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Logic, Optimization, and CP

2

There are deep connections between logic, 
optimization, and constraint programming (CP) 
– going back at least to George Boole.

This is a broad overview of these
connections, as they developed
over the 170-year period from 
Boole’s work to today’s research.

Collaboration among these fields
could provide a fruitful trajectory
for future research.
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From Boole to Logic Programming & CP
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From Boole to Logic Programming & CP
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George Boole advanced a project begun by Leibniz,
although Boole (largely self-taught) was initially 
unaware of Leibniz’s work.

Leibniz believed that all of science can be formulated 
in a logical language (characteristica universalis) in 
which implications can be obtained by calculation 
(calculus ratiocinator), such as the calculus of 
infinitesimals.

Boole devised a language in which logical deductions 
can be calculated.

George Boole
1815-1864

Gottfried Wilhelm Leibniz
1646-1716



From Boole to Logic Programming & CP
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Boole’s work was largely forgotten for a century.  

But it was studied by philosopher Charles 
Sanders Peirce in the late 19th century.

Boole introduced multi-place predicates, 
to which Pearce added logical quantifiers 
(“for all,” “for some”).

Gottlob Frege developed a fully formed 
first-order logic in the 1890s.  

C. S. Peirce
1839-1914

Gottlob Frege
1848-1925



From Boole to Logic Programming & CP
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Löwenheim, Skolem, Herbrand and others developed systematic 
semantics for first-order logic.  They proved fundamental theorems, 
including Herbrand’s compactness theorem.

There is an almost identical theorem in infinite-dimensional integer 
programming.

.

Thoralf Skolem
1887-1963

Leopold Löwenheim
1878-1957

Jacques Herbrand
1908-1931



From Boole to Logic Programming & CP
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Herbrand’s theorem 
(compactness)

A formula of first order logic 
is unsatisfiable if and only if 
some finite set of ground 
instances of the formula is 
unsatisfiable.

Compactness theorem for 
integer programming

An infinite set of linear 
inequalities with integer 
variables is unsatisfiable 
if and only of some finite 
subset is unsatisfiable.

Proof?

The 2 theorems are structurally almost 
identical and have almost exactly the 
same proof.



From Boole to Logic Programming & CP
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Logic programming arose from an effort to combine declarative and 
procedural modeling in quantified logic.

A logic program can be read as a declarative statement of the 
problem, as well as a procedure for obtaining the solution.

This later became a fundamental idea of constraint programming.

.

Alain Colmerauer
1941-2017

Robert Kowalski
1941-



From Boole to Logic Programming & CP
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A key step in first order logic is unification, which finds variable 
substitutions that make two instantiations of a formula identical.  
This is essentially a constraint solving problem.

likes(Sue,X), likes(Y,Bob)
unified by setting X = Bob, Y = Sue

Logic programming was extended to constraint logic programming 
in Prolog II, which added disequations to the unification step.  Other 
forms of constraint solving were added later.

CLP(R)



From Boole to Logic Programming & CP
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Constraint programming “toolkits” retained constraint solving in a 
procedural/declarative framework, without requiring a strict logic 
programming formalism.

This led to CP-style modeling with 
finite domains and global constraints.  

Constraint propagation allows efficient 
inference from constraint sets.

The constraint satisfaction literature 
studied consistency concepts and their
connection with backtracking (more
on this later). 
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From Boole to SAT
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From Boole to SAT
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Much of Boole’s and Pearce’s work dealt with “Boolean algebra,” 
which is essentially propositional logic (“ground level” propositions).

The philosopher W. V. Quine proposed (1950s) a consensus method 
for simplifying propositional formulas that is a complete inference 
method for propositional logic.  

When applied to CNF rather than DNF, the 
method is resolution.

.

W. V. Quine
1908-2000

Resolution:



From Boole to SAT
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The Davis-Putnam algorithm, devised to check validity in first-order 
logic, applies resolution to instantiated (ground level) propositions.

Resolution was later replaced with more efficient methods for 
checking satisfiability of CNF formulas, such as branching in the 
David-Putnam-Loveland-Logemann (DPLL) method.

These led to today’s highly efficient SAT methods, which use 
watched literals, conflict clauses, etc.

.

Martin Davis
1928-2023

Hilary Putnam
1926-2016



From Boole to SAT
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Conflict clauses lie at the heart of SAT algorithms.  
We will see later that they are actually Benders cuts.

.
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Confict clauses enable backjumping
and reduce search.

Refutation using DPLL tree 
and conflict clauses:

Apply unit resolution at each node.
Backtrack when unsatisfiable.



