An Integrated Method for Planning and
Scheduling to Minimize Tardiness

J. N. Hooker

Carnegie Mellon University
john@hooker.tepper.cmu.edu

Abstract. We combine mixed integer linear programming (MILP) and
constraint programming (CP) to minimize tardiness in planning and
scheduling. Tasks are allocated to facilities using MILP and scheduled
using CP, and the two are linked via logic-based Benders decomposi-
tion. We consider two objectives: minimizing the number of late tasks,
and minimizing total tardiness. Our main theoretical contribution is a
relaxation of the cumulative scheduling subproblem, which is critical to
performance. We obtain substantial computational speedups relative to
the state of the art in both MILP and CP. We also obtain much better
solutions for problems that cannot be solved to optimality.

We address a planning and scheduling problem that occurs frequently in
manufacturing and supply chain contexts. Tasks must be assigned to facilities
and scheduled on each facility subject to release dates and due dates. Tasks
assigned to a given facility may run in parallel if desired, subject to a resource
constraint (cumulative scheduling). We consider two objectives: minimizing the
number of late tasks, and minimizing total tardiness.

The problem can be formulated entirely as a constraint programming (CP)
problem or a mixed integer/linear programming (MILP) problem. However,
these models are hard to solve. By linking CP and MILP in an integrated method,
we obtain significant speedups relative to the state of the art in both MILP and
CP. The linkage is achieved by logic-based Benders decomposition. The facility
assignment problem becomes the master problem and is solved by MILP, while
the scheduling problem becomes the subproblem (slave problem) and is solved
by CP.

The primary theoretical contribution of this paper is a linear relaxation of
the cumulative scheduling subproblem. We find that including such a relaxation
in the master problem is essential to the success of the Benders method.

We solve problem instances in which tasks have the same release date and
different due dates, although the method is valid for different release dates as
well. The method also accommodates precedence constraints between tasks that
are constrained to run on the same facility.

We obtain substantial speedups on nearly all instances relative to MILP (as
represented by CPLEX), which in turn is generally faster than CP (as rep-
resented by the ILOG Scheduler). On larger instances, the integrated method

generally achieves speedups of two or three orders of magnitude when minimizing
the number of late tasks, and it solves significantly more problems to optimality.
There is a lesser but still significant speedup when minimizing total tardiness,
and even when the hybrid method cannot obtain provably optimal solutions, it
obtains much better solutions than provided by MILP in the same time period.

1 Previous Work

Classical Benders decomposition [1,6] solves a problem by enumerating values
of certain primary variables. For each set of values enumerated, it solves the
subproblem that results from fixing the primary variables to these values. (In
this paper, the primary variables define the allocation of tasks to facilities.)
Solution of the subproblem generates a nogood or Benders cut that the primary
variables must satisfy in all subsequent solutions enumerated. The Benders cut
is a linear inequality based on Lagrange multipliers obtained from a solution of a
subproblem dual. The next set of values of the primary variables is obtained by
solving the master problem, which contains all the Benders cuts so far generated.
The process continues until the master problem and the subproblem converge in
value.

The classical Benders approach is inappropriate for the planning and schedul-
ing problem, however, because it requires that the subproblem be a continuous
linear or nonlinear programming problem. Scheduling is a highly combinatorial
problem that has no practical linear or nonlinear programming model. Fortu-
nately, the idea of Benders decomposition can be extended to a logic-based form
that accommodates an arbitrary subproblem, such as a discrete scheduling prob-
lem.

Logic-based Benders decomposition was introduced in [13] for purposes of
logic circuit verification. The idea was later formally developed in [8] and ap-
plied to 0-1 programming in [12]. In logic-based Benders, the Benders cuts are
obtained by solving an “inference dual” of the subproblem, of which the lin-
ear programming dual is a special case. Although logic-based Benders cuts may
take any form, in the present context they must be linear inequalities, since the
master problem is an MILP.

The application of logic-based Benders to planning and scheduling was pro-
posed in [8]. Jain and Grossmann [15] successfully applied such a method to
minimum-cost planning and scheduling problems in which the subproblems are
disjunctive scheduling problems, where tasks must run one at a time, rather than
cumulative scheduling problems. The Benders cuts are particularly simple in this
case because the subproblem is a feasibility problem rather than an optimization
problem. These results are extended to multistage problems in [7].

The results of [15] can be improved upon using a “branch-and-check” method,
proposed in [8] and applied by [17] to the instances solved in [15]. Branch and
check solves the master problem only once, updating the solution each time
a Benders cut is generated. We did not implement branch and check for this

study because it would require hand coding of a branch-and-cut algorithm for
the master problem.

It is less obvious how to define Benders cuts when the subproblem is an
optimization problem. We showed in [9] how to derive effective Benders cuts
for at least one such case, minimum makespan problems. The cuts are valid for
cumulative as well as disjunctive scheduling, provided all tasks have the same
release date. Computational tests showed the hybrid method to be 100 to 1000
times faster than MILP or CP when all tasks have the same deadline.

Logic-based Benders methods have also been adapted to solving integer pro-
gramming problems [12,3] and the propositional satisfiability problem [8,12].
Similar ideas have been applied to minimal dispatching of automated guided
vehicles [4], steel production scheduling [7], real-time scheduling of computer
processors [2], traffic diversion [20], batch scheduling in a chemical plant [16],
and polypropylene batch scheduling in particular [18]. In all these applications
(except integer programming), the subproblem is a feasibility problem. Classical
Benders decomposition can also be useful in a CP context, as shown in [5].

