
1

LSE tutorial, June 2007
Slide 1

Tutorial: Operations Research and
Constraint Programming

John Hooker
Carnegie Mellon University

June 2008

LSE tutorial, June 2007
Slide 2

Why Integrate OR and CP?

Complementary strengths
Computational advantages

Outline of the Tutorial

2

LSE tutorial, June 2007
Slide 3

Complementary Strengths

• CP:
– Inference methods
– Modeling
– Exploits local structure

• OR:
– Relaxation methods
– Duality theory
– Exploits global structure

Let’s bring them
together!

LSE tutorial, June 2007
Slide 4

Computational Advantage of
Integrating CP and OR
Using CP + relaxation from MILP

30 to 40 times
faster than CP,

MILP

Product
configuration

Thorsteinsson &
Ottosson (2001)

4 to 150 times
faster than MILP.

Flow shop
scheduling, etc.

Hooker & Osorio
(1999)

2 to 200 times
faster than MILP

Piecewise linear
costs

Refalo (1999)

2 to 50 times faster
than CP

Lesson
timetabling

Focacci, Lodi,
Milano (1999)

SpeedupProblem

3

LSE tutorial, June 2007
Slide 5

Computational Advantage of
Integrating CP and MILP

Using CP + relaxation from MILP

Solved 67 of 90, CP
solved only 12

Scheduling with
earliness &

tardiness costs

Beck & Refalo
(2003)

Up to 600 times
faster than MILP.

2 problems: <6 min
vs >20 hrs for MILP

Structural design
(nonlinear)

Bollapragada,
Ghattas &
Hooker (2001)

Better than CP in
less time

Stable set
problem

Van Hoeve
(2001)

1 to 10 times faster
than CP, MILP

Automatic
recording

Sellmann &
Fahle (2001)

SpeedupProblem

LSE tutorial, June 2007
Slide 6

Computational Advantage of
Integrating CP and MILP

Using CP-based Branch and Price

First to solve
8-team instance

Traveling
tournament
scheduling

Easton,
Nemhauser &
Trick (2002)

Optimal schedule
for 210 trips, vs.

120 for traditional
branch and price

Urban transit
crew scheduling

Yunes, Moura &
de Souza (1999)

SpeedupProblem

4

LSE tutorial, June 2007
Slide 7

Computational Advantage of
Integrating CP and MILP

Using CP/MILP Benders methods

Solved previously
insoluble problem

in 10 min

Polypropylene
batch scheduling

at BASF

Timpe (2002)

10 times faster
than Jain &
Grossmann

Min-cost planning
& scheduling

Thorsteinsson
(2001)

20 to 1000 times
faster than CP,

MILP

Min-cost planning
& scheduing

Jain &
Grossmann
(2001)

SpeedupProblem

LSE tutorial, June 2007
Slide 8

Computational Advantage of
Integrating CP and MILP

Using CP/MILP Benders methods

10-1000 times
faster than CP,

MILP

Min tardiness
planning & cumulative

scheduling

Hooker (2005)

100-1000 times
faster than CP,

MILP

Min-cost,
min-makespan

planning & cumulative
scheduling

Hooker (2004)

Solved twice as
many instances

as traditional
Benders

Call center schedulingBenoist, Gaudin,
Rottembourg
(2002)

SpeedupProblem

5

LSE tutorial, June 2007
Slide 9

Outline of the Tutorial

• Why Integrate OR and CP?
• A Glimpse at CP
• Initial Example: Integrated Methods
• CP Concepts
• CP Filtering Algorithms
• Linear Relaxation and CP
• Mixed Integer/Linear Modeling
• Cutting Planes
• Lagrangean Relaxation and CP
• Dynamic Programming in CP
• CP-based Branch and Price
• CP-based Benders Decomposition

LSE tutorial, June 2007
Slide 10

Detailed Outline

• Why Integrate OR and CP?
• Complementary strengths
• Computational advantages
• Outline of the tutorial

• A Glimpse at CP
• Early successes
• Advantages and disadvantages

• Initial Example: Integrated Methods
• Freight Transfer
• Bounds Propagation
• Cutting Planes
• Branch-infer-and-relax Tree

6

LSE tutorial, June 2007
Slide 11

Detailed Outline

• CP Concepts
• Consistency
• Hyperarc Consistency
• Modeling Examples

• CP Filtering Algorithms
• Element
• Alldiff
• Disjunctive Scheduling
• Cumulative Scheduling

• Linear Relaxation and CP
• Why relax?
• Algebraic Analysis of LP
• Linear Programming Duality
• LP-Based Domain Filtering
• Example: Single-Vehicle Routing
• Disjunctions of Linear Systems

LSE tutorial, June 2007
Slide 12

Detailed Outline

• Mixed Integer/Linear Modeling
• MILP Representability
• 4.2 Disjunctive Modeling
• 4.3 Knapsack Modeling

• Cutting Planes
• 0-1 Knapsack Cuts
• Gomory Cuts
• Mixed Integer Rounding Cuts
• Example: Product Configuration

• Lagrangean Relaxation and CP
• Lagrangean Duality
• Properties of the Lagrangean Dual
• Example: Fast Linear Programming
• Domain Filtering
• Example: Continuous Global Optimization

7

LSE tutorial, June 2007
Slide 13

Detailed Outline

• Dynamic Programming in CP
• Example: Capital Budgeting
• Domain Filtering
• Recursive Optimization

• CP-based Branch and Price
• Basic Idea
• Example: Airline Crew Scheduling

• CP-based Benders Decomposition
• Benders Decomposition in the Abstract
• Classical Benders Decomposition
• Example: Machine Scheduling

LSE tutorial, June 2007
Slide 14

Background Reading

This tutorial is based on:

• J. N. Hooker, Integrated Methods for Optimization, Springer
(2007). Contains 295 exercises.

• J. N. Hooker, Operations research methods in constraint
programming, in F. Rossi, P. van Beek and T. Walsh, eds.,
Handbook of Constraint Programming, Elsevier (2006), pp.
527-570.

8

LSE tutorial, June 2007
Slide 15

A Glimpse at Constraint Programming

Early Successes
Advantages and Disadvantages

LSE tutorial, June 2007
Slide 16

What is constraint programming?

• It is a relatively new technology developed in the computer
science and artificial intelligence communities.

• It has found an important role in scheduling, logistics and supply
chain management.

9

LSE tutorial, June 2007
Slide 17

• Container port scheduling
(Hong Kong and Singapore)• Circuit design (Siemens)

• Real-time control
(Siemens, Xerox)

Early commercial successes

LSE tutorial, June 2007
Slide 18

Applications

• Job shop scheduling

• Assembly line smoothing
and balancing

• Cellular frequency
assignment

• Nurse scheduling

• Shift planning

• Maintenance planning

• Airline crew rostering and scheduling

• Airport gate allocation and stand planning

10

LSE tutorial, June 2007
Slide 19

• Production scheduling
chemicals
aviation
oil refining
steel
lumber
photographic plates
tires

• Transport scheduling (food,
nuclear fuel)

• Warehouse management

• Course timetabling

Applications

LSE tutorial, June 2007
Slide 20

Advantages and Disadvantages

CP vs. Mathematical Programming

Constraint-based
processing

Independence of model
and algorithm

BranchingBranching

High-level modeling
(global constraints)

Atomistic modeling
(linear inequalities)

Inference (filtering,
constraint propagation)

Relaxation

Logic processingNumerical calculation

CPMP

11

LSE tutorial, June 2007
Slide 21

Programming ≠ programming

• In constraint programming :

• programming = a form of computer programming
(constraint-based processing)

• In mathematical programming :

• programming = logistics planning (historically)

LSE tutorial, June 2007
Slide 22

CP vs. MP

• In mathematical programming , equations
(constraints) describe the problem but don’t tell how to
solve it.

• In constraint programming , each constraint invokes a
procedure that screens out unacceptable solutions.

• Much as each line of a computer program invokes
an operation.

12

LSE tutorial, June 2007
Slide 23

Advantages of CP

• Better at sequencing and scheduling

• …where MP methods have weak relaxations.

• Adding messy constraints makes the problem easier.

• The more constraints, the better.

• More powerful modeling language.

• Global constraints lead to succinct models.

• Constraints convey problem structure to the solver.

• “Better at highly-constrained problems”

• Misleading – better when constraints propagate well, or
when constraints have few variables.

LSE tutorial, June 2007
Slide 24

Disdvantages of CP

• Weaker for continuous variables.

• Due to lack of numerical techniques

• May fail when constraints contain many variables.

• These constraints don’t propagate well.

•Often not good for funding optimal solutions.

• Due to lack of relaxation technology.

• May not scale up

• Discrete combinatorial methods

• Software is not robust

• Younger field

13

LSE tutorial, June 2007
Slide 25

Obvious solution…

• Integrate CP and MP.

• More on this later.

LSE tutorial, June 2007
Slide 26

Trends

• CP is better known in continental Europe, Asia.

• Less known in North America, seen as threat to OR.

• CP/MP integration is growing

• Eclipse, Mozart, OPL Studio, SIMPL, SCIP, BARON

• Heuristic methods increasingly important in CP

• Discrete combinatorial methods

• MP/CP/heuristics may become a single technology.

14

LSE tutorial, June 2007
Slide 27

Initial Example: Integrated Methods

Freight Transfer
Bounds Propagation

Cutting Planes
Branch-infer-and-relax Tree

LSE tutorial, June 2007
Slide 28

Example: Freight Transfer

• Transport 42 tons of freight using 8 trucks, which come in
4 sizes…

40334

50433

60532

90731

Cost
per

truck

Capacity
(tons)

Number
available

Truck
size

15

LSE tutorial, June 2007
Slide 29

40334

50433

60532

90731

Cost
per

truck

Capacity
(tons)

Number
available

Truck
type

+ + +
+ + + ≥

+ + + ≤
∈

1 2 3 4

1 2 3 4

1 2 3 4

min 90 60 50 40

7 5 4 3 42

8

{0,1,2,3}i

x x x x

x x x x

x x x x

x

Number of trucks of type 1

Knapsack
covering
constraint

Knapsack
packing
constraint

LSE tutorial, June 2007
Slide 30

+ + +
+ + + ≥

+ + + ≤
∈

1 2 3 4

1 2 3 4

1 2 3 4

min 90 60 50 40

7 5 4 3 42

8

{0,1,2,3}i

x x x x

x x x x

x x x x

x

Bounds propagation

− ⋅ − ⋅ − ⋅ ≥ =
1

42 5 3 4 3 3 3
1

7
x

16

LSE tutorial, June 2007
Slide 31

+ + +
+ + + ≥

+ + + ≤
∈ ∈

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

min 90 60 50 40

7 5 4 3 42

8

{1,2,3}, , , {0,1,2,3}

x x x x

x x x x

x x x x

x x x x

Bounds propagation

− ⋅ − ⋅ − ⋅ ≥ =
1

42 5 3 4 3 3 3
1

7
x

Reduced
domain

LSE tutorial, June 2007
Slide 32

• Let {Lj, …, Uj} be the domain of xj

• A constraint set is bounds consistent if for each j :

• xj = Lj in some feasible solution and

• xj = Uj in some feasible solution.

• Bounds consistency ⇒ we will not set xj to any infeasible
values during branching.

• Bounds propagation achieves bounds consistency for a
single inequality .

• 7x1 + 5x2 + 4x3 + 3x4 ≥ 42 is bounds consistent when the
domains are x1 ∈ {1,2,3} and x2, x3, x4 ∈ {0,1,2,3}.

• But not necessarily for a set of inequalities.

Bounds consistency

17

LSE tutorial, June 2007
Slide 33

� Bounds propagation may not achieve bounds consistency
for a set of constraints.

� Consider set of inequalities

with domains x1, x2 ∈ {0,1}, solutions (x1,x2) = (1,0), (1,1).

� Bounds propagation has no effect on the domains.

� But constraint set is not bounds consistent because x1 = 0
in no feasible solution.

Bounds consistency

1 2

1 2

1

0

x x

x x

+ ≥
− ≥

LSE tutorial, June 2007
Slide 34

+ + +
+ + + ≥

+ + + ≤
≤ ≤ ≥

1 2 3 4

1 2 3 4

1 2 3 4

1

min 90 60 50 40

7 5 4 3 42

8

0 3, 1i

x x x x

x x x x

x x x x

x x

Cutting Planes

Begin with continuous relaxation

Replace domains
with bounds

This is a linear programming problem, which is easy to
solve.

Its optimal value provides a lower bound on optimal
value of original problem.

18

LSE tutorial, June 2007
Slide 35

+ + +
+ + + ≥

+ + + ≤
≤ ≤ ≥

1 2 3 4

1 2 3 4

1 2 3 4

1

min 90 60 50 40

7 5 4 3 42

8

0 3, 1i

x x x x

x x x x

x x x x

x x

Cutting planes (valid inequalities)

We can create a tighter relaxation (larger minimum
value) with the addition of cutting planes .

LSE tutorial, June 2007
Slide 36

+ + +
+ + + ≥

+ + + ≤
≤ ≤ ≥

1 2 3 4

1 2 3 4

1 2 3 4

1

min 90 60 50 40

7 5 4 3 42

8

0 3, 1i

x x x x

x x x x

x x x x

x x

Cutting planes (valid inequalities)

All feasible solutions of the
original problem satisfy a
cutting plane (i.e., it is valid).

But a cutting plane may
exclude (“cut off ”) solutions of
the continuous relaxation.

Cutting
plane

Feasible solutions

Continuous
relaxation

19

LSE tutorial, June 2007
Slide 37

+ + +
+ + + ≥

+ + + ≤
≤ ≤ ≥

1 2 3 4

1 2 3 4

1 2 3 4

1

min 90 60 50 40

7 5 4 3 42

8

0 3, 1i

x x x x

x x x x

x x x x

x x

Cutting planes (valid inequalities)

{1,2} is a packing

…because 7x1 + 5x2 alone cannot satisfy the inequality,
even with x1 = x2 = 3.

LSE tutorial, June 2007
Slide 38

+ + +
+ + + ≥

+ + + ≤
≤ ≤ ≥

1 2 3 4

1 2 3 4

1 2 3 4

1

min 90 60 50 40

7 5 4 3 42

8

0 3, 1i

x x x x

x x x x

x x x x

x x

Cutting planes (valid inequalities)

{1,2} is a packing

{ }
 − ⋅ + ⋅+ ≥ =

3 4

42 (7 3 5 3)
2

max 4,3
x x

So, + ≥ − ⋅ + ⋅3 44 3 42 (7 3 5 3)x x

which implies

Knapsack cut

20

LSE tutorial, June 2007
Slide 39

Cutting planes (valid inequalities)

Let xi have domain [Li,Ui] and let a ≥ 0.

In general, a packing P for ax ≥ a0 satisfies

∉ ∈
≥ −∑ ∑0i i i i

i P i P

a x a a U

and generates a knapsack cut

{ }
∈

∉
∉

 −
 ≥

∑
∑

0

max

i i
i P

i
i P i

i P

a a U
x

a

LSE tutorial, June 2007
Slide 40

+ + +
+ + + ≥

+ + + ≤
≤ ≤ ≥

1 2 3 4

1 2 3 4

1 2 3 4

1

min 90 60 50 40

7 5 4 3 42

8

0 3, 1i

x x x x

x x x x

x x x x

x x

Cutting planes (valid inequalities)

x2 + x3 ≥ 3{1,4}

x2 + x4 ≥ 2{1,3}

x3 + x4 ≥ 2{1,2}

Knapsack cutsMaximal Packings

Knapsack cuts corresponding to nonmaximal
packings can be nonredundant.

21

LSE tutorial, June 2007
Slide 41

+ + +
+ + + ≥

+

+ ≥
+ ≥
+ ≥

+ + ≤
≤ ≤ ≥

1 2 3 4

1 2 3 4

1

3 4

2 3

2

1

2 3

4

4

min 90 60 50 40

7 5 4 3 42

8

0 3, 1

2

2

3

i

x x x x

x x x x

x x x

x x

x x

x x

x

x x

Continuous relaxation with cuts

Optimal value of 523.3 is a lower bound on optimal value
of original problem.

Knapsack cuts

LSE tutorial, June 2007
Slide 42

Branch-
infer-and-
relax tree
Propagate bounds
and solve
relaxation of
original problem.

x1 ∈ { 123}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (2⅓,3,2⅔,0)
value = 523⅓

22

LSE tutorial, June 2007
Slide 43

Branch on a
variable with
nonintegral value
in the relaxation.

x1 ∈ { 123}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (2⅓,3,2⅔,0)
value = 523⅓

x1 ∈ {1,2}
x1 = 3

Branch-infer-
and-relax tree

LSE tutorial, June 2007
Slide 44

Propagate bounds
and solve
relaxation.

Since relaxation
is infeasible,
backtrack.

x1 ∈ { 123}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (2⅓,3,2⅔,0)
value = 523⅓

x1 ∈ { 12 }
x2 ∈ { 23}
x3 ∈ { 123}
x4 ∈ { 123}
infeasible
relaxation

x1 ∈ {1,2}
x1 = 3

Branch-infer-
and-relax tree

23

LSE tutorial, June 2007
Slide 45

Propagate bounds
and solve
relaxation.

