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Abstract In recent years, the Constraint Programming (CP) and Op-
erations Research (OR) communities have explored the advantages of
combining CP and OR techniques to formulate and solve combinatorial
optimization problems. These advantages include a more versatile mod-
eling framework and the ability to combine complementary strengths of
the two solution technologies. This research has reached a stage at which
further development would benefit from a general-purpose modeling and
solution system. We introduce here a system for integrated modeling and
solution called SIMPL. Our approach is to view CP and OR techniques
as special cases of a single method rather than as separate methods to
be combined. This overarching method consists of an infer-relax-restrict
cycle in which CP and OR techniques may interact at any stage. We de-
scribe the main features of SIMPL and illustrate its usage with examples.

1 Introduction

In recent years, the Constraint Programming (CP) and Operations Research
(OR) communities have explored the advantages of combining CP and OR tech-
niques to formulate and solve combinatorial optimization problems. These ad-
vantages include a more versatile modeling framework and the ability to combine
complementary strengths of the two solution technologies. Examples of existing
programming languages that provide mechanisms for combining CP and OR
techniques are ECL'PS® [32,35], OPL [34] and Mosel [8].

Hybrid methods tend to be most effective when CP and OR techniques in-
teract closely at the micro level throughout the search process. To achieve this
one must often write special-purpose code, which slows research and discour-
ages broader application of integrated methods. We address this situation by
introducing here a system for integrated modeling and solution called SIMPL
(Programming Language for Solving Integrated Models). The SIMPL model-
ing language formulates problems in such a way as to reveal problem structure
to the solver. The solver executes a search algorithm that invokes CP and OR
techniques as needed, based on problem characteristics.

The design of such a system presents a significant research problem in itself,
since it must be flexible enough to accommodate a wide range of integration
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methods and yet structured enough to allow high-level implementation of specific
applications. Our approach, which is based partly on a proposal in [14,16], is to
view CP and OR techniques as special cases of a single method rather than as
separate methods to be combined. This overarching method consists of an infer-
relax-restrict cycle in which CP and OR techniques may interact at any stage.
This paper is organized as follows. In Sect. 2, we briefly review some of the
fundamental ideas related to the combination of CP and OR that are relevant
to the development of SIMPL. We describe the main concepts behind SIMPL
in Sect. 3 and talk about implementation details in Sect. 4. Section 5 presents a
few examples of how to model optimization problems in SIMPL, explaining the
syntax and semantics of the language. Finally, Sect. 6 outlines some additional
features provided by SIMPL, and Sect. 7 discusses directions for future work.

2 Previous Work

A comprehensive survey of the literature on the cooperation of logic-based, Con-
straint Programming (CP) and Operations Research (OR) methods can be found
n [15]. Some of the concepts that are most relevant to the work presented here
are: decomposition approaches (e.g. Benders [3]) that solve parts of the problem
with different techniques [10,14,19,21,24,33]; allowing different models/solvers to
exchange information [32]; using linear programming to reduce the domains of
variables or to fix them to certain values [4,11,32]; automatic reformulation of
global constraints as systems of linear inequalities [30]; continuous relaxations of
global constraints and disjunctions of linear systems [1,14,18,22,28,36,37,38]; un-
derstanding the generation of cutting planes as a form of logical inference [6,7];
strengthening the problem formulation by embedding the generation of valid
cutting planes into CP constraints [12]; maintaining the continuous relaxation
of a constraint updated when the domains of its variables change [29]; and using
global constraints as a key component in the intersection of CP and OR [27].
Ideally, one would like to incorporate all of the above techniques into a single
modeling and solving environment, in a clean and generic way. Additionally,
this environment should be flexible enough to accommodate improvements and
modifications with as little extra work as possible. In the next sections, we
present the concepts behind SIMPL that aim at achieving those objectives.

3 SIMPL Concepts

We first review the underlying solution algorithm and then indicate how the
problem formulation helps to determine how particular problems are solved.

3.1 The Solver

SIMPL solves problems by enumerating problem restrictions. (A restriction is
the result of adding constraints to the problem.) Each node of a classical branch-
and-bound tree, for example, can be viewed as a problem restriction defined by
fixing certain variables or reducing their domains. Local search methods fit into



the same scheme, since they examine a sequence of neighborhoods, each of which
is the feasible set of a problem restriction. Thus SIMPL implements both exact
and heuristic methods within the same architecture.

