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Two ways to relax

• Relax your mind and body.

• Relax your problem formulations.
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Relaxing a problem

Feasible set of original problem

Feasible set of relaxed problem

Drop constraints to make the problem easier to solve.
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Popular Relaxations

• Continuous relaxations

– Linear relaxations are most popular.
– Highly developed solution technology.

• Discrete relaxations

– Already used in CP/AI, perhaps under other names.

– For example, domain store.
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Why relax a problem?

• Solution of relaxed problem may solve original problem .



CP 2008
Slide 6

Why relax a problem?

• Solution of relaxed problem may solve original problem .

• It may guide the search in a promising direction.



CP 2008
Slide 7

Why relax a problem?

• Solution of relaxed problem may solve original problem .

• It may guide the search in a promising direction.
• It may prune the search tree by providing a bound on the 

optimal value.



CP 2008
Slide 8

Why relax a problem?

• Solution of relaxed problem may solve original problem .

• It may guide the search in a promising direction.
• It may prune the search tree by providing a bound on the 

optimal value.

• It may help filter domains (e.g., with Lagrange multipliers).



CP 2008
Slide 9

Why relax a problem?

• Solution of relaxed problem may solve original problem .

• It may guide the search in a promising direction.
• It may prune the search tree by providing a bound on the 

optimal value.

• It may help filter domains (e.g., with Lagrange multipliers).

• It can provide a more global view of the problem, because a 
single relaxation can pool relaxations of several constraints.
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When is Relaxation Useful?

• Relaxation already plays a central role in constraint 
programming .

– The domain store is a relaxation.
– Relaxations used in many other contexts.

– It may pay to think about how to strengthen the relaxation.
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When is Relaxation Useful?

• Relaxation is the workhorse of optimization .

– Without it, problems would be intractable.
– Particularly in mathematical programming .

• But it is not the mere existence of an objective function that 
makes relaxation important.

• Often, it is the existence of constraints with many variables .
– These constraints do not propagate well.

– Such as cost constraints.

– Relaxation is particularly valuable for such constraints.
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Outline

• Continuous relaxations

– Based on mixed integer modeling.

– Based on analysis of global constraints.

• Relaxation duality 
– To strengthen continuous or discrete relaxations.

– Example: Lagrangean duality

• Discrete relaxations.

– Based on the dependency graph.

– Based on multivalued decision diagrams.
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Outline

• Continuous relaxations

– Based on mixed integer modeling.

– Based on analysis of global constraints.

• Relaxation duality 
– To strengthen continuous or discrete relaxations.

– Example: Lagrangean duality

• Discrete relaxations.

– Based on the dependency graph.

– Based on multivalued decision diagrams.

• Along the way…

– Destinations where you can relax mind and body
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Relax…

This is a survey.  There is no need 
to follow everything in detail.



CP 2008
Slide 17

Great Barrier Reef, Australia
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Cairns, Australia
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Continuous Relaxation:
Mixed Integer Modeling

Mixed Integer Models
Example: Facility Location

Example: Cumulative Scheduling
Cutting Planes
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Mixed Integer Models

• First write a problem (or part of it) in this form.

• Then drop the integrality constraint to get a continuous relaxation .

A mixed integer/linear model 
has the form

min

, 0

 integer

cx dy

Ax by b

x y

y

+
+ ≥
≥
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Mixed Integer Models

• First write a problem (or part of it) in this form.

• Then drop the integrality constraint to get a continuous relaxation .

• Strengthen the relaxation with cutting planes .

• Historical emphasis on inequality constraints is due to success of 
linear programming.

A mixed integer/linear model 
has the form

min

, 0

 integer

cx dy

Ax by b

x y

y

+
+ ≥
≥
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Mixed integer representability

Theorem . A problem can be given a mixed integer model if its 
feasible set is the union of finitely many polyhedra having the 
same recession cone.

Polyhedron

Recession cone 
of polyhedron

Union of polyhedra with the 
same recession cone 

(in this case, the origin)



CP 2008
Slide 24

Modeling a union of polyhedra

Start with a disjunction of linear 
systems to represent the union 
of polyhedra.

The kth polyhedron is { x | Akx ≥ bk }

( )
min

k k

k

cx

A x b≥∨

Introduce a 0-1 variable  yk that is 
1 when x is in polyhedron k.

Disaggregate x to create an xk for 
each k.  

{ }

min

, all 

1

0,1

k k k
k

k
k

k

k

k

cx

A x b y k

y

x x

y

≥
=

=

∈

∑

∑
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Good news: continuous relaxation of this model is a convex 
hull relaxation (tightest linear relaxation).

Convex hull relaxation

min

, all 

1

0 1

k k k
k

k
k

k

k

k

cx

A x b y k

y

x x

y

≥
=

=

≤ ≤

∑

∑

Convex hull
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General representability theorem

Theorem . A problem can be given a mixed integer model if and 
only if it is the union of finitely many mixed integer polyhedra
having the same recession cone.   

Polyhedron Q 

Recession cone of Q 
= recession cone of P

Mixed integer 
polyhedron P

Union of mixed integer 
polyhedra with the same 

recession cone 
(in this case, the origin)

JNH, A principled approach to mixed integer problem formulation, 2008
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More good news: continuous relaxation of this model is a convex 
hull relaxation , if the polyhedra have convex hull models.

Convex hull relaxation

, all 

1

0 1

k k k
k

k
k

k

k
n p

k

A x b y k

y

x x

x

y

≥
=

=

∈ ×
≤ ≤

∑

∑

ℝ ℤ

Union of mixed integer polyhedra
with convex hull descriptions

Convex hull relaxation
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Example:  Facility location

i j

fi

cij
Fixed 
cost Transport 

cost per 
vehicle

m possible 
factory 

locations n markets
Locate factories to 
serve markets so as 
to minimize total 
factory cost and 
transport cost.

Fixed cost incurred 
for each vehicle 
used.