Branch on
nonintegral
variable.

x1 ∈ { 123}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (2⅓,3,2⅔,0)
value = 523⅓

x1 ∈ { 12 }
x2 ∈ { 23}
x3 ∈ { 123}
x4 ∈ { 123}
infeasible
relaxation

x1 ∈ { 3}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (3,2.6,2,0)
value = 526

x1 ∈ {1,2}
x1 = 3

x2 ∈ {0,1,2}

x2 = 3

Branch-infer-
and-relax tree

LSE tutorial, June 2007
Slide 46

Branch again.

x1 ∈ { 123}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (2⅓,3,2⅔,0)
value = 523⅓

x1 ∈ { 12 }
x2 ∈ { 23}
x3 ∈ { 123}
x4 ∈ { 123}
infeasible
relaxation

x1 ∈ { 3}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (3,2.6,2,0)
value = 526

x1 ∈ { 3}
x2 ∈ {012 }
x3 ∈ { 123}
x4 ∈ {0123}

x = (3,2,2¾,0)
value = 527½

x1 ∈ {1,2}
x1 = 3

x2 ∈ {0,1,2}

x2 = 3

x3 ∈ {1,2}
x3 = 3

Branch-infer-
and-relax tree

24

LSE tutorial, June 2007
Slide 47

Solution of
relaxation
is integral and
therefore feasible
in the original
problem.

This becomes the
incumbent
solution .

x1 ∈ { 123}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (2⅓,3,2⅔,0)
value = 523⅓

x1 ∈ { 12 }
x2 ∈ { 23}
x3 ∈ { 123}
x4 ∈ { 123}
infeasible
relaxation

x1 ∈ { 3}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (3,2.6,2,0)
value = 526

x1 ∈ { 3}
x2 ∈ {012 }
x3 ∈ { 123}
x4 ∈ {0123}

x = (3,2,2¾,0)
value = 527½

x1 ∈ { 3}
x2 ∈ { 12 }
x3 ∈ { 12 }
x4 ∈ { 123}
x = (3,2,2,1)
value = 530

feasible solution

x1 ∈ {1,2}
x1 = 3

x2 ∈ {0,1,2}

x2 = 3

x3 ∈ {1,2}
x3 = 3

Branch-infer-
and-relax tree

LSE tutorial, June 2007
Slide 48

Solution is
nonintegral, but
we can backtrack
because value of
relaxation is
no better than
incumbent solution.

x1 ∈ { 123}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (2⅓,3,2⅔,0)
value = 523⅓

x1 ∈ { 12 }
x2 ∈ { 23}
x3 ∈ { 123}
x4 ∈ { 123}
infeasible
relaxation

x1 ∈ { 3}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (3,2.6,2,0)
value = 526

x1 ∈ { 3}
x2 ∈ {012 }
x3 ∈ { 123}
x4 ∈ {0123}

x = (3,2,2¾,0)
value = 527½

x1 ∈ { 3}
x2 ∈ { 12 }
x3 ∈ { 12 }
x4 ∈ { 123}
x = (3,2,2,1)
value = 530

feasible solution

x1 ∈ { 3}
x2 ∈ {012 }
x3 ∈ { 3}
x4 ∈ {012 }

x = (3,1½,3,½)
value = 530
backtrack

due to bound

x1 ∈ {1,2}
x1 = 3

x2 ∈ {0,1,2}

x2 = 3

x3 ∈ {1,2}
x3 = 3

Branch-infer-
and-relax tree

25

LSE tutorial, June 2007
Slide 49

Another feasible
solution found.

No better than
incumbent solution,
which is optimal
because search
has finished.

x1 ∈ { 123}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (2⅓,3,2⅔,0)
value = 523⅓

x1 ∈ { 12 }
x2 ∈ { 23}
x3 ∈ { 123}
x4 ∈ { 123}
infeasible
relaxation

x1 ∈ { 3}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (3,2.6,2,0)
value = 526

x1 ∈ { 3}
x2 ∈ {012 }
x3 ∈ { 123}
x4 ∈ {0123}

x = (3,2,2¾,0)
value = 527½

x1 ∈ { 3}
x2 ∈ { 3}
x3 ∈ {012 }
x4 ∈ {012 }
x = (3,3,0,2)
value = 530

feasible solution

x1 ∈ { 3}
x2 ∈ { 12 }
x3 ∈ { 12 }
x4 ∈ { 123}
x = (3,2,2,1)
value = 530

feasible solution

x1 ∈ { 3}
x2 ∈ {012 }
x3 ∈ { 3}
x4 ∈ {012 }

x = (3,1½,3,½)
value = 530
backtrack

due to bound

x1 ∈ {1,2}
x1 = 3

x2 ∈ {0,1,2}

x2 = 3

x3 ∈ {1,2}
x3 = 3

Branch-infer-
and-relax tree

LSE tutorial, June 2007
Slide 50

Two optimal solutions…

= (3,2,2,1)x

= (3,3,0,2)x

26

LSE tutorial, June 2007
Slide 51

Constraint Programming Concepts

Consistency
Hyperarc Consistency
Modeling Examples

LSE tutorial, June 2007
Slide 52

Consistency

• A constraint set is consistent if every partial assignment to the
variables that violates no constraint is feasible.

• i.e., can be extended to a feasible solution.

• Consistency ≠ feasibility

• Consistency means that any infeasible partial assignment is
explicitly ruled out by a constraint.

• Fully consistent constraint sets can be solved without
backtracking .

27

LSE tutorial, June 2007
Slide 53

Consistency

Consider the constraint set

It is not consistent, because x1 = 0 violates no constraint
and yet is infeasible (no solution has x1 = 0).

Adding the constraint x1 = 1 makes the set consistent.

{ }

1 100

1 100

1

0

0,1j

x x

x x

x

+ ≥
− ≥
∈

LSE tutorial, June 2007
Slide 54

subtree with 299 nodes
but no feasible solution

By adding the constraint
x1 = 1, the left subtree is
eliminated

{ }

1 100

1 100

1

1

other constraints

0,1j

x x

x x

x

+ ≥
− ≥

∈

1 0x = 1 1x =

28

LSE tutorial, June 2007
Slide 55

Hyperarc Consistency

• Also known as generalized arc consistency .

• A constraint set is hyperarc consistent if every value in
every variable domain is part of some feasible solution.

• That is, the domains are reduced as much as
possible.

• If all constraints are “binary” (contain 2 variables),
hyperarc consistent = arc consistent.

• Domain reduction is CP’s biggest engine.

LSE tutorial, June 2007
Slide 56

Graph coloring problem that can be solved by arc
consistency maintenance alone. Color nodes with red,
green, blue with no two adjacent nodes having the same
color.

29

LSE tutorial, June 2007
Slide 57

Graph coloring problem that can be solved by arc
consistency maintenance alone. Color nodes with red,
green, blue with no two adjacent nodes having the same
color.

LSE tutorial, June 2007
Slide 58

Graph coloring problem that can be solved by arc
consistency maintenance alone. Color nodes with red,
green, blue with no two adjacent nodes having the same
color.

30

LSE tutorial, June 2007
Slide 59

Graph coloring problem that can be solved by arc
consistency maintenance alone. Color nodes with red,
green, blue with no two adjacent nodes having the same
color.

LSE tutorial, June 2007
Slide 60

Graph coloring problem that can be solved by arc
consistency maintenance alone. Color nodes with red,
green, blue with no two adjacent nodes having the same
color.

31

LSE tutorial, June 2007
Slide 61

Graph coloring problem that can be solved by arc
consistency maintenance alone. Color nodes with red,
green, blue with no two adjacent nodes having the same
color.

LSE tutorial, June 2007
Slide 62

Graph coloring problem that can be solved by arc
consistency maintenance alone. Color nodes with red,
green, blue with no two adjacent nodes having the same
color.

32

LSE tutorial, June 2007
Slide 63

Modeling Examples with Global Constraints

Traveling Salesman

Traveling salesman problem:

Let cij = distance from city i to city j.

Find the shortest route that visits each of n cities exactly
once.

LSE tutorial, June 2007
Slide 64

Popular 0-1 model

Let xij = 1 if city i immediately precedes city j, 0 otherwise

{ }

{ }

min

s.t. 1, all

1, all

1, all disjoint , 1, ,

0,1

ij ij
ij

ij
i

ij
j

ij
i V j W

ij

c x

x j

x i

x V W n

x
∈ ∈

=

=

≥ ⊂

∈

∑

∑

∑

∑∑ …

Subtour elimination constraints

33

LSE tutorial, June 2007
Slide 65

A CP model

Let yk = the kth city visited.

The model would be written in a specific constraint programming
language but would essentially say:

Variable indices

“Global” constraint
{ }

1

1

min

s.t. alldiff(, ,)

1, ,

k ky y
k

n

k

c

y y

y n

+

∈

∑

…

…

LSE tutorial, June 2007
Slide 66

{ }
1

min

s.t. circuit(, ,)

1, ,

kky
k

n

k

c

y y

y n∈

∑

…

…

An alternate CP model

Let yk = the city visited after city k.

Hamiltonian circuit
constraint

34

LSE tutorial, June 2007
Slide 67

The constraint xy ≤ 5 can be implemented

Element constraint

The constraint cy ≤ 5 can be implemented:

Assign z the yth
value in the list

(this is a slightly different constraint)

Add the
constraint
z = xy

()1

5

element ,(, ,),n

z

y c c z

≤
…

()1

5

element ,(, ,),n

z

y x x z

≤
…

LSE tutorial, June 2007
Slide 68

Day: 1 2 3 4 5 6 7 8

A B A

Product

• At most one product manufactured on each day.

• Demands for each product on each day.

• Minimize setup + holding cost.

Modeling example: Lot sizing and scheduling

35

LSE tutorial, June 2007
Slide 69

,

, 1

, 1

, 1

, 1

, 1

min

s.t. , all ,

, all ,

, all ,

1 , all ,

1, all , ,

, all , ,

, all , ,

it it ij ijt
t i j t

i t it it it

it it i t

it it

it i t

ijt i t jt

ijt i t

ijt jt

i

h s q

s x d s i t

z y y i t

z y i t

z y i t

y y i j t

y i j t

y i j t

x

δ

δ
δ
δ

≠

−

−

−

−

−

+

+ = +
≥ −
≤
≤ −
≥ + −
≥
≥

∑ ∑

, all ,

1, all

, , {0,1}

, 0

t it

it
i

it it ijt

it it

Cy i t

y t

y z

x s

δ

≤
=

∈
≥

∑

Integer
programming
model

(Wolsey)

Many variables

LSE tutorial, June 2007
Slide 70

() ()

1

, 1

min

s.t. , all ,

0 , 0, all ,

0 , all ,

t ty y i it
t i

i t it it it

it it

t it

q h s

s x d s i t

x C s i t

y i x i t

−

−

 +

+ = +
≤ ≤ ≥

≠ → =

∑ ∑

CP model
Minimize holding and setup costs

Inventory balance

Production capacity

36

LSE tutorial, June 2007
Slide 71

() ()

1

, 1

min

s.t. , all ,

0 , 0, all ,

0 , all ,

t ty y i it
t i

i t it it it

it it

t it

q h s

s x d s i t

x C s i t

y i x i t

−

−

 +

+ = +
≤ ≤ ≥

≠ → =

∑ ∑

CP model
Minimize holding and setup costs

Variable indices

Product manufactured in period t

Production level of product i in period t

Inventory balance

Production capacity

LSE tutorial, June 2007
Slide 72

• Used for resource-constrained scheduling.

• Total resources consumed by jobs at any one time must
not exceed L.

Job start times
(variables)

Job processing times
Job resource
requirements

Cumulative scheduling constraint

()1 1 1cumulative (, ,),(, ,),(, ,),n n nt t p p c c L… … …

37

LSE tutorial, June 2007
Slide 73

()1 5

1

5

min

s.t. cumulative (, ,),(3,3,3,5,5),(3,3,3,2,2),7

3

2

z

t t

z t

z t

≥ +

≥ +

…

⋮

Minimize makespan (no deadlines, all release times = 0):

Min makespan = 8

L

1

2 3

4

5

time

resources

Job start times

Processing times
Resources used

L

Cumulative scheduling constraint

LSE tutorial, June 2007
Slide 74

• Will use ILOG’s OPL Studio modeling language.

• Example is from OPL manual.

• The problem

• Load 34 items on the ship in minimum time (min makespan)

• Each item requires a certain time and certain number of
workers.

• Total of 8 workers available.

Modeling example: Ship loading

38

LSE tutorial, June 2007
Slide 75

6217

3316

3215

3514

4113

5212

4311

8210

439

348

437

526

555

464

343

442

431

LaborDura-
tion

Item

3234

3233

3132

3231

3330

8129

6228

3127

3126

8225

8524

7423

4222

4121

4120

4119

7218

LaborDura-
tion

Item

Problem data

LSE tutorial, June 2007
Slide 76

1 → 2,4
2 →3
3 →5,7
4 →5
5 →6
6 →8
7 →8
8 →9
9 →10
9 →14
10 →11
10 →12

11 →13
12 →13
13 →15,16
14 →15
15 →18
16 →17
17 →18
18 →19
18 →20,21
19 →23
20 → 23
21 → 22

22 →23
23 →24
24 →25
25 →26,30,31,32
26 → 27
27 → 28
28 → 29
30 → 28
31 → 28
32 → 33
33 → 34

Precedence constraints

39

LSE tutorial, June 2007
Slide 77

Use the cumulative scheduling constraint.

()
1 2

1 34

2 1 4 1

min

s.t. 3, 4, etc.

cumulative (, ,),(3,4, ,2),(4,4, ,3),8

3, 3, etc.

z

z t z t

t t

t t t t

≥ + ≥ +

≥ + ≥ +
… … …

LSE tutorial, June 2007
Slide 78

int capacity = 8;
int nbTasks = 34;
range Tasks 1..nbTasks;
int duration[Tasks] = [3,4,4,6,…,2];
int totalDuration =

sum(t in Tasks) duration[t];
int demand[Tasks] = [4,4,3,4,…,3];
struct Precedences {

int before;
int after;

}
{Precedences} setOfPrecedences = {

<1,2>, <1,4>, …, <33,34> };

OPL model

40

LSE tutorial, June 2007
Slide 79

scheduleHorizon = totalDuration;
Activity a[t in Tasks](duration[t]);
DiscreteResource res(8);
Activity makespan(0);
minimize

makespan.end
subject to

forall(t in Tasks)
a[t] precedes makespan;

forall(p in setOfPrecedences)
a[p.before] precedes a[p.after];

forall(t in Tasks)
a[t] requires(demand[t]) res;

};

LSE tutorial, June 2007
Slide 80

Capacity
C1

Capacity
C2

Capacity
C3

Manufacturing
Unit

Storage
Tanks

Packing
Units

Modeling example: Production scheduling with
intermediate storage

41

LSE tutorial, June 2007
Slide 81

Level

t u t + (b/r) u + (b/s)

Filling starts

Packing starts Filling ends
Packing ends

Batch size

Manufac-
turing rate Packing rate

Need to enforce
capacity constraint
here only

Filling of storage tank

LSE tutorial, June 2007
Slide 82

()

1

1

min

s.t. , all

, all

cumulative , , ,

, all

1 , all

cumulative , , , , ,

0

j
j

j

j j

i
i i i

i

i
i i i i

i

n

n

j j

T

b
T u j

s

t R j

t v e m

b
v u t i

s

s
b s u C i

r

b b
u e p

s s

u t

≥ +

≥

= + −

− + ≤

≥ ≥

…

Makespan

Job release time

m storage tanks

Job duration

Tank capacity

p packing units

e = (1,…,1)

42

LSE tutorial, June 2007
Slide 83

Modeling example: Employee scheduling

• Schedule four nurses in 8-hour shifts.

• A nurse works at most one shift a day, at least 5 days a week.

• Same schedule every week.

• No shift staffed by more than two different nurses in a week.

• A nurse cannot work different shifts on two consecutive days.

• A nurse who works shift 2 or 3 must do so at least two days in
a row.

LSE tutorial, June 2007
Slide 84

Two ways to view the problem

DCCDDDDShift 3

BBBBCCCShift 2

AAAAABAShift 1

SatFriThuWedTueMonSun

Assign nurses to shifts

3003333Nurse D

0330222Nurse C

2222010Nurse B

1111101Nurse A

SatFriThuWedTueMonSun

Assign shifts to nurses

0 = day off

43

LSE tutorial, June 2007
Slide 85

Use both formulations in the same model!

First, assign nurses to shifts.

Let wsd = nurse assigned to shift s on day d

1 2 3alldiff(, ,), all d d dw w w d The variables w1d, w2d,
w3d take different values

That is, schedule 3
different nurses on each
day

LSE tutorial, June 2007
Slide 86

()
1 2 3alldiff(, ,), all

cardinality | (, , ,),(5,5,5,5),(6,6,6,6)
d d dw w w

w A B C

d

D

A occurs at least 5 and at most 6
times in the array w, and similarly
for B, C, D.

That is, each nurse works at least
5 and at most 6 days a week

Use both formulations in the same model!

First, assign nurses to shifts.