In this paper we address minimum tardiness problems, in which the subprob-
lem is an optimization problem. We obtain effective cuts by repeatedly solving
the subproblem with slightly different task assignments. The idea is related to
finding “minimal conflict sets” of tasks, or small sets of tasks that create infea-
sibility when assigned to a particular facility. Cambazard et al. [2] applied such
an approach to real-time scheduling of computing resources. Here we develop
cuts for an optimization rather than a feasibility subproblem. A shorter version
of this paper appeared in [11].

As observed in [9, 17], the success of hybrid methods in planning and schedul-
ing relies on including a relaxation of the scheduling subproblem in the master
problem. We find that deriving a useful relaxation requires deeper analysis when
minimizing total tardiness than when minimizing cost or makespan. A relaxation
of the cumulative scheduling problem is presented in [14], but it is expressed in
terms of the start time variables, rather than the assignment variables as required
for the Benders master problem. We derive here a very different relaxation in
terms of 0-1 assignment variables, which is suitable for the MILP master prob-
lem.

2 The Problem

The planning and scheduling problem may be defined as follows. Each task
je{l,...,n} is to be assigned to a facility i € {1,...m}, where it consumes
processing time p;; and resources at the rate c;;. Each task j has release time r;
and due date d;. The tasks assigned to facility ¢ must be given start times s; in
such a way that the total rate of resource consumption on facility ¢ is never more
than C; at any given time. If x; is the facility assigned to task j, the problem

may be written

minimize g(z,s)

subject to r; < s;, allj (a) 1)
> iy <G, alli,t ()
J€Jit(x)

where z;, s; are the variables and Ji(z) = {j | x; =14, s; <t < s; + p;;} is the
set of tasks underway at time ¢ in facility :.

Precedence constraints may be imposed on tasks that are assigned to the
same machine. Thus one may require that tasks j and k£ be scheduled on the
same facility, and that task j precede k, by writing the constraints ; = =3 and
Sj +pxjj < Sg.

We investigate two objective functions:

— number of late tasks, given by g(x,s) = 32, (sj + ps,j — d;), where 6(a) is
1if & > 0 and 0 otherwise.

— total tardiness, given by g(z,s) = >°;(sj + pa,j — d;)*, where at is a if
a > 0 and 0 otherwise.

3 Constraint Programming Formulation

The problem can be formulated using the cumulative constraint as follows:

minimize g(z, s)
subject to r; <sj, all j (2)

cumulative((s;|z; = 1), (pijlz; =1), (cijlz; = 1), Cy), all 4

where (s;|x; = i) denotes the tuple of start times for tasks assigned to facility 1.
When minimizing the number of late tasks, g(z,s) = >_; L; where L; is binary,
and the constraint (s; +ps;; > d;) = (L; = 1) is added for each j. When mini-
mizing total tardiness, g(z, s) = Zj Tj, and the constraints T > s; + pg,; — d;
and T > 0 are added for each j.

For purposes of computational testing we formulated (2) using the modeling
language of OPL Studio. The essential part of the OPL model appears in Fig. 1.
We used the assignAlternatives and setTimes search options specify a branching
method that results in substantially better performance than the default method.

4 Mixed Integer Programming Formulation

The most straightforward MILP formulation discretizes time and enforces the
resource capacity constraint at each discrete time. Let the 0-1 variable x;;; = 1
if task j starts at discrete time ¢ on facility i. The formulation for minimizing

[declarations]

scheduleHorizon = TimeHorizon;
DiscreteResource facility[i in IJ(C[il);
AlternativeResources facilitySet(facility);
Activity scheduleTask[j in J];

minimize
sum(j in J) late[j]
subject to {
forall(j in J)
scheduleTask[j] requires(taskf[i,j].r) facilitySet;
forall(j in J)
forall(i in I)
activityHasSelectedResource (scheduleTask[j],facilitySet,facility[i]) <=>
scheduleTask[j].duration = taskf[i,j].p;
forall(j in J) {
scheduleTask[j].start >= task[j].r;
scheduleTask[j].end > task[jl.d => latel[jl=1 ;

b

b

search {
assignAlternatives;
setTimes;

b

Fig.1. OPL Studio code for the CP version of a minimum cost problem. Parame-
ters r;,d;, and p;; are represented by task[j].r, task[j].d, and taskf[i,j].p. The
resource limit C; is C[i]. Index set Jis {1,...n}, and I is {1,...,m}.

the number of late tasks is
min Z L;
J
subject to NL; > Z(t%—pij)xijt —dj, allj,t (a)
Zﬂiz‘jt =1, allj (b) (3)
it
Z Z cijxijy < Cy, all it (c)
J

t' €T ¢
Tijt = 0, all 7.t with ¢t < T4 Or t>N — Dij (d)

where each z;;; and each L; is a 0-1 variable. Also N is the number of discrete
times (starting with ¢ = 0), and T;5; = {t/ | t — p;; < t’ < t} is the set of discrete
times at which a task j in progress on facility ¢ at time ¢ might start processing.
Constraint (b) ensures that each task starts once on one facility, (¢) enforces
the resource limit, and (d) the time windows. The minimum tardiness problem
replaces the objective function with . T; and constraint (a) with

T; > Z(t +pij)rije —dj, T; >0, all j,t

We also investigated a smaller discrete event model suggested by [19], which uses
continuous time. However, it proved much harder to solve than (3).

