
Logic, Optimization, and
Constraint Programming

A Fruitful Collaboration

John Hooker
Carnegie Mellon University

Simons Institute, UC Berkeley

April 2023

Logic, Optimization, and CP

2

There are deep connections between logic,
optimization, and constraint programming (CP)
– going back at least to George Boole.

This is a broad overview of these
connections, as they developed
over the 170-year period from
Boole’s work to today’s research.

Collaboration among these fields
could provide a fruitful trajectory
for future research.

LOGIC OPTIMIZATION

Boole

Peirce

1st order
logic

Herbrand’s
theorem

Logic
programming

CLP

CP

Prop.
logic

Davis-
Putnam

SAT

Constraint
propagation

Constraint
satisfaction &
backtracking

Probability
logic

Belief &
default
logicsShannon

& circuits

Fourier-
Motzkin

Resolution

Cutting
planes

LP

IP

Benders
decomp.

LBBD

Duality

Inference
dual

Network
flows

Consis-
tency

Filtering

Edge
finding

Consistency
in IP

Decision
diagrams

CO

CP

in

red

4

From Boole to Logic Programming & CP

LOGIC OPTIMIZATION

Boole

Peirce

1st order
logic

Herbrand’s
theorem

Logic
programming

CLP

CP

Prop.
logic

Davis-
Putnam

SAT

Constraint
propagation

Constraint
satisfaction &
backtracking

Probability
logic

Belief &
default
logicsShannon

& circuits

Fourier-
Motzkin

Resolution

Cutting
planes

LP

IP

Benders
decomp.

LBBD

Duality

Inference
dual

Network
flows

Consis-
tency

Filtering

Edge
finding

Consistency
in IP

Decision
diagrams

CO

CP

in

red

From Boole to Logic Programming & CP

6

George Boole advanced a project begun by Leibniz,
although Boole (largely self-taught) was initially
unaware of Leibniz’s work.

Leibniz believed that all of science can be formulated
in a logical language (characteristica universalis) in
which implications can be obtained by calculation
(calculus ratiocinator), such as the calculus of
infinitesimals.

Boole devised a language in which logical deductions
can be calculated.

George Boole
1815-1864

Gottfried Wilhelm Leibniz
1646-1716

From Boole to Logic Programming & CP

7

Boole’s work was largely forgotten for a century.

But it was studied by philosopher Charles
Sanders Peirce in the late 19th century.

Boole introduced multi-place predicates,
to which Pearce added logical quantifiers
(“for all,” “for some”).

Gottlob Frege developed a fully formed
first-order logic in the 1890s.

C. S. Peirce
1839-1914

Gottlob Frege
1848-1925

From Boole to Logic Programming & CP

8

Löwenheim, Skolem, Herbrand and others developed systematic
semantics for first-order logic. They proved fundamental theorems,
including Herbrand’s compactness theorem.

There is an almost identical theorem in infinite-dimensional integer
programming.

.

Thoralf Skolem
1887-1963

Leopold Löwenheim
1878-1957

Jacques Herbrand
1908-1931

From Boole to Logic Programming & CP

9

Herbrand’s theorem
(compactness)

A formula of first order logic
is unsatisfiable if and only if
some finite set of ground
instances of the formula is
unsatisfiable.

Compactness theorem for
integer programming

An infinite set of linear
inequalities with integer
variables is unsatisfiable
if and only of some finite
subset is unsatisfiable.

Proof?

The 2 theorems are structurally almost
identical and have almost exactly the
same proof.

From Boole to Logic Programming & CP

10

Logic programming arose from an effort to combine declarative and
procedural modeling in quantified logic.

A logic program can be read as a declarative statement of the
problem, as well as a procedure for obtaining the solution.

This later became a fundamental idea of constraint programming.

.

Alain Colmerauer
1941-2017

Robert Kowalski
1941-

From Boole to Logic Programming & CP

11

A key step in first order logic is unification, which finds variable
substitutions that make two instantiations of a formula identical.
This is essentially a constraint solving problem.

likes(Sue,X), likes(Y,Bob)
unified by setting X = Bob, Y = Sue

Logic programming was extended to constraint logic programming
in Prolog II, which added disequations to the unification step. Other
forms of constraint solving were added later.