Dj
Cj

Kij

Capacity
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Facility location

Disjunctive model:

min

0, all 0 ,  all ,   all 
0

,  all 

,   all 

i ij ij
i ij

ij i
j

ij
ij ij ij

i
i

ij

ij j
i

z c w

x C

x jx K w j i
zz f

w j

x D j

+

≤ 
 

=   ≤ ≤ ∨   = = 
 ∈ 

=

∑ ∑

∑

∑

ℤ

Factory at 
location i

No factory
at location iFlow on 

route (i,j)

i j

fi

cij
Fixed 
cost Transport 

cost per 
vehicle

m possible 
factory 

locations n markets

Cj

Kij
Capacity
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Facility location

Disjunctive model:

min

0, all 0 ,  all ,   all 
0

,  all 

,   all 

i ij ij
i ij

ij i
j

ij
ij ij ij

i
i

ij

ij j
i

z c w

x C

x jx K w j i
zz f

w j

x D j

+

≤ 
 

=   ≤ ≤ ∨   = = 
 ∈ 

=

∑ ∑

∑

∑

ℤ

Factory at 
location i

No factory
at location i

Number of 
vehicles from 
factory i to market j

i j

fi

cij
Fixed 
cost Transport 

cost per 
vehicle

m possible 
factory 

locations n markets

Cj

Kij

Flow on 
route (i,j)

Capacity
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min

0, all 0 ,  all ,   all 
0

,  all 

,   all 

i ij ij
i ij

ij i
j

ij
ij ij ij

i
i

ij

ij j
i

z c w

x C

x jx K w j i
zz f

w j

x D j

+

≤ 
 

=   ≤ ≤ ∨   = = 
 ∈ 

=

∑ ∑

∑

∑

ℤ

Facility location

Problem: Disjuncts don’t have same recession cone

xij, zi bounded

wij → +∞

xij, zi bounded

wij → ±∞
Recession 
directions:
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min

0, all 
0 ,  all 0 ,   all 

,  all 

,   

0

all 

i ij ij
i ij

ij i
j

ij

ij ij ij i

i

ij

ij

ij

j
i

z c w

x C
x j

x K w j z i
z f

w
w

j

x D j

+

≤ 
   =
   ≤ ≤ ∨ =   

=   
  ∈ 

=

≥

∑ ∑

∑

∑

ℤ

Facility location

Solution: Add innocuous bounds

xij, zi bounded

wij → +∞

xij, zi bounded

wij → +∞
Recession 
directions:
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Facility location

Mixed integer
formulation:

Disjunctive model:

min

, all 

,  all 

0 , all ,

{0,1},   ,  all ,

i i ij ij
i ij

ij i i
j

ij j
i

ij ij ij

i ij

f y c w

x C y i

x D j

x K w i j

y w i j

+

≤

=

≤ ≤
∈ ∈

∑ ∑

∑

∑

ℤ

min

0, all 
0 ,  all 0 ,   all 

0
,  all 

,   all 

i ij ij
i ij

ij i
j

ij

ij ij ij i

i ij

ij

ij j
i

z c w

x C
x j

x K w j z i
z f w

w j

x D j

+

≤ 
   =
   ≤ ≤ ∨ =   

=   ≥  ∈ 

=

∑ ∑

∑

∑

ℤ
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Example: Cumulative scheduling

Cumulative scheduling constraint:

( )1 2 3 1 2 3 1 2 3cumulative ( , , ),( , , ),( , , ),s s s p p p c c c C

A feasible solution:

p3

c3

C

s3

t

job 2

job 1

job 3
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Cumulative scheduling

Disjunctive formulation:

:

,   all 
,

,  all 
it

i

t
it i it

it
i t t T

s t
i

x c t T

x C t
′

′
′∈

= 
 ′= ∈ 

′≤∑ ∑

∨

C

t { t′ | t′ ∈ Tit }

job i

xit′ = ci

Set of times job i is running 

if it starts at t

Job i must start at some time t
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:

,   all 
,

,  all 
it

i

t
it i it

it
i t t T

s t
i

x c t T

x C t
′

′
′∈

= 
 ′= ∈ 

′≤∑ ∑

∨
Cumulative scheduling

C

t { t′ | t′ ∈ Tit }

job i

xit′ = ci

Disjunctive formulation:

{ }

:

,  all ,

,   ,  all ,

,   all 

,  all 

1,   all 

0,1 ,  all ,

it

t
i it
t
it i it t

it
i t t T

t
i i

t
t

it it
t

it
t

it

s ty i t

x c y t T i t

x C t

s s i

x x

y i

y i t

′

′
′∈

′ ′

=
′= ∈

′≤

=

=

=

∈

∑ ∑

∑

∑

∑

Mixed 
integer 
model:
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:

,   all 
,

,  all 
it

i

t
it i it

it
i t t T

s t
i

x c t T

x C t
′

′
′∈

= 
 ′= ∈ 

′≤∑ ∑

∨
Cumulative scheduling

{ }

:

,  all ,

,   ,  all ,

,   all 

,  all 

1,   all 

0,1 ,  all ,

it

t
i it
t
it i it t

it
i t t T

t
i i

t
t

it it
t

it
t

it

s ty i t

x c y t T i t

x C t

s s i

x x

y i

y i t

′

′
′∈

′ ′

=
′= ∈

′≤

=

=

=

∈

∑ ∑

∑

∑

∑

Mixed 
integer 
model:

Disjunctive formulation:

{ }

:

,  all 

,   all 

1,   all 

0,1 ,   all ,

it

i it
t

i it
i t t T

it
t

it

s ty i

c y C t

y i

y i t

′∈

=

′≤

=

∈

∑

∑ ∑

∑
simplifies
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Cutting 
plane

Feasible solutions

Continuous 
relaxation

Cutting Planes

A cutting plane (cut, valid inequality) for a 
mixed integer model:

• …is valid

- It is satisfied by all feasible solutions 
of the model.

• …cuts off solutions of the continuous 
relaxation.

- This makes the relaxation tighter.
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Some popular cutting planes

• Knapsack cuts

- Generated for individual inequality constraints.

- Sequential lifting .

- Sequence-independent lifting.

• Rounding cuts

- Generated for the entire model, they are widely used.

- Gomory cuts for integer variables only.

- Mixed integer rounding cuts for mixed integer models.

• Special-purpose cuts

- For many problems.
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Les Cevénnes, France
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Le fromage roquefort, France
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Continuous Relaxation
for Global Constraints

Element
Alldiff
Circuit

Cumulative scheduling
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The element constraint implements a variable 
indexed by a variable:  

Example:  Channeling constraints for employee scheduling

Element

k

i

y

x

x k

y i

=

=

yx
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Example:  Channeling constraints for employee scheduling

Element

k

i

y

x

x k

y i

=

=
Shift assigned to employee k

The element constraint implements a variable 
indexed by a variable:  

yx
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Example:  Channeling constraints for employee scheduling

Element

k

i

y

x

x k

y i

=

=
Shift assigned to employee k

Employee assigned 
to shift yk

The element constraint implements a variable 
indexed by a variable:  

yx
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Element

Employee assigned to shift i

Example:  Channeling constraints for employee scheduling

k

i

y

x

x k

y i

=

=
Employee assigned to shift i

The element constraint implements a variable 
indexed by a variable:  

yx
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Example:  Channeling constraints for employee scheduling