From Boole to SAT
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Conflict clauses lie at the heart of SAT algorithms.  
We will see later that they are actually Benders cuts.
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Apply unit resolution at each node.
Backtrack when unsatisfiable.

Confict clauses enable backjumping
and reduce search.

We will derive this conflict clause



Conflict graph
from implication graph

Literals on “reason side”
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From Boole to SAT
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Conflict clause               is obtained from unit refutation by 
analyzing the implication graph at that node.
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From Boole to Decision Diagrams
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From Boole to Decision Diagrams
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C. S. Peirce applied Boolean methods to electrical
switching circuits … in 1886!

This work was again forgotten for decades.

Claude Shannon was required to take a philosophy 
course at the University of Michigan in the 1930s, 
which exposed him to Peirce’s work.

This gave him the idea for his famous master’s thesis 
at MIT (1937), in which he applied Boolean logic to 
electronic switching circuits.

This gave rise to the computer age.
Claude Shannon

1916-2001



From Boole to Decision Diagrams
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Meanwhile, C. Y. Lee (1959) proposed binary-decision programs 
as a means of calculating the output of switching circuits.

S. B. Akers (1978) later represented these as binary 
decision diagrams.  

Randy Bryant (1986) showed that ordered BDDs 
provide a unique minimal representation of a 
Boolean function.

This led to applications in logic circuits and
product configuration.

Decision diagrams are now used for filtering and 
propagation in CP…



From Boole to Decision Diagrams

Propagation through domains.

filters domains to 

no more filtering possible for propagated domains



From Boole to Decision Diagrams

1
2

3

1

2

3

1

2

1

1

2
1

1

2

2 3

1 1

2

Propagation through domains.
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Modeling
with recursive 
formulations

Relaxation
with relaxed 

diagrams

Primal
heuristics

with restricted 
diagrams

Constraint
propagation

through a 
relaxed diagram

Search
with a novel branch-and-

bound method

Optimization

Postoptimality
analysis

with sound diagrams

From Boole to Decision Diagrams

Decision diagrams can 
performs all functions 
of an optimization solver
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From Boole to Probability and Belief Logics
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From Boole to Probability and Belief Logics
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Boole considered probability logic to be his most important 
contribution.  His major work was An Investigation of the Laws of 
Thought on Which are Founded the Mathematical Theories of Logic 
and Probabilities (1854).

Theodore Hailperin (1976) showed that Boole’s probability logic 
poses a linear programming problem.

Nils Nilsson (1986) proposed a very 
similar model for probability logic in AI.

This model is naturally solved by 
column generation, a widely used 
method in OR that generalizes 
Dantzig-Wolfe decomposition.

Nils Nilsson
1933-2019

Theodore Hailperin
1915-2014



From Boole to Probability and Belief Logics
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Statement Probability

A 0.9

A → B 0.8

B →C 0.4

There are 8 possible outcomes:

A B C Prob.

false false false p000

false false true p001

false true false p010

false true true p011

true false false p100

true false true p101

true true false p110

true true true p111p100 + p101 + p110 + p111 = 0.9
p000 + p001 + p010 + p011 + p110 + p111 = 0.8
p000 + p001 + p011 + p100 + p101 + p111 = 0.4
p000 +  + p111 = 1, pijk  0

Solve the linear programming problems:

max/min  p001 + p011 + p101 + p111

subject to 

There are exponentially many variables, 
but LP column generation deals with this.

Example: What are the possible 
probabilities of statement C, given 
the following?

The result is a range of probabilities 
for C:

0.1 to 0.4



From Boole to Probability and Belief Logics
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Dempster-Shafer theory (belief logic) has a linear programming 
model similar to the one for Boole’s probability logic.

Nonmonotonic logic has a succinct integer programming model
that arguably makes the concept clearer than a logical formulation.

Confidence factors in rule-based systems
have a mixed integer/linear programming
model.

A. P. Dempster
1929-

Glenn Shafer
1946-
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From Fourier to Filtering
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Fourier (1820s) developed a theory of linear inequalities and a method of 
solving them, later rediscovered by Motzkin (1936).    The method is now 
called Fourier-Motzkin elimination.

Kantorovich (1939) formulated a linear optimization problem subject to 
inequality constraints – i.e., linear programming. 
Dantzig (1940s) independently proposed and solved the same model.

From Fourier to Filtering

Joseph Fourier
1768-1830

Theodore Motzkin
1908-1970

Leonid Kantorovich
1912-1986

George Dantzig
1914-2005



35

Fourier-Motzkin elimination can solve LP problems, but Dantzig’s 
simplex method is far more efficient and remains the method of choice 
for most applications today.

LP with integer variables, or integer programming, followed shortly 
thereafter...  