CLP(R)

From Boole to Logic Programming & CP

12

Constraint programming “toolkits” retained constraint solving in a
procedural/declarative framework, without requiring a strict logic
programming formalism.

This led to CP-style modeling with
finite domains and global constraints.

Constraint propagation allows efficient
inference from constraint sets.

The constraint satisfaction literature
studied consistency concepts and their
connection with backtracking (more
on this later).

13

From Boole to SAT

LOGIC OPTIMIZATION

Boole

Peirce

1st order
logic

Herbrand’s
theorem

Logic
programming

CLP

CP

Prop.
logic

Davis-
Putnam

SAT

Constraint
propagation

Constraint
satisfaction &
backtracking

Probability
logic

Belief &
default
logicsShannon

& circuits

Fourier-
Motzkin

Resolution

Cutting
planes

LP

IP

Benders
decomp.

LBBD

Duality

Inference
dual

Network
flows

Consis-
tency

Filtering

Edge
finding

Consistency
in IP

Decision
diagrams

CO

CP

in

red

From Boole to SAT

15

Much of Boole’s and Pearce’s work dealt with “Boolean algebra,”
which is essentially propositional logic (“ground level” propositions).

The philosopher W. V. Quine proposed (1950s) a consensus method
for simplifying propositional formulas that is a complete inference
method for propositional logic.

When applied to CNF rather than DNF, the
method is resolution.

.

W. V. Quine
1908-2000

Resolution:

From Boole to SAT

16

The Davis-Putnam algorithm, devised to check validity in first-order
logic, applies resolution to instantiated (ground level) propositions.

Resolution was later replaced with more efficient methods for
checking satisfiability of CNF formulas, such as branching in the
David-Putnam-Loveland-Logemann (DPLL) method.

These led to today’s highly efficient SAT methods, which use
watched literals, conflict clauses, etc.

.

Martin Davis
1928-2023

Hilary Putnam
1926-2016

From Boole to SAT

17

Conflict clauses lie at the heart of SAT algorithms.
We will see later that they are actually Benders cuts.

.

=1 0x =1 1x

=2 0x

=3 0x

=4 0x

=5 0x =5 1x

1x

1 5x x 2 5x x

1 5 6 1 5 6

6 1 5 6 1 5

5 2 6 5 2 6

5 6 2 5 6 2

1 2 3 4 1 3 4 2 3 4

3 4 1 2 3 1 3 2 4 1 4 2

()

()

()

() () () ()

() () () () () ()

x x x x x x

x x x x x x

x x x x x x

x x x x x x

x x x x x x x x x x

x x x x x x x x x x x x

    

→    

→    

 →   

 →       

 →         

Conflict clauses

1 2x x

Confict clauses enable backjumping
and reduce search.

Refutation using DPLL tree
and conflict clauses:

Apply unit resolution at each node.
Backtrack when unsatisfiable.

From Boole to SAT

18

Conflict clauses lie at the heart of SAT algorithms.
We will see later that they are actually Benders cuts.

.

=1 0x =1 1x

=2 0x

=3 0x

=4 0x

=5 0x =5 1x

1x

1 5x x 2 5x x

1 5 6 1 5 6

6 1 5 6 1 5

5 2 6 5 2 6

5 6 2 5 6 2

1 2 3 4 1 3 4 2 3 4

3 4 1 2 3 1 3 2 4 1 4 2

()

()

()

() () () ()

() () () () () ()

x x x x x x

x x x x x x

x x x x x x

x x x x x x

x x x x x x x x x x

x x x x x x x x x x x x

    

→    

→    

 →   

 →       

 →         

Conflict clauses

1 2x x

Refutation using DPLL tree
and conflict clauses:

Apply unit resolution at each node.
Backtrack when unsatisfiable.

Confict clauses enable backjumping
and reduce search.

We will derive this conflict clause

Conflict graph
from implication graph

Literals on “reason side”
indicate conflict clause

From Boole to SAT

19

Conflict clause is obtained from unit refutation by
analyzing the implication graph at that node.