Let wsd = nurse assigned to shift s on day d

44

LSE tutorial, June 2007
Slide 87

()
()

()

1 2 3

,Sun ,Sat

alldiff , , , all

cardinality | (, , ,),(5,5,5,5),(6,6,6,6)

nvalues ,..., |1,2 , all

d d d

s s

w w w

w

d

A B C D

w w s

The variables ws,Sun, …, ws,Sat take
at least 1 and at most 2 different
values.

That is, at least 1 and at most 2
nurses work any given shift.

Use both formulations in the same model!

First, assign nurses to shifts.

Let wsd = nurse assigned to shift s on day d

LSE tutorial, June 2007
Slide 88

Remaining constraints are not easily expressed in this
notation.

So, assign shifts to nurses.

Let yid = shift assigned to nurse i on day d

()1 2 3,alldiff , all ,d d dy y y d

Assign a different nurse to each
shift on each day.

This constraint is redundant of
previous constraints, but
redundant constraints speed
solution.

45

LSE tutorial, June 2007
Slide 89

()
()

1 2 3

,Sun ,Sat

alldiff , all

stretch , , | (2,3),(2,2),(6,6), , all

, ,d d d

i i

y

P i

y

y y

dy

…

Every stretch of 2’s has length between 2 and 6.
Every stretch of 3’s has length between 2 and 6.

So a nurse who works shift 2 or 3 must do so at least
two days in a row.

Remaining constraints are not easily expressed in this
notation.

So, assign shifts to nurses.

Let yid = shift assigned to nurse i on day d

LSE tutorial, June 2007
Slide 90

()
()

1 2 3

,Sun ,Sat

alldiff , all

stretch , , | (2,3),(2,2),(6,6), , all

, ,d d d

i i

y

P i

y

y y

dy

…

Here P = {(s,0),(0,s) | s = 1,2,3}

Whenever a stretch of a’s immediately precedes a stretch of b’s,
(a,b) must be one of the pairs in P.

So a nurse cannot switch shifts without taking at least one day off.

Remaining constraints are not easily expressed in this
notation.

So, assign shifts to nurses.

Let yid = shift assigned to nurse i on day d

46

LSE tutorial, June 2007
Slide 91

Now we must connect the wsd variables to the yid variables.

Use channeling constraints :

, all ,

, all ,
i

d

d

s

d

w

y

dy

i iw d

s s d

=

=

Channeling constraints increase propagation and make the
problem easier to solve.

LSE tutorial, June 2007
Slide 92

The complete model is:

, all ,

, all ,
i

d

d

s

d

w

y

dy

i iw d

s s d

=

=

()
()

()

1 2 3

,Sun ,Sat

alldiff , , , all

cardinality | (, , ,),(5,5,5,5),(6,6,6,6)

nvalues ,..., |1,2 , all

d d d

s s

w w w

w

d

A B C D

w w s

()
()

1 2 3

,Sun ,Sat

alldiff , all

stretch , , | (2,3),(2,2),(6,6), , all

, ,d d d

i i

y

P i

y

y y

dy

…

47

LSE tutorial, June 2007
Slide 93

CP Filtering Algorithms

Element
Alldiff

Disjunctive Scheduling
Cumulative Scheduling

LSE tutorial, June 2007
Slide 94

Filtering for element

Variable domains can be easily filtered to maintain hvperarc
consistency.

Domain of z

()1element ,(, ,),ny x x z…

{ }
{ }

|

 if

 otherwise

j

y

j

j

j

z z x
j D

y y z x

z y
x

x

D D D

D D j D D

D D j
D

D

∈

← ∩

← ∩ ∩ ≠ ∅

 = ←

∪

48

LSE tutorial, June 2007
Slide 95

Example...

The initial domains are: The reduced domains are:

()1 2 3 4element ,(, , ,),y x x x x z

{ }
{ }
{ }
{ }
{ }
{ }

1

2

3

4

20,30,60,80,90

1,3,4

10,50

10,20

40,50,80,90

40,50,70

z

y

x

x

x

x

D

D

D

D

D

D

=
=
=

=

=

=

{ }
{ }
{ }
{ }
{ }
{ }

1

2

3

4

80,90

3

10,50

10,20

80,90

40,50,70

z

y

x

x

x

x

D

D

D

D

D

D

=
=
=

=

=

=

Filtering for element

LSE tutorial, June 2007
Slide 96

Filtering for alldiff

Domains can be filtered with an algorithm based on maximum
cardinality bipartite matching and a theorem of Berge.

It is a special case of optimality conditions for max flow.

()1alldiff , , ny y…

49

LSE tutorial, June 2007
Slide 97

Filtering for alldiff

Consider the domains

{ }
{ }
{ }
{ }
{ }

1

2

3

4

5

1

2,3,5

1,2,3,5

1,5

1,2,3,4,5,6

y

y

y

y

y

∈
∈
∈
∈
∈

LSE tutorial, June 2007
Slide 98

y1

y2

y3

y4

y5

1

2

3

4

5

6

Indicate domains with edges

50

LSE tutorial, June 2007
Slide 99

y1

y2

y3

y4

y5

1

2

3

4

5

6

Indicate domains with edges

Find maximum cardinality bipartite
matching.

LSE tutorial, June 2007
Slide 100

y1

y2

y3

y4

y5

1

2

3

4

5

6

Indicate domains with edges

Find maximum cardinality bipartite
matching.

51

LSE tutorial, June 2007
Slide 101

y1

y2

y3

y4

y5

1

2

3

4

5

6

Indicate domains with edges

Find maximum cardinality bipartite
matching.

Mark edges in alternating paths
that start at an uncovered vertex.

LSE tutorial, June 2007
Slide 102

y1

y2

y3

y4

y5

1

2

3

4

5

6

Indicate domains with edges

Find maximum cardinality bipartite
matching.

Mark edges in alternating paths
that start at an uncovered vertex.

52

LSE tutorial, June 2007
Slide 103

y1

y2

y3

y4

y5

1

2

3

4

5

6

Indicate domains with edges

Find maximum cardinality bipartite
matching.

Mark edges in alternating paths
that start at an uncovered vertex.

Mark edges in alternating cycles.

LSE tutorial, June 2007
Slide 104

y1

y2

y3

y4

y5

1

2

3

4

5

6

Indicate domains with edges

Find maximum cardinality bipartite
matching.

Mark edges in alternating paths
that start at an uncovered vertex.

Mark edges in alternating cycles.

Remove unmarked edges not in
matching.

53

LSE tutorial, June 2007
Slide 105

y1

y2

y3

y4

y5

1

2

3

4

5

6

Indicate domains with edges

Find maximum cardinality bipartite
matching.

Mark edges in alternating paths
that start at an uncovered vertex.

Mark edges in alternating cycles.

Remove unmarked edges not in
matching.

LSE tutorial, June 2007
Slide 106

Filtering for alldiff

Domains have been filtered:

{ }
{ }
{ }
{ }
{ }

1

2

3

4

5

1

2,3,5

1,2,3,5

1,5

1,2,3,4,5,6

y

y

y

y

y

∈
∈
∈
∈
∈

{ }
{ }
{ }
{ }
{ }

1

2

3

4

5

1

2,3

2,3

5

4,6

y

y

y

y

y

∈
∈
∈
∈
∈

Hyperarc consistency achieved.

54

LSE tutorial, June 2007
Slide 107

Disjunctive scheduling

Consider a disjunctive scheduling constraint:

()1 2 3 5 1 2 3 5disjunctive (, , ,),(, , ,)s s s s p p p p

Start time variables

LSE tutorial, June 2007
Slide 108

Edge finding for disjunctive scheduling

Consider a disjunctive scheduling constraint:

()1 2 3 5 1 2 3 5disjunctive (, , ,),(, , ,)s s s s p p p p

Processing times

55

LSE tutorial, June 2007
Slide 109

Edge finding for disjunctive scheduling

Consider a disjunctive scheduling constraint:

()1 2 3 5 1 2 3 5disjunctive (, , ,),(, , ,)s s s s p p p p

Variable domains defined by time
windows and processing times

1

2

3

5

[0,10 1]

[0,10 3]

[2,7 3]

[4,7 2]

s

s

s

s

∈ −
∈ −
∈ −
∈ −

LSE tutorial, June 2007
Slide 110

Edge finding for disjunctive scheduling

Consider a disjunctive scheduling constraint:

()1 2 3 5 1 2 3 5disjunctive (, , ,),(, , ,)s s s s p p p p

A feasible (min makespan) solution:

Time window

56

LSE tutorial, June 2007
Slide 111

Edge finding for disjunctive scheduling

But let’s reduce 2 of the deadlines to 9:

LSE tutorial, June 2007
Slide 112

Edge finding for disjunctive scheduling

But let’s reduce 2 of the deadlines to 9:

We will use edge finding
to prove that there is no
feasible schedule.

57

LSE tutorial, June 2007
Slide 113

Edge finding for disjunctive scheduling

We can deduce that job 2 must precede jobs 3 and 4: { }2 3,5≪

Because if job 2 is not first, there is not enough time for all 3
jobs within the time windows:

{2,3,5} {3,5} {2,3,5}L E p− <

L{2,3,5}E{3,5}
7<3+3+2

LSE tutorial, June 2007
Slide 114

Edge finding for disjunctive scheduling

We can deduce that job 2 must precede jobs 3 and 4: { }2 3,5≪

Because if job 2 is not first, there is not enough time for all 3
jobs within the time windows:

{2,3,5} {3,5} {2,3,5}L E p− <

L{2,3,5}E{3,5}
7<3+3+2

Latest deadline

58

LSE tutorial, June 2007
Slide 115

Edge finding for disjunctive scheduling

We can deduce that job 2 must precede jobs 3 and 4: { }2 3,5≪

Because if job 2 is not first, there is not enough time for all 3
jobs within the time windows:

{2,3,5} {3,5} {2,3,5}L E p− <

L{2,3,5}E{3,5}
7<3+3+2

Earliest release time

LSE tutorial, June 2007
Slide 116

Edge finding for disjunctive scheduling

We can deduce that job 2 must precede jobs 3 and 4: { }2 3,5≪

Because if job 2 is not first, there is not enough time for all 3
jobs within the time windows:

{2,3,5} {3,5} {2,3,5}L E p− <

L{2,3,5}E{3,5}
7<3+3+2

Total processing time

59

LSE tutorial, June 2007
Slide 117

Edge finding for disjunctive scheduling

We can deduce that job 2 must precede jobs 3 and 4: { }2 3,5≪

So we can tighten deadline of job 2 to minimum of

{3} {3} 4L p− =

L{2,3,5}E{3,5}
7<3+3+2

Since time window of job 2 is now too narrow, there is no
feasible schedule.

{5} {5} 5L p− = {3,5} {3,5} 2L p− =

LSE tutorial, June 2007
Slide 118

Edge finding for disjunctive scheduling

In general, we can deduce that job k must precede all the jobs
in set J: k J≪
If there is not enough time for all the jobs after the earliest
release time of the jobs in J

{ } { }J k J J kL E p∪ ∪− < {2,3,5} {3,5} {2,3,5}L E p− <

60

LSE tutorial, June 2007
Slide 119

Edge finding for disjunctive scheduling

In general, we can deduce that job k must precede all the jobs
in set J: k J≪
If there is not enough time for all the jobs after the earliest
release time of the jobs in J

{ } { }J k J J kL E p∪ ∪− < {2,3,5} {3,5} {2,3,5}L E p− <

Now we can tighten the deadline for job k to:

{ }min J JJ J
L p′ ′′⊂

− {3,5} {3,5} 2L p− =

LSE tutorial, June 2007
Slide 120

Edge finding for disjunctive scheduling

There is a symmetric rule: k J≫

If there is not enough time for all the jobs before the latest
deadline of the jobs in J:

{ } { }J J k J kL E p∪ ∪− <

Now we can tighten the release date for job k to:

{ }max J JJ J
E p′ ′′⊂

+

61

LSE tutorial, June 2007
Slide 121

Edge finding for disjunctive scheduling

Problem: how can we avoid enumerating all subsets J of jobs
to find edges?

{ } { }J k J J kL E p∪ ∪− <

…and all subsets J′ of J to tighten the bounds?

{ }min J JJ J
L p′ ′′⊂

−

LSE tutorial, June 2007
Slide 122

Edge finding for disjunctive scheduling

Key result: We only have to consider sets J whose time
windows lie within some interval.

{ }min J JJ J
L p′ ′′⊂

−

e.g., J = {3,5}

62

LSE tutorial, June 2007
Slide 123

Edge finding for disjunctive scheduling

Key result: We only have to consider sets J whose time
windows lie within some interval.

Removing a job from those within an interval only weakens the
test

{ }min J JJ J
L p′ ′′⊂

−

e.g., J = {3,5}

{ } { }J k J J kL E p∪ ∪− <

There are a polynomial number of intervals
defined by release times and deadlines.

LSE tutorial, June 2007
Slide 124

Edge finding for disjunctive scheduling

Key result: We only have to consider sets J whose time
windows lie within some interval.

{ }min J JJ J
L p′ ′′⊂

−

e.g., J = {3,5}

Note: Edge finding does not achieve bounds consistency,
which is an NP-hard problem.

63

LSE tutorial, June 2007
Slide 125

Edge finding for disjunctive scheduling

One O(n2) algorithm is based on the Jackson pre-emptive
schedule (JPS). Using a different example, the JPS is:

LSE tutorial, June 2007
Slide 126

Edge finding for disjunctive scheduling

One O(n2) algorithm is based on the Jackson pre-emptive
schedule (JPS). Using a different example, the JPS is:

For each job

Scan jobs in decreasing order of

Select first for which

Conclude that

Update to JPS(,)

ik

i k

k i i J

ik

i

i

k J L

k L E p p

i J

E i k

∈
− < +

≫

Jobs unfinished at time Ei in JPS

Jobs j ≠ i in Ji with Lj ≤ Lk

Latest completion time in JPS of jobs in Jik

64

LSE tutorial, June 2007
Slide 127

Not-first/not-last rules

We can deduce that job 4 cannot precede jobs 1 and 2:

{1,2} 4 1 2 4L E p p p− < + +

()4 {1,2}¬ ≪

Because if job 4 is first, there is too little time to complete the
jobs before the later deadline of jobs 1 and 2:

L{1,2}E4
6<1+3+3

LSE tutorial, June 2007
Slide 128

Not-first/not-last rules

We can deduce that job 4 cannot precede jobs 1 and 2:

1 1 3E p+ =
Now we can tighten the release time of job 4 to minimum of:

L{1,2}E4
6<1+3+3

2 2 4E p+ =

()4 {1,2}¬ ≪

65

LSE tutorial, June 2007
Slide 129

Not-first/not-last rules

In general, we can deduce that job k cannot precede all the
jobs in J:

J k JL E p− <

()k J¬ ≪

if there is too little time after release time of job k to complete
all jobs before the latest deadline in J:

Now we can update Ei to

{ }min j jj J
E p

∈
+

LSE tutorial, June 2007
Slide 130

Not-first/not-last rules

In general, we can deduce that job k cannot precede all the
jobs in J:

J k JL E p− <

()k J¬ ≪

if there is too little time after release time of job k to complete
all jobs before the latest deadline in J:

Now we can update Ei to

{ }min j jj J
E p

∈
+

There is a symmetric not-last rule.

The rules can be applied in polynomial time, although an
efficient algorithm is quite complicated.

66

LSE tutorial, June 2007
Slide 131

Cumulative scheduling

Consider a cumulative scheduling constraint:

()1 2 3 1 2 3 1 2 3cumulative (, ,),(, ,),(, ,),s s s p p p c c c C

A feasible solution:

LSE tutorial, June 2007
Slide 132

Edge finding for cumulative scheduling

We can deduce that job 3 must finish after the others finish: { }3 1,2>
Because the total energy required exceeds the area between
the earliest release time and the later deadline of jobs 1,2:

()3 {1,2} {1,2} {1,2,3}e e C L E+ > ⋅ −

67

LSE tutorial, June 2007
Slide 133

Edge finding for cumulative scheduling

We can deduce that job 3 must finish after the others finish: { }3 1,2>
Because the total energy required exceeds the area between
the earliest release time and the later deadline of jobs 1,2:

()3 {1,2} {1,2} {1,2,3}e e C L E+ > ⋅ −

Total energy
required = 22

9

5

8

LSE tutorial, June 2007
Slide 134

Edge finding for cumulative scheduling

We can deduce that job 3 must finish after the others finish: { }3 1,2>
Because the total energy required exceeds the area between
the earliest release time and the later deadline of jobs 1,2:

()3 {1,2} {1,2} {1,2,3}e e C L E+ > ⋅ −

Total energy
required = 22

9

5

8Area available
= 20

68

LSE tutorial, June 2007
Slide 135

Edge finding for cumulative scheduling

We can deduce that job 3 must finish after the others finish: { }3 1,2>
We can update the release time of job 3 to

3 {1,2} {1,2}
{1,2}

3

()()Je C c L E
E

c

− − −
+

Energy available
for jobs 1,2 if

space is left for job
3 to start anytime

= 10

10

LSE tutorial, June 2007
Slide 136

Edge finding for cumulative scheduling

We can deduce that job 3 must finish after the others finish: { }3 1,2>
We can update the release time of job 3 to

3 {1,2} {1,2}
{1,2}

3

()()Je C c L E
E

c

− − −
+

Energy available
for jobs 1,2 if

space is left for job
3 to start anytime

= 10

10Excess energy
required by jobs

1,2 = 4

4

69

LSE tutorial, June 2007
Slide 137

Edge finding for cumulative scheduling

We can deduce that job 3 must finish after the others finish: { }3 1,2>
We can update the release time of job 3 to

3 {1,2} {1,2}
{1,2}

3

()()Je C c L E
E

c

− − −
+

Energy available
for jobs 1,2 if

space is left for job
3 to start anytime

= 10

10Excess energy
required by jobs

1,2 = 4

4 Move up job 3
release time
4/2 = 2 units
beyond E{1,2}

E3

LSE tutorial, June 2007
Slide 138

Edge finding for cumulative scheduling

In general, if (){ } { }J k J J ke C L E∪ ∪> ⋅ −

then k > J, and update Ek to

()() 0

()()
max

J k J J

J k J J
JJ J

k
e C c L E

e C c L E
E

c
′ ′ ′

′ ′ ′
′′⊂

− − − >

 − − −+

In general, if (){ } { }J k J k Je C L E∪ ∪> ⋅ −

then k < J, and update Lk to

()() 0

()()
min

J k J J

J k J J
JJ J

ke C c L E

e C c L E
L

c
′ ′ ′

′ ′ ′
′′⊂

− − − >

 − − −−

70

LSE tutorial, June 2007
Slide 139

Edge finding for cumulative scheduling

There is an O(n2) algorithm that finds all applications of the
edge finding rules.

