My cx x fy

y y y

x x x

= ≥
≤ ≤ − + ≥
+ = ∈
= +

Introduce a 0-1 variable  yk

that is 1 when x is in 
polyhedron k.

Disaggregate x to create an 
xk for each k.  
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Example

To simplify:

Replace x1
2 with x1.

Replace x2
2 with x2.

Replace y2 with y. { }

2
1 1
1 2

2 2 2
1 2 1 2 2

1 2
1 2

min

0,  0

0 ,   

1,  0,1k

x

x x

x My cx x fy

y y y

x x x

= ≥
≤ ≤ − + ≥
+ = ∈
= +

This yields

{ }

2

1

2 1

min

0

0,1

x

x My

x fy cx

y

≤ ≤
≥ +

∈
{ }

min

0

0,1

fy cx

x My

y

+
≤ ≤
∈

or

“Big M ”
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Disjunctive Modeling

Disjunctions often occur naturally in problems and can be given 
an MILP model.

Recall that a disjunction of linear 
systems (representing polyhedra
with the same recession cone) ( )

min

k k

k

cx

A x b≥∨

{ }

min

, all 

1

0,1

k k k
k

k
k

k

k

k

cx

A x b y k

y

x x

y

≥
=

=

∈

∑

∑

…has the MILP model
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Example:  Uncapacitated facility location

i j

fi cij

Fixed 
cost Transport 

cost

m possible 
factory 

locations n markets Locate factories to serve 
markets so as to minimize 
total fixed cost and 
transport cost.

No limit on production 
capacity of each factory.
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Uncapacitated facility location

i j

fi cij

Fixed 
cost Transport 

cost

n markets Disjunctive model:

min

0, all 0 1,  all 
,   all 

0

1,  all 

i ij ij
i ij

ij ij

i i i

ij
i

z c x

x j x j
i

z z f

x j

+

= ≤ ≤   
∨   = ≥   

=

∑ ∑

∑

No factory 
at location i

Factory
at location i

Fraction of 
market j’s demand 
satisfied from 
location im possible 

factory 
locations
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Uncapacitated facility location

MILP formulation: Disjunctive model:

min

0, all 0 1,  all 
,   all 

0

1,  all 

i ij ij
i ij

ij ij

i i i

ij
i

z c x

x j x j
i

z z f

x j

+

= ≤ ≤   
∨   = ≥   

=

∑ ∑

∑

No factory 
at location i

Factory
at location i

{ }

min

0 ,  all ,

0,1

i i ij ij
i ij

ij i

i

f y c x

x y i j

y

+

≤ ≤
∈

∑ ∑
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Uncapacitated facility location

MILP formulation:

{ }

min

0 ,  all ,

0,1

i i ij ij
i ij

ij i

i

f y c x

x y i j

y

+

≤ ≤
∈

∑ ∑

Beginner’s model:

{ }

min

,   all ,

0,1

i i ij ij
i ij

ij i
j

i

f y c x

x ny i j

y

+

≤

∈

∑ ∑

∑

Based on capacitated location model.

It has a weaker continuous relaxation
(obtained by replacing yi ∈ {0,1} with 0 ≤ yi ≤ 1).

This beginner’s mistake can be avoided by 
starting with disjunctive formulation.

Maximum output 
from location i
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Knapsack Modeling

• Knapsack models consist of knapsack covering and 
knapsack packing constraints.

• The freight transfer model presented earlier is an example.

• We will consider a similar example that combines disjunctive 
and knapsack modeling.

• Most OR professionals are unlikely to write a model as good 
as the one presented here.
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Note on tightness of knapsack models

• The continuous relaxation of a knapsack model is not in general
a convex hull relaxation.

- A disjunctive formulation would provide a convex hull 
relaxation, but there are exponentially many disjuncts.

• Knapsack cuts can significantly tighten the relaxation.
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{ }

min

;   1, all 

1
0

0 ,   all 

0
0 1, all 

, 0,1

i
i

i i j ij
i j i

i

ii i

ij ij i
j

ij

ij

ij i

z

Q y a x j

y
yz c
z ia x Q
x

x j

x y

≥ =

= 
   ==
   ∨ =≤   

   =  ≤ ≤ 

∈

∑

∑ ∑ ∑

∑

Example:  Package transport

Each package j
has size aj

Each truck i has 
capacity Qi and 

costs ci to 
operate

Disjunctive model Knapsack 
constraints

Truck i used
Truck i not used

1 if truck i carries 
package j 1 if truck i is used
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Example:  Package transport

{ }

min

;   1, all 

1
0

0 ,   all 

0
0 1, all 

, 0,1

i
i

i i j ij
i j i

i

ii i

ij ij i
j

ij

ij

ij i

z

Q y a x j

y
yz c
z ia x Q
x

x j

x y

≥ =

= 
   ==
   ∨ =≤   

   =  ≤ ≤ 

∈

∑

∑ ∑ ∑

∑

Disjunctive modelMILP model

{ }

min

;   1, all 

,   all 

,   all ,

, 0,1

i i
i

i i j ij
i j i

j ij i i
j

ij i

ij i

c y

Q y a x j

a x Q y i

x y i j

x y

≥ =

≤

≤
∈

∑

∑ ∑ ∑

∑
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Example:  Package transport

MILP model

{ }

min

;   1, all 

,   all 

,   all ,

, 0,1

i i
i

i i j ij
i j i

j ij i i
j

ij i

ij i

c y

Q y a x j

a x Q y i

x y i j

x y

≥ =

≤

≤
∈

∑

∑ ∑ ∑

∑ Modeling trick; 
unobvious without 
disjunctive approach

Most OR professionals 
would omit this constraint, 
since it is the sum over i
of the next constraint.  
But it generates very 
effective knapsack cuts.
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Cutting Planes

0-1 Knapsack Cuts
Gomory Cuts

Mixed Integer Rounding Cuts
Example: Product Configuration
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Cutting 
plane

Feasible solutions

Continuous 
relaxation

To review…

A cutting plane (cut, valid inequality) for 
an MILP model:

• …is valid

- It is satisfied by all feasible solutions 
of the model.

• …cuts off solutions of the continuous 
relaxation.

- This makes the relaxation tighter.
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Motivation

• Cutting planes (cuts) tighten the continuous relaxation of an 
MILP model.

• Knapsack cuts

- Generated for individual knapsack constraints.

- We saw general integer knapsack cuts earlier.

- 0-1 knapsack cuts and lifting techniques are well studied 
and widely used.

• Rounding cuts

- Generated for the entire MILP, they are widely used.

- Gomory cuts for integer variables only.

- Mixed integer rounding cuts for any MILP.
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0-1 Knapsack Cuts

0-1 knapsack cuts are designed for knapsack constraints with 0-1 
variables.

The analysis is different from that of general knapsack constraints, 
to exploit the special structure of 0-1 inequalities.
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0-1 Knapsack Cuts

0-1 knapsack cuts are designed for knapsack constraints with 0-1 
variables.