The search proceeds by looping through an infer-relax-restrict cycle: it infers
new constraints from the current problem restriction, then formulates and solves
relaxations of the augmented problem restriction, and finally moves to another
problem restriction to be processed in the same way. The user specifies the overall
search procedure from a number of options, such as depth-first branching, local
search, or Benders decomposition. The stages in greater detail are as follows.

Infer. New constraints are deduced from the original ones and added to the
current problem restriction. For instance, a filtering algorithm can be viewed
as inferring indomain constraints that reduce the size of variable domains. A
cutting plane algorithm can generate inequality constraints that tighten the
continuous relaxation of the problem as well as enhance interval propagation.

Relax. One or more relaxations of the current problem restriction are formu-
lated and solved by specialized solvers. For instance, continuous relaxations
of some or all of the constraints can be collected to form a relaxation of
the entire problem, which is solved by a linear or nonlinear programming
subroutine. The role of relaxations is to help direct the search, as described
in the next step.

Restrict. The relaxations provide information that dictates which new restric-
tions are generated before moving to the next restriction. In a tree search, for
example, SIMPL creates new restrictions by branching on a constraint that
is violated by the solution of the current relaxation. If several constraints are
violated, one is selected according to user- or system-specified priorities (see
Sect. 4.3). Relaxations can also influence which restriction is processed next,
for instance by providing a bound that prunes a branch-and-bound tree.

If desired, an inner infer-relax loop can be executed repeatedly before moving
to the next problem restriction, since the solution of the relaxation may indi-
cate further useful inferences that can be drawn (post-relaxation inference). An
example would be separating cuts, which are cutting planes that “cut off” the
solution of the relaxation (see Sect. 4.3).

The best-known classical solution methods are special cases of the infer-relax-
restrict procedure:

— In a typical CP solver, the inference stage consists primarily of domain re-
duction. The relaxation stage builds a (weak) relaxation simply by collecting
the reduced domains into a constraint store. New problem restrictions are
created by splitting a domain in the relaxation.

— In a branch-and-bound solver for integer programming, the inference stage
can be viewed as “preprocessing” that takes place at the root node and pos-
sibly at subsequent nodes. The relaxation stage drops the integrality con-
straints and solves the resulting problem with a linear or perhaps nonlinear
programming solver. New problem restrictions are created by branching on
an integrality constraint; that is, by branching on a variable with a fractional
value in the solution of the relaxation.



— A local search procedure typically chooses the next solution to be exam-
ined from a neighborhood of the current solution. Thus local search can
be regarded as enumerating a sequence of problem restrictions, since each
neighborhood is the feasible set of a problem restriction. The “relaxation” of
the problem restriction is normally the problem restriction itself, but need
not, be. The restriction may be solved to optimality by an exhaustive search
of the neighborhood, as in tabu search (where the tabu list is part of the
restriction). Alternatively, a suboptimal solution may suffice, as in simulated
annealing, which selects a random element of the neighborhood.

— In Branch-and-Infer [7], the relaxation stage is not present and branching
corresponds to creating new problem restrictions.

An important advantage of SIMPL is that it can create new infer-relax-restrict
procedures that suit the problem at hand. One example is a hybrid algorithm,
introduced in [14,21], that is obtained through a generalization of Benders de-
composition. It has provided some of the most impressive speedups achieved by
hybrid methods [10,16,17,19,24]. A Benders algorithm distinguishes a set of pri-
mary variables that, when fixed, result in an easily-solved subproblem. Solution
of an “inference dual” of the subproblem yields a Benders cut, which is added to
a master problem containing only the primary variables. Solution of the master
problem fixes the primary variables to another value, and the process continues
until the optimal values of the master problem and subproblem converge. In typ-
ical applications, the master problem is an integer programming problem and the
subproblem a CP problem. This method fits nicely into the infer-relax-restrict
paradigm, since the subproblems are problem restrictions and master problems
are relaxations. The solution of the relaxation guides the search by defining the
next subproblem.

The choice of constraints in a SIMPL model can result in novel combinations
of CP, OR and other techniques. This is accomplished as described in Sect. 3.2.

3.2 Modeling

SIMPL is designed so that the problem formulation itself determines to a large
extent how CP, OR, and other techniques interact. The basic idea is to view each
constraint as invoking specialized procedures that exploit the structure of that
particular constraint. Since some of these procedures may be from CP and some
from OR, the two approaches interact in a manner that is dictated by which
constraints appear in the problem.