1 5 6

1 5 6

2 5 6

2 5 6

1 3 4

2 3 4

3

3 2

4 1

4 2

()

()

()

()

(1)

(2)

(1)

(2)

(3)

(4)

x x x a

x x x b

x x x c

x x x d

x x x e

x x x e

x x f

x x f

x x f

x x f

 

 

 

 

 

 









Implication graph

Darker circles
indicate
branching
literals

1 5x x

1 5x x

20

From Boole to Decision Diagrams

LOGIC OPTIMIZATION

Boole

Peirce

1st order
logic

Herbrand’s
theorem

Logic
programming

CLP

CP

Prop.
logic

Davis-
Putnam

SAT

Constraint
propagation

Constraint
satisfaction &
backtracking

Probability
logic

Belief &
default
logicsShannon

& circuits

Fourier-
Motzkin

Resolution

Cutting
planes

LP

IP

Benders
decomp.

LBBD

Duality

Inference
dual

Network
flows

Consis-
tency

Filtering

Edge
finding

Consistency
in IP

Decision
diagrams

CO

CP

in

red

From Boole to Decision Diagrams

22

C. S. Peirce applied Boolean methods to electrical
switching circuits … in 1886!

This work was again forgotten for decades.

Claude Shannon was required to take a philosophy
course at the University of Michigan in the 1930s,
which exposed him to Peirce’s work.

This gave him the idea for his famous master’s thesis
at MIT (1937), in which he applied Boolean logic to
electronic switching circuits.

This gave rise to the computer age.
Claude Shannon

1916-2001

From Boole to Decision Diagrams

23

Meanwhile, C. Y. Lee (1959) proposed binary-decision programs
as a means of calculating the output of switching circuits.

S. B. Akers (1978) later represented these as binary
decision diagrams.

Randy Bryant (1986) showed that ordered BDDs
provide a unique minimal representation of a
Boolean function.

This led to applications in logic circuits and
product configuration.

Decision diagrams are now used for filtering and
propagation in CP…

From Boole to Decision Diagrams

Propagation through domains.

filters domains to

no more filtering possible for propagated domains

From Boole to Decision Diagrams

1
2

3

1

2

3

1

2

1

1

2
1

1

2

2 3

1 1

2

Propagation through domains.

Propagation through a relaxed decision diagram.

smaller
domains

filters domains to

no more filtering possible for propagated domains

26

Modeling
with recursive
formulations

Relaxation
with relaxed

diagrams

Primal
heuristics

with restricted
diagrams

Constraint
propagation

through a
relaxed diagram

Search
with a novel branch-and-

bound method

Optimization

Postoptimality
analysis

with sound diagrams

From Boole to Decision Diagrams

Decision diagrams can
performs all functions
of an optimization solver

27

From Boole to Probability and Belief Logics

LOGIC OPTIMIZATION

Boole

Peirce

1st order
logic

Herbrand’s
theorem

Logic
programming

CLP

CP

Prop.
logic

Davis-
Putnam

SAT

Constraint
propagation

Constraint
satisfaction &
backtracking

Probability
logic

Belief &
default
logicsShannon

& circuits

Fourier-
Motzkin

Resolution

Cutting
planes

LP

IP

Benders
decomp.

LBBD

Duality

Inference
dual

Network
flows

Consis-
tency

Filtering

Edge
finding

Consistency
in IP

Decision
diagrams

CO

CP

in

red

From Boole to Probability and Belief Logics

29

Boole considered probability logic to be his most important
contribution. His major work was An Investigation of the Laws of
Thought on Which are Founded the Mathematical Theories of Logic
and Probabilities (1854).

Theodore Hailperin (1976) showed that Boole’s probability logic
poses a linear programming problem.

Nils Nilsson (1986) proposed a very
similar model for probability logic in AI.

This model is naturally solved by
column generation, a widely used
method in OR that generalizes
Dantzig-Wolfe decomposition.

Nils Nilsson
1933-2019

Theodore Hailperin
1915-2014

From Boole to Probability and Belief Logics

30

Statement Probability

A 0.9

A → B 0.8

B →C 0.4

There are 8 possible outcomes:

A B C Prob.

false false false p000

false false true p001

false true false p010

false true true p011

true false false p100

true false true p101

true true false p110

true true true p111p100 + p101 + p110 + p111 = 0.9
p000 + p001 + p010 + p011 + p110 + p111 = 0.8
p000 + p001 + p011 + p100 + p101 + p111 = 0.4
p000 +  + p111 = 1, pijk  0

Solve the linear programming problems:

max/min p001 + p011 + p101 + p111

subject to

There are exponentially many variables,
but LP column generation deals with this.