The analysis is different from that of general knapsack constraints, 
to exploit the special structure of 0-1 inequalities.

Consider a 0-1 knapsack packing constraint ax ≤ a0.  (Knapsack 
covering constraints are similarly analyzed.)

Index set J is a cover if 0j
j J

a a
∈

>∑

The cover inequality                           is a 0-1 knapsack cut for 
ax ≤ a0

1j
j J

x J
∈

≤ −∑

Only minimal covers need be considered.
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Example

Index set J is a cover if 0j
j J

a a
∈

>∑

The cover inequality                           is a 0-1 knapsack cut for 
ax ≤ a0

1j
j J

x J
∈

≤ −∑

J = {1,2,3,4} is a cover for

1 2 3 4 5 66 5 5 5 8 3 17x x x x x x+ + + + + ≤

Only minimal covers need be considered.

This gives rise to the cover inequality

1 2 3 4 3x x x x+ + + ≤
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Sequential lifting

• A cover inequality can often be strengthened by lifting it into a 
higher dimensional space.

• That is, by adding variables.

• Sequential lifting adds one variable at a time.

• Sequence-independent lifting adds several variables at once.
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Sequential lifting

To lift a cover inequality 1j
j J

x J
∈

≤ −∑

add a term to the left-hand side 1j k k
j J

x x Jπ
∈

+ ≤ −∑

where πk is the largest coefficient for which the inequality is still valid.

So,
{ } 00,1

for 

1 max
j

k j j j kx
j J j J

j J

J x a x a aπ
∈

∈ ∈
∈

 
= − − ≤ − 

 
∑ ∑

This can be done repeatedly (by dynamic programming).
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Example

To lift

add a term to the left-hand side

This yields

{ }
{ }5 1 2 3 4 1 2 3 40,1

for {1,2,3,4}

3 max 6 5 5 5 17 8
jx

j

x x x x x x x xπ
∈

∈

= − + + + + + + ≤ −

Further lifting leaves the cut unchanged.

But if the variables are added in the order x6, x5, the result is different:

1 2 3 4 3x x x x+ + + ≤

1 2 3 4 5 5 3x x x x xπ+ + + + ≤

Given 1 2 3 4 5 66 5 5 5 8 3 17x x x x x x+ + + + + ≤

where

1 2 3 4 52 3x x x x x+ + + + ≤

1 2 3 4 5 6 3x x x x x x+ + + + + ≤
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Sequence-independent lifting

• Sequence-independent lifting usually yields a weaker cut than 
sequential lifting.

• But it adds all the variables at once and is much faster.

• Commonly used in commercial MILP solvers.
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Sequence-independent lifting

To lift a cover inequality 1j
j J

x J
∈

≤ −∑

add terms to the left-hand side ( ) 1j j k
j J j J

x a x Jρ
∈ ∉

+ ≤ −∑ ∑

where

with

{ }
{ }

1if   and  0, , 1

( ) ( ) / if   and  1, , 1

( ) / if 

j j

j j j

p p

j A u A j p

u j u A A u A j p

p u A A u

ρ
+ ≤ ≤ − ∆ ∈ −

= + − ∆ − ∆ ≤ < − ∆ ∈ −
 + − ∆ − ∆ ≤

…

…

0j
j J

a a
∈

∆ = −∑

{ }1, ,J p= …

1

j

j k
k

A a
=

=∑

0 0A =
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Example

To lift

Add terms
1 2 3 4 3x x x x+ + + ≤

1 2 3 4 5 6(8) (3) 3x x x x x xρ ρ+ + + + + ≤

Given 1 2 3 4 5 66 5 5 5 8 3 17x x x x x x+ + + + + ≤

where ρ(u) is given by

This yields the lifted cut

1 2 3 4 5 6(5 / 4) (1/ 4) 3x x x x x x+ + + + + ≤
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Gomory Cuts

• When an integer programming 
problem has a nonintegral solution, 
we can generate at least one Gomory
cut to cut off that solution.

- This is a special case of a 
separating cut , because it 
separates the current solution of 
the relaxation from the feasible 
set.

• Gomory cuts are widely used and 
very effective in MILP solvers.

Separating 
cut

Feasible solutions

Solution of 
continuous 
relaxation
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min

0 and integral

cx

Ax b

x

=
≥

Gomory cuts

Given an integer programming 
problem

Let (xB,0) be an optimal solution 
of the continuous relaxation, 
where

ˆ ˆ
B Nx b Nx= −

1 1ˆ ˆ,   b B b N B N− −= =

Then if xi is nonintegral in this solution, the following Gomory cut is 
violated by (xB,0): ˆ ˆ

i i N ix N x b   + ≤   
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1 2

1 2

1 2

1 2

min 2 3

3 3

4 3 6

, 0 and integral

x x

x x

x x

x x

+
+ ≥

+ ≥
≥

Example

1 2

1 2 3

1 2 4

min 2 3

3 3

4 3 6

0 and integralj

x x

x x x

x x x

x

+
+ − =

+ − =
≥

or Optimal solution of 
the continuous 
relaxation has

1/ 3 1/ 3ˆ
4 / 9 1/ 9

N
− =  − 

1ˆ
2 / 3

b
 =  
 

1

2

1

2 / 3B

x
x

x
   = =   
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1 2

1 2

1 2

1 2

min 2 3

3 3

4 3 6

, 0 and integral

x x

x x

x x

x x

+
+ ≥

+ ≥
≥

Example

1 2

1 2 3

1 2 4

min 2 3

3 3

4 3 6

0 and integralj

x x

x x x

x x x

x

+
+ − =

+ − =
≥

or Optimal solution of 
the continuous 
relaxation has

1/ 3 1/ 3ˆ
4 / 9 1/ 9

N
− =  − 

1ˆ
2 / 3

b
 =  
 

ˆ ˆ
i i N ix N x b   + ≤   

1

2

1

2 / 3B

x
x

x
   = =   

  

The Gomory cut 

is [ ] 3
2

4

4 / 9 1/ 9 2 / 3
x

x
x
 

+ − ≤       
 

or 2 3 0x x− ≤ In x1,x2 space this is 1 22 3x x+ ≥
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1 2

1 2

1 2

1 2

min 2 3

3 3

4 3 6

, 0 and integral

x x

x x

x x

x x

+
+ ≥

+ ≥
≥

Example

1 2

1 2 3

1 2 4

min 2 3

3 3

4 3 6

0 and integralj

x x

x x x

x x x

x

+
+ − =

+ − =
≥

or Optimal solution of 
the continuous 
relaxation has

1/ 3 1/ 3ˆ
4 / 9 1/ 9

N
− =  − 

1ˆ
2 / 3

b
 =  
 

1

2

1

2 / 3B

x
x

x
   = =   

  

Gomory cut  x1 + 2x2 ≥ 3

Gomory cut after re-solving LP with 
previous cut.

1ˆ
2 /3

b
 =  
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Mixed Integer Rounding Cuts

• Mixed integer rounding (MIR) cuts can be generated for solutions 
of any relaxed MILP in which one or more integer variables has a
fractional value.