5 Hybrid Method for Minimizing Late Tasks

The Benders approach formulates a master problem that assigns tasks to facilities
and a subproblem that schedules the tasks assigned to each facility. We write the
master problem using an MILP model that minimizes the number of late tasks.
In iteration h of the Benders algorithm, the master problem is

minimize L

subject to inj =1, ally (a)
i (4)

Benders cuts generated in iterations 1,...,h —1 (b)

relaxation of subproblem (¢)

Here the binary variable x;; is 1 when task j is assigned to facility i. The Benders
cuts and relaxation will be described shortly.

Once an assignment T;; of tasks to facilities is determined by solving the
master problem, a cumulative scheduling subproblem is solved by CP. The sub-
problem decouples into a separate scheduling problem on each facility i:

minimize Z L;
J€Ini

subject to (s; +pi; > d;) = (L; =1), all j € Jp; (5)
r; <sj, all j € Jp
cumulative((s;|j € Jni), (ijld € Jni), (cijlg € Jni))

where Jp; is the set of tasks for which Z,; = 1 (i.e., the tasks assigned to facility
i in the master problem solution). If L}, is the optimal value of (5), then >, L},
is the minimum number of late tasks across all facilities.

At this point we know that whenever the tasks in Jp; (perhaps among others)
are assigned to facility 4, the number of late tasks on facility ¢ is at least Lj,.
This allows us to write a valid lower bound L, on the number of late tasks in
facility ¢ for any assignment of tasks to machines. Since x;; = 0 when task j is
not assigned to facility 4, we have

Ly; > Ly; — Ly, Z (1 — i), all i
J€Jni (6)
Ly; >0, alli

By summing over all facilities, we have a lower bound on the total number L of

late tasks:
L> ZLM (7)

Let Jp; = Jni.

For all j € Jn;:
Compute L;(J5; \ {j}) by re-solving the subproblem on facility 1.
It Li(']]?i \ {7}) = L}, then let Jhi = Jhs \ {7}

Let Ji, = Jp,.

For all j € J2;:
Compute L;(J}; \ {j}) by re-solving the subproblem on facility 1.
If Li(‘]l}n’ \{7}) = Lj; — 1 then let Jni = Jis \ {7}

Fig. 2. Algorithm for generating Benders cuts when minimizing the number of late
tasks.

The inequality (7), together with (6), provides a Benders cut for iteration h. The
cut says that the number of late tasks will be at least the number obtained in
the subproblem unless a different assignment of tasks to facilities is used.

In iteration h, the Benders cuts (b) in the master problem (4) consist of
inequalities (6)—(7) obtained in iterations 1, ..., h—1. Let vy be the optimal value
of the subproblem in iteration k. The algorithm terminates when the optimal
value of the master problem equals mingeqi,.. p—1}3{vx}. At any point in the
algorithm, a feasible solution of the subproblem is a feasible solution of the
original problem, and the optimal value of the master problem is a lower bound
on the optimal value of the original problem.

Unfortunately the Benders cuts (6)—(7) are weak and do not perform well in
practice. The cuts can be strengthened by identifying, for each facility ¢, a smaller
set Jp; of tasks that result in the same number of late tasks. One way to do this
is to track which tasks actually play a role in the determining the minimum
number of late tasks, as suggested in [10]. However, since this information is
not available from commercial CP solvers, the information must be obtained
indirectly by repeatedly solving subproblems with different assignments of tasks
to facilities.

The following approach was found to yield effective cuts with a modest
amount of computation. Let L;(J) be the minimum number of late tasks on
facility ¢ when the tasks in J are assigned to facility . First identify a set
J,?i C Jp; of tasks that, when assigned to facility 7, result in a minimum of Lj,
late tasks; that is, a set Jp; such that L;(J§;) = Lj,. This is done via the simple
greedy algorithm in Fig. 2. Then identify a set J}. C J?, of tasks such that
L;(J}) = L}, — 1, again using the algorithm of Fig. 2. The inequalities (6) can
now be replaced by the generally stronger inequalities

L}M‘ > L;;l - L?u Z (1 - {Eij), all 4
Jex,
Ly > Ly —1—Ly; > (L—ay), alli (8)
jed},

Ly; 20, alli

Table 1. Data for a planning and scheduling problem instance with 4 tasks and 2
facilities. The release times r; are all zero, and each facility ¢ has capacity C; = 3.

Facility 1 Facility 2
Jodj Pp1j C15 P1jcij P2j €25 P2jC2j
1 2 2 3 6 4 3 12
2 3 4 2 8 5 2 10
3 4 5 1 5 6 1 6
4 5 6 3 18 5 3 15

These cuts remain valid for any set of additional constraints that may be added
to the subproblems. The cut generation requires modest computation time but
significantly reduce the number of iterations. One could define J7,, J3,, ... and
generate cuts for them in similar fashion, but they require greater computation
time in exchange for a smaller reduction in iterations.

As an example, consider the problem of Table 1, which involves 4 tasks and
2 facilities. Suppose that at some iteration / in the Benders algorithm, tasks 1-3
are assigned to facility 1 and task 4 to facility 2. The optimal schedule for facility
1 is shown in Fig. 3, while the optimal schedule for facility 2 simply schedules
task 4 at time 0. The minimum number of late jobs on facility 1 is L}, = 2. The
execution of the algorithm of Fig. 2 appears in Table 2. Since J?, = {2, 3} and
J!, =0, the Benders cuts (8) for facility 1 are

th Z 2 — 2(1 — {E12) — 2(1 — {E13)
Ly, >1
Ly, >0

The cut for facility 2 is simply Lj, > 0.