This idea of associating constraints with procedures already serves as a pow-
erful device for exploiting problem substructure in CP, where a constraint typ-
ically activates a specialized filtering algorithm. SIMPL extends the idea by
associating each constraint with procedures in all three stages of the search.
Each constraint can (a) activate inference procedures, (b) contribute constraints
to one or more relaxations, and (c) generate further problem restrictions if the
search branches on that particular constraint.

If a group of constraints exhibit a common structure—such as a set of linear
inequalities, flow balance equations, or logical formulas in conjunctive normal
form—they are identified as such so that the solver can take advantage of their



structure. For instance, a resolution-based inference procedure might be applied
to the logical formulas.

The existing CP literature typically provides inference procedures (filters)
only for CP-style global constraints, and the OR literature provides relaxations
(cutting planes) only for structured groups of linear inequalities. This poses the
research problem of finding specialized relaxations for global constraints and
specialized filters for structured linear systems. Some initial results along this
line are surveyed in [15].

Some examples should clarify these ideas. The global constraint element is
important for implementing variable indices. Conventional CP solvers associate
element with a specialized filtering algorithm, but useful linear relaxations, based
on OR-style polyhedral analysis, have recently been proposed as well [20]. Thus
each element constraint can activate a domain reduction algorithm in the in-
ference stage and generate linear inequalities, for addition to a continuous re-
laxation, in the relaxation stage. If the search branches on a violated element
constraint, then new problem restrictions are generated in a way that makes
sense when that particular constraint is violated.

The popular all-different and cumulative constraints are similar in that they
also have well-known filters [31,2] and were recently provided with linear re-
laxations [36,22]. These relaxations are somewhat weak and may not be useful,
but the user always has the option of turning off or on the available filters and
relaxations, perhaps depending on the current depth in the search tree.

Extensive polyhedral analysis of the traveling salesman problem in the OR
literature [13,25] provides an effective linear relaxation of the cycle constraint. In
fact, SIMPL has the potential to make better use of the traditional OR literature
than commercial OR solvers. Structured groups of inequalities can be represented
by global constraints that trigger the generation of specialized cutting planes,
many of which go unused in today’s general-purpose solvers.

4 From Concepts to Implementation

SIMPL is implemented in C++ as a collection of object classes, as shown in
Fig. 1. This makes it easy to add new components to the system by making only
localized changes that are transparent to the other components. Examples of
components that can be included are: new constraints, different relaxations for
existing constraints, new solvers, improved inference algorithms, new branch-
ing modules and selection modules, alternative representations of domains of
variables, etc. The next sections describe some of these components in detail.

4.1 Multiple Problem Relaxations

Each iteration in the solution of an optimization problem P examines a restric-
tion N of P. In a tree search, for example, N is the problem restriction at
the current node of the tree. Since solving N can be hard, we usually solve a
relaxation’ Ng of N, or possibly several relaxations.

! In general, we say that problem Qr is a relaxation of problem @ if the feasible region
of Qr contains the feasible region of Q.
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Figurel. Main components of SIMPL

In an integrated CP-IP modeling system, the linear constraints in the hybrid
formulation are posted to a Linear Programming (LP) solver, and some (or all) of
them may be posted to a CP solver as well. The CP solver also handles the con-
straints that cannot be directly posted to the LP solver (e.g. global constraints).
Notice that each solver only deals with a relaxation of the original problem P
(i.e. a subset of its constraints). In this example, each problem restriction N has
two relaxations: an LP relaxation and a CP relaxation. Extending this idea to
more than two kinds of relaxations is straightforward.

In principle, the LP relaxation of N could simply ignore the constraints that
are not linear. Nevertheless, this relaxation can be strengthened by the addition
of linear relaxations of those constraints, if available (see Sect. 4.2).

4.2 Constraints and Constraint Relaxations

In SIMPL, the actual representation of a constraint of the problem inside any
given relaxation is called a constraint relazation. Every constraint can be asso-
ciated with a list of constraint relaxation objects, which specify the relaxations
of that constraint that will be used in the solution of the problem under consid-
eration. To post a constraint means to add its constraint relaxations to all the
appropriate problem relaxations. For example, both the LP and the CP relax-



ations of a linear constraint are equal to the constraint itself. The CP relaxation
of the element constraint is clearly equal to itself, but its LP relaxation can be
the convex hull formulation of its set of feasible solutions [14]. Besides the ones
already mentioned in Sect. 3.2, other constraints for which linear relaxations are
known include cardinality rules [37] and sum [38].