LSE tutorial, June 2007
Slide 140

Other propagation rules for cumulative
scheduling

• Extended edge finding.

• Timetabling.

• Not-first/not-last rules.

• Energetic reasoning.

71

LSE tutorial, June 2007
Slide 141

Linear Relaxation

Why Relax?
Algebraic Analysis of LP

Linear Programming Duality
LP-Based Domain Filtering

Example: Single-Vehicle Routing
Disjunctions of Linear Systems

LSE tutorial, June 2007
Slide 142

Why Relax?
Solving a relaxation of a problem can:

• Tighten variable bounds.
• Possibly solve original problem.
• Guide the search in a promising direction.
• Filter domains using reduced costs or Lagrange multipliers.
• Prune the search tree using a bound on the optimal value.
• Provide a more global view, because a single OR relaxation

can pool relaxations of several constraints.

72

LSE tutorial, June 2007
Slide 143

Some OR models that can provide relaxations:

• Linear programming (LP).
• Mixed integer linear programming (MILP)

– Can itself be relaxed as an LP.
– LP relaxation can be strengthened with cutting planes.

• Lagrangean relaxation.
• Specialized relaxations.

– For particular problem classes.
– For global constraints.

LSE tutorial, June 2007
Slide 144

Motivation

• Linear programming is remarkably versatile for representing
real-world problems.

• LP is by far the most widely used tool for relaxation .

• LP relaxations can be strengthened by cutting planes.

- Based on polyhedral analysis.

• LP has an elegant and powerful duality theory .

- Useful for domain filtering, and much else.

• The LP problem is extremely well solved .

73

LSE tutorial, June 2007
Slide 145

1 2

1 2

1 2

1 2

min 4 7

2 3 6

2 4

, 0

x x

x x

x x

x x

+
+ ≥
+ ≥

≥

2x1 + 3x2 ≥ 6

2x1 + x2 ≥ 4

An example…

4x1 + 7x2 = 12

Optimal solution
x = (3,0)

Algebraic Analysis of LP

LSE tutorial, June 2007
Slide 146

1 2

1 2

1 2

1 2

min 4 7

2 3 6

2 4

, 0

x x

x x

x x

x x

+
+ ≥
+ ≥

≥

Rewrite

1 2

1 2 3

1 2 4

1 2 3 4

min 4 7

2 3 6

2 4

, , , 0

x x

x x x

x x x

x x x x

+
+ − =
+ − =

≥

as

In general an LP has the form min

0

cx

Ax b

x

=
≥

Algebraic Analysis of LP

74

LSE tutorial, June 2007
Slide 147

Algebraic analysis of LP

Write as

=
≥

min

0

cx

Ax b

x

+
+ =

≥

min

, 0

B B N N

B N

B N

c x c x

Bx Nx b

x x

m × n matrix
Basic
variables

where

[]=A B N

Any set of
m linearly
independent
columns of A.

These form a
basis for the
space spanned
by the columns.

Nonbasic
variables

LSE tutorial, June 2007
Slide 148

Algebraic analysis of LP

Write as

=
≥

min

0

cx

Ax b

x

+
+ =

≥

min

, 0

B B N N

B N

B N

c x c x

Bx Nx b

x x

where

[]=A B N

Solve constraint equation for xB: − −= −1 1
B Nx B b B Nx

All solutions can be obtained by setting xN to some value.

The solution is basic if xN = 0.

It is a basic feasible solution if xN = 0 and xB ≥ 0.

75

LSE tutorial, June 2007
Slide 149

1 2

1 2 3

1 2 4

1 2 3 4

min 4 7

2 3 6

2 4

, , , 0

x x

x x x

x x x

x x x x

+
+ − =
+ − =

≥

2x1 + 3x2 ≥ 6

2x1 + x2 ≥ 4

Example…

x2, x3 basic

x1, x2 basic

x1, x4 basic

x2, x4 basic

x3, x4 basic
x1, x3 basic

= basic feasible
solution

x1

x2

LSE tutorial, June 2007
Slide 150

Algebraic analysis of LP

Write as

=
≥

min

0

cx

Ax b

x

+
+ =

≥

min

, 0

B B N N

B N

B N

c x c x

Bx Nx b

x x

where

[]=A B N

Solve constraint equation for xB: − −= −1 1
B Nx B b B Nx

Express cost in terms of nonbasic variables:

− −− −1 1()B N B Nc B b c c B N x

Vector of reduced costs

Since xN ≥ 0,
basic solution (xB,0)
is optimal if
reduced costs are
nonnegative.

76

LSE tutorial, June 2007
Slide 151

1 2

1 2 3

1 2 4

1 2 3 4

min 4 7

2 3 6

2 4

, , , 0

x x

x x x

x x x

x x x x

+
+ − =
+ − =

≥

Example…

x1, x4 basic

Consider this
basic feasible
solution

x1

x2

LSE tutorial, June 2007
Slide 152

Example…

[] [] +

− + = −

 ≥

21

34

1 1

4 4

1 1

4 4

min 4 0 7 0

2 0 3 1 6

2 1 1 0 4

0
,

0

xx

xx

x x

x x

x x

x x

Write… as… cBxB cNxN

BxB

NxN b

1 2

1 2 3

1 2 4

1 2 3 4

min 4 7

2 3 6

2 4

, , , 0

x x

x x x

x x x

x x x x

+
+ − =
+ − =

≥

77

LSE tutorial, June 2007
Slide 153

[] [] +

− + = −

 ≥

21

34

1 1

4 4

1 1

4 4

min 4 0 7 0

2 0 3 1 6

2 1 1 0 4

0
,

0

xx

xx

x x

x x

x x

x x

Example…

b

cBxB cNxN

BxB

NxN

LSE tutorial, June 2007
Slide 154

Example…

− − −= − =

 = = = −

1 1 1

1/ 21

4

0 6 3

1 1 4 2

B Nx B b B Nx B b

x

x

Basic solution is

x1, x4 basic

x2

x1

[] [] +

− + = −

 ≥

21

34

1 1

4 4

1 1

4 4

min 4 0 7 0

2 0 3 1 6

2 1 1 0 4

0
,

0

xx

xx

x x

x x

x x

x x

cBxB cNxN

BxB

NxN b

78

LSE tutorial, June 2007
Slide 155

[] []

[] []

1

1/2 0 3 1
7 0 4 0

1 1 1 0

1 2 0 0

N Bc c B N−−
− = − −

≥=

Example…
Basic solution is

Reduced costs are

Solution is
optimal

[] [] +

− + = −

 ≥

21

34

1 1

4 4

1 1

4 4

min 4 0 7 0

2 0 3 1 6

2 1 1 0 4

0
,

0

xx

xx

x x

x x

x x

x x

cBxB cNxN

BxB

NxN

− − −= − =

 = = = −

1 1 1

1/ 21

4

0 6 3

1 1 4 2

B Nx B b B Nx B b

x

x

LSE tutorial, June 2007
Slide 156

Linear Programming Duality

An LP can be viewed as an inference problem…

≥
≥ ⇒ ≥

0

max
x

v

Ax b cx v

=
≥

≥

min

0

cx

Ax b

x
implies

Dual problem: Find the tightest lower bound on the
objective function that is implied by the constraints.

79

LSE tutorial, June 2007
Slide 157

An LP can be viewed as an inference problem…

≥
≥ ⇒ ≥

0

max
x

v

Ax b cx v

=
≥

≥

min

0

cx

Ax b

x

From Farkas Lemma: If Ax ≥ b, x ≥ 0 is feasible,

0 dominates
iff

for some 0

x Ax b cx v
Ax b cx v

λ λ
λ

≥ ≥ ≥
≥ ⇒ ≥

≥

λA ≤ c and λb ≥ v

That is, some surrogate
(nonnegative linear
combination) of
Ax ≥ b dominates cx ≥ v

LSE tutorial, June 2007
Slide 158

An LP can be viewed as an inference problem…

≥
≥ ⇒ ≥

0

max
x

v

Ax b cx v

=
≥

≥

min

0

cx

Ax b

x

From Farkas Lemma: If Ax ≥ b, x ≥ 0 is feasible,

0 dominates
iff

for some 0

x Ax b cx v
Ax b cx v

λ λ
λ

≥ ≥ ≥
≥ ⇒ ≥

≥

λA ≤ c and λb ≥ v

λ
λ
λ

≤
≥

max

0

b

A c
= This is the

classical
LP dual

80

LSE tutorial, June 2007
Slide 159

This equality is called strong duality.

=
≥

≥

min

0

cx

Ax b

x
If Ax ≥ b, x ≥ 0 is feasible

λ
λ
λ

≤
≥

max

0

b

A c
This is the
classical
LP dual

Note that the dual of the dual is the primal
(i.e., the original LP).

LSE tutorial, June 2007
Slide 160

λ
λ

+ =
+ ≥
+ ≥

≥

1

1 2

1 2

1 2

1 2

1

min 4 7

2 3 ()

()

6

2 4

, 0

x x

x x

x x

x x

Example

1 2

1

21 2

2

12

1

(

max 6 4

)

(

12

2 2 4

3 7

,

)

0

x

x

λ λ
λ λ
λ λ

λ λ

+ =
+ ≤
+ ≤

≥

A dual solution is (λ1,λ2) = (2,0)

Primal Dual

2

2

1

1 2

1(2)

(

6

0)

2 3

2 4

x x

x x

λ
λ

⋅
⋅

+
+

=
=

≥
≥

1 24 6 12x x+ ≥

1 24 7 12x x+ ≥
dominates

Dual multipliers

Surrogate

Tightest bound on cost

81

LSE tutorial, June 2007
Slide 161

Weak Duality

If x* is feasible in the
primal problem

min

0

cx

Ax b

x

≥
≥

λ
λ
λ

≤
≥

max

0

b

A c

and λ* is feasible in the
dual problem

then cx* ≥ λ*b.

This is because
cx* ≥ λ*Ax* ≥ λ*b

λ* is dual
feasible

and x* ≥ 0

x* is primal
feasible

and λ* ≥ 0

LSE tutorial, June 2007
Slide 162

Dual multipliers as marginal costs

min

0

cx

Ax b b

x

≥ ∆
≥

+
Suppose we perturb the RHS of an LP
(i.e., change the requirement levels):

The dual of the perturbed LP has the
same constraints at the original LP:

max (

0

)bb

A c

λ
λ
λ

≤
∆

≥

+

So an optimal solution λ* of the original dual is feasible in the
perturbed dual.

82

LSE tutorial, June 2007
Slide 163

Dual multipliers as marginal costs

min

0

cx

Ax b b

x

≥ ∆
≥

+
Suppose we perturb the RHS of an LP
(i.e., change the requirement levels):

By weak duality, the optimal value of the perturbed LP is at least
λ*(b + ∆b) = λ*b + λ*∆b.

So λi* is a lower bound on the marginal cost of increasing the
i-th requirement by one unit (∆bi = 1).

Optimal value of original LP, by strong duality.

If λi* > 0, the i-th constraint must be tight (complementary slackness).

LSE tutorial, June 2007
Slide 164

Dual of an LP in equality form

Primal Dual

λ
+

+ =
≥

m n

, 0

)

i

(
B B N N

B N

B N

c x c x

Bx Nx b

x x

(

max

 unrestric

)

d

)

te

(
B

N

B

B

x

b

B c

c xN

λ
λ
λ
λ

≤
≤

83

LSE tutorial, June 2007
Slide 165

Dual of an LP in equality form

Primal Dual

Recall that reduced cost vector is 1
N Bc c B N−− Nc Nλ= −

this solves the dual
if (xB,0) solves the primal

λ

λ
+

+ =
≥

m n

, 0

)

i

(
B B N N

B N

B N

c x c x

Bx Nx b

x x

(

max

 unrestric

)

d

)

te

(
B

N

B

B

x

b

B c

c xN

λ
λ
λ
λ

≤
≤

LSE tutorial, June 2007
Slide 166

Dual of an LP in equality form

Primal Dual

Check: 1

1
B B

B N

B c B B c

N c B N c

λ
λ

−

−

= =
= ≤

Because reduced cost is nonnegative
at optimal solution (xB,0).

Recall that reduced cost vector is 1
N Bc c B N−− Nc Nλ= −

this solves the dual
if (xB,0) solves the primal

λ

λ
+

+ =
≥

m n

, 0

)

i

(
B B N N

B N

B N

c x c x

Bx Nx b

x x

(

max

 unrestric

)

d

)

te

(
B

N

B

B

x

b

B c

c xN

λ
λ
λ
λ

≤
≤

84

LSE tutorial, June 2007
Slide 167

Dual of an LP in equality form

λ
+

+ =
≥

m n

, 0

)

i

(
B B N N

B N

B N

c x c x

Bx Nx b

x x

Primal Dual

(

max

 unrestric

)

d

)

te

(
B

N

B

B

x

b

B c

c xN

λ
λ
λ
λ

≤
≤

[] []1/ 21 0
4 0 2 0

1 1Bc Bλ − = = = −

In the example,

Recall that reduced cost vector is 1
N Bc c B N−− Nc Nλ= −

this solves the dual
if (xB,0) solves the primal

λ

LSE tutorial, June 2007
Slide 168

Dual of an LP in equality form

λ
+

+ =
≥

m n

, 0

)

i

(
B B N N

B N

B N

c x c x

Bx Nx b

x x

Primal Dual

(

max

 unrestric

)

d

)

te

(
B

N

B

B

x

b

B c

c xN

λ
λ
λ
λ

≤
≤

Note that the reduced cost of an individual variable xj is

Recall that reduced cost vector is 1
N Bc c B N−− Nc Nλ= −

λ

j j jr c Aλ= −

Column j of A

85

LSE tutorial, June 2007
Slide 169

� One way to filter the domain of xj is to minimize and maximize xj

subject to Ax ≥ b, x ≥ 0.

- This is time consuming.

� A faster method is to use dual multipliers to derive valid
inequalities.

- A special case of this method uses reduced costs to bound or
fix variables.

- Reduced-cost variable fixing is a widely used technique in OR.

LP-based Domain Filtering

min

0

cx

Ax b

x

≥
≥

Let be an LP relaxation of a CP problem.

LSE tutorial, June 2007
Slide 170

min

0

cx

Ax b

x

≥
≥

Suppose:

has optimal solution x*, optimal value v*, and
optimal dual solution λ*.

…and λi* > 0, which means the i-th constraint is tight
(complementary slackness);

…and the LP is a relaxation of a CP problem;

…and we have a feasible solution of the CP problem with value
U, so that U is an upper bound on the optimal value.

86

LSE tutorial, June 2007
Slide 171

min

0

cx

Ax b

x

≥
≥

Supposing has optimal solution x*, optimal value v*, and
optimal dual solution λ*:

If x were to change to a value other than x*, the LHS of i-th constraint
Aix ≥ bi would change by some amount ∆bi.

Since the constraint is tight, this would increase the optimal value
as much as changing the constraint to Aix ≥ bi + ∆bi.

So it would increase the optimal value at least λi*∆bi.

LSE tutorial, June 2007
Slide 172

We have found: a change in x that changes Aix by ∆bi increases
the optimal value of LP at least λi*∆bi.

Since optimal value of the LP ≤ optimal value of the CP ≤ U,
we have λi*∆bi ≤ U − v*, or *

*i
i

U v
b

λ
−∆ ≤

min

0

cx

Ax b

x

≥
≥

Supposing has optimal solution x*, optimal value v*, and
optimal dual solution λ*:

87

LSE tutorial, June 2007
Slide 173

Since ∆bi = Aix − Aix* = Aix − bi, this implies the inequality
*

*
i

i
i

U v
A x b

λ
−≤ +

…which can be propagated.

min

0

cx

Ax b

x

≥
≥

Supposing has optimal solution x*, optimal value v*, and
optimal dual solution λ*:

We have found: a change in x that changes Aix by ∆bi increases
the optimal value of LP at least λi*∆bi.