− Like Gomory cuts, they are separating cuts.

− MIR cuts are widely used in commercial solvers.
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min

, 0 and  integral

cx dy

Ax Dy b

x y y

+
+ =
≥

MIR cuts

Given an MILP problem
In an optimal solution of the 
continuous relaxation, let

J = { j | yj is nonbasic}

K = { j | xj is nonbasic}

N = nonbasic cols of [A D]

Then if yi is nonintegral in this solution, the following MIR cut is 
violated by the solution of the relaxation:

1 2

ˆfrac( ) 1ˆ ˆ ˆ ˆ ˆ
ˆ ˆfrac( ) frac( )

ij
i ij j ij ij j ij i

j J j J j Ki i

N
y N y N N x N b

b b
+

∈ ∈ ∈

 
     + + + + ≥      

 
∑ ∑ ∑

where { }1
ˆ ˆfrac( ) frac( )ij jJ j J N b= ∈ ≥

2 1\J J J=
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Example

Take basic solution (x1,y1) = (8/3,17/3).

Then
1 2 1 2

1 2 1 2

3 4 6 4 1

2 3

, 0,   integerj j j

x x y y

x x y y

x y y

+ − − =
+ − − =

≥

1/ 3 2 / 3ˆ
2 / 3 8 / 3

N
 =  − 

8 / 3ˆ
17 / 3

b
 =  
 

J = {2}, K = {2},  J1 = ∅,  J2 = {2}

The MIR cut is 1 2 2

1/3 1
1/3 (2 /3) 8 / 3

2 / 3 2 /3
y y x+ + + + ≥       

 

or 1 2 2(1/ 2) 3y y x+ + ≥
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This example illustrates:

• Combination of propagation and relaxation.

• Processing of variable indices.

• Continuous relaxation of element constraint.

Example: Product Configuration
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Memory

Memory

Memory

Memory

Memory

Memory

Power
supply

Power
supply

Power
supply

Power
supply

Disk 
drive

Disk 
drive

Disk 
drive

Disk 
drive

Disk 
drive

Choose what type of each component, and how many

Personal computer

The problem
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min

, all 

,  all 

i

j j
j

j i ijt
ik

j j j

c v

v q A j

L v U j

=

≤ ≤

∑

∑

Amount of attribute j
produced 

(< 0 if consumed): 
memory, heat, power, 

weight, etc.

Quantity of 
component i

installed

Model of the problem

Amount of attribute j
produced by type ti

of component i

ti is a variable 
index

Unit cost of producing 
attribute j
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To solve it:

• Branch on domains of ti and qi.
• Propagate element constraints and bounds on vj. 

– Variable index is converted to specially structured 
element constraint.

– Valid knapsack cuts are derived and propagated.
• Use linear continuous relaxations .

– Special purpose MILP relaxation for element.
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min

, all 

,  all 

i

j j
j

j i ijt
ik

j j j

c v

v q A j

L v U j

=

≤ ≤

∑

∑

Propagation

This is propagated 
in the usual way
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This is rewritten as

Propagation

min

, all 

,  all 

i

j j
j

j i ijt
ik

j j j

c v

v q A j

L v U j

=

≤ ≤

∑

∑
This is propagated 
in the usual way

( )1

,  all 

element ,( , , , ), ,  all ,

j i
i

i i ij i ijn i

v z j

t q A q A z i j

=∑

…
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This can be propagated by 
(a) using specialized filters for element constraints of this form…

Propagation

( )1

,  all 

element ,( , , , ), ,  all ,

j i
i

i i ij i ijn i

v z j

t q A q A z i j

=∑

…
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This is propagated by 
(a) using specialized filters for element constraints of this form, 
(b) adding knapsack cuts for the valid inequalities:

is current 
domain of vj

Propagation

( )1

,  all 

element ,( , , , ), ,  all ,

j i
i

i i ij i ijn i

v z j

t q A q A z i j

=∑

…

{ }
{ }

max , all 

min ,  all 

ti

ti

jijk i
k D

i

ijk i jk D
i

A q v j

A q v j

∈

∈

≥

≤

∑

∑

[ , ]j jv vand (c) propagating the knapsack cuts.
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This is relaxed as

jjj vvv ≤≤

min

, all 

,  all 

i

j j
j

j i ijt
ik

j j j

c v

v q A j

L v U j

=

≤ ≤

∑

∑

Relaxation
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This is relaxed by relaxing this 
and adding the knapsack cuts.

This is relaxed as

jjj vvv ≤≤

min

, all 

,  all 

i

j j
j

j i ijt
ik

j j j

c v

v q A j

L v U j

=

≤ ≤

∑

∑

Relaxation

( )1

,  all 

element ,( , , , ), ,  all ,

j i
i

i i ij i ijn i

v z j

t q A q A z i j

=∑

…
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This is relaxed by replacing each element constraint 
with a disjunctive convex hull relaxation:

( )1

,  all 

element ,( , , , ), ,  all ,

j i
i

i i ij i ijn i

v z j

t q A q A z i j

=∑

…

,    
t ti i

i ijk ik i ik
k D k D

z A q q q
∈ ∈

= =∑ ∑

Relaxation
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So the following LP relaxation is solved at each node 
of the search tree to obtain a lower bound:

{ }
{ }

min

,  all 

,  all 

, all 

,  all 

knapsack cuts for max ,  all 

knapsack cuts for min ,  all 

0,  all ,

ti

ti

ti

ti

j j
j

j ijk ik
i k D

j ik
k D

j j j

i i i

ijk i jk D
i

ijk i jk D
i

ik

c v

v A q j

q q i

v v v j

q q q i

A q v j

A q v j

q i k

∈

∈

∈

∈

=

=

≤ ≤
≤ ≤

≥

≤

≥

∑

∑ ∑

∑

∑

∑

Relaxation
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Computational Results

0.01

0.1

1

10

100

1000

8x10 16x20 20x24 20x30

Problem

S
e

co
nd

s CPLEX

CLP

Hybrid
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Lagrangean Relaxation

Lagrangean Duality
Properties of the Lagrangean Dual
Example: Fast Linear Programming

Domain Filtering
Example:  Continuous Global Optimization
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Motivation

• Lagrangean relaxation can provide better bounds than LP 
relaxation.

• The Lagrangean dual generalizes LP duality.

• It provides domain filtering analogous to that based on LP 
duality.

- This is a key technique in continuous global optimization .

• Lagrangean relaxation gets rid of troublesome constraints by 
dualizing them.

- That is, moving them into the objective function.

- The Lagrangean relaxation may decouple .
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Lagrangean Duality

Consider an 
inequality-constrained 
problem

min ( )

( ) 0

f x

g x

x S

≥
∈

Hard constraints

Easy constraints

The object is to get rid of (dualize ) the hard constraints 
by moving them into the objective function.
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Lagrangean Duality

Consider an 
inequality-constrained 
problem

max

( ) ( )
s S

v

g x b f x v
∈

≥ ⇒ ≥

min ( )

( ) 0

f x

g x

x S

≥
∈ implies

Lagrangean Dual problem: Find the tightest lower bound 
on the objective function that is implied by the constraints.