6 Relaxation for Minimizing Late Tasks

It is straightforward to relax the subproblem when minimizing the number of late
tasks. (It will be harder when minimizing total tardiness.) A task j assigned to
facility ¢ consumes energy c;;p;;, and its running time is a least the task interval
¢i;jpij/Ci. Let J(t1,t2) be the set of tasks whose time windows are contained in
[t1,t2]. Thus J(t1,t2) = {j | [r;,d;] C [t1,t2]}. When executed on facility ¢, the
running time of these tasks is at least the task interval

1
M=~ > cipi (9)

b jeT(t1,ta)

Table 2. Calculation of JJ; and J}, in the example of Table 1. Here L}, = 2.

Calculation of JY,, which is initially {1,2, 3}:
J LI(J£1 \ {j}) New T

1 2 12,3}
2 1 {2,3}
3 1 {2,3}

Calculation of J}};, which is initially {2,3}:
J Ll(th \ {j}) New Ji1

2 1 31
3 1

If M >ty —t; then at least one task is late, and in fact the number of late tasks
on facility ¢ is at least

M — (ta —t1) (10)
max i 7
jeJ(tl,tz){p J}

rounded up to the nearest integer.

Returning to the example of Table 1, suppose that tasks 1-3 are assigned
to facility 1. We need only consider the tasks in J(0,d;) for j = 1,2,3. For
J(0,dy) = J(0,2) = {1}, we have M = (1/3)c11p11 = 2. The lower bound (10) is
(2—2)/2=0. For J(0,ds) = {1,2}, the bound is 3, and for J(0,ds) = {1,2, 3}
it is . Thus at least [{%] = 1 task is late (in fact, 2 are late in the optimal
solution).

More generally, define 71, ..., 7y, to be the distinct values among the release

times 71, ..., 7, in increasing order, and similarly for di, ..., d,,. Then from (9)
and (10) we have the following relaxation:

LzZLi

1 < _
c Z CitPitTie = (de —75) (1)
L; > —=lmd) L i=1,...n, k=1,...,ng alli
max_ {pie}
EGJ(F]‘,d]‘)
Li Z O, all ¢

which becomes (c) in the master problem (4).

N

Fig. 3. Schedule for tasks 1-3 on facility 1 that minimizes the number of late jobs (2)
and minimizes total tardiness (6).

In the example, the relaxation (11) is

L>Li+ Lo

1 2 3 2 8 1 4
Ly >2z11—1, Lt 2 e+ 5212 — %, L1 2 2211 + 5212 + 5213 — 5,
1 4 5 1 5
Ly > 3211 + 5212 + 15213 + 3214 — §
Lo>xo1— 2, Lo> 20114+ 2009 — 2, Ly > 2201 + 2x90 + 2293 — 2
2 = 421 2 2 = 5411 3422 59 2 = 3421 gr22 3423 3
2 5 1 5 5
Ly > 5221 + ga2 + 5%23 + 524 — ¢

Ly,Ly >0

The solution of the initial master problem (4) assigns tasks 1, 3 and 4 to facility
1 and task 2 to facility 2.

7 Hybrid Method for Minimizing Total Tardiness

In iteration h of the Benders method, the master problem for minimizing total
tardiness is

minimize T
subject to inj =1,ally (a)
i (12)

Benders cuts for iterations 1,...,h —1 (b)
relaxation of subproblem (¢)

The subproblem again decouples into a cumulative scheduling problem for each
facility ¢:
minimize Z T}
Jj€Ji
subject to Tj > Sj + Pij — dj, aH] e J; (13)
T < S5, aH] e J;
cumulative((sj |] S Jl), (p”|j S Jl), (C”|] S Jl))

We found the following scheme to generate effective Benders cuts. As before
let Jp; be a set of tasks assigned to facility 4 in iteration h, and let T}, be the
resulting minimum tardiness on facility i. Let T;(J) be the minimum tardiness
on facility ¢ that results when the tasks in J are assigned to facility ¢, so that

T;(Jni) = Tj;. Let Zp; be the set of tasks in Jp; that can be removed, one at a
time, without reducing the minimum tardiness. That is,

Zni ={3 € Jni | Ti(Jni \ {5}) = Tpi }

Finally, let 7T); be the minimum tardiness that results from removing the tasks
in Zp; all at once, so that T3, = T;(Jp; \ Zp;). Thus any or all tasks in Zp; can
be removed from facility ¢ without reducing the minimum tardiness below T};.
This yields the following Benders cuts in iteration h:

T>10 Ty > (1—x), alli
JE€EJIi\Zhi

T>Ty - Ty Y (1—wi), alli
JE€JIhi

(14)

The second cut is redundant and can be eliminated for a given h, i when T}, = T},.
This in fact substantially reduces the size of master problem, since computational
testing suggests that T}, = T}, very often. These cuts are again valid for any set
of additional constraints that may be added to the subproblem.

Suppose in the example of Table 1 that tasks 1-3 are again assigned to facility
1 and task 4 to facility 2 in iteration h. Figure 3 shows the minimum tardiness
solution on facility 1, which has total tardiness 7}, = 6. Since the removal of
any one task from facility 1 reduces the minimum tardiness, Z,; = () and the
cuts (14) are both

T Z 6 — 6(1 - xll) - 6(1 - {E12) - 6(1 - {E13)
The cut for facility 2 is 7" > 0.