For a branch-and-bound type of search, the problem relaxations to be solved
at a node of the enumeration tree depend on the state of the search at that
node. In theory, at every node, the relaxations are to be created from scratch
because constraint relaxations are a function of the domains of the variables of
the original (non-relaxed) constraint. Nevertheless, this can be very inefficient
because a significant part of the constraints in the relaxations will be the same
from node to node. Hence, we divide constraint relaxations in two types:

Static: those that change very little (in structure) when the domains of its vari-
ables change (e.g. relaxations of linear constraints are equal to themselves,
perhaps with some variables removed due to fixing);

Volatile: those that radically change when variable domains change (e.g. some
linear relaxations of global constraints).

To update the problem relaxations when we move from one node in the search
tree to another, it suffices to recompute volatile constraint relaxations only. This
kind of update is not necessary for the purpose of creating valid relaxations, but
it is clearly beneficial from the viewpoint of obtaining stronger bounds.

4.3 Search

The main search loop in SIMPL is implemented as shown in Fig. 2. Here, NV

procedure Search(A)
If A # ( and stopping criteria not met
N := A.getNextNode()
N .explore()
A.addNodes (N .generateRestrictions())
Search(A)

Figure2. The main search loop in SIMPL

is again the current problem restriction, and A is the current list of restric-
tions waiting to be processed. Depending on how A, N and their subroutines
are defined, we can have different types of search, as mentioned in Sect. 3.1.
The routine N .explore() implements the infer-relax sequence. The routine
N .generateRestrictions() creates new restrictions, and A.addNodes () adds
them to A. Routine A.getNextNode() implements a mechanism for selecting
the next restriction, such as depth-first, breadth-first or best bound.

In tree search, N is the problem restriction that corresponds to the current
node, and A is the set of open nodes. In local search, N is the restriction that de-
fines the current neighborhood, and A is the singleton containing the restriction
that defines the next neighborhood to be searched. In Benders decomposition,
N is the current subproblem and A is the singleton containing the next subprob-
lem to be solved. In the case of Benders, the role of N.explore() is to infer



Benders cuts from the current subproblem, add them to the master problem,
and solve the master problem. N .generateRestrictions() uses the solution
of the master problem to create the next subproblem.

In the sequel, we will restrict our attention to branch-and-bound search.

Node Exploration. Figure 3 describes the behavior of N.explore() for a
branch-and-bound type of search. Steps 1 and 4 are inference steps where we

1. Pre-relaxation inference

2. Repeat

3. Solve relaxations

4 Post-relaxation inference

5. Until (no changes) or (iteration limit)

Figure3. The node exploration loop in branch-and-bound

try to use the information from each relaxation present in the model to the
most profitable extent. Section 4.4 provides further details about the types of
inference used in those steps. The whole loop can be repeated multiple times, as
long as domains of variables keep changing because of step 4, and the maximum
number of iterations has not been reached. This process of re-solving relaxations
and looking for further inferences behaves similarly to a fix point calculation.

Branching. SIMPL implements a tree search by branching on constraints. This
scheme is considerably more powerful and generic than branching on variables
alone. If branching is needed, it is because some constraint of the problem is
violated and that constraint should “know” what to do. This knowledge is em-
bedded in the so called branching module of that constraint. For example, if
a variable # € {0,1} has a fractional value in the current LP, its indomain
constraint I, is violated. The branching module of I, will then output two con-
straints: © € {0} and = € {1}, meaning that two subproblems should be created
by the inclusion of those two new constraints. In this sense, branching on the
variable z can be interpreted as branching on I,.. In general, a branching module
returns a sequence of sets of constraints C'p, ... ,Cj. This sequence means that
k subproblems should be created, and subproblem 4 can be constructed from the
current problem by the inclusion of all constraints present in the set C;. There
is no restriction on the types of constraints that can be part of the sets C;.

Clearly, there may be more than one constraint violated by the solution of the
current set of problem relaxations. A selection module is the entity responsible
for selecting, from a given set of constraints, the one on which to branch next.
Some possible criteria for selection are picking the first constraint found to be
violated or the one with the largest degree of violation.