It is related to an 
inference problem
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( ) 0  dominates ( ) 0
( ) 0 ( ) iff   

for some  0 

x S g x f x v
g x f x v

λ
λ

∈ ≥ − ≥
≥ ⇒ ≥

≥

max

( ) ( )
s S

v

g x b f x v
∈

≥ ⇒ ≥

min ( )

( ) 0

f x

g x

x S

≥
∈

Let us say that

Primal Dual

Surrogate

λg(x) ≤ f(x) − v  for all x ∈ S

That is, v ≤ f(x) − λg(x) for all x ∈ S
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( ) 0  dominates ( ) 0
( ) 0 ( ) iff   

for some  0 

x S g x f x v
g x f x v

λ
λ

∈ ≥ − ≥
≥ ⇒ ≥

≥

max

( ) ( )
s S

v

g x b f x v
∈

≥ ⇒ ≥

min ( )

( ) 0

f x

g x

x S

≥
∈

Let us say that

Primal Dual

Surrogate

λg(x) ≤ f(x) − v  for all x ∈ S

That is, v ≤ f(x) − λg(x) for all x ∈ S

Or  { }min ( ) ( )
x S

v f x g xλ
∈

≤ −
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( ) 0  dominates ( ) 0
( ) 0 ( ) iff   

for some  0 

x S g x f x v
g x f x v

λ
λ

∈ ≥ − ≥
≥ ⇒ ≥

≥

λg(x) ≤ f(x) − v  for all x ∈ S

That is, v ≤ f(x) − λg(x) for all x ∈ S

Or  

max

( ) ( )
s S

v

g x b f x v
∈

≥ ⇒ ≥

min ( )

( ) 0

f x

g x

x S

≥
∈

Let us say that

Primal Dual

So the dual becomes

{ }
max

 
min ( ) ( )  for some 0
x S

v

v f x g xλ λ
∈

≤ − ≥

{ }min ( ) ( )
x S

v f x g xλ
∈

≤ −

Surrogate
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min ( )

( ) 0

f x

g x

x S

≥
∈

Primal Dual

Now we have…

0
max ( )

λ
θ λ

≥

or where

{ }( ) min ( ) ( )
x S

f x g xθ λ λ
∈

= −

{ }
max

 
min ( ) ( )  for some 0
x S

v

v f x g xλ λ
∈

≤ − ≥

Lagrangean
relaxation

Vector of
Lagrange 
multipliers

The Lagrangean dual can be viewed as the problem 
of finding the Lagrangean relaxation that gives the 
tightest bound.

These constraints 
are dualized
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Example

{ }

1 2

1 2

1 2

1 2

min 3 4

3 0

2 5 0

, 0,1,2,3

x x

x x

x x

x x

+
− + ≥

+ − ≥
∈

Optimal solution (2,1)

Strongest 
surrogate

{ }

{ }
1 2 1 2 1 1 2 2 1 2{0, ,3}

1 2 1 1 2 2 2{0, ,3}

( , ) min 3 4 ( 3 ) (2 5)

min (3 2 ) (4 3 ) 5
j

j

x

x

x x x x x x

x x

θ λ λ λ λ

λ λ λ λ λ
∈

∈

= + − − + − + −

= + − + − − +
…

…

The Lagrangean relaxation is

The Lagrangean relaxation is easy to solve
for any given λ1, λ2:

1 2
1

0 if 3 2 0

3 otherwise
x

λ λ+ − ≥= 


1 2
2

0 if 4 3 0

3 otherwise
x

λ λ− − ≥= 
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Example

{ }

1 2

1 2

1 2

1 2

min 3 4

3 0

2 5 0

, 0,1,2,3

x x

x x

x x

x x

+
− + ≥

+ − ≥
∈

θ(λ1,λ2) is piecewise linear and concave.

Optimal solution (2,1)
Value = 10

λ1

λ2

θ(λ)=0

θ(λ)=9 2/7

θ(λ)=5

θ(λ)=0

θ(λ)=7.5

Solution of Lagrangean dual:

(λ1,λ2) = (5/7, 13/7),  θ(λ) = 9 2/7

Note duality gap between 10 and 9 2/7 
(no strong duality).
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Example

{ }

1 2

1 2

1 2

1 2

min 3 4

3 0

2 5 0

, 0,1,2,3

x x

x x

x x

x x

+
− + ≥

+ − ≥
∈

Note: in this example, the Lagrangean dual 
provides the same bound (9 2/7) as the 
continuous relaxation of the IP.

This is because the Lagrangean relaxation 
can be solved as an LP:

Lagrangean duality is useful when the 
Lagrangean relaxation is tighter than an LP 
but nonetheless easy to solve.

{ }

{ }
{0,1 2 1 2 1 1 2 2 2

1 2 1 1 2 2 2

,3}

0 3

( , ) min (3 2 ) (4 3 ) 5

min (3 2 ) (4 3 ) 5
j

j

x

x

x x

x x

θ λ λ λ λ λ λ λ

λ λ λ λ λ
∈

≤ ≤

= + − + − − +

= + − + − − +
…
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Properties of the Lagrangean dual

Weak duality:  For any feasible x* and any λ* ≥ 0,  f(x*) ≥ θ(λ*).

In particular, min ( )

( ) 0

f x

g x

x S

≥
≥

∈

0
max ( )

λ
θ λ

≥

Concavity: θ(λ) is concave.  It can therefore be maximized by 
local search methods.

Complementary slackness :  If x* and λ* are optimal, and there 
is no duality gap, then λ*g(x*) = 0.
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Solving the Lagrangean dual

Let λk be the kth iterate, and let 1k k k
kλ λ α ξ+ = +

Subgradient of θ(λ) at λ = λk

If xk solves the Lagrangean relaxation for λ = λk, then ξk = g(xk).

This is because θ(λ) = f(xk) + λg(xk) at λ = λk. 

The stepsize αk must be adjusted so that the sequence 
converges but not before reaching a maximum.
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Example: Fast Linear Programming

• In CP contexts, it is best to process each node of the search tree 
very rapidly.  

• Lagrangean relaxation may allow very fast calculation of a lower 
bound on the optimal value of the LP relaxation at each node.

• The idea is to solve the Lagrangean dual at the root node (which 
is an LP) and use the same Lagrange multipliers to get an LP 
bound at other nodes.
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At root node, solve min

( )

0

cx

Ax b

Dx d

x

λ≥
≥

≥

The (partial) LP dual solution λ* 
solves the Lagrangean dual in which 

Dualize

{ }
0

( ) min ( )
Dx d

x

cx Ax bθ λ λ
≥

≥

= − −

Special structure,
e.g. variable bounds
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At root node, solve min

( )

0

cx

Ax b

Dx d

x

λ≥
≥

≥

The (partial) LP dual solution λ* 
solves the Lagrangean dual in which 

Dualize

{ }
0

( ) min ( )
Dx d

x

cx Ax bθ λ λ
≥

≥

= − −

At another node, the LP is

min

( )

0

cx

Ax b

Dx d

Hx h

x

λ≥
≥
≥

≥

Branching 
constraints, 
etc.