Example: What are the possible
probabilities of statement C, given
the following?

The result is a range of probabilities
for C:

0.1 to 0.4

From Boole to Probability and Belief Logics

31

Dempster-Shafer theory (belief logic) has a linear programming
model similar to the one for Boole’s probability logic.

Nonmonotonic logic has a succinct integer programming model
that arguably makes the concept clearer than a logical formulation.

Confidence factors in rule-based systems
have a mixed integer/linear programming
model.

A. P. Dempster
1929-

Glenn Shafer
1946-

32

From Fourier to Filtering

LOGIC OPTIMIZATION

Boole

Peirce

1st order
logic

Herbrand’s
theorem

Logic
programming

CLP

CP

Prop.
logic

Davis-
Putnam

SAT

Constraint
propagation

Constraint
satisfaction &
backtracking

Probability
logic

Belief &
default
logicsShannon

& circuits

Fourier-
Motzkin

Resolution

Cutting
planes

LP

IP

Benders
decomp.

LBBD

Duality

Inference
dual

Network
flows

Consis-
tency

Filtering

Edge
finding

Consistency
in IP

Decision
diagrams

CO

CP

in

red

34

Fourier (1820s) developed a theory of linear inequalities and a method of
solving them, later rediscovered by Motzkin (1936). The method is now
called Fourier-Motzkin elimination.

Kantorovich (1939) formulated a linear optimization problem subject to
inequality constraints – i.e., linear programming.
Dantzig (1940s) independently proposed and solved the same model.

From Fourier to Filtering

Joseph Fourier
1768-1830

Theodore Motzkin
1908-1970

Leonid Kantorovich
1912-1986

George Dantzig
1914-2005

35

Fourier-Motzkin elimination can solve LP problems, but Dantzig’s
simplex method is far more efficient and remains the method of choice
for most applications today.

LP with integer variables, or integer programming, followed shortly
thereafter...

…along with the study of combinatorial optimization in general,
beginning with the traveling salesman problem.

From Fourier to Filtering

36

Two major success stories for collaboration between CP and optimization:

1. Network flow theory, a special case of LP, has been widely applied to
filtering methods in CP, beginning with the all-different constraint.

LP duality plays a key role in this work.

2. Edge-finding, an algorithm for combinatorial scheduling, led to powerful
domain reduction methods for scheduling problems in CP.

Edge finding was originally published in the OR journal Management Science
(Carlier and Pinson 1989), with most subsequent papers in the CP literature.

From Fourier to Filtering

Example of network flows and filtering.

An all-different constraint has a solution
if and only if there is a perfect matching:

37

From Fourier to Filtering

()1 2 3 4 5alldiff , , , ,x x x x x

 
 
 
 
 

1

2

1

1

1

1

2,3,5

1,2,3,5

1,5

1,3,4,5,6

x

x

x

x

x











Solution shown:
(x1,x2,x3,x4,x5) = (1,2,3,5,4)

The matching problem can be viewed as a maximum flow problem
on a network, which is a linear programming problem.

The dual solution of the problem
indicates how to filter domains:

38

From Fourier to Filtering

 
 
 
 
 

1

2

3

4

5

1

2,3

2,3

5

4,6

x

x

x

x

x











Example of edge-finding and filtering.

39

From Fourier to Filtering

7 < 3 + 3 + 2

If job 2 is not before 3 and 5, then there is not enough time in their time
windows (7 hours) to run all 3 jobs (requiring 8 hours).
So, time window for job 2 must be reduced to [0,2], which in infeasible.

Edge-finding check can run in polynomial time, and can be generalized
to other scheduling problems .

Edge-finding argument that job 2 must precede jobs 3 and 5:

Brackets are
time windows

40

From Fourier to Inference Duality

LOGIC OPTIMIZATION

Boole

Peirce

1st order
logic

Herbrand’s
theorem

Logic
programming

CLP

CP

Prop.
logic

Davis-
Putnam

SAT

Constraint
propagation

Constraint
satisfaction &
backtracking

Probability
logic

Belief &
default
logicsShannon

& circuits

Fourier-
Motzkin

Resolution

Cutting
planes

LP

IP

Benders
decomp.

LBBD

Duality

Inference
dual

Network
flows

Consis-
tency

Filtering

Edge
finding

Consistency
in IP

Decision
diagrams

CO

CP

in

red

After a chance meeting on a rail platform near Princeton University,
Dantzig and von Neumann combined ideas from LP and game theory
to arrive at LP duality.