4.4 Inference

We now take a closer look at the inference steps of the node exploration loop
in Fig. 3. In step 1 (pre-relaxation inference), one may have domain reduc-
tions or the generation of new implied constraints (see [18]), which may have
been triggered by the latest branching decisions. If the model includes a set of



propositional logic formulas, this step can also execute some form of resolution
algorithm to infer new resolvents. In step 4 (post-relaxation inference), other
types of inference may take place, such as fixing variables by reduced cost or the
generation of cutting planes. After that, it is possible to implement some kind
of primal heuristic or to try extending the current solution to a feasible solution
in a more formal way, as advocated in Sect. 9.1.3 of [14].

Since post-relaxation domain reductions are associated with particular re-
laxations, the reduced domains that result are likely to differ across relaxations.
Therefore, at the end of the inference steps, a synchronization step must be
executed to propagate domain reductions across different relaxations. This is
shown in Fig. 4. In step 6, D], denotes the domain of v inside relaxation r, and

For each problem relaxation r
V,. := variables with changed domains in r
V:=VUuV,
For each v € V.
D, := D, N Dy
For each v € V
Post comstraint v € D,

0N U WN -

Figure4. Synchronizing domains of variables across multiple relaxations

D, works as a temporary domain for variable v, where changes are centralized.
The initial value of D,, is the current domain of variable v. By implementing the
changes in the domains via the addition of indomain constraints (step 8), those
changes will be transparently undone when the search moves to a different part
of the enumeration tree. Similarly, those changes are guaranteed to be redone if
the search returns to descendents of the current node at a later stage.

5 SIMPL Examples

SIMPL’s syntax is inspired by OPL [34], but it includes many new features.

Apart from the resolution algorithm used in Sect. 5.3, SIMPL is currently
able to run all the examples presented in this section. Problem descriptions and
formulations were taken from Chapter 2 of [14].

5.1 A Hybrid Knapsack Problem
Let us consider the following integer knapsack problem with a side constraint.

min 5z + 8o + 4x3
subject to 3x1 + bxo + 223 > 30
all-different(x1, xa, x3)
xz; €{1,2,3,4}, for all j

To handle the all-different constraint, a pure MIP model would need auxiliary
binary variables: y;; = 1 if and only if z; = j. A SIMPL model for the above
problem is shown in Fig. 5. The model starts with a DECLARATIONS section
in which constants and variables are defined. The objective function is defined



in line 06. Notice that the range over which the index i takes its values need
not be explicitly stated. In the CONSTRAINTS section, the two constraints of the
problem are named totweight and distinct, and their definitions show up in
lines 09 and 12, respectively. The RELAXATION statements in lines 10 and 13
indicate the relaxations to which those constraints should be posted. The linear
constraint will be present in both the LP and the CP relaxations, whereas the
alldiff constraint will only be present in the CP relaxation. In the SEARCH
section, line 15 indicates we will do branch-and-bound (BB) with depth-first
search (DEPTH). The BRANCHING statement in line 16 says that we will branch
on the first of the x variables that is not integer (remember from Sect. 4.3 that
branching on a variable means branching on its indomain constraint).

01. DECLARATIONS

02. n = 3; cost[1..n] = [5,8,4]; weight[1..n] = [3,5,2]; limit = 30;
03. DISCRETE RANGE xRange = 1 TO 4;

04. x[1..n] IN xRange;

05. OBJECTIVE

06. MIN SUM i OF cost[i]l*x[i]

07. CONSTRAINTS

08. totweight MEANS {

09. SUM i OF weight[i]*x[i] >= limit
10. RELAXATION = {LP, Cs} }

11. distinct MEANS {

12. alldiff (x)

13. RELAXATION = {cs} }

14. SEARCH

15. TYPE = {BB:DEPTH}

16. BRANCHING = {x:FIRST}

Figure5. SIMPL model for the Hybrid Knapsack Problem

Initially, bounds consistency maintenance in the CP solver removes value 1
from the domain of z9 and the solution of the LP relaxation is z = (2%,4, 1).
After branching on z1 < 2, bounds consistency determines that 1 > 2, zo > 4
and x3 > 2. At this point, the alldiff constraint produces further domain
reduction, yielding the feasible solution (2,4, 3). Notice that no LP relaxation
had to be solved at this node. In a similar fashion, the CP solver may be able
to detect infeasibility even before the linear relaxation has to be solved.