Since optimal value of the LP ≤ optimal value of the CP ≤ U,
we have λi*∆bi ≤ U − v*, or *

*i
i

U v
b

λ
−∆ ≤

LSE tutorial, June 2007
Slide 174

1 2

1 2

1 2

2

1

1

1

(2

min

)

4 7

2 3 6

2 4

, 0

(0)

x x

x x

x x

x x

λ
λ

=
+

+ =
+ ≥

≥
≥

Example

Suppose we have a feasible solution
of the original CP with value U = 13.

*
1

1 *
1

U v
A x b

λ
−≤ +

1 2

13 12
2 3 6 6.5

2
x x

−+ ≤ + =

Since the first constraint is tight, we can propagate
the inequality

or

88

LSE tutorial, June 2007
Slide 175

Reduced-cost domain filtering

Suppose xj* = 0, which means the constraint xj ≥ 0 is tight.

*

*
i

i
i

U v
A x b

λ
−≤ + becomes

*

j
j

U v
x

r
−≤The inequality

The dual multiplier for xj ≥ 0 is the reduced cost
rj of xj, because increasing xj (currently 0) by 1
increases optimal cost by rj.

Similar reasoning can bound a variable below when it is at its
upper bound.

LSE tutorial, June 2007
Slide 176

1 2

1 2

1 2

2

1

1

1

(2

min

)

4 7

2 3 6

2 4

, 0

(0)

x x

x x

x x

x x

λ
λ

=
+

+ =
+ ≥

≥
≥

Example

Suppose we have a feasible solution
of the original CP with value U = 13.

Since x2* = 0, we have

or

*

2
2

U v
x

r
−≤

2

13 12
0.5

2
x

−≤ =

If x2 is required to be integer, we can fix it to zero.
This is reduced-cost variable fixing.

89

LSE tutorial, June 2007
Slide 177

Example: Single-Vehicle Routing

A vehicle must make several stops and return home, perhaps subject
to time windows.

The objective is to find the order of stops that minimizes travel time.

This is also known as the traveling salesman problem (with time
windows).

Stop i

Stop j

Travel time cij

LSE tutorial, June 2007
Slide 178

Assignment Relaxation

{ }

min

1, all

0,1 , all ,

ij ij
ij

ij ji
j j

ij

c x

x x i

x i j

= =

∈

∑

∑ ∑

= 1 if stop i immediately precedes stop j

Stop i is preceded and
followed by exactly one stop.

90

LSE tutorial, June 2007
Slide 179

Assignment Relaxation

min

1, al

0 1, all ,

l

ij ij
ij

ij ji
j j

ij

c

x

i j

x i

x

x

= =

≤ ≤

∑

∑ ∑

= 1 if stop i immediately precedes stop j

Stop i is preceded and
followed by exactly one stop.

Because this problem is totally unimodular , it can be solved as an LP.

The relaxation provides a very weak lower bound on the optimal value.

But reduced-cost variable fixing can be very useful in a CP context.

LSE tutorial, June 2007
Slide 180

Disjunctions of linear systems often occur naturally in problems
and can be given a convex hull relaxation.

A disjunction of linear systems
represents a union of polyhedra. ()

min

k k

k

cx

A x b≥∨

Disjunctions of linear systems

91

LSE tutorial, June 2007
Slide 181

Disjunctions of linear systems often occur naturally in problems
and can be given a convex hull relaxation.

A disjunction of linear systems
represents a union of polyhedra.

We want a convex hull relaxation
(tightest linear relaxation).

()
min

k k

k

cx

A x b≥∨

Relaxing a disjunction of linear systems

LSE tutorial, June 2007
Slide 182

Relaxing a disjunction of linear systems

Disjunctions of linear systems often occur naturally in problems
and can be given a convex hull relaxation.

The closure of the convex hull of

()
min

k k

k

cx

A x b≥∨

min

, all

1

0 1

k k k
k

k
k

k

k

k

cx

A x b y k

y

x x

y

≥
=

=

≤ ≤

∑

∑

…is described by

92

LSE tutorial, June 2007
Slide 183

Why?

Convex hull relaxation
(tightest linear relaxation)

To derive convex hull
relaxation of a disjunction…

min

, all

1

0 1

k k k

k
k

k
k

k

k

cx

A x b k

y

x y x

y

≥
=

=

≤ ≤

∑

∑

Write each
solution as a
convex
combination
of points in
the
polyhedron

x
1x

2x

LSE tutorial, June 2007
Slide 184

Why?

Convex hull relaxation
(tightest linear relaxation)

min

, all

1

0 1

k k k
k

k
k

k

k

k

cx

A x b y k

y

x x

y

≥
=

=

≤ ≤

∑

∑

To derive convex hull
relaxation of a disjunction…

min

, all

1

0 1

k k k

k
k

k
k

k

k

cx

A x b k

y

x y x

y

≥
=

=

≤ ≤

∑

∑

Write each
solution as a
convex
combination
of points in
the
polyhedron

x
1x

2x

Change of
variable

k
kx y x=

93

LSE tutorial, June 2007
Slide 185

Mixed Integer/Linear Modeling

MILP Representability
Disjunctive Modeling
Knapsack Modeling

LSE tutorial, June 2007
Slide 186

Motivation

• We can relax a CP problem by modeling some constraints with an MILP.

• If desired, we can then relax the MILP by dropping the integrality constraint,
to obtain an LP.

• The LP relaxation can be strengthened with cutting planes .

• The first step is to learn how to write MILP models.

A mixed integer/linear programming
(MILP) problem has the form

min

, 0

 integer

cx dy

Ax by b

x y

y

+
+ ≥
≥

94

LSE tutorial, June 2007
Slide 187

MILP Representability

A subset S of is MILP representable if it is the projection onto x
of some MILP constraint set of the form

{ }

+ + ≥
≥

∈ ∈ ∈R R

, 0

, , 0,1n m
k

Ax Bu Dy b

x y

x u y

R
n

LSE tutorial, June 2007
Slide 188

MILP Representability

A subset S of is MILP representable if it is the projection onto x
of some MILP constraint set of the form

{ }

+ + ≥
≥

∈ ∈ ∈R R

, 0

, , 0,1n m
k

Ax Bu Dy b

x y

x u y

R
n

Theorem . S ⊂ is MILP
representable if and only if
S is the union of finitely
many polyhedra having the
same recession cone.

n
R

Polyhedron

Recession cone
of polyhedron

95

LSE tutorial, June 2007
Slide 189

Example: Fixed charge function

Minimize a fixed charge function:

x1

x2

2

1
2

1 1

1

min

0 if 0

if 0

0

x

x
x

f cx x

x

= ≥ + >

≥

LSE tutorial, June 2007
Slide 190

Example

Minimize a fixed charge function: 2

1
2

1 1

1

min

0 if 0

if 0

0

x

x
x

f cx x

x

= ≥ + >

≥

x1

x2

Feasible set

96

LSE tutorial, June 2007
Slide 191

Example

Minimize a fixed charge function: 2

1
2

1 1

1

min

0 if 0

if 0

0

x

x
x

f cx x

x

= ≥ + >

≥

x1

x2

Union of two
polyhedra
P1, P2

P1

LSE tutorial, June 2007
Slide 192

Example

Minimize a fixed charge function: 2

1
2

1 1

1

min

0 if 0

if 0

0

x

x
x

f cx x

x

= ≥ + >

≥

x1

x2

Union of two
polyhedra
P1, P2

P1

P2

97

LSE tutorial, June 2007
Slide 193

Example

Minimize a fixed charge function: 2

1
2

1 1

1

min

0 if 0

if 0

0

x

x
x

f cx x

x

= ≥ + >

≥

x1

x2

The
polyhedra
have
different
recession
cones.

P1

P1
recession

cone

P2

P2
recession

cone

LSE tutorial, June 2007
Slide 194

Example

Minimize a fixed charge function:

Add an upper bound on x1

2

1
2

1 1

1

min

0 if 0

if

0

 0

x

x
x

f cx x

x M

=

≤

≥ + >

≤

x1

x2

The
polyhedra
have the
same
recession
cone.

P1

P1
recession

cone

P2

P2
recession

coneM

98

LSE tutorial, June 2007
Slide 195

Modeling a union of polyhedra

Start with a disjunction of linear
systems to represent the union
of polyhedra.

The kth polyhedron is {x | Akx ≥ b}

()
min

k k

k

cx

A x b≥∨

Introduce a 0-1 variable yk that is
1 when x is in polyhedron k.

Disaggregate x to create an xk for
each k.

{ }

min

, all

1

0,1

k k k
k

k
k

k

k

k

cx

A x b y k

y

x x

y

≥
=

=

∈

∑

∑

LSE tutorial, June 2007
Slide 196

Example

Start with a disjunction of
linear systems to represent
the union of polyhedra

2

1 1

2 2 1

min

0 0

0

x

x x M

x x f cx

= ≤ ≤
∨ ≥ ≥ +

x1

x2

P1

P2

M

99

LSE tutorial, June 2007
Slide 197

Example

Start with a disjunction of
linear systems to represent
the union of polyhedra

2

1 1

2 2 1

min

0 0

0

x

x x M

x x f cx

= ≤ ≤
∨ ≥ ≥ +

{ }

1 1
1 2

2 2 2
1 2 1 2 2

1 2
1 2

min

0, 0

0 ,

1, 0,1k

cx

x x

x My cx x fy

y y y

x x x

= ≥
≤ ≤ − + ≥
+ = ∈
= +

Introduce a 0-1 variable yk

that is 1 when x is in
polyhedron k.

Disaggregate x to create an
xk for each k.

LSE tutorial, June 2007
Slide 198

Example

To simplify:

Replace x1
2 with x1.

Replace x2
2 with x2.

Replace y2 with y. { }

2
1 1
1 2

2 2 2
1 2 1 2 2

1 2
1 2

min

0, 0

0 ,

1, 0,1k

x

x x

x My cx x fy

y y y

x x x

= ≥
≤ ≤ − + ≥
+ = ∈
= +

This yields

{ }

2

1

2 1

min

0

0,1

x

x My

x fy cx

y

≤ ≤
≥ +

∈
{ }

min

0

0,1

fy cx

x My

y

+
≤ ≤
∈

or

“Big M ”

100

LSE tutorial, June 2007
Slide 199

Disjunctive Modeling

Disjunctions often occur naturally in problems and can be given
an MILP model.

Recall that a disjunction of linear
systems (representing polyhedra
with the same recession cone) ()

min

k k

k

cx

A x b≥∨

{ }

min

, all

1

0,1

k k k
k

k
k

k

k

k

cx

A x b y k

y

x x

y

≥
=

=

∈

∑

∑

…has the MILP model

LSE tutorial, June 2007
Slide 200

Example: Uncapacitated facility location

i j

fi cij

Fixed
cost Transport

cost

m possible
factory

locations n markets Locate factories to serve
markets so as to minimize
total fixed cost and
transport cost.

No limit on production
capacity of each factory.

101

LSE tutorial, June 2007
Slide 201

Uncapacitated facility location

i j

fi cij

Fixed
cost Transport

cost

n markets Disjunctive model:

min

0, all 0 1, all
, all

0

1, all

i ij ij
i ij

ij ij

i i i

ij
i

z c x

x j x j
i

z z f

x j

+

= ≤ ≤
∨ = ≥

=

∑ ∑

∑

No factory
at location i

Factory
at location i

Fraction of
market j’s demand
satisfied from
location im possible

factory
locations

LSE tutorial, June 2007
Slide 202

Uncapacitated facility location

MILP formulation: Disjunctive model:

min

0, all 0 1, all
, all

0

1, all

i ij ij
i ij

ij ij

i i i

ij
i

z c x

x j x j
i

z z f

x j

+

= ≤ ≤
∨ = ≥

=

∑ ∑

∑

No factory
at location i

Factory
at location i

{ }

min

0 , all ,

0,1

i i ij ij
i ij

ij i

i

f y c x

x y i j

y

+

≤ ≤
∈

∑ ∑

102

LSE tutorial, June 2007
Slide 203

Uncapacitated facility location

MILP formulation:

{ }

min

0 , all ,

0,1

i i ij ij
i ij

ij i

i

f y c x

x y i j

y

+

≤ ≤
∈

∑ ∑

Beginner’s model:

{ }

min

, all ,

0,1

i i ij ij
i ij

ij i
j

i

f y c x

x ny i j

y

+

≤

∈

∑ ∑

∑

Based on capacitated location model.

It has a weaker continuous relaxation
(obtained by replacing yi ∈ {0,1} with 0 ≤ yi ≤ 1).

This beginner’s mistake can be avoided by
starting with disjunctive formulation.

Maximum output
from location i

LSE tutorial, June 2007
Slide 204

Knapsack Modeling

• Knapsack models consist of knapsack covering and
knapsack packing constraints.

• The freight transfer model presented earlier is an example.

• We will consider a similar example that combines disjunctive
and knapsack modeling.

• Most OR professionals are unlikely to write a model as good
as the one presented here.

103

LSE tutorial, June 2007
Slide 205

Note on tightness of knapsack models

• The continuous relaxation of a knapsack model is not in general
a convex hull relaxation.

- A disjunctive formulation would provide a convex hull
relaxation, but there are exponentially many disjuncts.

• Knapsack cuts can significantly tighten the relaxation.

LSE tutorial, June 2007
Slide 206

{ }

min

; 1, all

1
0

0 , all

0
0 1, all

, 0,1

i
i

i i j ij
i j i

i

ii i

ij ij i
j

ij

ij

ij i

z

Q y a x j

y
yz c
z ia x Q
x

x j

x y

≥ =

=
 ==
 ∨ =≤

 = ≤ ≤

∈

∑

∑ ∑ ∑

∑

Example: Package transport

Each package j
has size aj

Each truck i has
capacity Qi and

costs ci to
operate

Disjunctive model Knapsack
constraints

Truck i used
Truck i not used

1 if truck i carries
package j 1 if truck i is used

104

LSE tutorial, June 2007
Slide 207

Example: Package transport

{ }

min

; 1, all

1
0

0 , all

0
0 1, all

, 0,1

i
i

i i j ij
i j i

i

ii i

ij ij i
j

ij

ij

ij i

z

Q y a x j

y
yz c
z ia x Q
x

x j

x y

≥ =

=
 ==
 ∨ =≤

 = ≤ ≤

∈

∑

∑ ∑ ∑

∑

Disjunctive modelMILP model

{ }

min

; 1, all

, all

, all ,

, 0,1

i i
i

i i j ij
i j i

j ij i i
j

ij i

ij i

c y

Q y a x j

a x Q y i

x y i j

x y

≥ =

≤

≤
∈

∑

∑ ∑ ∑

∑

LSE tutorial, June 2007
Slide 208

Example: Package transport

MILP model

{ }

min

; 1, all

, all

, all ,

, 0,1

i i
i

i i j ij
i j i

j ij i i
j

ij i

ij i

c y

Q y a x j

a x Q y i

x y i j

x y

≥ =

≤

≤
∈

∑

∑ ∑ ∑

∑ Modeling trick;
unobvious without
disjunctive approach

Most OR professionals
would omit this constraint,
since it is the sum over i
of the next constraint.
But it generates very
effective knapsack cuts.

105

LSE tutorial, June 2007
Slide 209

Cutting Planes

0-1 Knapsack Cuts
Gomory Cuts

Mixed Integer Rounding Cuts
Example: Product Configuration

LSE tutorial, June 2007
Slide 210

Cutting
plane

Feasible solutions

Continuous
relaxation

To review…

A cutting plane (cut, valid inequality) for
an MILP model:

• …is valid

- It is satisfied by all feasible solutions
of the model.

• …cuts off solutions of the continuous
relaxation.

- This makes the relaxation tighter.

106

LSE tutorial, June 2007
Slide 211

Motivation

• Cutting planes (cuts) tighten the continuous relaxation of an
MILP model.

• Knapsack cuts

- Generated for individual knapsack constraints.

- We saw general integer knapsack cuts earlier.

- 0-1 knapsack cuts and lifting techniques are well studied
and widely used.

• Rounding cuts

- Generated for the entire MILP, they are widely used.

- Gomory cuts for integer variables only.

- Mixed integer rounding cuts for any MILP.

LSE tutorial, June 2007
Slide 212

0-1 Knapsack Cuts

0-1 knapsack cuts are designed for knapsack constraints with 0-1
variables.

The analysis is different from that of general knapsack constraints,
to exploit the special structure of 0-1 inequalities.

107

LSE tutorial, June 2007
Slide 213

0-1 Knapsack Cuts

0-1 knapsack cuts are designed for knapsack constraints with 0-1
variables.

The analysis is different from that of general knapsack constraints,
to exploit the special structure of 0-1 inequalities.

Consider a 0-1 knapsack packing constraint ax ≤ a0. (Knapsack
covering constraints are similarly analyzed.)