Element

k

i

y

x

x k

y i

=

=
Employee assigned to shift i

Shift assigned to 
employee xi

The element constraint implements a variable 
indexed by a variable:  

yx
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To implement xy:

Replace xy with z and add the constraint

Element

( )1element ,( , , ),ny x x z…

The element constraint implements a variable 
indexed by a variable:  

yx

Assume domain of y is {1, …, n}.
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The element constraint implements a variable 
indexed by a variable:  

To relax

( )ii
x z=∨

Element

yx

View it as a disjunction

( )1element ,( , , ),ny x x z…
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View it as a disjunction

The element constraint implements a variable 
indexed by a variable:  

To relax

Element

yx

( )1element ,( , , ),ny x x z…

and write the convex hull relaxation

,   all 

,   all 

1,    0,   all 

i
i

i
i

i i
k

i i
k

i i
i

z x

Ly x Uy i

x x i

y y i

=

≤ ≤
=

= ≥

∑

∑

∑
Assume bounds L ≤ x ≤ U

( )ii
x z=∨

JNH, Logic-based Methods for Optimization, 2000
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If each xi has the same bounds L0 ≤ xi ≤ U0

The element constraint implements a variable 
indexed by a variable:  

Element

yx

the convex hull relaxation simplifies to

0 0

0 0

( 1) ( 1)

,   all 

i i
i i

i

x n U z x n L

L x U i

− − ≤ ≤ − −

≤ ≤

∑ ∑

JNH, Logic-based Methods for Optimization, 2000
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Example:  Assignment cost

Element

iy i
i

a x∑
Amount of product i
to be manufactured

A specially structured element constraint implements ya x
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Example:  Assignment cost

Element

iy i
i

a x∑
Machine on which product i

is manufactured

Amount of product i
to be manufactured

A specially structured element constraint implements ya x
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Example:  Assignment cost

Element

iy i
i

a x∑
Machine on which product i

is manufactured

Amount of product i
to be manufactured

A specially structured element constraint implements ya x

Unit cost of manufacturing 
product i on machine yi



CP 2008
Slide 55

Element

A specially structured element constraint implements ya x

To implement ayx:

Replace ayx with z and add the constraint

( )1element ,( , , ),ny a x a x z…
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Element

A specially structured element constraint implements ya x

To relax ( )1element ,( , , ),ny a x a x z…
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Element

A specially structured element constraint implements ya x

To relax

View it as a disjunction

( )1element ,( , , ),ny a x a x z…

( )ii
a x z=∨
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Element

A specially structured element constraint implements ya x

To relax

{ } { }
{ } { }

min min

max max

min min

max max

i ii i

i ii i

L a L U a U

L a L U a U

= =

= =

View it as a disjunction

( )1element ,( , , ),ny a x a x z…

and write the convex hull relaxation

max max max maxmin min min min U L UL LUU L UL LU
x z x

U L U L U L U L
− −− −+ ≤ ≤ +

− − − −

where L ≤ x ≤ U,   

( )ii
a x z=∨

JNH, Integrated Methods for Optimization, 2007
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Alldiff

The alldiff polytope (permutation polytope ) is the convex hull 
of feasible solutions of alldiff.

The polytope is completely known.

The facet-defining inequalities provide a convex hull relaxation
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with domains                           is completely described by 

Alldiff

The alldiff polytope (permutation polytope ) is the convex hull 
of feasible solutions of alldiff.

The polytope is completely known.

The facet-defining inequalities provide a convex hull relaxation

For example , the convex hull of

{ }1,3,6ix ∈

1 2 3

1 2 1 3 2 3

1 2 3

10

4, 4, 4

, , 1

x x x

x x x x x x

x x x

+ + =
+ ≥ + ≥ + ≥

≥

( )1 2 3alldiff , ,x x x

JNH, Logic-based Methods for Optimization, 2000

Williams and Yan, Representations of the all-different predicate, 2001
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(3,6,1)
(6,3,1)

(6,1,3)

(3,1,6)
(1,3,6)

(1,6,3)

Permutation polytope for alldiff(x1,x2,x3) with domain {1,3,6}

Dimension = 2

Alldiff
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(3,6,1)
(6,3,1)

(6,1,3)

(3,1,6)
(1,3,6)

(1,6,3)

Dimension = 2

Alldiff

Permutation polytope for alldiff(x1,x2,x3) with domain {1,3,6}

Affine hull

x1 + x2 + x3 = 10
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(3,6,1)
(6,3,1)

(6,1,3)

(3,1,6)
(1,3,6)

(1,6,3)

Unfortunately, convex hull relaxation of alldiff is weak.

Dimension = 2

Alldiff
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Circuit

The circuit constraint has a tighter convex hull relaxation.

The polytope can be almost completely characterized.
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For example ,                                 with domains {1,3,6} 

has solutions

Circuit

The circuit constraint has a tighter convex hull relaxation.

The polytope can be almost completely characterized.

( )1 3 6circuit , ,x x x

(x1,x2,x3) = (3,6,1)

1

6 3

(x1,x2,x3) = (6,1,3)

1

6 3

Vertex after vertex 1
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Other permutations are not circuits, for example

Circuit

The circuit constraint has a tighter convex hull relaxation.

The polytope can be almost completely characterized.

1

6 3

1

6
3

(x1,x2,x3) = (1,3,6)
(x1,x2,x3) = (6,1,3)
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Traveling salesman problem

using alldiff

Circuit

The circuit constraint has a tighter convex hull relaxation.

The polytope can be almost completely characterized.

( )1 3 6

min

circuit , ,

iix
i

c

x x x

∑

( )
1

1 2 3

min

alldiff , ,

i ix x
i

c

x x x

+∑

using circuit

2nd city in tour City after City 3 in tour
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Traveling salesman problem

using alldiff

Circuit

The circuit constraint has a tighter convex hull relaxation.

The polytope can be almost completely characterized.

( )1 3 6

min

circuit , ,

iix
i

c

x x x

∑

( )
1

1 2 3

min

alldiff , ,

i ix x
i

c

x x x

+∑

using circuit

Distance from ith to (i+1)th city Distance from City i to next city
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Traveling salesman problem

using alldiff

Circuit

The circuit constraint has a tighter convex hull relaxation.

The polytope can be almost completely characterized.