Here θ(λ*) is still a lower bound on the optimal 
value of the LP and can be quickly calculated 
by solving a specially structured LP.

Special structure,
e.g. variable bounds
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min ( )

( ) 0

f x

g x

x S

≥
∈

Suppose:

has optimal solution x*, optimal value v*, and 
optimal Lagrangean dual solution λ*.

…and λi* > 0, which means the i-th constraint is tight 
(complementary slackness);

…and the problem is a relaxation of a CP problem;

…and we have a feasible solution of the CP problem with value 
U, so that U is an upper bound on the optimal value.

Domain Filtering
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min ( )

( ) 0

f x

g x

x S

≥
∈

Supposing has optimal solution x*, optimal value v*, and 
optimal Lagrangean dual solution λ*:

If x were to change to a value other than x*, the LHS of i-th constraint 
gi(x) ≥ 0 would change by some amount ∆i.  

Since the constraint is tight, this would increase the optimal value 
as much as changing the constraint to gi(x) − ∆i ≥ 0. 

So it would increase the optimal value at least  λi*∆i.

(It is easily shown that Lagrange multipliers are marginal costs.  Dual 
multipliers for LP are a special case of Lagrange multipliers.)
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We have found: a change in x that changes gi(x) by ∆i increases 
the optimal value at least  λi*∆i.

Since      optimal value of this problem ≤ optimal value of the CP ≤ U,  
we have  λi*∆i ≤ U − v*,  or *

*i
i

U v
λ
−∆ ≤

min ( )

( ) 0

f x

g x

x S

≥
∈

Supposing has optimal solution x*, optimal value v*, and 
optimal Lagrangean dual solution λ*:
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Since  ∆i = gi(x) − gi(x*) = gi(x),  this implies the inequality
*

*( )i
i

U v
g x

λ
−≤

…which can be propagated.

We have found: a change in x that changes gi(x) by ∆i increases 
the optimal value at least  λi*∆i.

Since      optimal value of this problem ≤ optimal value of the CP ≤ U,  
we have  λi*∆i ≤ U − v*,  or *

*i
i

U v
λ
−∆ ≤

min ( )

( ) 0

f x

g x

x S

≥
∈

Supposing has optimal solution x*, optimal value v*, and 
optimal Lagrangean dual solution λ*:
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Example:  Continuous Global Optimization

• Some of the best continuous global solvers (e.g., BARON) 
combine OR-style relaxation with CP-style interval arithmetic and 
domain filtering.

• The use of Lagrange multipliers for domain filtering is a key 
technique in these solvers.
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Feasible set

Global optimum

Local optimum

x1

x2

Continuous Global Optimization

1 2

1 2

1 2

1 2

max

4 1

2 2

[0,1],   [0,2]

x x

x x

x x

x x

+
=

+ ≤
∈ ∈
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To solve it:

• Search : split interval domains of x1, x2.
– Each node of search tree is a problem restriction.

• Propagation: Interval propagation, domain filtering. 
– Use Lagrange multipliers to infer valid inequality for 

propagation.
– Reduced-cost variable fixing is a special case.

• Relaxation: Use function factorization to obtain linear 
continuous relaxation.
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Interval propagation

Propagate intervals 
[0,1], [0,2] 

through constraints 
to obtain 

[1/8,7/8], [1/4,7/4] 

x1

x2
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Relaxation (function factorization)

Factor complex functions into elementary functions that have 
known linear relaxations.

Write 4x1x2 = 1 as 4y = 1 where y = x1x2.

This factors 4x1x2 into linear function 4y and bilinear function x1x2.

Linear function 4y is its own linear relaxation.
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where domain of xj is [ , ]j jx x

Relaxation (function factorization)

Factor complex functions into elementary functions that have 
known linear relaxations.

Write 4x1x2 = 1 as 4y = 1 where y = x1x2.

This factors 4x1x2 into linear function 4y and bilinear function x1x2.

Linear function 4y is its own linear relaxation.

Bilinear function y = x1x2 has relaxation:

2 1 1 2 1 2 2 1 1 2 1 2

2 1 1 2 1 2 2 1 1 2 1 2

x x x x x x y x x x x x x

x x x x x x y x x x x x x

+ − ≤ ≤ + −
+ − ≤ ≤ + −
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The linear relaxation becomes:

Relaxation (function factorization)

1 2

1 2

2 1 1 2 1 2 2 1 1 2 1 2

2 1 1 2 1 2 2 1 1 2 1 2

min

4 1

2 2

,   1,2j j j

x x

y

x x

x x x x x x y x x x x x x

x x x x x x y x x x x x x

x x x j

+
=
+ ≤
+ − ≤ ≤ + −
+ − ≤ ≤ + −

≤ ≤ =
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Solve linear relaxation.

x1

x2

Relaxation (function factorization)
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x1

x2

Since solution is infeasible, 
split an interval and branch.

Solve linear relaxation.

Relaxation (function factorization)

2 [1,1.75]x ∈

2 [0.25,1]x ∈
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x1

x2

x1

x2

2 [1,1.75]x ∈ 2 [0.25,1]x ∈
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Solution of 
relaxation is 

feasible, 
value = 1.25

This becomes 
incumbent 
solution

x1

x2

x1

x2

2 [1,1.75]x ∈ 2 [0.25,1]x ∈
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Solution of 
relaxation is 

feasible, 
value = 1.25

This becomes 
incumbent 
solution

x1

x2

x1

x2
Solution of 

relaxation is 
not quite 
feasible, 

value = 1.854

Also use 
Lagrange 

multipliers for 
domain 

filtering…

2 [1,1.75]x ∈ 2 [0.25,1]x ∈
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1 2

1 2

2 1 1 2 1 2 2 1 1 2 1 2

2 1 1 2 1 2 2 1 1 2 1 2

min

4 1

2 2

,  1,2j j j

x x

y

x x

x x x x x x y x x x x x x

x x x x x x y x x x x x x

x x x j

+
=
+ ≤
+ − ≤ ≤ + −
+ − ≤ ≤ + −

≤ ≤ =

Associated Lagrange 
multiplier in solution of 
relaxation is λ2 = 1.1

Relaxation (function factorization)
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This yields a valid inequality for propagation:

Associated Lagrange 
multiplier in solution of 
relaxation is λ2 = 1.1

1 2

1.854 1.25
2 2 1.451

1.1
x x

−+ ≥ − =

Relaxation (function factorization)

Value of 
relaxation Lagrange multiplier

Value of incumbent 
solution

1 2

1 2

2 1 1 2 1 2 2 1 1 2 1 2

2 1 1 2 1 2 2 1 1 2 1 2

min

4 1

2 2

,  1,2j j j

x x

y

x x

x x x x x x y x x x x x x

x x x x x x y x x x x x x

x x x j

+
=
+ ≤
+ − ≤ ≤ + −
+ − ≤ ≤ + −

≤ ≤ =
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Dynamic Programming in CP

Example: Capital Budgeting
Domain Filtering

Recursive Optimization
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Motivation

• Dynamic programming (DP) is a highly versatile technique that 
can exploit recursive structure in a problem.  