8 Relaxation for Minimizing Total Tardiness

Our relaxation of the minimum tardiness scheduling subproblem has two parts.
The first and simpler part is similar to the relaxation obtained for minimizing
the number of late tasks. It is based on the following lemma. Recall that J(¢1,t2)
is the set of jobs with time windows between t; and t5.

Lemma 1. Consider a minimum total tardiness problem in which tasks j =
1,...,n with time windows [rj,d;] are scheduled on a single facility i, where
min;{r;} = 0. The total tardiness incurred by any feasible solution is bounded

below by
+

Z DijCij —
JGJ(O dy)
foreachk=1,...,n
Proof. For any k, the last scheduled task in the set J(0,dy) can finish no
earlier than time ¢t = Ci ZjeJ(O,dk)pijCij' Since the last task has due date no

later than dg, its tardiness is no less than (¢ — dj)*. Thus total tardiness is no
less than (t — dj)™

In the example of Table 1, if tasks 1-3 are assigned to facility 1, the bounds
of Lemma 1 are
for J(0,dy) = {1} : (3(6) —) =0
for J(0,ds) = {1,2} : (%(64—8)—3) =1
for J(0,d3) = {1,2,3}: (1(6+8+5)—4)"

Since the data are integral, the minimum tardiness is at least [2%] =3 (itis 6
in the optimal schedule).
Lemma 1 gives rise to a relaxation consisting of

Tzsz

F> S pijeiai — di, allik (15)
JGJ(O dr)
TF >0, alli

and T > 0. In the example, the relaxation (15) becomes
T>TLE+Tf
TE > 221 —2, TE > 2291 + %3312 -3, TE > 291 + %3312 + %3313 —4,
TE > 2211 + %3312 + %3313 +2714—9
TE > 4xgy — 2, Lo > dx11 + %3322 -3, Tf > 401 + 13—03322 + 293 — 4,
Ly > 4xg) + oy + 2w93 + 5194 — 5
TE, TF >0

(16)

The second part of the relaxation can be developed on basis of the following
lemma. For each facility ¢ let 7; be a permutation of {1,...,n} that orders the
tasks by increasing energy on facility 4; that is, pir,(1)Cim;(1) <+ < D) Crri(n)-
One can obtain a lower bound on the tardiness incurred by the job with the kth
latest deadline by supposing that it finishes no sooner than the task interval of
the k£ jobs with the smallest energies. More precisely:

Lemma 2. Consider a minimum tardiness problem in which tasks 1, ..., n with
time windows [r;,d;] are scheduled on a single facility i. Assume min;{r;} =0
and index the tasks so that dy < --- < d,. Then the total tardiness T of any
feasible solution is bounded below by T =%, _, T}, where

+

k
1
T, = Eme(j)Cm(j)—dk , k=1,...,n
’LJ:1

Proof. Consider any feasible solution of the one-facility minimum tardiness
problem, in which tasks 1,...,n are respectively scheduled at times t1,...,t,.
The minimum tardiness is

n

"= Z(tk + pir — di)* (17)
k=1
Let 09(1),...,00(n) be the order in which tasks are scheduled in this solution,
so that ty, (1) < -+ < tgy(n). For an arbitrary permutation o of {1,...,n} let
1< !
Ti(0) = | & Do Pimi)Cim() — doth) (18)
K3 J:1

and (o) = 325y Ty (0)-
We show first that T* > T'(0g). Since og is a permutation we can write (17)
as

S

T* = (tootk) + Pioo(k) — doo(t))

We observe that

Jr
n k
1
Z Z . Zp”r)(j)cﬂ'o(j) - ddo(k) = T(o0)

where the first inequality is based on the energy required by tasks, and the
second inequality is due to the definition of ;.

Now suppose a bubble sort is performed on the integers o(1),...,00(n) so
as to put them in increasing order, and let oy, ...,op be the resulting series of
permutations. Thus (cp(1),...,0p(n)) = (1,...,n), and 0,41 is obtained from

op by swapping two adjacent terms o, (k) and o,(k+1), where o, (k) > o, (k+1).
This means o, and op41 are the same except that opy1(k) = op(k + 1) and
opt1(k+1) = o,(k). Since T* > T'(0p) and T'(op) = T, to prove the theorem it
suffices to show T(o¢) > --- > T(op).

Thus we consider any two adjacent permutations oy, 0,41 and show that
T(op) > I(0pt1). We observe that

k—1 n
T(op) =) Ti(op) + Ly(op) + Lyyrop) + Z T;(op)
j=1 j=k+2
k—1 n (19)
T(opt1) Z (0p) + T (ops1) + Tiya(0p1) + Z I (op)
Jj=1 j=k+2

Using (18), we note that T, (0,) = (a — B)", T}, (0p) = (A= b)", T)(ops1) =
(a—b)", and T} 1 (0pt1) = (A— B)T if we set

1 k+1
=G memcmuw A== mem Cirm, (5)

b= dop<k+1>, = do, (k)

Note that a < A. Also, b < B since o,(k) > op(k+ 1) and di < --- < d,,. From
(19) we have

L(op) = L(opr1) = (a—=B)" + (A=) —(a—b)" —(A-B)"

It is straightforward to check that this quantity is always nonnegative when
a < A and b < B. The theorem follows.