( )1 3 6

min

circuit , ,

iix
i

c

x x x

∑

( )
1

1 2 3

min

alldiff , ,

i ix x
i

c

x x x

+∑

using circuit

Filtering is easy 
but relaxation is weak

Filtering is hard
but relaxation is tighter

L. Genc-Kaya and JNH, The circuit polytope, 2008
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(3,6,1)
(6,3,1)

(6,1,3)

(3,1,6)
(1,3,6)

(1,6,3)
Polytope of 
circuit(x1,x3,x6)

Dimension = 1

Circuit
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Permutation 
polytope for 
domain {1,2,3,4}

Projected onto 
3-space

Dimension = 3
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Solutions of 
circuit(x1,x2,x3,x4)

Dimension = 3
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To identify facet-defining inequalities containing variables 

– Solve the combinatorial problem of identifying 
undominated solution values of 

– Solve the numerical problem of checking which 
hyperplanes defined by undominated solutions 
correspond to valid inequalities.

1
,

kj jx x…

1
,

kj jx x…

Circuit
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To identify facet-defining inequalities containing variables 

– Solve the combinatorial problem of identifying 
undominated solution values of 

– Solve the numerical problem of checking which 
hyperplanes defined by undominated solutions 
correspond to valid inequalities.

1
,

kj jx x…

1
,

kj jx x…

Circuit

To simplify presentation, assume we seek facet-defining 
inequalities with positive coefficients.

Any sign pattern can be accommodated.
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Generate facets of
containing variables 

0 1
circuit( , )

nv vx x
−

…

0 1 2
, ,v v vx x x

Circuit
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0 1 2 3 4v v v v v …
3 40 1 2 5 23 0 1( , , , , ) ( , , , , )v vv vvx x x v v vx x v v=… …

There are exactly 4 undominated solutions.

0 1 2 3 4v v v v v …
3 40 1 2 5 12 0 3( , , , , ) ( , , , , )v vv vvx x x v v vx x v v=… …

0 1 2 3 4v v v v v …
3 40 1 2 5 23 2 0( , , , , ) ( , , , , )v vv vvx x x v v vx x v v=… …

0 1 2 3 4v v v v v …
3 40 1 2 5 21 3 0( , , , , ) ( , , , , )v vv vvx x x v v vx x v v=… …

Circuit
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Each set of 3 solutions determines a hyperplane and potential 
facet.

– The valid inequalities that result are facet-defining .
– Check each inequality to see if it is violated by the other 

solution.

3 40 1 2 5 23 0 1( , , , , ) ( , , , , )v vv vvx x x v v vx x v v=… …

3 40 1 2 5 12 0 3( , , , , ) ( , , , , )v vv vvx x x v v vx x v v=… …

3 40 1 2 5 23 2 0( , , , , ) ( , , , , )v vv vvx x x v v vx x v v=… …

3 40 1 2 5 21 3 0( , , , , ) ( , , , , )v vv vvx x x v v vx x v v=… …

Circuit
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x1

x2

x3

(3,0,1)

(2,0,3)

(3,2,0)

(1,3,0)

Solutions (x0,x2,x3) for 
domain {0,2,3,…}

Circuit
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x1

x2

x3

(3,0,1)

(2,0,3)

(3,2,0)

(1,3,0)

Solutions (x0,x2,x3) for 
domain {0,1,2,…}

Not a facet.
Violated by (1,3,0)

Circuit
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x1

x2

x3

(3,0,1)

(2,0,3)

(3,2,0)

(1,3,0)

Solutions (x0,x2,x3) for 
domain {0,1,2,…}

Not a facet.
Violated by (3,0,1)

Circuit
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x1

x2

x3

(3,0,1)

(2,0,3)

(3,2,0)

(1,3,0)

Solutions (x0,x2,x3) for 
domain {0,1,2,…}

These are facets.

Circuit
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0 1 2

2 2
3 1 3 0 1 3 0 2 0 3 1 2 1 3 3 2 3 0

2 2 3
0 3 2 1 0 3 0 1 3 1 2 3

( )( ) ( ) ( )( )

( )
v v vv v v v v v v v v v v v v v v v v v

v v v v v v v v v v v v

x x x− − + + + − − − + − −

≥ − − − + + −

For domain {0,1,2,…}: 0 1 26 5 3 21x x x+ + ≥

0 1 23 2 1 0 1 0 3 1 2 0 3 1

2 2 2
0 3 1 1 2 3 1 0 0 2 3

( )( ) ( )( ) ( )( )

( ) ( )

v v vv v v v v v v v v v v v

v v v v v v v v v v

x

v

x x− − + − − + − −

≥ − − − + − +

For domain {0,1,2,…}: 0 1 22 4 7x x x+ + ≥

Circuit

Facets with positive coefficients and variables 
0 1 2
, ,v v vx x x
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Circuit

There are also fast separation heuristics .
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We can derive valid inequalities for

Cumulative scheduling

( )1 1 1cumulative ( , , ),( , , ),( , , ),n n ns s p p c c C… … …

by “energetic reasoning”
(but not the same reasoning used for domain reduction)
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We can derive valid inequalities for

Cumulative scheduling

( )1 1 1cumulative ( , , ),( , , ),( , , ),n n ns s p p c c C… … …

by “energetic reasoning”
(but not the same reasoning used for domain reduction)

Start times

Processing times

Resource consumption rates
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We can derive valid inequalities for

Energy of job j = pjcj

( )1 1 1cumulative ( , , ),( , , ),( , , ),n n ns s p p c c C… … …

by “energetic reasoning”
(but not the same reasoning used for domain reduction)

Start times

Processing times

Resource consumption rates

Cumulative scheduling
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Take any subset of jobs J = { j1, …, jk }.

Index jobs so that  

Cumulative scheduling

1 1 k kj j j jp c p c≤ ≤⋯

Theorem.  The following inequalities (for example) are valid:  

1 1 1

1 1
( 1) ( 1)

i i i i i

k k k

J j j j j J j j
i i j J i

kr k i p c p s kd k i p c
C C= = ∈ =

+ − + − ≤ ≤ − − +∑ ∑ ∑ ∑

Earliest 
release time 

in J

Latest 
deadline 

in J

JNH, Integrated Methods for Optimization, 2007
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Example

Cumulative scheduling

C

r1

t

job 2

job 1

job 3

r2

r3

d2 d1

d3

Valid inequalities: 1 2 3

2 3

1 2
8

3 3
1 2

6
3 3

2

s s s

s s

≤ + + ≤

≤ + ≤
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Cappadocia, Türkiye
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Subterranean city, Derinkuyu, Türkiye
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Relaxation Duality

Relaxation Dual
Lagrangean Dual
Example: Fast LP

Example: TSP with Time Windows
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We often search over problem restrictions to find a better solutions.

– Branching methods

– Local search

Can we search over relaxations to find a better bound?

Relaxation dual
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We often search over problem restrictions to find a better solutions.