…along with the study of combinatorial optimization in general, 
beginning with the traveling salesman problem.

From Fourier to Filtering
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Two major success stories for collaboration between CP and optimization:

1.  Network flow theory, a special case of LP, has been widely applied to 
filtering methods in CP, beginning with the all-different constraint.  

LP duality plays a key role in this work.

2.  Edge-finding, an algorithm for combinatorial scheduling, led to powerful 
domain reduction methods for scheduling problems in CP.

Edge finding was originally published in the OR journal Management Science 
(Carlier and Pinson 1989), with most subsequent papers in the CP literature.

From Fourier to Filtering



Example of network flows and filtering.  

An all-different constraint has a solution 
if and only if there is a perfect matching:

37

From Fourier to Filtering
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(x1,x2,x3,x4,x5) = (1,2,3,5,4)



The matching problem can be viewed as a maximum flow problem 
on a network, which is a linear programming problem.

The dual solution of the problem 
indicates how to filter domains:

38

From Fourier to Filtering
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Example of edge-finding and filtering. 
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From Fourier to Filtering

7 < 3 + 3 + 2

If job 2 is not before 3 and 5, then there is not enough time in their time
windows (7 hours) to run all 3 jobs (requiring 8 hours).
So, time window for job 2 must be reduced to [0,2], which in infeasible.

Edge-finding check can run in polynomial time, and can be generalized
to other scheduling problems .

Edge-finding argument that job 2 must precede jobs 3 and 5:

Brackets are
time windows
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From Fourier to Inference Duality
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After a chance meeting on a rail platform near Princeton University, 
Dantzig and von Neumann combined ideas from LP and game theory 
to arrive at LP duality.

Duality has become a powerful idea in optimization, e.g. Lagrangian
duality, Dantzig-Wolfe decomposition (column generation), and 
Benders decomposition (row generation).

From Fourier to Inference Duality

Joseph-Louis Lagrange
1736-1813

George Dantzig
1914-2005

John von Neumann
1903-1957



All optimization duals are special cases of inference duality

Find best feasible 
solution by 
searching over 
values of x.

Find a proof of optimal value 
by searching over proofs P.

Primal problem:
Optimization

Dual problem:
Inference

The type of dual depends on the inference method used.
In classical LP, the proof is a tuple of dual multipliers.
A complete inference method yields a strong dual (no duality gap) 43

From Fourier to Inference Duality



Type of Dual Inference Method Strong?

Linear programming Nonnegative linear combination 
+ material implication

Yes*

Lagrangian Nonnegative linear combination 
+ domination

No

Surrogate Nonnegative linear combination 
+ material implication

No

Subadditive Cutting planes Yes**

*Due to Farkas Lemma
**Due to Chvátal’s theorem

From Fourier to Inference Duality



Benders decomposition was designed for problems that become LPs 
after some variables are fixed.

The dual of the LP subproblem provides a Benders 
cut that excludes undesirable solutions.

Generalization to logic-based Benders cuts:

Using the inference dual, the subproblem can 
in principle be any optimization or constraint 
satisfaction problem.

So, a logical perspective leads to a substantial generalization
with many new applications.

45

From Fourier to Inference Duality

Jacques Benders
1924-2017
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From Fourier to Inference Duality

Trial value x
that solves 

master

Benders cut

x

Minimize cost z subject to bounds 
given by Benders cuts, obtained 
from values of x attempted in 
previous iterations k.

Obtain proof of optimality 
(solution u of LP dual).
Use dual solution to obtain
a Benders cut.

Classical Benders decomposition

Solve the problem

Master problem Subproblem

Repeat until the master problem and subproblem have the same 
optimal value.

• Subproblem must be an LP.
• Benders cuts are based on 

classical duality.



47

From Fourier to Inference Duality

Trial value x
that solves 

master

Benders cut

x

Minimize cost z subject to bounds 
given by Benders cuts, obtained 
from values of x attempted in 
previous iterations k.

Obtain proof of optimality 
(solution of inference dual).
Use same proof to deduce 
cost bounds for other values
of x, yielding a Benders cut

Logic-based Benders decomposition (LBBD)

Solve the problem

Master problem Subproblem

Repeat until the master problem and subproblem have the same 
optimal value.

• Subproblem can be any 
optimization problem.

• View the subproblem dual 
as a logical inference 
problem.



LBBD has been applied to a wide range of problems that simplify 
(perhaps by decoupling) when some variables are fixed.

It is a useful tool for combining optimization and CP.

Typically, an optimization method (such as MILP) solves the master 
problem and CP solves the subproblem (often a scheduling problem).

The conflict clauses that are central to SAT solvers are a special case 
of logic-based Benders cuts.