• Domain filtering is straightforward for problems modeled as a 
DP.

• DP is also important in designing filters for some global 
constraints, such as the stretch constraint (employee scheduling).

• Nonserial DP is related to bucket elimination in CP and exploits 
the structure of the primal graph.

• DP modeling is the art of keeping the state space small while 
maintaining a Markovian property.

• We will examine only one simple example of serial DP.
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Example: Capital Budgeting

We wish to built power plants with a total cost of at most 12 million 
Euros. 

There are three types of plants, costing 4, 2 or 3 million Euros
each.  We must build one or two of each type. 

The problem has a simple knapsack packing model:

{ }
1 2 34 2 3 12

1,2j

x x x

x

+ + ≤
∈Number of 

factories of type j
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Example: Capital Budgeting

{ }
1 2 34 2 3 12

1,2j

x x x

x

+ + ≤
∈

In general the recursion for ax ≤ b is

{ }1( ) max ( )
k xk

k k k k k k
x D

f s f s a x+∈
= +

= 1 if there is 
a path from 
state sk to a 

feasible 
solution, 

0 otherwise

State is sum 
of first k terms 

of ax

f4(14)=0
f4(11)=1

f3(8) = max{f4(8+3⋅1), f4(8+3⋅2)} = max{1,0} = 1

x3=2

x3=1

State sk

Stage k
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Example: Capital Budgeting

{ }
1 2 34 2 3 12

1,2j

x x x

x

+ + ≤
∈

In general the recursion for ax ≤ b is

{ }1( ) max ( )
k xk

k k k k k k
x D

f s f s a x+∈
= +

1

0

0

0

0

0

0

0

0

1

1

1

1

1

1
Boundary condition:

1
1 1

1 if 
( )

0 otherwise
n

n n

s b
f s +

+ +

≤= 


fk(sk) for each state sk
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Example: Capital Budgeting

{ }
1 2 34 2 3 12

1,2j

x x x

x

+ + ≤
∈

1

0

0

0

0

0

0

0

0

1

1

1

1

1

1

fk(sk) for each state sk

The problem is feasible.

Each path to 0 is a feasible 
solution.

Path 1:  x = (1,2,1)

Path 2:  x = (1,1,2)

Path 3:  x = (1,1,1)

Possible costs are 9,11,12.
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Domain Filtering

{ }
1 2 34 2 3 12

1,2j

x x x

x

+ + ≤
∈

x3=1

To filter domains: observe what 
values of xk occur on feasible 
paths.

x3=2

x3=1

{ }
3

1,2xD =

x2=2

x2=1
{ }

2
1,2xD =

x1=1

{ }
1

1xD =
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Recursive Optimization

{ }

1 2 3

1 2 3

max 15 10 12

4 2 3 12

1,2j

x x x

x x x

x

+ +
+ + ≤

∈

The recursion includes arc values:

{ }1( ) max ( )
k xk

k k k k k k k k
x D

f s c x f s a x+∈
= + +

= value on max 
value path from 
sk to final stage

(value to go)

Arc value

f4(14)=−∞
f4(11)=0

f3(8) = max{12⋅1+f4(8+3⋅1), 12⋅2+f4(8+3⋅2)} 
= max{12,−∞} = 12

12⋅2

11⋅1

Maximize 
revenue
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Recursive optimization

24

−∞−∞−∞−∞

12

49

34

0

0

0

Boundary condition:

1
1 1

0 if 
( )

otherwise
n

n n

s b
f s +

+ +

≤= −∞
fk(sk) for each state sk

{ }

1 2 3

1 2 3

max 15 10 12

4 2 3 12

1,2j

x x x

x x x

x

+ +
+ + ≤

∈

The recursion includes arc values:

{ }1( ) max ( )k k k k k k k kf s c x f s a x+= + +

−∞−∞−∞−∞

−∞−∞−∞−∞

−∞−∞−∞−∞

−∞−∞−∞−∞

−∞−∞−∞−∞

−∞−∞−∞−∞

−∞−∞−∞−∞
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{ }

1 2 3

1 2 3

max 15 10 12

4 2 3 12

1,2j

x x x

x x x

x

+ +
+ + ≤

∈

fk(sk) for each state sk

The maximum revenue is 49.

The optimal path is easy to 
retrace.

(x1,x2,x3) = (1,1,2)

24

−∞−∞−∞−∞

12

49

34

0

0

0

−∞−∞−∞−∞

−∞−∞−∞−∞

−∞−∞−∞−∞

−∞−∞−∞−∞

−∞−∞−∞−∞

−∞−∞−∞−∞

−∞−∞−∞−∞

Recursive optimization
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CP-based Branch and Price

Basic Idea
Example: Airline Crew Scheduling
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Motivation

• Branch and price allows solution of integer programming 
problems with a huge number of variables.

• The problem is solved by a branch-and-relax method.  The 
difference lies in how the LP relaxation is solved.

• Variables are added to the LP relaxation only as needed.

• Variables are priced to find which ones should be added.

• CP is useful for solving the pricing problem, particularly when 
constraints are complex.

• CP-based branch and price has been successfully applied 
to airline crew scheduling, transit scheduling, and other 
transportation-related problems.
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Basic Idea

Suppose the LP relaxation of an integer 
programming problem has a huge number of 
variables:

min

0

cx

Ax b

x

=
≥

We will solve a restricted master problem , 
which has a small subset of the variables:

( )

min

0

j j
j J

j j
j J

j

c x

A x b

x

λ
∈

∈
=

≥

∑

∑
Column j of A

Adding xk to the problem would improve the solution if xk has a 
negative reduced cost: 0k k kr c Aλ= − <
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Adding xk to the problem would improve the solution if xk has a 
negative reduced cost: 0k k kr c Aλ= − <

Basic Idea

Computing the reduced cost of xk is known as pricing xk.

min

 is a column of 
yc y

y A

λ−

If the solution y* satisfies cy* − λy* < 0, then we can add column y to 
the restricted master problem.

So we solve the pricing problem:

Cost of column y
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Basic Idea

max

 is a column of 

y

y A

λ

need not be solved to optimality, so long as we find a column with 
negative reduced cost.  

However, when we can no longer find an improving column, we 
solved the pricing problem to optimality to make sure we have the 
optimal solution of the LP.

The pricing problem

If we can state constraints that the columns of A must satisfy, 
CP may be a good way to solve the pricing problem.
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Example: Airline Crew Scheduling

Flight data

Start 
time

Finish 
time

A roster is the sequence of flights assigned to 
a single crew member.

The gap between two consecutive flights in a 
roster must be from 2 to 3 hours.  Total flight 
time for a roster must be between 6 and 10 
hours.

For example, 
flight 1 cannot immediately precede 6 
flight 4 cannot immediately precede 5.