– Branching methods

– Local search

Can we search over relaxations to find a better bound?

Yes, if we parameterize the relaxations.  

– Then search over parameter values.

Relaxation dual
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A relaxation dual seeks a relaxation that provides the tightest 
bound.
– The relaxation parameters are dual variables .

– Solve the dual by searching over values of the dual variables

Relaxation dual
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A relaxation dual seeks a relaxation that provides the tightest 
bound.
– The relaxation parameters are dual variables .

– Solve the dual by searching over values of the dual variables

Some relaxation duals:

– Linear programming dual
– Lagrangean dual

– Surrogate dual

– Superadditive dual

– Roof dual, etc. etc.

Relaxation dual
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Given the optimization problem

{ }∈
min ( )

x D
f x C

Relaxation dual
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Given the optimization problem

{ }∈
min ( )

x D
f x C

Relaxation dual

Easy constraints Hard constraints
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Given the optimization problem

{ }∈
min ( )

x D
f x C

{ }min ( , ) ( )
x D

f x λ λ
∈

C

Lower bound on f(x) 
Relaxation of C
(easier constraints)

Relaxation dual

Easy constraints Hard constraints

A parameterized relaxation is
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Given the optimization problem

{ }∈
min ( )

x D
f x C

{ }min ( , ) ( )
x D

f x λ λ
∈

C

Lower bound on f(x) 
Relaxation of C

vector of dual variables

Relaxation dual

Easy constraints Hard constraints

A parameterized relaxation is
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The relaxation dual is

Given the optimization problem

{ }∈
min ( )

x D
f x C

{ }{ }max min ( , ) ( )
x D

f x
λ

λ λ
∈

C

Relaxation dual

Easy constraints Hard constraints

Find relaxation that provides the largest lower bound.
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Weak duality always holds:

Max value of 
dual problem ≤

Min value of 
original problem

Difference = duality gap

Relaxation dual
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Used when the hard constraints are inequality constraints.

Lagrangean dual

{ }min ( ) ( ) 0
x D

f x g x
∈

 ≥
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Used when the hard constraints are inequality constraints.

The relaxation is parameterized by a vector of Langrange
multipliers u.

Lagrangean dual

{ }min ( ) ( ) 0
x D

f x g x
∈

 ≥

{ }min ( ) ( ) |T

x D
f x g xλ

∈
−

Lower bound on f(x) Hard constraints 
disappear completely
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Used when the hard constraints are inequality constraints.

The relaxation is parameterized by a vector of Langrange
multipliers u.

Dualized constraints

Lagrangean dual

{ }min ( ) ( ) 0
x D

f x g x
∈

 ≥

{ }min ( ) ( ) |T

x D
f x g xλ

∈
−

Lower bound on f(x) Hard constraints 
disappear completely
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Used when the hard constraints are inequality constraints.

The Lagrangean dual is

Lagrangean dual

{ }min ( ) ( ) 0
x D

f x g x
∈

 ≥

{ }{ }
0

max min ( ) ( )T

x Du
f x g xλ

∈≥
−
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Can use subgradient optimization to solve the dual.  

Exploit the fact that

Is always concave (but not differentiable).

Lagrangean dual

{ }( ) min ( ) ( ) 0
x D

f x g xθ λ
∈

=  ≥
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Can use subgradient optimization to solve the dual.  

Exploit the fact that

Is always concave (but not differentiable).

A subgradient (direction of steepest ascent) of θ (λ) is −g(x*), 
where x* solves 

Lagrangean dual

{ }( ) min ( ) ( ) 0
x D

f x g xθ λ
∈

=  ≥

{ }min ( ) ( ) 0
x D

f x g x
∈

 ≥
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Can use subgradient optimization to solve the dual.  

Exploit the fact that

Is always concave (but not differentiable).

A subgradient (direction of steepest ascent) of θ (λ) is −g(x*), 
where x* solves 

Step k of search is 1 ( *)k k
kg xλ λ α+ = +

Lagrangean dual

{ }( ) min ( ) ( ) 0
x D

f x g xθ λ
∈

=  ≥

{ }min ( ) ( ) 0
x D

f x g x
∈

 ≥
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Can use subgradient optimization to solve the dual.  

Exploit the fact that

is always concave (but not differentiable).

A subgradient (direction of steepest ascent) of θ (λ) is −g(x*), 
where x* solves 

Step k of search is 1 ( *)k k
kg xλ λ α+ = +

stepsize,
perhaps αk = 1/k

Lagrangean dual

{ }( ) min ( ) ( ) 0
x D

f x g xθ λ
∈

=  ≥

{ }min ( ) ( ) 0
x D

f x g x
∈

 ≥
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1 2 3

1 2 3

1 2 3

1

2

3

min 4 5 6

subject to 3 4 5 47

2 3 24

2

3

4

 integer

x x x

x x x

x x x

x

x

x

x

+ +
+ + ≥

+ + ≥
≥
≥
≥

} hard

} easy

Example
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1 2 3

1 2 3

1 2 3

1

2

3

min 4 5 6

subject to 3 4 5 47

2 3 24

2

3

4

 integer

x x x

x x x

x x x

x

x

x

x

+ +
+ + ≥

+ + ≥
≥
≥
≥

} hard

} easy

Example

1

2

3

1

2

3

1 2 3

1 1 2 32

3
2 1 2 3

4

1 2 1 1 2 2

2
1 2 3 1 2

3

4

4 5 6

( ) min (47 3 4 5 )

(24 2 3 )

(4 3 ) (5 4 2 )
min

(6 5 3 ) 47 24

x

x

x

x

x

x

x x x

x x x

x x x

x x

x

θ λ λ
λ

λ λ λ λ
λ λ λ λ

≥
≥
≥

≥
≥
≥

+ + 
 = + − − − 
 + − − − 

− − + − − 
=  + − − + + 

Solve by 
inspection for 
fixed λ
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0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Subgradient search in λ-space:

Value of Lagrangean dual = 57.6 < 58 = optimal value

Start

λ2

λ1
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The Lagrangean dual of a linear programming problem is the 
classical linear programming dual.

Lagrangean dual
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The Lagrangean dual of a linear programming problem is the 
classical linear programming dual.

Lagrangean dual

Optimization duals can also be conceived as inference duals .
- As in Benders decomposition, sensitivity analysis, etc.



CP 2008
Slide 115

Example: Fast Linear Programming

In CP, it is best to process each node of the search tree very 
rapidly.  

Lagrangean relaxation allows fast calculation of a lower bound on 
the LP value at each node.
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Example: Fast Linear Programming

In CP, it is best to process each node of the search tree very 
rapidly.  