In the example, suppose again that tasks 1-3 are assigned to facility 1. The
permutation 7y is (71 (1), m1(2), 71(3)) = (3, 1, 2). The lower bound T of Lemma 2
isTy + Ty +T5, where

W= Wik Wl

(5)-2)" =0
(5+6)—3)+*§
(5+6+8)—4)" =21

1=
2:(
(3

The bound is T = 3, which in this case is slightly stronger than the bound of 2%
obtained from Lemma, 1.
The bound of Lemma 2 can be written in terms of the variables x;x:

n
/
E Tk
k=1

19133

where
k

1
Zék 2 a Zpim(j)cmi(j)xmi(j) —di, k=1,...,n
j=1

and 1%, > 0. We linearize the bound by writing it as

N (20)

k=1

where

k
1
Ty > c, me(j)cm(j)xm(j) —dy— (1 —a)Uik, k=1,...,n (21)

Jj=1

and T;; > 0. The big-M term Ujy, is given by

k
1
Uik = . Zp’iﬂ'i(j)ciﬂ'i(j) = dy,
K3 j:1

Note that although Uj, can be negative, the right-hand side of (21) is never
positive when z;;, = 0. Finally, to obtain a relaxation of the subproblem, we sum
(20) over all facilities and write

T> i i T (22)

The relaxation (c) of the master problem now consists of (15), (22), and (21)
for « = 1,...,m. The relaxation is valid only when tasks are indexed so that
dy < - <d,. In the example, the relaxation consists of (16) and the following:

T2T)+T o+ T3+ Ty +T5+ T3
Ty, > 3wy — 2+ 3(1—z11)
> 2x11 4 2212 — 3 — 2(1 — 212)
Ti5 > 3211+ 2212+ 3213 — 4 — 3(1 — 213)
> %3311 + 2112 + %3313 +6x14 —5— %(1 — Z14)
221 > 2x91 — 2
Tyy > 2291 + 13—03312 -3 - %(1 — T22)
Tyg > 291 + F12 + 4213 — 4 — 22(1 — 223)
Tyy > 2x01 + 13—03312 + 4x13 + 5724 — 5 — 23—8(1 — Ta4)
Iy, >0

The solution of the initial master problem assigns tasks 1-3 to facility 1 and task
4 to facility 2.

9 Problem Generation

Random instances were generated as follows. We set the number of facilities at
3, and the number of tasks at n = 10,12,...,24. The capacity limit was set to
C; = 10 for each facility i. For each task j, c¢;; was assigned the same random
value for all facilities ¢ and drawn from a uniform distribution on [1,10]. The
processing time p;; was drawn from a uniform distribution on [2, 20], [2, 25] and
[2,30] for facilities i = 1,2, 3, respectively. For 22 or more tasks we used the
intervals [5,20], [5,25] and [5, 30] since otherwise the minimum tardiness tends

to be zero in the larger problems. The release dates were set to zero and the due
date drawn from a uniform distribution on [8n/4, fn]. We used 8 = 20/9, partly
since this was consistent with parameter settings used in earlier research, and
partly because it leads to reasonable results (a few late tasks in most instances,
and no late tasks in a few instances). No precedence constraints were used, which
tends to make the scheduling portion of the problem more difficult.

10 Computational Results

We solved randomly generated problems with MILP (using CPLEX), CP (using
the ILOG Scheduler), and the logic-based Benders method. All three methods
were implemented with OPL Studio, using the OPL script language.

Table 3 shows computational results for minimizing the number of late tasks
on three facilities using CP, MILP and the hybrid method. Since problem dif-
ficulty tends to increase with the minimum number of late tasks, the instances
are ordered accordingly for each problem size. The problem instance identifier k
appears in the last column. The instances are named ddnj3mk, where n is the
number of tasks and % the instance identifier. The instances are available at the
web site web.tepper.cmu.edu/jnh/planning.htm.

On all but two problem instances the hybrid method is faster than MILP,
which in turn is generally faster than CP. The advantage of the hybrid method
becomes greater as the instances grow in size. The speedup is generally two
or three orders of magnitude for instances with 16 or more tasks. The average
speedup factor relative to MILP is 295 for these instances. This is almost cer-
tainly a substantial underestimate for the instances averaged, since the MILP
solver was cut off after two hours. (The average omits instances in which the
hybrid method was also cut off.) In addition MILP failed to solve 10 instances,
while the hybrid method failed to solve only one instance.

Table 4 shows computational results for minimizing total tardiness. Again
the hybrid method is almost always faster than MILP, which is faster than CP.
The advantage of the hybrid approach is not as great as in the previous table,
but the speedup factor is still significant on instances with 16 or more tasks. The
average speedup factor on these instances is 25, which is again an underestimate
for these instances. (The average omits instances for which the hybrid method
was also cut off.)

The hybrid method failed to solve 6 of the 40 instances to optimality, only a
modest improvement over the 10 that were intractable for MILP. However, when
the hybrid method failed to find provably optimal solutions, it obtained much
better feasible solutions than obtained by MILP in the same two-hour period. In
most cases these solutions were found very early in the solution process. Table 4
also shows the lower bounds obtained from the master problem, which in these
instances are not very tight.

Table 5 illustrates the importance of relaxations in the hybrid approach,
particularly when minimizing total tardiness. Lemmas 1 and 2 are clearly critical

Table 3. Computational results for minimizing the number of late tasks on three
facilities. Computation is terminated after two hours (7200 seconds). The test instances
are ddNjMmK, where N is the number of tasks, M the number of facilities, and K
the instance number shown in the last column.