The possible rosters are:

(1,3,5), (1,4,6), (2,3,5), (2,4,6)

We want to assign crew members to flights to minimize 
cost while covering the flights and observing complex 
work rules.
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Airline Crew Scheduling

There are 2 crew members, and the possible rosters are:
1           2          3           4

(1,3,5), (1,4,6), (2,3,5), (2,4,6)

The LP relaxation of the problem is:

= 1 if we assign crew member 1 
to roster 2, = 0 otherwise.

Cost of assigning crew member 1 to roster 2

Each crew member is assigned to 
exactly 1 roster. 

Each flight is assigned at least 1 
crew member.
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Airline Crew Scheduling

There are 2 crew members, and the possible rosters are:
1           2          3           4

(1,3,5), (1,4,6), (2,3,5), (2,4,6)

The LP relaxation of the problem is:

= 1 if we assign crew member 1 
to roster 2, = 0 otherwise.

Cost of assigning crew member 1 to roster 2

Each crew member is assigned to 
exactly 1 roster. 

Each flight is assigned at least 1 
crew member.

Rosters that cover flight 1.
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Airline Crew Scheduling

There are 2 crew members, and the possible rosters are:
1           2          3           4

(1,3,5), (1,4,6), (2,3,5), (2,4,6)

The LP relaxation of the problem is:

= 1 if we assign crew member 1 
to roster 2, = 0 otherwise.

Cost of assigning crew member 1 to roster 2

Each crew member is assigned to 
exactly 1 roster. 

Each flight is assigned at least 1 
crew member.

Rosters that cover flight 2.
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Airline Crew Scheduling

There are 2 crew members, and the possible rosters are:
1           2          3           4

(1,3,5), (1,4,6), (2,3,5), (2,4,6)

The LP relaxation of the problem is:

= 1 if we assign crew member 1 
to roster 2, = 0 otherwise.

Cost of assigning crew member 1 to roster 2

Each crew member is assigned to 
exactly 1 roster. 

Each flight is assigned at least 1 
crew member.

Rosters that cover flight 3.
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Airline Crew Scheduling

There are 2 crew members, and the possible rosters are:
1           2          3           4

(1,3,5), (1,4,6), (2,3,5), (2,4,6)

The LP relaxation of the problem is:

= 1 if we assign crew member 1 
to roster 2, = 0 otherwise.

Cost of assigning crew member 1 to roster 2

Each crew member is assigned to 
exactly 1 roster. 

Each flight is assigned at least 1 
crew member.

Rosters that cover flight 4.
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Airline Crew Scheduling

There are 2 crew members, and the possible rosters are:
1           2          3           4

(1,3,5), (1,4,6), (2,3,5), (2,4,6)

The LP relaxation of the problem is:

= 1 if we assign crew member 1 
to roster 2, = 0 otherwise.

Cost of assigning crew member 1 to roster 2

Each crew member is assigned to 
exactly 1 roster. 

Each flight is assigned at least 1 
crew member.

Rosters that cover flight 5.
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Airline Crew Scheduling

There are 2 crew members, and the possible rosters are:
1           2          3           4

(1,3,5), (1,4,6), (2,3,5), (2,4,6)

The LP relaxation of the problem is:

= 1 if we assign crew member 1 
to roster 2, = 0 otherwise.

Cost of assigning crew member 1 to roster 2

Each crew member is assigned to 
exactly 1 roster. 

Each flight is assigned at least 1 
crew member.

Rosters that cover flight 6.
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Airline Crew Scheduling

There are 2 crew members, and the possible rosters are:
1           2          3           4

(1,3,5), (1,4,6), (2,3,5), (2,4,6)

The LP relaxation of the problem is:

= 1 if we assign crew member 1 
to roster 2, = 0 otherwise.

Cost c12 of assigning crew member 1 to roster 2

Each crew member is assigned to 
exactly 1 roster. 

Each flight is assigned at least 1 
crew member.

In a real problem, there can be millions of rosters.
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Airline Crew Scheduling

We start by solving the problem with a subset 
of the columns:

Optimal 
dual 

solution

u1
u2
v1
v2
v3
v4
v5
v6
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Airline Crew Scheduling

We start by solving the problem with a subset 
of the columns:

Dual 
variables

u1
u2
v1
v2
v3
v4
v5
v6
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Airline Crew Scheduling

We start by solving the problem with a subset 
of the columns:

The reduced cost of an 
excluded roster k for 
crew member i is

 in roster k
ik i j

j

c u v− − ∑

We will formulate the 
pricing problem as a 
shortest path problem.

Dual 
variables

u1
u2
v1
v2
v3
v4
v5
v6
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Pricing problem

2

Crew 
member 1

Crew 
member 2
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Pricing problem
Each s-t path corresponds to a roster, 
provided the flight time is within bounds.

2

Crew 
member 1

Crew 
member 2
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Pricing problem
Cost of flight 3 if it immediately follows 
flight 1, offset by dual multiplier for flight 1

2

Crew 
member 1

Crew 
member 2
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Pricing problem
Cost of transferring from home to flight 1, 
offset by dual multiplier for crew member 1

Dual multiplier 
omitted to break 
symmetry

2

Crew 
member 1

Crew 
member 2
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Pricing problem
Length of a path is reduced cost of the 
corresponding roster.

2

Crew 
member 1

Crew 
member 2
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Crew 
member 1

Crew 
member 2

Pricing problem
Arc lengths using dual solution of LP 
relaxation

−10
5 2

2

0

3

4

5 6
−1

0
5 2

2

-9

3

4

5 6
−1

2
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Crew 
member 1

Crew 
member 2

Pricing problem

Solution of shortest path problems

−10
5 2

2

0

3

4

5 6
−1

0
5 2

2

-9

3

4

5 6
−1

2

Reduced cost = −1
Add x12 to problem. 

Reduced cost = −2
Add x23 to problem.

After x12 and x23 are added to the problem, no 
remaining variable has negative reduced cost.
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Pricing problem

The shortest path problem cannot be solved by traditional shortest 
path algorithms, due to the bounds on total path length.  

It can be solved by CP:

( )
{ }

min max

Path( , , ),  all flights 

flights ,  0, all 
i

i i

j j
j X

i i

X z G i

T f s T

X z i
∈

≤ − ≤

⊂ <

∑

Set of flights 
assigned to crew 
member i

Path 
length Graph

Path global constraint

Setsum global constraint

Duration of flight j
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CP-based Benders Decomposition

Benders Decomposition in the Abstract
Classical Benders Decomposition

Example: Machine Scheduling
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Motivation

• Benders decomposition allows us to apply CP and OR to 
different parts of the problem.

• It searches over values of certain variables that, when fixed, 
result in a much simpler subproblem .

• The search learns from past experience by accumulating 
Benders cuts (a form of nogood).

• The technique can be generalized far beyond the original OR 
conception.