SAT-modulo-theories are also solved as a special case of LBBD.

48

From Fourier to Inference Duality
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From Fourier to Inference Duality

The conflict graph
is a solution of the

inference dual

The resulting conflict
clause is a Benders cut

1 5x x

Conflict clauses as logic-based Benders cuts

• The subproblem is the problem at a node of the DPLL search tree.
• The inference dual is defined by unit resolution.
• The dual solution is a unit refutation, encoded in a conflict graph.
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From Fourier to Cutting Planes
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From Fourier to Cutting Planes

Cutting planes, studied for over 60 years, are an essential component 
of integer programming solvers.

They are closely related to 
resolution and Fourier-
Motzkin elimination.

They approximate the convex 
hull of integer solutions, so 
that the LP relaxation gives a
tighter bound.

Original inequality 
constraints

Cutting plane

Convex hull 
of integer solutions

Ralph Gomory
1929-



When the logical clauses are written as inequalities 
(as suggested by Dantzig), resolution is Fourier-Motzkin
elimination combined with rounding of fractions.

Quine’s resolution method is very similar to Fourier-Motzkin
elimination.

From Fourier to Cutting Planes

Resolution:
A projection
method for 
logical clauses

A projection
method for linear 
inequalities 



This means that a resolvent is a rank 1 Chvátal-Gomory cut.

From Fourier to Cutting Planes

The fundamental theorem of cutting planes (due to Chvátal) 
states that any valid cutting plane can be obtained from 
repeated generation of rank 1 Chvátal-Gomory cuts.  

The proof of this theorem is based on the resolution 
algorithm!

Cutting planes lie at the heart of integer programming, 
and logic lies at the heart of cutting planes

Vašek Chvátal
1946-



From Fourier to Cutting Planes

Consistency is a fundamental concept in CP.

It is not satisfiability or feasibility.  

We can view a consistent constraint set as one in which any infeasible 
partial assignment is inconsistent with some constraint.  

This avoids backtracking, because each node corresponds to a partial 
assignment defined by branches so far.  We can detect whether deeper 
branching can find a feasible solution.

CP solvers try to achieve various kinds of partial consistency 
(e.g, domain consistency) to reduce backtracking.



Cutting planes are normally viewed as tightening an LP relaxation 
to obtain better bounds.

Separating cuts exclude fractional solutions.  

But cutting planes also achieve (partial) consistency!

They exclude inconsistent partial assignments.

This helps to explain why they can reduce backtracking.

From Fourier to Cutting Planes



From Fourier to Cutting Planes

The constraint set

is not consistent

Backtracking can result
even with forward checking.

x1

x2

Violates no 
constraint



From Fourier to Cutting Planes

x1

x2

The constraint set

is consistent

No backtracking 
with forward checking

Don’t take the x1 = 1 branch

Violates a 
constraint

Cutting plane



LP-consistency is a type of consistency that is relevant to IP:

An LP-consistent constraint set is one in which any infeasible partial 
assignment is infeasible in the LP relaxation.

This allows us to recognize inconsistent partial assignments by 
solving an LP.

Cutting planes can achieve partial LP consistency and thereby reduce 
backtracking.

Bounding and fractional solutions need not play a role.

From Fourier to Cutting Planes



From Fourier to Cutting Planes

The constraint set

is not LP-consistent

Backtracking can result
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From Fourier to Cutting Planes
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From Fourier to Cutting Planes

Theorem:  An IP constraint set is LP-consistent if and only if all implied 
logical clauses (written as inequalities) are rank 1 Chvátal-Gomory cuts.

This again links logic and cutting planes.



Theorem:  An IP constraint set is LP-consistent if and only if all implied 
logical clauses (written as inequalities) are rank 1 Chvátal-Gomory cuts.

This again links logic and cutting planes.

Let consistency cuts be cutting planes that cut off inconsistent partial 
assignments.

We can achieve partial LP consistency with a restricted form of RLT 
(reformulation and linearization technique).

RLT-based consistency cuts can reduce the search tree substantially 
more than traditional separating RLT cuts, also with time savings.

From Fourier to Cutting Planes



Advances in the logic-optimization-CP interface

• Constraint logic programming, leading to CP
• Fundamental theorem of cutting planes in IP
• Conflict-directed clause generation in SAT
• Logic-based Benders decomposition
• Combinatorial optimization with decision diagrams
• IP models for first-order logic, nonmonotonic logic
• LP model with column generation for probability logic
• LP models for belief logics
• Flow-based filtering methods in CP
• CP-based solution of scheduling problems
• Reinterpretation of cutting planes as consistency maintenance
• More to come?

Summing Up



Thanks for your attention!
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