Tasks Time (sec) Hybrid/ |Best solution
CP MILP Hybrid MILP |value found! |Instance
speedup |MILP Hybrid

10 0.09 0.48 0.05 9.6 1 1 1

2.5 0.51 0.17 3.0 1 1 2

0.28 0.46 0.27 1.7 2 2 5

0.15 0.41 0.93 0.4 3 3 4

1.7 3.9 3.0 1.3 3 3 3

12 0.01 0.73 0.07 10 0 0 1

0.01 0.70 0.22 3.2 0 0 5

0.02 0.64 0.06 11 1 1 3

3.2 1.4 0.18 7.8 1 1 4

1.6 1.7 0.34 5.0 1 1 2

14 1092 5.8 0.52 11 1 1 3

382 8.0 0.69 12 1 1 2

265 3.2 0.69 4.6 2 2 1

85 2.6 1.3 2.0 2 2 5

5228 1315 665 2.0 3 3 4

16 304 2.7 0.51 5.3 0 0 2

72 31 0.24 129 1 1 4

310 22 0.41 54 1 1 5

4925 29 2.7 11 2 2 3

19 5.7 24 0.2 4 4 1

18 |>7200 2.0 0.11 18 0 0 5

72 8.0 0.21 38 1 1 4

>7200 867 8.5 102 1 1 2

>7200 6.3 1.4 4.5 2 2 3

>7200 577 3.4 170 2 2 1

20 97 0.37 262 0 0 1

>7200 2.3 [>3130 1 1 5

219 5.0 44 1 1 2

>7200 11 >655 2 2 3

843 166 5.1 3 3 4

22 16 1.3 12 0 0 4

>7200 3.7 |>1946 1 1 1

>7200 49 >147 (3) 2 5

>7200 3453 >21 | (5) 2 3

>7200 >7200 (6) (6) 2

24 25 0.8 31 0 0 3

>7200 18 >400 1 o 5

>7200 62 >116 (2) o 4

>7200 124 >58 (3) 1 1

>7200 234 >31 (2) 1 2

LValues in parentheses are not proved optimal.
2Computation terminates with a segmentation fault.

Table 4. Computational results for minimum tardiness problems on three facilities.
Computation is terminated after two hours (7200 seconds). The test instances are
ddNjMmK | where N is the number of tasks, M the number of facilities, and K the
instance number shown in the last column.

Tasks Time (sec) Hybrid/| Best solution |Benders
CP MILP Hybrid MILP | value found® lower [Instance
speedup|MILP Benders| bound?

10 13 4.7 2.6 1.8 10 10 2

1.1 6.4 1.6 4.0 10 10 1

1.4 6.4 1.6 4.0 16 16 4

4.6 32 4.1 7.8 17 17 5

8.1 33 22 1.5 24 24 3

12 4.7 0.7 0.2 3.5 0 0 5

14 0.6 0.1 6.0 0 0 1

25 0.7 0.2 3.5 1 1 3

19 15 2.4 6.3 9 9 4

317 25 12 2.1 15 15 2

14 838 7.0 6.1 1.2 1 1 2

7159 34 3.7 9.2 2 2 3

1783 45 19 2.4 15 15 5

> 7200 73 40 1.8 19 19 1

> 7200 > 7200 3296 >2.2 | (26) 26 4

16 > 7200 19 1.4 14 0 0 2

> 7200 46 2.1 22 0 0 5

> 7200 52 4.2 12 4 4 4

> 7200 1105 156 7.1 20 20 3

> 7200 3424 765 4.5 31 31 1

18 187 2.8 67 0 0 5

15 5.3 2.8 3 3 4

46 49 0.9 5 5 3

256 47 5.5 11 11 1

> 7200 1203 >6.0 | (14) 11 2

20 105 18 5.8 0 0 1

4141 23 180 1 1 5

39 29 1.3 4 4 2

1442 332 4.3 8 8 3

> 7200 > 7200 (75) (37) 9 4

22 6.3 19 0.3 0 0 4

584 37 16 2 2 1

> 7200 > 7200 (120) (40) 7 3

> 7200 > 7200 (162) (46) 11 5

> 7200 > 7200 (375) (141)3 34 2

24 10 324 0.03 0 0 3

> 7200 94 >77 (20) 0 5

> 7200 110 >65 (57) 0 4

> 7200 > 7200 (20) (5) 3 2

> 7200 > 7200 (25) (7) 1 1

LValues in parentheses are not proved optimal.
2When omitted, the lower bound is equal to the optimal value shown in the previous column.
3Best known solution is 128, obtained using a slightly weaker relaxation.

Table 5. Effect of relaxations on performance of the hybrid method. Computation
time in seconds is shown.

Minimizing late tasks:|Minimizing tardiness:
Tasks with without with without |Instance
relaxation relaxation|relaxation relaxation
16 0.5 2.6 1.4 4.4 2
0.4 1.5 2.1 6.5 5
0.2 1.3 4.2 30 4
2.7 4.2 156 199 3
24 18 765 763 1
18 0.1 1.1 2.8 10 5
0.2 0.7 5.3 17 4
3.4 3.3 47 120 1
1.4 15 49 354 3
8.5 11 1203 5102 2
20 0.4 88 18 151 1
2.3 9.7 23 1898 5
5.0 63 29 55 2
11 19 332 764 3
166 226 >7200 >7200 4

to the success of the hybrid method, especially when there are more than 16 tasks
or SO.