Lagrangean relaxation allows fast calculation of a lower bound on 
the LP value at each node.

Solve the Lagrangean dual at the root node (which is an LP) and 
use the same Lagrange multipliers to get an LP bound at other 
nodes.



CP 2008
Slide 117

At root node, solve min

( )

0

cx

Ax b

Dx d

x

λ≥
≥

≥

The (partial) LP dual solution λ* 
solves the Lagrangean dual in which 

Dualize

{ }
0

( ) min ( )
Dx d

x

cx Ax bθ λ λ
≥

≥

= − −

Special structure,
e.g. variable bounds

Example: Fast LP



CP 2008
Slide 118

At root node, solve min

( )

0

cx

Ax b u

Dx d

x

≥
≥

≥

The (partial) LP dual solution u* 
solves the Lagrangean dual in which 

Dualize

{ }
0

( ) min ( )T

Dx d

x

u cx u Ax bθ
≥

≥

= − −

At another node, the LP is

min

( )

0

cx

Ax b u

Dx d

Hx h

x

≥
≥
≥

≥

Branching 
constraints, 
etc.

Lower bound θ (λ*) is quickly calculated by 
solving a specially structured LP.

Special structure,
e.g. variable bounds

Example: Fast LP
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Example: TSP with Time Windows

A salesman must make several stops and return home, subject to 
time windows at each stop.

Objective: Minimize travel time.

Use Lagrange multipliers for cost-based filtering .

Stop i

Stop j

Travel time cij
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TSP with time windows

{ }

min

1, all 

0,1 , all ,

ij ij
ij

ij ji
j j

ij

c x

x x i

x i j

= =

∈

∑

∑ ∑

= 1 if stop i immediately precedes stop j

Stop i is preceded and 
followed by exactly one stop.

Assignment relaxation
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Because this problem is totally unimodular , it can be solved as an LP.

min

1, al

0 1,  all , (

l 

)

ij ij
ij

ij ji
j

j

j

ij i

c x

x x i

x i j λ≤

=

≤

=

∑

∑ ∑

TSP with time windows

Assignment relaxation
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Because this problem is totally unimodular , it can be solved as an LP.

The relaxation provides a very weak lower bound on the optimal 
value.

min

1, al

0 1,  all , (

l 

)

ij ij
ij

ij ji
j

j

j

ij i

c x

x x i

x i j λ≤

=

≤

=

∑

∑ ∑

TSP with time windows

Assignment relaxation
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Because this problem is totally unimodular , it can be solved as an LP.

The relaxation provides a very weak lower bound on the optimal 
value.

But cost-based filtering can be effective.

min

1, al

0 1,  all , (

l 

)

ij ij
ij

ij ji
j

j

j

ij i

c x

x x i

x i j λ≤

=

≤

=

∑

∑ ∑

TSP with time windows

Assignment relaxation
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min

1, all 

0 (1,  all ),

ij ij
ij

ij ji
j

j

j

iij

c x

x x i

x i j λ

= =

≤ ≤

∑

∑ ∑

TSP with time windows

Assignment relaxation

*

ij
ij

U v
x

λ
−≤We know
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min

1, all 

0 (1,  all ),

ij ij
ij

ij ji
j

j

j

iij

c x

x x i

x i j λ

= =

≤ ≤

∑

∑ ∑

TSP with time windows

Assignment relaxation

*

ij
ij

U v
x

λ
−≤We know

Known upper bound 
on shortest distance

Value of LP 
relaxation
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min

1, all 

0 (1,  all ),

ij ij
ij

ij ji
j

j

j

iij

c x

x x i

x i j λ

= =

≤ ≤

∑

∑ ∑

TSP with time windows

Assignment relaxation

*

ij
ij

U v
x

λ
−≤We know

Known upper bound 
on shortest distance

Value of LP 
relaxation

Lagrange multiplier
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If this upper bound is < 1, 
we can fix xij to 0.

Known in OR as 
reduced-cost 
variable fixing

min

1, all 

0 (1,  all ),

ij ij
ij

ij ji
j

j

j

iij

c x

x x i

x i j λ

= =

≤ ≤

∑

∑ ∑

TSP with time windows

Assignment relaxation

*

ij
ij

U v
x

λ
−≤We know

Known upper bound 
on shortest distance

Value of LP 
relaxation

Lagrange multiplier

Focacci, Lodi & Milano, Solving TSP with time windows with constraints, 1999
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Éméi Shān, Sichuan Province, China
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Tài jí quán
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Discrete Relaxation:
Dependency Graph

Dependency Graph and Induced Width
Example: Relaxing the Constraint Dual
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Complexity of solving a problem is at worst exponential in the 
induced width of the dependency graph

Dependency Graph and Induced Width
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Complexity of solving a problem is at worst exponential in the 
induced width of the dependency graph

The idea has surfaced independently in several contexts.

– Nonserial dynamic programming (1972)

– Belief logics (1986)

– k-trees (1986)
– Bayesian networks (1988)

– Pseudo-boolean optimization (1990)

– Location analysis (1994)

– Bucket elimination (1996)

Dependency Graph and Induced Width
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Let’s relax the problem by thinning out the dependency graph.
– Reduce the induced width while maintaining a valid 

relaxation.

Use relaxation duality to find the best relaxation.

Dependency graph and induced width
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1 2 3 4

1 2 3

1 2 4

2 3 4

min 2 3 4

1

1

1

{0,1}j

x x x x

x x x

x x x

x x x

x

+ + +
+ + ≥
+ + ≥

+ + ≥
∈

Solution:  (x1,…,x4) = (0,1,0,0)

Optimal value is 2.

Example: Relaxing the Constraint Dual
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1 2 3 4

1 2 3

1 2 4

2 3 4

min 2 3 4

1

1

1

{0,1}j

x x x x

x x x

x x x

x x x

x

+ + +
+ + ≥
+ + ≥

+ + ≥
∈

3x

2x
1x

4x

Dependency graph has induced 
width 3:

Example: Relaxing the constraint dual
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Relax the problem by removing edges 
from dependency graph.