Duality has become a powerful idea in optimization, e.g. Lagrangian
duality, Dantzig-Wolfe decomposition (column generation), and
Benders decomposition (row generation).

From Fourier to Inference Duality

Joseph-Louis Lagrange
1736-1813

George Dantzig
1914-2005

John von Neumann
1903-1957

All optimization duals are special cases of inference duality

Find best feasible
solution by
searching over
values of x.

Find a proof of optimal value
by searching over proofs P.

Primal problem:
Optimization

Dual problem:
Inference

The type of dual depends on the inference method used.
In classical LP, the proof is a tuple of dual multipliers.
A complete inference method yields a strong dual (no duality gap) 43

From Fourier to Inference Duality

Type of Dual Inference Method Strong?

Linear programming Nonnegative linear combination
+ material implication

Yes*

Lagrangian Nonnegative linear combination
+ domination

No

Surrogate Nonnegative linear combination
+ material implication

No

Subadditive Cutting planes Yes**

*Due to Farkas Lemma
**Due to Chvátal’s theorem

From Fourier to Inference Duality

Benders decomposition was designed for problems that become LPs
after some variables are fixed.

The dual of the LP subproblem provides a Benders
cut that excludes undesirable solutions.

Generalization to logic-based Benders cuts:

Using the inference dual, the subproblem can
in principle be any optimization or constraint
satisfaction problem.

So, a logical perspective leads to a substantial generalization
with many new applications.

45

From Fourier to Inference Duality

Jacques Benders
1924-2017

46

From Fourier to Inference Duality

Trial value x
that solves

master

Benders cut

x

Minimize cost z subject to bounds
given by Benders cuts, obtained
from values of x attempted in
previous iterations k.

Obtain proof of optimality
(solution u of LP dual).
Use dual solution to obtain
a Benders cut.

Classical Benders decomposition

Solve the problem

Master problem Subproblem

Repeat until the master problem and subproblem have the same
optimal value.

• Subproblem must be an LP.
• Benders cuts are based on

classical duality.

47

From Fourier to Inference Duality

Trial value x
that solves

master

Benders cut

x

Minimize cost z subject to bounds
given by Benders cuts, obtained
from values of x attempted in
previous iterations k.

Obtain proof of optimality
(solution of inference dual).
Use same proof to deduce
cost bounds for other values
of x, yielding a Benders cut

Logic-based Benders decomposition (LBBD)

Solve the problem

Master problem Subproblem

Repeat until the master problem and subproblem have the same
optimal value.

• Subproblem can be any
optimization problem.

• View the subproblem dual
as a logical inference
problem.

LBBD has been applied to a wide range of problems that simplify
(perhaps by decoupling) when some variables are fixed.

It is a useful tool for combining optimization and CP.

Typically, an optimization method (such as MILP) solves the master
problem and CP solves the subproblem (often a scheduling problem).

The conflict clauses that are central to SAT solvers are a special case
of logic-based Benders cuts.

SAT-modulo-theories are also solved as a special case of LBBD.

48

From Fourier to Inference Duality

49

From Fourier to Inference Duality

The conflict graph
is a solution of the

inference dual

The resulting conflict
clause is a Benders cut

1 5x x

Conflict clauses as logic-based Benders cuts

• The subproblem is the problem at a node of the DPLL search tree.
• The inference dual is defined by unit resolution.
• The dual solution is a unit refutation, encoded in a conflict graph.

50

From Fourier to Cutting Planes

LOGIC OPTIMIZATION

Boole

Peirce

1st order
logic

Herbrand’s
theorem

Logic
programming

CLP

CP

Prop.
logic

Davis-
Putnam

SAT

Constraint
propagation

Constraint
satisfaction &
backtracking

Probability
logic

Belief &
default
logicsShannon

& circuits

Fourier-
Motzkin

Resolution

Cutting
planes

LP

IP

Benders
decomp.

LBBD

Duality

Inference
dual

Network
flows

Consis-
tency

Filtering

Edge
finding

Consistency
in IP

Decision
diagrams

CO

CP

in

red

From Fourier to Cutting Planes

Cutting planes, studied for over 60 years, are an essential component
of integer programming solvers.