11 Conclusions

We find that integrating CP and MILP through a Benders scheme can substan-
tially improve on the state of the art in planning and scheduling to minimize
tardiness. The hybrid method is often two or three orders of magnitude faster
than CP or MILP when minimizing the number of late tasks, and it solves signif-
icantly more problems. It is significantly faster when minimizing total tardiness,
and when it fails to solve the problem to optimality, it nonetheless finds a much
better feasible solution in the same time period.

The problems become hard for all the methods examined when there are
more than a few late tasks in the optimal solution. However, in such cases it
is probably best to relax some of the time windows so as to reflect scheduling
priorities, perhaps by postponing due dates for less critical tasks. This makes
the problem easier to solve and yields a more meaningful compromise solution
in practice.

References

1. J. F. Benders. Partitioning procedures for solving mixed-variables programming
problems. Numerische Mathematik, 4:238-252, 1962.

2. H. Cambazard, P.-E. Hladik, A.-M. Déplanche, N. Jussien, and Y. Trinquet. De-
composition and learning for a hard real time task allocation problem. In M. Wal-
lace, editor, Principles and Practice of Constraint Programming (CP2004), volume
3258 of Lecture Notes in Computer Science, pages 153-167. Springer, 2004.

10.

11.

12.

13.

14.

15.

16.

17.

Y. Chu and Q. Xia. Generating benders cuts for a class of integer program-
ming problems. In J. C. Régin and M. Rueher, editors, Integration of AI and
OR Techniques in Constraint Programming for Combinatorial Optimization Prob-
lems (CPAIOR 2004), volume 3011 of Lecture Notes in Computer Science, pages
127-141. Springer, 2004.

A. 1. Corréa, A. Langevin, and L. M. Rousseau. Dispatching and conflict-free
routing of automated guided vehicles: A hybrid approach combining constraint
programming and mixed integer programming. In J. C. Régin and M. Rueher, ed-
itors, Integration of AI and OR Techniques in Constraint Programming for Com-
binatorial Optimization Problems (CPAIOR 2004), volume 3011 of Lecture Notes
in Computer Science, pages 370-378. Springer, 2004.

A. Eremin and M. Wallace. Hybrid Benders decomposition algorithm in constraint
logic programming. In T. Walsh, editor, Principles and Practice of Constraint
Programming (CP2001), volume 2239 of Lecture Notes in Computer Science, pages
1-15. Springer, 2001.

A. M. Geoffrion. Generalized benders decomposition. Journal of Optimization
Theory and Applications, 10:237-260, 1972.

I. Harjunkoski and I. E. Grossmann. A decomposition approach for the scheduling
of a steel plant production. Computers and Chemical Engineering, 25:1647-1660,
2001.

J. N. Hooker. Logic-Based Methods for Optimization: Combining Optimization and
Constraint Satisfaction. Wiley, New York, 2000.

J. N. Hooker. A hybrid method for planning and scheduling. In M. Wallace,
editor, Principles and Practice of Constraint Programming (CP2004), volume 3258
of Lecture Notes in Computer Science, pages 305-316. Springer, 2004.

J. N. Hooker. A hybrid method for planning and scheduling. Constraints, 10:385—
401, 2005.

J. N. Hooker. Planning and scheduling to minimize tardiness. In Principles and
Practice of Constraint Programming (CP2005), Lecture Notes in Computer Sci-
ence. Springer, 2005.

J. N. Hooker and G. Ottosson. Logic-based Benders decomposition. Mathematical
Programming, 96:33-60, 2003.

J. N. Hooker and H. Yan. Logic circuit verification by benders decomposition. In
V. Saraswat and P. Van Hentenryck, editors, Principles and Practice of Constraint
Programming: The Newport Papers, pages 267288, Cambridge, MA, 1995. MIT
Press.

J. N. Hooker and H. Yan. A relaxation for the cumulative constraint. In P. Van
Hentenryck, editor, Principles and Practice of Constraint Programming, volume
2470 of Lecture Notes in Computer Science, pages 686—690. Springer, 2002.

V. Jain and I. E. Grossmann. Algorithms for hybrid MILP/CP models for a class
of optimization problems. INFORMS Journal on Computing, 13:258-276, 2001.
C. T. Maravelias and I. E. Grossmann. Using MILP and CP for the scheduling of
batch chemical processes. In J. C. Régin and M. Rueher, editors, Integration of AI
and OR Techniques in Constraint Programming for Combinatorial Optimization
Problems (CPAIOR 2004), volume 3011 of Lecture Notes in Computer Science,
pages 1-20. Springer, 2004.

E. Thorsteinsson. Branch and check: A hybrid framework integrating mixed integer
programming and constraint logic programming. In T. Walsh, editor, Principles
and Practice of Constraint Programming (CP2001), volume 2239 of Lecture Notes
in Computer Science, pages 16-30. Springer, 2001.

18.

19.

20.

C. Timpe. Solving planning and scheduling problems with combined integer and
constraint programming. OR Spectrum, 24:431-448, 2002.

M. Tirkay and I. E. Grossmann. Logic-based MINLP algorithms for the optimal
synthesis of process networks. Computers and Chemical Engineering, 20:959-978,
1996.

Q. Xia, A. Eremin, and M. Wallace. Problem decomposition for traffic diversions.
In J. C. Régin and M. Rueher, editors, Integration of AI and OR Techniques
in Constraint Programming for Combinatorial Optimization Problems (CPAIOR
2004), volume 3011 of Lecture Notes in Computer Science, pages 348-363. Springer,
2004.