– and form “mini-buckets”

1 1 2 3 2 1 2 4 3 2 3 4

1 2 3 1 2 3
1 1 2 3

1 2 4 1 2 4
2 1 2 4

2 3 4 2 3 4
3 2 3 4

min ( , , ) ( , , ) ( , , )

2 3   if 1
( , , )

otherwise

0 0 4   if 1
( , , )

otherwise

0 0 0   if 1
( , , )

otherwise

f x x x f x x x f x x x

x x x x x x
f x x x

x x x x x x
f x x x

x x x x x x
f x x x

+ +
+ + + + ≥ =  ∞ 

+ + + + ≥ =  ∞ 

+ + + + ≥=
∞


 
 

1 2 3 4

1 2 3

1 2 4

2 3 4

min 2 3 4

1

1

1

{0,1}j

x x x x

x x x

x x x

x x x

x

+ + +
+ + ≥
+ + ≥

+ + ≥
∈

Example: Relaxing the constraint dual

Dechter & Rish, Mini-buckets: A general scheme for approximating inference, 1998
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1 1 2 3 2 1 2 4 3 2 3 4

1 2 3 1 2 3
1 1 2 3

1 2 4 1 2 4
2 1 2 4

2 3 4 2 3 4
3 2 3 4

min ( , , ) ( , , ) ( , , )

2 3   if 1
( , , )

otherwise

0 0 4   if 1
( , , )

otherwise

0 0 0   if 1
( , , )

otherwise

f x x x f x x x f x x x

x x x x x x
f x x x

x x x x x x
f x x x

x x x x x x
f x x x

+ +
+ + + + ≥ =  ∞ 

+ + + + ≥ =  ∞ 

+ + + + ≥=
∞


 
 

The problem separates 
into 3 problems with 
induced width 2: 

3x

2x
1x 2x

1x

4x 3x

2x

4x

Example: Relaxing the constraint dual
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1 1 2 3 2 1 2 4 3 2 3 4

1 2 3 1 2 3
1 1 2 3

1 2 4 1 2 4
2 1 2 4

2 3 4 2 3 4
3 2 3 4

min ( , , ) ( , , ) ( , , )

2 3   if 1
( , , )

otherwise

0 0 4   if 1
( , , )

otherwise

0 0 0   if 1

1 0

( , ,

0 1 2

)

f x x x f x x x f x x x

x x x x x x
f x x x

x x x x x x
f x x x

x x x x x x
f x x x

+ +
+ + + + ≥ =  ∞ 

+ + + + ≥ =  ∞ 

+ + +

= + +

+
=

=

≥

<

∞ otherwise
 
 
 

But the resulting bound 
is weak

3x

2x
1x 2x

1x

4x 3x

2x

4x

Example: Relaxing the constraint dual
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Let’s apply relaxation duality to 
the constraint dual:

1 2
1 1
1 2 3
2 2 2
1 3
3 3
1 3
4 4

1 1 1
1 2 3
2 2 2
1 2 4
3 3 3
2 3 4

( , , )

( , , )

( , , )

x x

x x x

x x

x x

x x x D

x x x D

x x x D

=
= =
=
=

∈
∈
∈

where 3{0,1} {(0,0,0)}D = −

Standardize apart variables 
in different constraints and 
equate them in binary 
constraints.

1 2 3 4

1 2 3

1 2 4

2 3 4

min 2 3 4

1

1

1

{0,1}j

x x x x

x x x

x x x

x x x

x

+ + +
+ + ≥
+ + ≥

+ + ≥
∈

Example: Relaxing the constraint dual
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1
2x 1

3x

2
1x

1
1x

2
2x

3
2x

2
4x

3
4x3

3x

Dependency graph for 
constraint dual:

1 2 3 4

1 2 3

1 2 4

2 3 4

min 2 3 4

1

1

1

{0,1}j

x x x x

x x x

x x x

x x x

x

+ + +
+ + ≥
+ + ≥

+ + ≥
∈

Induced width of dependency 
graph is 3.

Any deletion of vertical edges 
yields a valid relaxation.

Example: Relaxing the constraint dual
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1
2x 1

3x

2
1x

1
1x

2
2x

3
2x

2
4x

3
4x3

3x

So let’s delete vertical edges, 
which equate variables.

1 2 3 4

1 2 3

1 2 4

2 3 4

min 2 3 4

1

1

1

{0,1}j

x x x x

x x x

x x x

x x x

x

+ + +
+ + ≥
+ + ≥

+ + ≥
∈

The previous mini-bucket 
scheme deletes all vertical 
edges.

Example: Relaxing the constraint dual
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1
2x 1

3x

2
1x

1
1x

2
2x

3
2x

2
4x

3
4x3

3x

Let’s search other deletion 
patterns to find a tighter 
relaxation (i.e., solve 
relaxation dual)

1 2 3 4

1 2 3

1 2 4

2 3 4

min 2 3 4

1

1

1

{0,1}j

x x x x

x x x

x x x

x x x

x

+ + +
+ + ≥
+ + ≥

+ + ≥
∈

By deleting only one edge we 
can reduce induced width to 2

Example: Relaxing the constraint dual
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1
2x 1

3x

2
1x

1
1x

2
2x

3
2x

2
4x

3
4x3

3x

Let’s search other deletion 
patterns to find a tighter 
relaxation (i.e., solve 
relaxation dual).

1 2 3 4

1 2 3

1 2 4

2 3 4

min 2 3 4

1

1

1

{0,1}j

x x x x

x x x

x x x

x x x

x

+ + +
+ + ≥
+ + ≥

+ + ≥
∈

By deleting only one edge we 
can reduce induced width to 2.

Bound is now tight.

Example: Relaxing the constraint dual

JNH, Duality in optimization and constraint satisfaction, 2006
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Great Smoky Mountains, USA
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800 million years old
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Discrete Relaxation:
MDDs

Domain Store Relaxation
Multivalued Decision Diagrams

MDD Relaxation
Propagation in Relaxed MDDs
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A domain store can be viewed as a (weak) relaxation.

We propagate constraints in the domain store by using them 
to refine it.

Domain Store Relaxation
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A domain store can be viewed as a (weak) relaxation.

We propagate constraints in the domain store by using them 
to refine it.

Question:  Can we propagate in a tighter relaxation?

Domain Store Relaxation
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A domain store can be viewed as a (weak) relaxation.

We propagate constraints in the domain store by using them 
to refine it.

Question:  Can we propagate in a tighter relaxation?

Proposal: Use a relaxed multivalued decision diagram .

This can reduce branching by propagating more 
information.

Domain Store Relaxation
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A domain store can be viewed as a (weak) relaxation.

We propagate constraints in the domain store by using them 
to refine it.

Question:  Can we propagate in a tighter relaxation?

Proposal: Use a relaxed multivalued decision diagram .

This can reduce branching by propagating more 
information.

Can also justify more thorough processing of each 
constraint.

Domain Store Relaxation
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A reduced ordered MDD is the result of superimposing all 
isomorphic subtrees in an enumeration tree and removing 
redundant edges.