Index set J is a cover if 0j
j J

a a
∈

>∑

The cover inequality is a 0-1 knapsack cut for
ax ≤ a0

1j
j J

x J
∈

≤ −∑

Only minimal covers need be considered.

LSE tutorial, June 2007
Slide 214

Example

Index set J is a cover if 0j
j J

a a
∈

>∑

The cover inequality is a 0-1 knapsack cut for
ax ≤ a0

1j
j J

x J
∈

≤ −∑

J = {1,2,3,4} is a cover for

1 2 3 4 5 66 5 5 5 8 3 17x x x x x x+ + + + + ≤

Only minimal covers need be considered.

This gives rise to the cover inequality

1 2 3 4 3x x x x+ + + ≤

108

LSE tutorial, June 2007
Slide 215

Sequential lifting

• A cover inequality can often be strengthened by lifting it into a
higher dimensional space.

• That is, by adding variables.

• Sequential lifting adds one variable at a time.

• Sequence-independent lifting adds several variables at once.

LSE tutorial, June 2007
Slide 216

Sequential lifting

To lift a cover inequality 1j
j J

x J
∈

≤ −∑

add a term to the left-hand side 1j k k
j J

x x Jπ
∈

+ ≤ −∑

where πk is the largest coefficient for which the inequality is still valid.

So,
{ } 00,1

for

1 max
j

k j j j kx
j J j J

j J

J x a x a aπ
∈

∈ ∈
∈

= − − ≤ −

∑ ∑

This can be done repeatedly (by dynamic programming).

109

LSE tutorial, June 2007
Slide 217

Example

To lift

add a term to the left-hand side

This yields

{ }
{ }5 1 2 3 4 1 2 3 40,1

for {1,2,3,4}

3 max 6 5 5 5 17 8
jx

j

x x x x x x x xπ
∈

∈

= − + + + + + + ≤ −

Further lifting leaves the cut unchanged.

But if the variables are added in the order x6, x5, the result is different:

1 2 3 4 3x x x x+ + + ≤

1 2 3 4 5 5 3x x x x xπ+ + + + ≤

Given 1 2 3 4 5 66 5 5 5 8 3 17x x x x x x+ + + + + ≤

where

1 2 3 4 52 3x x x x x+ + + + ≤

1 2 3 4 5 6 3x x x x x x+ + + + + ≤

LSE tutorial, June 2007
Slide 218

Sequence-independent lifting

• Sequence-independent lifting usually yields a weaker cut than
sequential lifting.

• But it adds all the variables at once and is much faster.

• Commonly used in commercial MILP solvers.

110

LSE tutorial, June 2007
Slide 219

Sequence-independent lifting

To lift a cover inequality 1j
j J

x J
∈

≤ −∑

add terms to the left-hand side () 1j j k
j J j J

x a x Jρ
∈ ∉

+ ≤ −∑ ∑

where

with

{ }
{ }

1if and 0, , 1

() () / if and 1, , 1

() / if

j j

j j j

p p

j A u A j p

u j u A A u A j p

p u A A u

ρ
+ ≤ ≤ − ∆ ∈ −

= + − ∆ − ∆ ≤ < − ∆ ∈ −
 + − ∆ − ∆ ≤

…

…

0j
j J

a a
∈

∆ = −∑

{ }1, ,J p= …

1

j

j k
k

A a
=

=∑

0 0A =

LSE tutorial, June 2007
Slide 220

Example

To lift

Add terms
1 2 3 4 3x x x x+ + + ≤

1 2 3 4 5 6(8) (3) 3x x x x x xρ ρ+ + + + + ≤

Given 1 2 3 4 5 66 5 5 5 8 3 17x x x x x x+ + + + + ≤

where ρ(u) is given by

This yields the lifted cut

1 2 3 4 5 6(5 / 4) (1/ 4) 3x x x x x x+ + + + + ≤

111

LSE tutorial, June 2007
Slide 221

Gomory Cuts

• When an integer programming
problem has a nonintegral solution,
we can generate at least one Gomory
cut to cut off that solution.

- This is a special case of a
separating cut , because it
separates the current solution of
the relaxation from the feasible
set.

• Gomory cuts are widely used and
very effective in MILP solvers.

Separating
cut

Feasible solutions

Solution of
continuous
relaxation

LSE tutorial, June 2007
Slide 222

min

0 and integral

cx

Ax b

x

=
≥

Gomory cuts

Given an integer programming
problem

Let (xB,0) be an optimal solution
of the continuous relaxation,
where

ˆ ˆ
B Nx b Nx= −

1 1ˆ ˆ, b B b N B N− −= =

Then if xi is nonintegral in this solution, the following Gomory cut is
violated by (xB,0): ˆ ˆ

i i N ix N x b + ≤

112

LSE tutorial, June 2007
Slide 223

1 2

1 2

1 2

1 2

min 2 3

3 3

4 3 6

, 0 and integral

x x

x x

x x

x x

+
+ ≥

+ ≥
≥

Example

1 2

1 2 3

1 2 4

min 2 3

3 3

4 3 6

0 and integralj

x x

x x x

x x x

x

+
+ − =

+ − =
≥

or Optimal solution of
the continuous
relaxation has

1/ 3 1/ 3ˆ
4 / 9 1/ 9

N
− = −

1ˆ
2 / 3

b
 =

1

2

1

2 / 3B

x
x

x
 = =

LSE tutorial, June 2007
Slide 224

1 2

1 2

1 2

1 2

min 2 3

3 3

4 3 6

, 0 and integral

x x

x x

x x

x x

+
+ ≥

+ ≥
≥

Example

1 2

1 2 3

1 2 4

min 2 3

3 3

4 3 6

0 and integralj

x x

x x x

x x x

x

+
+ − =

+ − =
≥

or Optimal solution of
the continuous
relaxation has

1/ 3 1/ 3ˆ
4 / 9 1/ 9

N
− = −

1ˆ
2 / 3

b
 =

ˆ ˆ
i i N ix N x b + ≤

1

2

1

2 / 3B

x
x

x
 = =

The Gomory cut

is [] 3
2

4

4 / 9 1/ 9 2 / 3
x

x
x

+ − ≤

or 2 3 0x x− ≤ In x1,x2 space this is 1 22 3x x+ ≥

113

LSE tutorial, June 2007
Slide 225

1 2

1 2

1 2

1 2

min 2 3

3 3

4 3 6

, 0 and integral

x x

x x

x x

x x

+
+ ≥

+ ≥
≥

Example

1 2

1 2 3

1 2 4

min 2 3

3 3

4 3 6

0 and integralj

x x

x x x

x x x

x

+
+ − =

+ − =
≥

or Optimal solution of
the continuous
relaxation has

1/ 3 1/ 3ˆ
4 / 9 1/ 9

N
− = −

1ˆ
2 / 3

b
 =

1

2

1

2 / 3B

x
x

x
 = =

Gomory cut x1 + 2x2 ≥ 3

Gomory cut after re-solving LP with
previous cut.

1ˆ
2 /3

b
 =

LSE tutorial, June 2007
Slide 226

Mixed Integer Rounding Cuts

• Mixed integer rounding (MIR) cuts can be generated for solutions
of any relaxed MILP in which one or more integer variables has a
fractional value.

− Like Gomory cuts, they are separating cuts.

− MIR cuts are widely used in commercial solvers.

114

LSE tutorial, June 2007
Slide 227

min

, 0 and integral

cx dy

Ax Dy b

x y y

+
+ =
≥

MIR cuts

Given an MILP problem
In an optimal solution of the
continuous relaxation, let

J = { j | yj is nonbasic}

K = { j | xj is nonbasic}

N = nonbasic cols of [A D]

Then if yi is nonintegral in this solution, the following MIR cut is
violated by the solution of the relaxation:

1 2

ˆfrac() 1ˆ ˆ ˆ ˆ ˆ
ˆ ˆfrac() frac()

ij
i ij j ij ij j ij i

j J j J j Ki i

N
y N y N N x N b

b b
+

∈ ∈ ∈

 + + + + ≥

∑ ∑ ∑

where { }1
ˆ ˆfrac() frac()ij jJ j J N b= ∈ ≥

2 1\J J J=

LSE tutorial, June 2007
Slide 228

Example

Take basic solution (x1,y1) = (8/3,17/3).

Then
1 2 1 2

1 2 1 2

3 4 6 4 1

2 3

, 0, integerj j j

x x y y

x x y y

x y y

+ − − =
+ − − =

≥

1/ 3 2 / 3ˆ
2 / 3 8 / 3

N
 = −

8 / 3ˆ
17 / 3

b
 =

J = {2}, K = {2}, J1 = ∅, J2 = {2}

The MIR cut is 1 2 2

1/3 1
1/3 (2 /3) 8 / 3

2 / 3 2 /3
y y x+ + + + ≥

or 1 2 2(1/ 2) 3y y x+ + ≥

115

LSE tutorial, June 2007
Slide 229

This example illustrates:

• Combination of propagation and relaxation.

• Processing of variable indices.

• Continuous relaxation of element constraint.

Example: Product Configuration

LSE tutorial, June 2007
Slide 230

Memory

Memory

Memory

Memory

Memory

Memory

Power
supply

Power
supply

Power
supply

Power
supply

Disk
drive

Disk
drive

Disk
drive

Disk
drive

Disk
drive

Choose what type of each component, and how many

Personal computer

The problem

116

LSE tutorial, June 2007
Slide 231

min

, all

, all

i

j j
j

j i ijt
ik

j j j

c v

v q A j

L v U j

=

≤ ≤

∑

∑

Amount of attribute j
produced

(< 0 if consumed):
memory, heat, power,

weight, etc.

Quantity of
component i

installed

Model of the problem

Amount of attribute j
produced by type ti

of component i

ti is a variable
index

Unit cost of producing
attribute j

LSE tutorial, June 2007
Slide 232

To solve it:

• Branch on domains of ti and qi.
• Propagate element constraints and bounds on vj.

– Variable index is converted to specially structured
element constraint.

– Valid knapsack cuts are derived and propagated.
• Use linear continuous relaxations .

– Special purpose MILP relaxation for element.

117

LSE tutorial, June 2007
Slide 233

min

, all

, all

i

j j
j

j i ijt
ik

j j j

c v

v q A j

L v U j

=

≤ ≤

∑

∑

Propagation

This is propagated
in the usual way

LSE tutorial, June 2007
Slide 234

This is rewritten as

Propagation

min

, all

, all

i

j j
j

j i ijt
ik

j j j

c v

v q A j

L v U j

=

≤ ≤

∑

∑
This is propagated
in the usual way

()1

, all

element ,(, , ,), , all ,

j i
i

i i ij i ijn i

v z j

t q A q A z i j

=∑

…

118

LSE tutorial, June 2007
Slide 235

This can be propagated by
(a) using specialized filters for element constraints of this form…

Propagation

()1

, all

element ,(, , ,), , all ,

j i
i

i i ij i ijn i

v z j

t q A q A z i j

=∑

…

LSE tutorial, June 2007
Slide 236

This is propagated by
(a) using specialized filters for element constraints of this form,
(b) adding knapsack cuts for the valid inequalities:

is current
domain of vj

Propagation

()1

, all

element ,(, , ,), , all ,

j i
i

i i ij i ijn i

v z j

t q A q A z i j

=∑

…

{ }
{ }

max , all

min , all

ti

ti

jijk i
k D

i

ijk i jk D
i

A q v j

A q v j

∈

∈

≥

≤

∑

∑

[,]j jv vand (c) propagating the knapsack cuts.

119

LSE tutorial, June 2007
Slide 237

This is relaxed as

jjj vvv ≤≤

min

, all

, all

i

j j
j

j i ijt
ik

j j j

c v

v q A j

L v U j

=

≤ ≤

∑

∑

Relaxation

LSE tutorial, June 2007
Slide 238

This is relaxed by relaxing this
and adding the knapsack cuts.

This is relaxed as

jjj vvv ≤≤

min

, all

, all

i

j j
j

j i ijt
ik

j j j

c v

v q A j

L v U j

=

≤ ≤

∑

∑

Relaxation

()1

, all

element ,(, , ,), , all ,

j i
i

i i ij i ijn i

v z j

t q A q A z i j

=∑

…

120

LSE tutorial, June 2007
Slide 239

This is relaxed by replacing each element constraint
with a disjunctive convex hull relaxation:

()1

, all

element ,(, , ,), , all ,

j i
i

i i ij i ijn i

v z j

t q A q A z i j

=∑

…

,
t ti i

i ijk ik i ik
k D k D

z A q q q
∈ ∈

= =∑ ∑

Relaxation

LSE tutorial, June 2007
Slide 240

So the following LP relaxation is solved at each node
of the search tree to obtain a lower bound:

{ }
{ }

min

, all

, all

, all

, all

knapsack cuts for max , all

knapsack cuts for min , all

0, all ,

ti

ti

ti

ti

j j
j

j ijk ik
i k D

j ik
k D

j j j

i i i

ijk i jk D
i

ijk i jk D
i

ik

c v

v A q j

q q i

v v v j

q q q i

A q v j

A q v j

q i k

∈

∈

∈

∈

=

=

≤ ≤
≤ ≤

≥

≤

≥

∑

∑ ∑

∑

∑

∑

Relaxation

121

LSE tutorial, June 2007
Slide 241

Computational Results

0.01

0.1

1

10

100

1000

8x10 16x20 20x24 20x30

Problem

S
e

co
nd

s CPLEX

CLP

Hybrid

LSE tutorial, June 2007
Slide 242

Lagrangean Relaxation

Lagrangean Duality
Properties of the Lagrangean Dual
Example: Fast Linear Programming

Domain Filtering
Example: Continuous Global Optimization

122

LSE tutorial, June 2007
Slide 243

Motivation

• Lagrangean relaxation can provide better bounds than LP
relaxation.

• The Lagrangean dual generalizes LP duality.

• It provides domain filtering analogous to that based on LP
duality.

- This is a key technique in continuous global optimization .

• Lagrangean relaxation gets rid of troublesome constraints by
dualizing them.

- That is, moving them into the objective function.

- The Lagrangean relaxation may decouple .

LSE tutorial, June 2007
Slide 244

Lagrangean Duality

Consider an
inequality-constrained
problem

min ()

() 0

f x

g x

x S

≥
∈

Hard constraints

Easy constraints

The object is to get rid of (dualize) the hard constraints
by moving them into the objective function.

123

LSE tutorial, June 2007
Slide 245

Lagrangean Duality

Consider an
inequality-constrained
problem

max

() ()
s S

v

g x b f x v
∈

≥ ⇒ ≥

min ()

() 0

f x

g x

x S

≥
∈ implies

Lagrangean Dual problem: Find the tightest lower bound
on the objective function that is implied by the constraints.

It is related to an
inference problem

LSE tutorial, June 2007
Slide 246

() 0 dominates () 0
() 0 () iff

for some 0

x S g x f x v
g x f x v

λ
λ

∈ ≥ − ≥
≥ ⇒ ≥

≥

max

() ()
s S

v

g x b f x v
∈

≥ ⇒ ≥

min ()

() 0

f x

g x

x S

≥
∈

Let us say that

Primal Dual

Surrogate

λg(x) ≤ f(x) − v for all x ∈ S

That is, v ≤ f(x) − λg(x) for all x ∈ S

124

LSE tutorial, June 2007
Slide 247

() 0 dominates () 0
() 0 () iff

for some 0

x S g x f x v
g x f x v

λ
λ

∈ ≥ − ≥
≥ ⇒ ≥

≥

max

() ()
s S

v

g x b f x v
∈

≥ ⇒ ≥

min ()

() 0

f x

g x

x S

≥
∈

Let us say that

Primal Dual

Surrogate

λg(x) ≤ f(x) − v for all x ∈ S

That is, v ≤ f(x) − λg(x) for all x ∈ S

Or { }min () ()
x S

v f x g xλ
∈

≤ −

LSE tutorial, June 2007
Slide 248

() 0 dominates () 0
() 0 () iff

for some 0

x S g x f x v
g x f x v

λ
λ

∈ ≥ − ≥
≥ ⇒ ≥

≥

λg(x) ≤ f(x) − v for all x ∈ S

That is, v ≤ f(x) − λg(x) for all x ∈ S

Or

max

() ()
s S

v

g x b f x v
∈

≥ ⇒ ≥

min ()

() 0

f x

g x

x S

≥
∈

Let us say that

Primal Dual

So the dual becomes

{ }
max

min () () for some 0
x S

v

v f x g xλ λ
∈

≤ − ≥

{ }min () ()
x S

v f x g xλ
∈

≤ −

Surrogate

125

LSE tutorial, June 2007
Slide 249

min ()

() 0

f x

g x

x S

≥
∈

Primal Dual

Now we have…

0
max ()

λ
θ λ

≥

or where

{ }() min () ()
x S

f x g xθ λ λ
∈

= −

{ }
max

min () () for some 0
x S

v

v f x g xλ λ
∈

≤ − ≥

Lagrangean
relaxation

Vector of
Lagrange
multipliers

The Lagrangean dual can be viewed as the problem
of finding the Lagrangean relaxation that gives the
tightest bound.