They are closely related to
resolution and Fourier-
Motzkin elimination.

They approximate the convex
hull of integer solutions, so
that the LP relaxation gives a
tighter bound.

Original inequality
constraints

Cutting plane

Convex hull
of integer solutions

Ralph Gomory
1929-

When the logical clauses are written as inequalities
(as suggested by Dantzig), resolution is Fourier-Motzkin
elimination combined with rounding of fractions.

Quine’s resolution method is very similar to Fourier-Motzkin
elimination.

From Fourier to Cutting Planes

Resolution:
A projection
method for
logical clauses

A projection
method for linear
inequalities

This means that a resolvent is a rank 1 Chvátal-Gomory cut.

From Fourier to Cutting Planes

The fundamental theorem of cutting planes (due to Chvátal)
states that any valid cutting plane can be obtained from
repeated generation of rank 1 Chvátal-Gomory cuts.

The proof of this theorem is based on the resolution
algorithm!

Cutting planes lie at the heart of integer programming,
and logic lies at the heart of cutting planes

Vašek Chvátal
1946-

From Fourier to Cutting Planes

Consistency is a fundamental concept in CP.

It is not satisfiability or feasibility.

We can view a consistent constraint set as one in which any infeasible
partial assignment is inconsistent with some constraint.

This avoids backtracking, because each node corresponds to a partial
assignment defined by branches so far. We can detect whether deeper
branching can find a feasible solution.

CP solvers try to achieve various kinds of partial consistency
(e.g, domain consistency) to reduce backtracking.

Cutting planes are normally viewed as tightening an LP relaxation
to obtain better bounds.

Separating cuts exclude fractional solutions.

But cutting planes also achieve (partial) consistency!

They exclude inconsistent partial assignments.

This helps to explain why they can reduce backtracking.

From Fourier to Cutting Planes

From Fourier to Cutting Planes

The constraint set

is not consistent

Backtracking can result
even with forward checking.

x1

x2

Violates no
constraint

From Fourier to Cutting Planes

x1

x2

The constraint set

is consistent

No backtracking
with forward checking

Don’t take the x1 = 1 branch

Violates a
constraint

Cutting plane

LP-consistency is a type of consistency that is relevant to IP:

An LP-consistent constraint set is one in which any infeasible partial
assignment is infeasible in the LP relaxation.

This allows us to recognize inconsistent partial assignments by
solving an LP.

Cutting planes can achieve partial LP consistency and thereby reduce
backtracking.

Bounding and fractional solutions need not play a role.

From Fourier to Cutting Planes

From Fourier to Cutting Planes

The constraint set

is not LP-consistent

Backtracking can result
even with forward checking.

x2

Feasible in
LP relaxation

x1

From Fourier to Cutting Planes

x1

x2

The constraint set

is LP-consistent

No backtracking
with forward checking

Don’t take the x1 = 1 branch

Infeasible in
LP relaxation

Cutting plane
(rank 1 C-G cut)

From Fourier to Cutting Planes

Theorem: An IP constraint set is LP-consistent if and only if all implied
logical clauses (written as inequalities) are rank 1 Chvátal-Gomory cuts.

This again links logic and cutting planes.

Theorem: An IP constraint set is LP-consistent if and only if all implied
logical clauses (written as inequalities) are rank 1 Chvátal-Gomory cuts.

This again links logic and cutting planes.

Let consistency cuts be cutting planes that cut off inconsistent partial
assignments.

We can achieve partial LP consistency with a restricted form of RLT
(reformulation and linearization technique).

RLT-based consistency cuts can reduce the search tree substantially
more than traditional separating RLT cuts, also with time savings.

From Fourier to Cutting Planes

Advances in the logic-optimization-CP interface

• Constraint logic programming, leading to CP
• Fundamental theorem of cutting planes in IP
• Conflict-directed clause generation in SAT
• Logic-based Benders decomposition
• Combinatorial optimization with decision diagrams
• IP models for first-order logic, nonmonotonic logic
• LP model with column generation for probability logic
• LP models for belief logics
• Flow-based filtering methods in CP
• CP-based solution of scheduling problems
• Reinterpretation of cutting planes as consistency maintenance
• More to come?

Summing Up

Thanks for your attention!

	Slide 1: Logic, Optimization, and Constraint Programming A Fruitful Collaboration
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65