5.2 A Lot Sizing Problem

A total of P products must be manufactured over 1" days on a single machine
of limited capacity C, at most one product each day. When manufacture of a
given product ¢ begins, it may proceed for several days, and there is a minimum
run length r;. Given a demand d;; for each product ¢ on each day ¢, it is usually
necessary to hold part of the production of a day for later use, at a unit cost
of h;;. Changing from product ¢ to product j implies a setup cost g;;. Frequent
changeovers allow for less holding cost but incur more setup cost. The objective
is to minimize the sum of the two types of costs while satisfying demand.

Let y; = 1 if and only if product 7 is chosen to be produced on day t, and let
x;t be the quantity of product i produced on day t. In addition, let us, v; and s;¢
represent, respectively, for day ¢, the holding cost, the changeover cost and the



ending stock of product i. Figure 6 exhibits a SIMPL model for this problem.
We have omitted the data that initializes matrices d, h, ¢ and r. We have also
left out the statements that set yo = 0 and s;0 =0 for i € {1,..., P}.

01. DECLARATIONS

02. P=5; T=10; C = 50;

03. df1..P,1..T] = ; h[1..P,1..T] = ; q[0..P,1..P] = ; r[1..P] = ;
04. CONTINUOUS RANGE xRange = 0 TO C;

05. DISCRETE RANGE yRange = 0 TO P;

06. x[1..P,1..T] IN xRange; y[0..T] IN yRange;

07. ul1..T], v[1..T], s[1..P,0..T] IN nonegative;

08. OBJECTIVE

09. MIN SUM t OF ult] + v[t]

10. RELAXATIONS

11. LP, CS

12. CONSTRAINTS

13. holding MEANS { ult] >= suM i OF h[i,t]#s[i,t] FORALL t }
14. setup MEANS { v[t] >= qly[t-1],y[t]] FORALL t }

15. stock MEANS { s[i,t-1] + x[i,t] = d[i,t] + s[i,t] FORALL i,t }
16. linkyx MEANS { y[t] <> i -> x[i,t] = 0 FORALL i,t }

17. minrun MEANS {

18. y[t-11 <> i and y[t] = i ->

19. (y[t+k] = i FORALL k IN 1 TO r[i]-1) FORALL i,t }

20. SEARCH

21. TYPE = {BB:BEST}

22. BRANCHING = {setup:MOST}

Figure6. SIMPL model for the Lot Sizing Problem

In line 07, we use the predefined continuous range nonegative. Notice the
presence of a new section called RELAXATIONS, whose role in this example is
to define the default relaxations to be used. As a consequence, the absence of
RELAXATION statements in the declaration of constraints means that all con-
straints will be posted to both the LP and ¢S relaxations. The holding and
stock constraints define, respectively, holding costs and stock levels in the usual
way. The setup constrains make use of variable indexing to obtain the desired
meaning for the v; variables. The ¢S relaxation of these constraints uses element
constraints, and the LP relaxation uses the corresponding linear relaxation of
element. The symbol => in lines 16 and 18 implements a one-way link constraint
of the form A — B (see [18]). This means that whenever condition A is true, B is
imposed as a constraint of the model, but we do not worry about the contrapos-
itive. Condition A may be a more complicated logical statement and B can be
any collection of arbitrary constraints. There are also two-way link constraints
such as “implies” (=>) and “if and only if” (<=>) available in SIMPL. Here, the
linkyx constraints ensure that x;; can only be positive if y; = ¢, and the minrun
constraints make production last the required minimum length. The statements
in lines 21 and 22 define a branch-and-bound search with best-bound node selec-
tion, and branching on the most violated of the setup constraints, respectively.

5.3 Processing Network Design

This problem consists of designing a chemical processing network. In practice
one usually starts with a network that contains all the processing units and
connecting links that could eventually be built (i.e. a superstructure). The goal



is to select a subset of units that deliver the required outputs while minimizing
installation and processing costs. The discrete element of the problem is the
choice of units, and the continuous element comes in determining the volume of
flow between units. Let us consider the simplified superstructure in Fig. 7(a).
Unit 1 receives raw material, and units 4, 5 and 6 generate finished products. The

build MEANS {
yi => (y2 or y3), y3 => y4, y2 => yi,
y3 => (y5 or y6), y2 => (y4 or y5),
y4 => (y2 or y3), y2 => y6, y3 => yi,
y5 => (y2 or y3), y6 => (y2 or y3)
RELAXATION = {LP, CS}
INFERENCE = {RESOLUTION} }