Example:

What is the reduced ordered MDD for

Multivalued Decision Diagrams

{ }

1 3
1 2 3

1 2

4
( , , ) (1,1,2)

3 5

1,2,3j

x x
x x x

x x

x

+ = 
∨ = ≤ + ≤ 

∈
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1 3
1 2 3

1 2

4
( , , ) (1,1,2)

3 5

x x
x x x

x x

+ = 
∨ = ≤ + ≤ 

u1

u2 u3

u4 u5 u6

1

x1

x2

x3

{1}
{2}

{3}

{1}
{2,3}

{3}
{2}

{1}

{1,2}
Edge domain

Multivalued Decision Diagrams
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u1

u2 u3

u4 u5 u6

1

x1

x2

x3

{1}
{2}

{3}

{1}
{2,3}

{3}
{2}

{1}

{1,2}{1}×{2,3}×{3}

Each path 
represents a 
cartesian product 
of solutions

Multivalued Decision Diagrams
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u1

u2 u3

u4 u5 u6

1

x1

x2

x3

{1}
{2}

{3}

{1}
{2,3}

{3}
{2}

{1}

{1,2}{2}×{1,2,3}×{2}

Each path 
represents a 
cartesian product 
of solutions

Multivalued Decision Diagrams
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u1

u2 u3

u4 u5

1

x1

x2

x3

{1}
{2}

{3}

{1}
{2,3}

{3}
{1,2}

{1,2}

Full MDD: 
8 solutions

Relaxed MDD: 
14 solutions

MDD Relaxation

Let’s use relaxed MDD 
with max width of 2
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u1

u2

u5

1

x1

x2

x3

{1,2,3}

{1,2,3}

{1,2,3}

MDD Relaxation

MDD relaxation with 
width 1 is just the 
domain store .

Full MDD: 
8 solutions

Relaxed MDD: 
14 solutions

Domain store:
3×3×3 = 27 solutions
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Branching search using relaxed MDD 

u1

u2 u3

u4 u5

1

x1

x2

x3

{1}
{2}

{3}

{1}
{2,3}

{3}
{1,2}

{1,2}

x1 ∈ {1,2,3}
{1}

x2 ∈ {1,2,3}
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Branching search using relaxed MDD

u1

u2 u3

u4 u5

1

x1

x2

x3

{1}
{2}

{3}

{1}
{2,3}

{3}
{1,2}

{1,2}

x1 ∈ {1,2,3}
{1}

x2 ∈ {1,2,3}

{1}

x3 ∈ {1,2}
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Branching search using relaxed MDD

u1

u2 u3

u4 u5

1

x1

x2

x3

{1}
{2}

{3}

{1}
{2,3}

{3}
{1,2}

{1,2}

x1 ∈ {1,2,3}
{1}

x2 ∈ {1,2,3}

{1} {2,3}

x3 ∈ {1,2} x3 ∈ {3}
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Branching search using relaxed MDD

u1

u2 u3

u4 u5

1

x1

x2

x3

{1}
{2}

{3}

{1}
{2,3}

{3}
{1,2}

{1,2}

x1 ∈ {1,2,3}
{1} {2,3}

x2 ∈ {1,2,3} x2 ∈ {1,2,3}

{1} {2,3}

x3 ∈ {1,2} x3 ∈ {3}

And so forth.

Less branching 
than with domain 
store.



CP 2008
Slide 161

We can propagate a constraint in an MDD relaxation by 
edge domain filtering and refinement (node splitting).

We take care not to exceed max width.

Example:

We will propagate alldiff in an MDD relaxation of width 3.

Propagation in MDDs

Andersen, Hadzic, Hooker & Tiedemann, A constraint store based on 
multivalued decision diagrams, 2007
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u1

u2 u3

u5

u6

{1}
{2}

{3}

{1}{1,2}

{1,2} {3}

{1,2,3}

Propagation in MDDs

u4

u6

Current MDD 
relaxation
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u1

u2 u3

u5

u6

{1}
{2}

{3}

{1}{1,2}

{1,2} {3}

{1,2,3}

Propagation in MDDs

u4

u6

First filter edge 
domains using alldiff



CP 2008
Slide 164

u1

u2 u3

u6

{1}
{2}

{3}

{1}{2}

{1,2} {3}

{1,2}

Propagation in MDDs

u4

u6

First filter edge 
domains using alldiff

u5
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u1

u2 u3

u6

{1}
{2}

{3}

{1}{2}

{1,2} {3}

{1,2}

Propagation in MDDs

u4

u6

u5

To split u5:  Identify 
equivalence classes of 
incoming edges
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u1

u2 u3

u6

{1}
{2}

{3}

{1}
{2}

{1,2} {3}

{1}

Propagation in MDDs

u4

u6

To split u5:  Identify 
equivalence classes of 
incoming edges

{2}

u5

These are equivalent 
for alldiff because they 
lead to the same set of 
feasible paths.
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u1

u2 u3

u6

{1}
{2}

{3}

{1}
{2}

{1,2} {3}

{1}

Propagation in MDDs

u4

u6

To split u5:  Identify 
equivalence classes of 
incoming edges.

Split u5 to receive ≤ 3 
equivalence classes.

{2}

u5′′u5′ u5′′′
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u1

u2 u3

u6

{1}
{2}

{3}

{1}
{2}

{1,2} {3}

{1}

Propagation in MDDs

u4

u6

Duplicate outgoing 
edges.

{2}

u5′u5′ u5′u5′′u5′ u5′′′
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u1

u2 u3

u6

{1}
{2}

{3}

{1}
{2}

{1,2}

{3}

{1}

Propagation in MDDs

u4

u6

Duplicate outgoing 
edges.

{2}

u5′u5′ u5′u5′′u5′ u5′′′
{1,2}

{1,2}
{3}

{3}
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u1

u2 u3

u6

{1}
{2}

{3}

{1}
{2}

{1,2}

{3}

{1}

Propagation in MDDs

u4

u6

Filter domains.

{2}

u5′u5′ u5′u5′′u5′ u5′′′
{1,2}

{1,2}
{3}

{3}
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u1

u2 u3

u6

{1}
{2}

{3}

{1}
{2}

{1}

{1}

Propagation in MDDs

u4

u6

Filter domains.

{2}

u5′u5′ u5′u5′′u5′ u5′′′
{2}

{3}
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u1

u2 u3

u6

{1}
{2}

{3}

{1}
{2}

{1}

{1}

Propagation in MDDs

u4

u6

Alldiff has now been 
propagated.

{2}

u5′u5′ u5′u5′′u5′ u5′′′
{2}

{3}Hadzic, Hooker, O’Sullivan & Tiedemann, 
Approximate compilation of constraints into 
multivalued decision diagrams, 2008
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That’s it. 
Have a relaxing day!