These constraints
are dualized

LSE tutorial, June 2007
Slide 250

Example

{ }

1 2

1 2

1 2

1 2

min 3 4

3 0

2 5 0

, 0,1,2,3

x x

x x

x x

x x

+
− + ≥

+ − ≥
∈

Optimal solution (2,1)

Strongest
surrogate

{ }

{ }
1 2 1 2 1 1 2 2 1 2{0, ,3}

1 2 1 1 2 2 2{0, ,3}

(,) min 3 4 (3) (2 5)

min (3 2) (4 3) 5
j

j

x

x

x x x x x x

x x

θ λ λ λ λ

λ λ λ λ λ
∈

∈

= + − − + − + −

= + − + − − +
…

…

The Lagrangean relaxation is

The Lagrangean relaxation is easy to solve
for any given λ1, λ2:

1 2
1

0 if 3 2 0

3 otherwise
x

λ λ+ − ≥=

1 2
2

0 if 4 3 0

3 otherwise
x

λ λ− − ≥=

126

LSE tutorial, June 2007
Slide 251

Example

{ }

1 2

1 2

1 2

1 2

min 3 4

3 0

2 5 0

, 0,1,2,3

x x

x x

x x

x x

+
− + ≥

+ − ≥
∈

θ(λ1,λ2) is piecewise linear and concave.

Optimal solution (2,1)
Value = 10

λ1

λ2

θ(λ)=0

θ(λ)=9 2/7

θ(λ)=5

θ(λ)=0

θ(λ)=7.5

Solution of Lagrangean dual:

(λ1,λ2) = (5/7, 13/7), θ(λ) = 9 2/7

Note duality gap between 10 and 9 2/7
(no strong duality).

LSE tutorial, June 2007
Slide 252

Example

{ }

1 2

1 2

1 2

1 2

min 3 4

3 0

2 5 0

, 0,1,2,3

x x

x x

x x

x x

+
− + ≥

+ − ≥
∈

Note: in this example, the Lagrangean dual
provides the same bound (9 2/7) as the
continuous relaxation of the IP.

This is because the Lagrangean relaxation
can be solved as an LP:

Lagrangean duality is useful when the
Lagrangean relaxation is tighter than an LP
but nonetheless easy to solve.

{ }

{ }
{0,1 2 1 2 1 1 2 2 2

1 2 1 1 2 2 2

,3}

0 3

(,) min (3 2) (4 3) 5

min (3 2) (4 3) 5
j

j

x

x

x x

x x

θ λ λ λ λ λ λ λ

λ λ λ λ λ
∈

≤ ≤

= + − + − − +

= + − + − − +
…

127

LSE tutorial, June 2007
Slide 253

Properties of the Lagrangean dual

Weak duality: For any feasible x* and any λ* ≥ 0, f(x*) ≥ θ(λ*).

In particular, min ()

() 0

f x

g x

x S

≥
≥

∈

0
max ()

λ
θ λ

≥

Concavity: θ(λ) is concave. It can therefore be maximized by
local search methods.

Complementary slackness : If x* and λ* are optimal, and there
is no duality gap, then λ*g(x*) = 0.

LSE tutorial, June 2007
Slide 254

Solving the Lagrangean dual

Let λk be the kth iterate, and let 1k k k
kλ λ α ξ+ = +

Subgradient of θ(λ) at λ = λk

If xk solves the Lagrangean relaxation for λ = λk, then ξk = g(xk).

This is because θ(λ) = f(xk) + λg(xk) at λ = λk.

The stepsize αk must be adjusted so that the sequence
converges but not before reaching a maximum.

128

LSE tutorial, June 2007
Slide 255

Example: Fast Linear Programming

• In CP contexts, it is best to process each node of the search tree
very rapidly.

• Lagrangean relaxation may allow very fast calculation of a lower
bound on the optimal value of the LP relaxation at each node.

• The idea is to solve the Lagrangean dual at the root node (which
is an LP) and use the same Lagrange multipliers to get an LP
bound at other nodes.

LSE tutorial, June 2007
Slide 256

At root node, solve min

()

0

cx

Ax b

Dx d

x

λ≥
≥

≥

The (partial) LP dual solution λ*
solves the Lagrangean dual in which

Dualize

{ }
0

() min ()
Dx d

x

cx Ax bθ λ λ
≥

≥

= − −

Special structure,
e.g. variable bounds

129

LSE tutorial, June 2007
Slide 257

At root node, solve min

()

0

cx

Ax b

Dx d

x

λ≥
≥

≥

The (partial) LP dual solution λ*
solves the Lagrangean dual in which

Dualize

{ }
0

() min ()
Dx d

x

cx Ax bθ λ λ
≥

≥

= − −

At another node, the LP is

min

()

0

cx

Ax b

Dx d

Hx h

x

λ≥
≥
≥

≥

Branching
constraints,
etc.

Here θ(λ*) is still a lower bound on the optimal
value of the LP and can be quickly calculated
by solving a specially structured LP.

Special structure,
e.g. variable bounds

LSE tutorial, June 2007
Slide 258

min ()

() 0

f x

g x

x S

≥
∈

Suppose:

has optimal solution x*, optimal value v*, and
optimal Lagrangean dual solution λ*.

…and λi* > 0, which means the i-th constraint is tight
(complementary slackness);

…and the problem is a relaxation of a CP problem;

…and we have a feasible solution of the CP problem with value
U, so that U is an upper bound on the optimal value.

Domain Filtering

130

LSE tutorial, June 2007
Slide 259

min ()

() 0

f x

g x

x S

≥
∈

Supposing has optimal solution x*, optimal value v*, and
optimal Lagrangean dual solution λ*:

If x were to change to a value other than x*, the LHS of i-th constraint
gi(x) ≥ 0 would change by some amount ∆i.

Since the constraint is tight, this would increase the optimal value
as much as changing the constraint to gi(x) − ∆i ≥ 0.

So it would increase the optimal value at least λi*∆i.

(It is easily shown that Lagrange multipliers are marginal costs. Dual
multipliers for LP are a special case of Lagrange multipliers.)

LSE tutorial, June 2007
Slide 260

We have found: a change in x that changes gi(x) by ∆i increases
the optimal value at least λi*∆i.

Since optimal value of this problem ≤ optimal value of the CP ≤ U,
we have λi*∆i ≤ U − v*, or *

*i
i

U v
λ
−∆ ≤

min ()

() 0

f x

g x

x S

≥
∈

Supposing has optimal solution x*, optimal value v*, and
optimal Lagrangean dual solution λ*:

131

LSE tutorial, June 2007
Slide 261

Since ∆i = gi(x) − gi(x*) = gi(x), this implies the inequality
*

*()i
i

U v
g x

λ
−≤

…which can be propagated.

We have found: a change in x that changes gi(x) by ∆i increases
the optimal value at least λi*∆i.

Since optimal value of this problem ≤ optimal value of the CP ≤ U,
we have λi*∆i ≤ U − v*, or *

*i
i

U v
λ
−∆ ≤

min ()

() 0

f x

g x

x S

≥
∈

Supposing has optimal solution x*, optimal value v*, and
optimal Lagrangean dual solution λ*:

LSE tutorial, June 2007
Slide 262

Example: Continuous Global Optimization

• Some of the best continuous global solvers (e.g., BARON)
combine OR-style relaxation with CP-style interval arithmetic and
domain filtering.

• The use of Lagrange multipliers for domain filtering is a key
technique in these solvers.

132

LSE tutorial, June 2007
Slide 263

Feasible set

Global optimum

Local optimum

x1

x2

Continuous Global Optimization

1 2

1 2

1 2

1 2

max

4 1

2 2

[0,1], [0,2]

x x

x x

x x

x x

+
=

+ ≤
∈ ∈

LSE tutorial, June 2007
Slide 264

To solve it:

• Search : split interval domains of x1, x2.
– Each node of search tree is a problem restriction.

• Propagation: Interval propagation, domain filtering.
– Use Lagrange multipliers to infer valid inequality for

propagation.
– Reduced-cost variable fixing is a special case.

• Relaxation: Use function factorization to obtain linear
continuous relaxation.

133

LSE tutorial, June 2007
Slide 265

Interval propagation

Propagate intervals
[0,1], [0,2]

through constraints
to obtain

[1/8,7/8], [1/4,7/4]

x1

x2

LSE tutorial, June 2007
Slide 266

Relaxation (function factorization)

Factor complex functions into elementary functions that have
known linear relaxations.

Write 4x1x2 = 1 as 4y = 1 where y = x1x2.

This factors 4x1x2 into linear function 4y and bilinear function x1x2.

Linear function 4y is its own linear relaxation.

134

LSE tutorial, June 2007
Slide 267

where domain of xj is [,]j jx x

Relaxation (function factorization)

Factor complex functions into elementary functions that have
known linear relaxations.

Write 4x1x2 = 1 as 4y = 1 where y = x1x2.

This factors 4x1x2 into linear function 4y and bilinear function x1x2.

Linear function 4y is its own linear relaxation.

Bilinear function y = x1x2 has relaxation:

2 1 1 2 1 2 2 1 1 2 1 2

2 1 1 2 1 2 2 1 1 2 1 2

x x x x x x y x x x x x x

x x x x x x y x x x x x x

+ − ≤ ≤ + −
+ − ≤ ≤ + −

LSE tutorial, June 2007
Slide 268

The linear relaxation becomes:

Relaxation (function factorization)

1 2

1 2

2 1 1 2 1 2 2 1 1 2 1 2

2 1 1 2 1 2 2 1 1 2 1 2

min

4 1

2 2

, 1,2j j j

x x

y

x x

x x x x x x y x x x x x x

x x x x x x y x x x x x x

x x x j

+
=
+ ≤
+ − ≤ ≤ + −
+ − ≤ ≤ + −

≤ ≤ =

135

LSE tutorial, June 2007
Slide 269

Solve linear relaxation.

x1

x2

Relaxation (function factorization)

LSE tutorial, June 2007
Slide 270

x1

x2

Since solution is infeasible,
split an interval and branch.

Solve linear relaxation.

Relaxation (function factorization)

2 [1,1.75]x ∈

2 [0.25,1]x ∈

136

LSE tutorial, June 2007
Slide 271

x1

x2

x1

x2

2 [1,1.75]x ∈ 2 [0.25,1]x ∈

LSE tutorial, June 2007
Slide 272

Solution of
relaxation is

feasible,
value = 1.25

This becomes
incumbent
solution

x1

x2

x1

x2

2 [1,1.75]x ∈ 2 [0.25,1]x ∈

137

LSE tutorial, June 2007
Slide 273

Solution of
relaxation is

feasible,
value = 1.25

This becomes
incumbent
solution

x1

x2

x1

x2
Solution of

relaxation is
not quite
feasible,

value = 1.854

Also use
Lagrange

multipliers for
domain

filtering…

2 [1,1.75]x ∈ 2 [0.25,1]x ∈

LSE tutorial, June 2007
Slide 274

1 2

1 2

2 1 1 2 1 2 2 1 1 2 1 2

2 1 1 2 1 2 2 1 1 2 1 2

min

4 1

2 2

, 1,2j j j

x x

y

x x

x x x x x x y x x x x x x

x x x x x x y x x x x x x

x x x j

+
=
+ ≤
+ − ≤ ≤ + −
+ − ≤ ≤ + −

≤ ≤ =

Associated Lagrange
multiplier in solution of
relaxation is λ2 = 1.1

Relaxation (function factorization)

138

LSE tutorial, June 2007
Slide 275

This yields a valid inequality for propagation:

Associated Lagrange
multiplier in solution of
relaxation is λ2 = 1.1

1 2

1.854 1.25
2 2 1.451

1.1
x x

−+ ≥ − =

Relaxation (function factorization)

Value of
relaxation Lagrange multiplier

Value of incumbent
solution

1 2

1 2

2 1 1 2 1 2 2 1 1 2 1 2

2 1 1 2 1 2 2 1 1 2 1 2

min

4 1

2 2

, 1,2j j j

x x

y

x x

x x x x x x y x x x x x x

x x x x x x y x x x x x x

x x x j

+
=
+ ≤
+ − ≤ ≤ + −
+ − ≤ ≤ + −

≤ ≤ =

LSE tutorial, June 2007
Slide 276

Dynamic Programming in CP

Example: Capital Budgeting
Domain Filtering

Recursive Optimization

139

LSE tutorial, June 2007
Slide 277

Motivation

• Dynamic programming (DP) is a highly versatile technique that
can exploit recursive structure in a problem.

• Domain filtering is straightforward for problems modeled as a
DP.

• DP is also important in designing filters for some global
constraints, such as the stretch constraint (employee scheduling).

• Nonserial DP is related to bucket elimination in CP and exploits
the structure of the primal graph.

• DP modeling is the art of keeping the state space small while
maintaining a Markovian property.

• We will examine only one simple example of serial DP.

LSE tutorial, June 2007
Slide 278

Example: Capital Budgeting

We wish to built power plants with a total cost of at most 12 million
Euros.

There are three types of plants, costing 4, 2 or 3 million Euros
each. We must build one or two of each type.

The problem has a simple knapsack packing model:

{ }
1 2 34 2 3 12

1,2j

x x x

x

+ + ≤
∈Number of

factories of type j

140

LSE tutorial, June 2007
Slide 279

Example: Capital Budgeting

{ }
1 2 34 2 3 12

1,2j

x x x

x

+ + ≤
∈

In general the recursion for ax ≤ b is

{ }1() max ()
k xk

k k k k k k
x D

f s f s a x+∈
= +

= 1 if there is
a path from
state sk to a

feasible
solution,

0 otherwise

State is sum
of first k terms

of ax

f4(14)=0
f4(11)=1

f3(8) = max{f4(8+3⋅1), f4(8+3⋅2)} = max{1,0} = 1

x3=2

x3=1

State sk

Stage k

LSE tutorial, June 2007
Slide 280

Example: Capital Budgeting

{ }
1 2 34 2 3 12

1,2j

x x x

x

+ + ≤
∈

In general the recursion for ax ≤ b is

{ }1() max ()
k xk

k k k k k k
x D

f s f s a x+∈
= +

1

0

0

0

0

0

0

0

0

1

1

1

1

1

1
Boundary condition:

1
1 1

1 if
()

0 otherwise
n

n n

s b
f s +

+ +

≤=

fk(sk) for each state sk

141

LSE tutorial, June 2007
Slide 281

Example: Capital Budgeting

{ }
1 2 34 2 3 12

1,2j

x x x

x

+ + ≤
∈

1

0

0

0

0

0

0

0

0

1

1

1

1

1

1

fk(sk) for each state sk

The problem is feasible.

Each path to 0 is a feasible
solution.

Path 1: x = (1,2,1)

Path 2: x = (1,1,2)

Path 3: x = (1,1,1)

Possible costs are 9,11,12.

LSE tutorial, June 2007
Slide 282

Domain Filtering

{ }
1 2 34 2 3 12

1,2j

x x x

x

+ + ≤
∈

x3=1

To filter domains: observe what
values of xk occur on feasible
paths.

x3=2

x3=1

{ }
3

1,2xD =

x2=2

x2=1
{ }

2
1,2xD =

x1=1

{ }
1

1xD =

142

LSE tutorial, June 2007
Slide 283

Recursive Optimization

{ }

1 2 3

1 2 3

max 15 10 12

4 2 3 12

1,2j

x x x

x x x

x

+ +
+ + ≤

∈

The recursion includes arc values:

{ }1() max ()
k xk

k k k k k k k k
x D

f s c x f s a x+∈
= + +

= value on max
value path from
sk to final stage

(value to go)

Arc value

f4(14)=−∞
f4(11)=0

f3(8) = max{12⋅1+f4(8+3⋅1), 12⋅2+f4(8+3⋅2)}
= max{12,−∞} = 12

12⋅2

11⋅1

Maximize
revenue

LSE tutorial, June 2007
Slide 284

Recursive optimization

24

−∞−∞−∞−∞

12

49

34

0

0

0

Boundary condition:

1
1 1

0 if
()

otherwise
n

n n

s b
f s +

+ +

≤= −∞
fk(sk) for each state sk

{ }

1 2 3

1 2 3

max 15 10 12

4 2 3 12

1,2j

x x x

x x x

x

+ +
+ + ≤

∈

The recursion includes arc values:

{ }1() max ()k k k k k k k kf s c x f s a x+= + +

−∞−∞−∞−∞

−∞−∞−∞−∞

−∞−∞−∞−∞

−∞−∞−∞−∞

−∞−∞−∞−∞

−∞−∞−∞−∞

−∞−∞−∞−∞

143

LSE tutorial, June 2007
Slide 285

{ }

1 2 3

1 2 3

max 15 10 12

4 2 3 12

1,2j

x x x

x x x

x

+ +
+ + ≤

∈

fk(sk) for each state sk

The maximum revenue is 49.

The optimal path is easy to
retrace.

(x1,x2,x3) = (1,1,2)

24

−∞−∞−∞−∞

12

49

34

0

0

0

−∞−∞−∞−∞

−∞−∞−∞−∞

−∞−∞−∞−∞

−∞−∞−∞−∞

−∞−∞−∞−∞

−∞−∞−∞−∞

−∞−∞−∞−∞

Recursive optimization

LSE tutorial, June 2007
Slide 286

CP-based Branch and Price

Basic Idea
Example: Airline Crew Scheduling

144

LSE tutorial, June 2007
Slide 287

Motivation

• Branch and price allows solution of integer programming
problems with a huge number of variables.