Figure?. (a) Network superstructure (b) The INFERENCE statement in SIMPL

output of unit 1 is then processed by unit 2 and/or 3, and their outputs undergo
further processing. For the purposes of this example, we will concentrate on the
selection of units, which is amenable to the following type of logical reasoning. Let
the propositional variable y; be true when unit 7 is installed and false otherwise.
From Fig. 7(a), it is clearly useless to install unit 1 unless one installs unit
2 or unit 3. This condition can be written as y; = (y2 V y3). Other rules of
this kind can be derived in a similar way. SIMPL can take advantage of the
presence of such rules in three ways: it can relax logical propositions into linear
constraints; it can use the propositions individually as two-way link constraints
(see Sect. 5.2); and it can use the propositions collectively with an inference
algorithm to deduce stronger facts. The piece of code in Fig. 7(b) shows how
one would group this collection of logical propositions as a constraint in SIMPL.
In addition to the known RELAXATION statement, this example introduces an
INFERENCE statement whose role is to attach an inference algorithm (resolution)
to the given group of constraints. This algorithm will be invoked in the pre-
relaxation inference step, as described in Sect. 4.4. Newly inferred resolvents can
be added to the problem relaxations and may help the solution process.

5.4 Benders Decomposition

Recall from Sect. 4.3 that Benders decomposition is a special case of SIMPL’s
search mechanism. Syntatically, to implement Benders decomposition the user
only needs to include the keyword MASTER in the RELAXATION statement of each
constraint that is meant to be part of the master problem (remaining constraints
go to the subproblem), and declare TYPE = {BENDERS} in the SEARCH section.
As is done for linear relaxations of global constraints, Benders cuts are generated
by an algorithm that resides inside each individual constraint. At present, we
are in the process of implementing the class Benders in the diagram of Fig. 1.

6 Other SIMPL Features

Supported Solvers. Currently, SIMPL can interface with CPLEX [23] and
LP_SOLVE [5] as LP solvers, and with ECL'PS¢ [35] as a CP solver. Adding a



new solver to SIMPL is an easy task and amounts to implementing an interface
to that solver’s callable library, as usual. The rest of the system does not need to
be changed or recompiled. One of the next steps in the development of SIMPL
is the inclusion of a solver to handle non-linear constraints.

Application Programming Interface. Although SIMPL is currently a purely
declarative language, it will eventually include more powerful (imperative) search
constructs, such as loops and conditional statements. Meanwhile, it is possible to
implement more elaborate algorithms that take advantage of SIMPL’s paradigm
via its Application Programming Interface (API). This API can be compiled
into any customized C++ code and works similarly to other callable libraries
available for commercial solvers like CPLEX or XPRESS [9].

Search Tree Visualization. Once a SIMPL model finishes running, it is possi-
ble to visualize the search tree by using Leipert’s VBC Tool package [26]. Nodes
in the tree are colored red, green, black and blue to mean, respectively, pruned
by infeasibility, pruned by local optimality, pruned by bound and branched on.

7 Conclusions and Future Work

In this paper we introduce a system for dealing with integrated models called
SIMPL. The main contribution of SIMPL is to provide a user-friendly framework
that generalizes many of the ways of combining Constraint Programming (CP)
and Operations Research (OR) techniques when solving optimization problems.
Although there exist other general-purpose systems that offer some form of hy-
brid modeling and solver cooperation, they do not incorporate various important
features available in SIMPL.

The implementation of specialized hybrid algorithms can be a very cumber-
some task. It often involves getting acquainted with the specifics of more than
one type of solver (e.g. LP, CP, NLP), as well as a significant amount of com-
puter programming, which includes coordinating the exchange of information
among solvers. Clearly, a general purpose code is built at the expense of perfor-
mance. Rather than defeating state-of-the-art implementations of cooperative
approaches that are tailored to specific problems, SIMPL’s objective is to be a
generic and easy-to-use platform for the development and empirical evaluation
of new ideas in the field of hybrid CP-OR algorithms.

As SIMPL is still under development, many new features and improvements
to its functionality are the subject of ongoing efforts. Examples of such en-
hancements are: increasing the vocabulary of the language with new types of
constraints; augmenting the inference capabilities of the system with the gen-
eration of cutting planes; broadening the application areas of the system by
supporting other types of solvers; and providing a more powerful control over
search. Finally, SIMPL is currently being used to test integrated models for a
few practical optimization problems such as the lot-sizing problem of Sect. 5.2.
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