• Generalized Benders methods have resulted in the greatest 
speedups achieved by combining CP and OR.
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Benders Decomposition in the Abstract

Benders decomposition 
can be applied to 
problems of the form

min ( , )

( , )

,x y

f x y

S x y

x D y D∈ ∈

When x is fixed to some 
value, the resulting 
subproblem is much 
easier:

min ( , )

( , )

y

f x y

S x y

y D∈

…perhaps 
because it 
decouples into 
smaller problems.

For example, suppose x assigns jobs to machines, and y schedules 
the jobs on the machines.  

When x is fixed, the problem decouples into a separate scheduling 
subproblem for each machine.



158

LSE tutorial, June 2007         
Slide 315

Benders Decomposition

We will search over assignments to x.  This is the master problem .

In iteration k we assume x = xk

and solve the subproblem

min ( , )

( , )

k

k

y

f x y

S x y

y D∈

and get optimal 
value vk

We generate a Benders cut (a type of nogood) 1( )kv B x+≥

The Benders cut says that if we set x = xk again, the resulting cost v
will be at least vk.  To do better than vk, we must try something else.

It also says that any other x will result in a cost of at least Bk+1(x), 
perhaps due to some similarity between x and xk.

that satisfies Bk+1(xk) = vk.   Cost in the original problem
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Benders Decomposition

We will search over assignments to x.  This is the master problem .

In iteration k we assume x = xk

and solve the subproblem

min ( , )

( , )

k

k

y

f x y

S x y

y D∈

and get optimal 
value vk

We generate a Benders cut (a type of nogood) 1( )kv B x+≥

that satisfies Bk+1(x) = vk.   Cost in the original problem

We add the Benders cut to the master problem, which becomes

min

( ), 1, , 1i

x

v

v B x i k

x D

≥ = +
∈

…
Benders cuts 
generated so far
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Benders Decomposition

We now solve the 
master problem

min

( ), 1, , 1i

x

v

v B x i k

x D

≥ = +
∈

…
to get the next 
trial value xk+1.

The master problem is a relaxation of the original problem, and its 
optimal value is a lower bound on the optimal value of the original 
problem.

The subproblem is a restriction, and its optimal value is an upper 
bound .

The process continues until the bounds meet.

The Benders cuts partially define the projection of the feasible set 
onto x.  We hope not too many cuts are needed to find the optimum.
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Classical Benders Decomposition

The classical method 
applies to problems 
of the form

min ( )

( )

, 0x

f x cy

g x Ay b

x D y

+
+ ≥

∈ ≥

and the subproblem
is an LP

( )

min ( )

( )

0

k

k

f x cy

Ay b g x

y

λ
+

≥ −
≥

( )max ( ) ( )

0

k kf x b g x

A c

λ

λ
λ

+ −

≤
≥

whose dual is

Let λk solve the dual.

By strong duality, Bk+1(x) = f(x) + λk(b − g(x)) is the tightest lower 
bound on the optimal value v of the original problem when x = xk.

Even for other values of x, λλλλk remains feasible in the dual .  So by 
weak duality,  Bk+1(x) remains a lower bound on v.
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Classical Benders

min

( ), 1, , 1i

x

v

v B x i k

x D

≥ = +
∈

…

So the master problem becomes

min

( ) ( ( )),  1, , 1i

x

v

v f x b g x i k

x D

λ≥ + − = +
∈

…

In most applications the master problem is

• an MILP

• a nonlinear programming problem (NLP), or 

• a mixed integer/nonlinear programming problem (MINLP).
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Example: Machine Scheduling

• Assign 5 jobs to 2 machines (A and B), and schedule the 
machines assigned to each machine within time windows.

• The objective is to minimize makespan .

• Assign the jobs in the master 
problem , to be solved by MILP.

• Schedule the jobs in the 
subproblem , to be solved by CP.

Time lapse between 
start of first job and 
end of last job.
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Machine Scheduling

Job Data Once jobs are assigned, we can 
minimize overall makespan by 
minimizing makespan on each 
machine individually.

So the subproblem decouples.

Machine A

Machine B
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Machine Scheduling

Job Data Once jobs are assigned, we can 
minimize overall makespan by 
minimizing makespan on each 
machine individually.

So the subproblem decouples.

Minimum makespan
schedule for jobs 1, 2, 3, 5 

on machine A
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Machine Scheduling

( )

min

, all 

,  all 

disjunctive ( ),( ) , all 

j

j

j x j

j j j x j

j j ij j

M

M s p j

r s d p j

s x i p x i i

≥ +

≤ ≤ −

= =

Start time of job j

Time windows
Jobs cannot overlap

The problem is
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Machine Scheduling

( )

min

, all 

,  all 

disjunctive ( ),( ) , all 

j

j

j x j

j j j x j

j j ij j

M

M s p j

r s d p j

s x i p x i i

≥ +

≤ ≤ −

= =

Start time of job j

Time windows
Jobs cannot overlap

The problem is

For a fixed assignment      the subproblem on each machine i is

( )

min

, all  with 

,  all  with 

disjunctive ( ),( )

j

j

j x j j

j j j x j j

j j ij j

M

M s p j x i

r s d p j x i

s x i p x i

≥ + =

≤ ≤ − =

= =

x
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Benders cuts

Suppose we assign jobs 1,2,3,5 to machine A in iteration k.  

We can prove that 10 is the optimal makespan by proving that the 
schedule is infeasible with makespan 9.

Edge finding derives infeasibility by reasoning only with jobs 2,3,5.  
So these jobs alone create a minimum makespan of 10.

So we have a Benders cut
2 3 4

1

10 if 
( )

0 otherwisek

x x x A
v B x+

= = =≥ = 
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Benders cuts

We want the master problem to be an MILP, which is good for 
assignment problems.

So we write the Benders cut
2 3 4

1

10 if 
( )

0 otherwisek

x x x A
v B x+

= = =≥ = 


Using 0-1 variables: ( )2 3 510 2

0
A A Av x x x

v

≥ + + −
≥ = 1 if job 5 is 

assigned to 
machine A
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Master problem

The master problem is an MILP:

{ }

5

1

5

1

5 5

1 3

2 3 5

4

min

10, etc.

10, etc.

,  2 , etc.,  ,

v 10( 2)

8

0,1

Aj Aj
j

Bj Bj
j

ij ij ij ij
j j

A A A

B

ij

v

p x

p x

v p x v p x i A B

x x x

v x

x

=

=

= =

≤

≤

≥ ≥ + =

≥ + + −
≥
∈

∑

∑

∑ ∑

Constraints derived from time windows

Constraints derived from release times

Benders cut from machine A

Benders cut from machine B
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Stronger Benders cuts

If all release times are the same, we can strengthen the Benders cuts. 

We are now using the cut 
1

ik

ik ij ik
j J

v M x J
∈

 
≥ − + 

 
∑

Min makespan
on machine i
in iteration k

Set of jobs 
assigned to 
machine i in 
iteration k

A stronger cut provides a useful bound even if only some of the jobs in 
Jik are assigned to machine i: (1 )

ik

ik ij ij
j J

v M x p
∈

≥ − −∑

These results can be generalized to cumulative scheduling.
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