• The problem is solved by a branch-and-relax method. The
difference lies in how the LP relaxation is solved.

• Variables are added to the LP relaxation only as needed.

• Variables are priced to find which ones should be added.

• CP is useful for solving the pricing problem, particularly when
constraints are complex.

• CP-based branch and price has been successfully applied
to airline crew scheduling, transit scheduling, and other
transportation-related problems.

LSE tutorial, June 2007
Slide 288

Basic Idea

Suppose the LP relaxation of an integer
programming problem has a huge number of
variables:

min

0

cx

Ax b

x

=
≥

We will solve a restricted master problem ,
which has a small subset of the variables:

()

min

0

j j
j J

j j
j J

j

c x

A x b

x

λ
∈

∈
=

≥

∑

∑
Column j of A

Adding xk to the problem would improve the solution if xk has a
negative reduced cost: 0k k kr c Aλ= − <

145

LSE tutorial, June 2007
Slide 289

Adding xk to the problem would improve the solution if xk has a
negative reduced cost: 0k k kr c Aλ= − <

Basic Idea

Computing the reduced cost of xk is known as pricing xk.

min

 is a column of
yc y

y A

λ−

If the solution y* satisfies cy* − λy* < 0, then we can add column y to
the restricted master problem.

So we solve the pricing problem:

Cost of column y

LSE tutorial, June 2007
Slide 290

Basic Idea

max

 is a column of

y

y A

λ

need not be solved to optimality, so long as we find a column with
negative reduced cost.

However, when we can no longer find an improving column, we
solved the pricing problem to optimality to make sure we have the
optimal solution of the LP.

The pricing problem

If we can state constraints that the columns of A must satisfy,
CP may be a good way to solve the pricing problem.

146

LSE tutorial, June 2007
Slide 291

Example: Airline Crew Scheduling

Flight data

Start
time

Finish
time

A roster is the sequence of flights assigned to
a single crew member.

The gap between two consecutive flights in a
roster must be from 2 to 3 hours. Total flight
time for a roster must be between 6 and 10
hours.

For example,
flight 1 cannot immediately precede 6
flight 4 cannot immediately precede 5.

The possible rosters are:

(1,3,5), (1,4,6), (2,3,5), (2,4,6)

We want to assign crew members to flights to minimize
cost while covering the flights and observing complex
work rules.

LSE tutorial, June 2007
Slide 292

Airline Crew Scheduling

There are 2 crew members, and the possible rosters are:
1 2 3 4

(1,3,5), (1,4,6), (2,3,5), (2,4,6)

The LP relaxation of the problem is:

= 1 if we assign crew member 1
to roster 2, = 0 otherwise.

Cost of assigning crew member 1 to roster 2

Each crew member is assigned to
exactly 1 roster.

Each flight is assigned at least 1
crew member.

147

LSE tutorial, June 2007
Slide 293

Airline Crew Scheduling

There are 2 crew members, and the possible rosters are:
1 2 3 4

(1,3,5), (1,4,6), (2,3,5), (2,4,6)

The LP relaxation of the problem is:

= 1 if we assign crew member 1
to roster 2, = 0 otherwise.

Cost of assigning crew member 1 to roster 2

Each crew member is assigned to
exactly 1 roster.

Each flight is assigned at least 1
crew member.

Rosters that cover flight 1.

LSE tutorial, June 2007
Slide 294

Airline Crew Scheduling

There are 2 crew members, and the possible rosters are:
1 2 3 4

(1,3,5), (1,4,6), (2,3,5), (2,4,6)

The LP relaxation of the problem is:

= 1 if we assign crew member 1
to roster 2, = 0 otherwise.

Cost of assigning crew member 1 to roster 2

Each crew member is assigned to
exactly 1 roster.

Each flight is assigned at least 1
crew member.

Rosters that cover flight 2.

148

LSE tutorial, June 2007
Slide 295

Airline Crew Scheduling

There are 2 crew members, and the possible rosters are:
1 2 3 4

(1,3,5), (1,4,6), (2,3,5), (2,4,6)

The LP relaxation of the problem is:

= 1 if we assign crew member 1
to roster 2, = 0 otherwise.

Cost of assigning crew member 1 to roster 2

Each crew member is assigned to
exactly 1 roster.

Each flight is assigned at least 1
crew member.

Rosters that cover flight 3.

LSE tutorial, June 2007
Slide 296

Airline Crew Scheduling

There are 2 crew members, and the possible rosters are:
1 2 3 4

(1,3,5), (1,4,6), (2,3,5), (2,4,6)

The LP relaxation of the problem is:

= 1 if we assign crew member 1
to roster 2, = 0 otherwise.

Cost of assigning crew member 1 to roster 2

Each crew member is assigned to
exactly 1 roster.

Each flight is assigned at least 1
crew member.

Rosters that cover flight 4.

149

LSE tutorial, June 2007
Slide 297

Airline Crew Scheduling

There are 2 crew members, and the possible rosters are:
1 2 3 4

(1,3,5), (1,4,6), (2,3,5), (2,4,6)

The LP relaxation of the problem is:

= 1 if we assign crew member 1
to roster 2, = 0 otherwise.

Cost of assigning crew member 1 to roster 2

Each crew member is assigned to
exactly 1 roster.

Each flight is assigned at least 1
crew member.

Rosters that cover flight 5.

LSE tutorial, June 2007
Slide 298

Airline Crew Scheduling

There are 2 crew members, and the possible rosters are:
1 2 3 4

(1,3,5), (1,4,6), (2,3,5), (2,4,6)

The LP relaxation of the problem is:

= 1 if we assign crew member 1
to roster 2, = 0 otherwise.

Cost of assigning crew member 1 to roster 2

Each crew member is assigned to
exactly 1 roster.

Each flight is assigned at least 1
crew member.

Rosters that cover flight 6.

150

LSE tutorial, June 2007
Slide 299

Airline Crew Scheduling

There are 2 crew members, and the possible rosters are:
1 2 3 4

(1,3,5), (1,4,6), (2,3,5), (2,4,6)

The LP relaxation of the problem is:

= 1 if we assign crew member 1
to roster 2, = 0 otherwise.

Cost c12 of assigning crew member 1 to roster 2

Each crew member is assigned to
exactly 1 roster.

Each flight is assigned at least 1
crew member.

In a real problem, there can be millions of rosters.

LSE tutorial, June 2007
Slide 300

Airline Crew Scheduling

We start by solving the problem with a subset
of the columns:

Optimal
dual

solution

u1
u2
v1
v2
v3
v4
v5
v6

151

LSE tutorial, June 2007
Slide 301

Airline Crew Scheduling

We start by solving the problem with a subset
of the columns:

Dual
variables

u1
u2
v1
v2
v3
v4
v5
v6

LSE tutorial, June 2007
Slide 302

Airline Crew Scheduling

We start by solving the problem with a subset
of the columns:

The reduced cost of an
excluded roster k for
crew member i is

 in roster k
ik i j

j

c u v− − ∑

We will formulate the
pricing problem as a
shortest path problem.

Dual
variables

u1
u2
v1
v2
v3
v4
v5
v6

152

LSE tutorial, June 2007
Slide 303

Pricing problem

2

Crew
member 1

Crew
member 2

LSE tutorial, June 2007
Slide 304

Pricing problem
Each s-t path corresponds to a roster,
provided the flight time is within bounds.

2

Crew
member 1

Crew
member 2

153

LSE tutorial, June 2007
Slide 305

Pricing problem
Cost of flight 3 if it immediately follows
flight 1, offset by dual multiplier for flight 1

2

Crew
member 1

Crew
member 2

LSE tutorial, June 2007
Slide 306

Pricing problem
Cost of transferring from home to flight 1,
offset by dual multiplier for crew member 1

Dual multiplier
omitted to break
symmetry

2

Crew
member 1

Crew
member 2

154

LSE tutorial, June 2007
Slide 307

Pricing problem
Length of a path is reduced cost of the
corresponding roster.

2

Crew
member 1

Crew
member 2

LSE tutorial, June 2007
Slide 308

Crew
member 1

Crew
member 2

Pricing problem
Arc lengths using dual solution of LP
relaxation

−10
5 2

2

0

3

4

5 6
−1

0
5 2

2

-9

3

4

5 6
−1

2

155

LSE tutorial, June 2007
Slide 309

Crew
member 1

Crew
member 2

Pricing problem

Solution of shortest path problems

−10
5 2

2

0

3

4

5 6
−1

0
5 2

2

-9

3

4

5 6
−1

2

Reduced cost = −1
Add x12 to problem.

Reduced cost = −2
Add x23 to problem.

After x12 and x23 are added to the problem, no
remaining variable has negative reduced cost.

LSE tutorial, June 2007
Slide 310

Pricing problem

The shortest path problem cannot be solved by traditional shortest
path algorithms, due to the bounds on total path length.

It can be solved by CP:

()
{ }

min max

Path(, ,), all flights

flights , 0, all
i

i i

j j
j X

i i

X z G i

T f s T

X z i
∈

≤ − ≤

⊂ <

∑

Set of flights
assigned to crew
member i

Path
length Graph

Path global constraint

Setsum global constraint

Duration of flight j

156

LSE tutorial, June 2007
Slide 311

LSE tutorial, June 2007
Slide 312

CP-based Benders Decomposition

Benders Decomposition in the Abstract
Classical Benders Decomposition

Example: Machine Scheduling

157

LSE tutorial, June 2007
Slide 313

Motivation

• Benders decomposition allows us to apply CP and OR to
different parts of the problem.

• It searches over values of certain variables that, when fixed,
result in a much simpler subproblem .

• The search learns from past experience by accumulating
Benders cuts (a form of nogood).

• The technique can be generalized far beyond the original OR
conception.

• Generalized Benders methods have resulted in the greatest
speedups achieved by combining CP and OR.

LSE tutorial, June 2007
Slide 314

Benders Decomposition in the Abstract

Benders decomposition
can be applied to
problems of the form

min (,)

(,)

,x y

f x y

S x y

x D y D∈ ∈

When x is fixed to some
value, the resulting
subproblem is much
easier:

min (,)

(,)

y

f x y

S x y

y D∈

…perhaps
because it
decouples into
smaller problems.

For example, suppose x assigns jobs to machines, and y schedules
the jobs on the machines.

When x is fixed, the problem decouples into a separate scheduling
subproblem for each machine.

158

LSE tutorial, June 2007
Slide 315

Benders Decomposition

We will search over assignments to x. This is the master problem .

In iteration k we assume x = xk

and solve the subproblem

min (,)

(,)

k

k

y

f x y

S x y

y D∈

and get optimal
value vk

We generate a Benders cut (a type of nogood) 1()kv B x+≥

The Benders cut says that if we set x = xk again, the resulting cost v
will be at least vk. To do better than vk, we must try something else.

It also says that any other x will result in a cost of at least Bk+1(x),
perhaps due to some similarity between x and xk.

that satisfies Bk+1(xk) = vk. Cost in the original problem

LSE tutorial, June 2007
Slide 316

Benders Decomposition

We will search over assignments to x. This is the master problem .

In iteration k we assume x = xk

and solve the subproblem

min (,)

(,)

k

k

y

f x y

S x y

y D∈

and get optimal
value vk

We generate a Benders cut (a type of nogood) 1()kv B x+≥

that satisfies Bk+1(x) = vk. Cost in the original problem

We add the Benders cut to the master problem, which becomes

min

(), 1, , 1i

x

v

v B x i k

x D

≥ = +
∈

…
Benders cuts
generated so far

159

LSE tutorial, June 2007
Slide 317

Benders Decomposition

We now solve the
master problem

min

(), 1, , 1i

x

v

v B x i k

x D

≥ = +
∈

…
to get the next
trial value xk+1.

The master problem is a relaxation of the original problem, and its
optimal value is a lower bound on the optimal value of the original
problem.

The subproblem is a restriction, and its optimal value is an upper
bound .

The process continues until the bounds meet.

The Benders cuts partially define the projection of the feasible set
onto x. We hope not too many cuts are needed to find the optimum.

LSE tutorial, June 2007
Slide 318

Classical Benders Decomposition

The classical method
applies to problems
of the form

min ()

()

, 0x

f x cy

g x Ay b

x D y

+
+ ≥

∈ ≥

and the subproblem
is an LP

()

min ()

()

0

k

k

f x cy

Ay b g x

y

λ
+

≥ −
≥

()max () ()

0

k kf x b g x

A c

λ

λ
λ

+ −

≤
≥

whose dual is

Let λk solve the dual.

By strong duality, Bk+1(x) = f(x) + λk(b − g(x)) is the tightest lower
bound on the optimal value v of the original problem when x = xk.

Even for other values of x, λλλλk remains feasible in the dual . So by
weak duality, Bk+1(x) remains a lower bound on v.

160

LSE tutorial, June 2007
Slide 319

Classical Benders

min

(), 1, , 1i

x

v

v B x i k

x D

≥ = +
∈

…

So the master problem becomes

min

() (()), 1, , 1i

x

v

v f x b g x i k

x D

λ≥ + − = +
∈

…

In most applications the master problem is

• an MILP

• a nonlinear programming problem (NLP), or

• a mixed integer/nonlinear programming problem (MINLP).

LSE tutorial, June 2007
Slide 320

Example: Machine Scheduling

• Assign 5 jobs to 2 machines (A and B), and schedule the
machines assigned to each machine within time windows.

• The objective is to minimize makespan .

• Assign the jobs in the master
problem , to be solved by MILP.

• Schedule the jobs in the
subproblem , to be solved by CP.

Time lapse between
start of first job and
end of last job.

161

LSE tutorial, June 2007
Slide 321

Machine Scheduling

Job Data Once jobs are assigned, we can
minimize overall makespan by
minimizing makespan on each
machine individually.

So the subproblem decouples.

Machine A

Machine B

LSE tutorial, June 2007
Slide 322

Machine Scheduling

Job Data Once jobs are assigned, we can
minimize overall makespan by
minimizing makespan on each
machine individually.

So the subproblem decouples.

Minimum makespan
schedule for jobs 1, 2, 3, 5

on machine A

162

LSE tutorial, June 2007
Slide 323

Machine Scheduling

()

min

, all

, all

disjunctive (),() , all

j

j

j x j

j j j x j

j j ij j

M

M s p j

r s d p j

s x i p x i i

≥ +

≤ ≤ −

= =

Start time of job j

Time windows
Jobs cannot overlap

The problem is

LSE tutorial, June 2007
Slide 324

Machine Scheduling

()

min

, all

, all

disjunctive (),() , all

j

j

j x j

j j j x j

j j ij j

M

M s p j

r s d p j

s x i p x i i

≥ +

≤ ≤ −

= =

Start time of job j

Time windows
Jobs cannot overlap

The problem is

For a fixed assignment the subproblem on each machine i is

()

min

, all with

, all with

disjunctive (),()

j

j

j x j j

j j j x j j

j j ij j

M

M s p j x i

r s d p j x i

s x i p x i

≥ + =

≤ ≤ − =

= =

x

163

LSE tutorial, June 2007
Slide 325

Benders cuts

Suppose we assign jobs 1,2,3,5 to machine A in iteration k.

We can prove that 10 is the optimal makespan by proving that the
schedule is infeasible with makespan 9.

Edge finding derives infeasibility by reasoning only with jobs 2,3,5.
So these jobs alone create a minimum makespan of 10.

So we have a Benders cut
2 3 4

1

10 if
()

0 otherwisek

x x x A
v B x+

= = =≥ =

LSE tutorial, June 2007
Slide 326

Benders cuts

We want the master problem to be an MILP, which is good for
assignment problems.

So we write the Benders cut
2 3 4

1

10 if
()

0 otherwisek

x x x A
v B x+

= = =≥ =

Using 0-1 variables: ()2 3 510 2

0
A A Av x x x

v

≥ + + −
≥ = 1 if job 5 is

assigned to
machine A

164

LSE tutorial, June 2007
Slide 327

Master problem

The master problem is an MILP:

{ }

5

1

5

1

5 5

1 3

2 3 5

4

min

10, etc.

10, etc.

, 2 , etc., ,

v 10(2)

8

0,1

Aj Aj
j

Bj Bj
j

ij ij ij ij
j j

A A A

B

ij

v

p x

p x

v p x v p x i A B

x x x

v x

x

=

=

= =

≤

≤

≥ ≥ + =

≥ + + −
≥
∈

∑

∑

∑ ∑

Constraints derived from time windows

Constraints derived from release times

Benders cut from machine A

Benders cut from machine B

LSE tutorial, June 2007
Slide 328

Stronger Benders cuts

If all release times are the same, we can strengthen the Benders cuts.

We are now using the cut
1

ik

ik ij ik
j J

v M x J
∈

≥ − +

∑

Min makespan
on machine i
in iteration k

Set of jobs
assigned to
machine i in
iteration k

A stronger cut provides a useful bound even if only some of the jobs in
Jik are assigned to machine i: (1)

ik

ik ij ij
j J

v M x p
∈

≥ − −∑

These results can be generalized to cumulative scheduling.

165

LSE tutorial, June 2007
Slide 329

