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Exploiting Problem Structure 

• You can’t solve NP-hard problems without exploiting special 

structure. 
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• You can’t solve NP-hard problems without exploiting special 

structure. 

• For SAT solvers: 

• Careful encoding of problem in SAT form 

• This has become a minor industry 
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Exploiting Problem Structure 



• You can’t solve NP-hard problems without exploiting special 

structure. 

• For SAT solvers: 

• Careful encoding of problem in SAT form 

• For MIP solvers: 

• Careful choice of variables for tight formulation 

• Addition of valid inequalities 

• SOS1, SOS2, symmetry-breaking constraints, etc. 

• Solver parameters (e.g., which cuts?) 
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Conveying structure to the solver(s) 

• Formulate problem with global constraints or metaconstraints 

to reveal structure 

• Automatically convert these to optimal formulation for the 

solvers(s) 

• Best choice of variables. 

• Reformulation of constraints. 

–  For effective propagation or tight relaxation 

• Best choice of domain filters. 

• Generation of valid inequalities 
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Conveying structure to the solver(s) 

• Formulate problem with global constraints or metaconstraints 

to reveal structure 

• Automatically convert these to optimal formulation for the 

solvers(s) 

• Best choice of variables. 

• Reformulation of constraints. 

–  For effective propagation or tight relaxation 

• Best choice of domain filters. 

• Generation of valid inequalities 

• However, metaconstraints pose a fundamental problem of 

variable management… 
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Variable management problem 

• Reformulation typically introduces new variables 

• Different metaconstraints may introduce variables that are 

functionally the same variable 

• …or related in some other way. 

• Recognizing these relationships is essential to obtaining a 

good model (e.g., a tight continuous relaxation) 

• How can the solver “understand” what is going on in the 

model? 
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Variable management problem 

• Reformulation typically introduces new variables 

• Different metaconstraints may introduce variables that are 

functionally the same variable 

• …or related in some other way. 

• Recognizing these relationships is essential to obtaining a 

good model (e.g., a tight continuous relaxation) 

• How can the solver “understand” what is going on in the 

model? 

• Proposal: Model with semantic typing of variables. 
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• Semantic typing assigns a different meaning to each 

variable… 

• By associating the variable with a multi-place predicate and 

keyword. 

• The keyword “queries” the relation denoted by the 

predicate. 

• Advantage: 

• This allows the solver to deduce relationships between 

variables, both original or introduced. 

• It is also good modeling practice. 
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How variables are introduced 

• The solver may reformulate a constraint containing general 

integer variable xi  in terms of 0-1 variables yij , where 

 

 

• yij s may be equivalent to other variables that appear in 

the model or reformulations of other constraints. 
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How variables are introduced 

• A model may include two formulations of the problem that 

use related variables. 

• Common in CP, because it strengthens propagation. 
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How variables are introduced 

• A model may include two formulations of the problem that 

use related variables. 

• Common in CP, because it strengthens propagation. 

• For example, 

 

 

• Solver should generate channeling constraints 

to relate the variables to each other: 
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 job assigned to worker ix i

 worker assigned to job jy j

,      
j iy xj x i y 



How variables are introduced 

• The solver may reformulate a disjunction of linear systems  

 

 

using a convex hull (or big-M ) formulation: 

 

 

 

 

• Other constraints may be based on same set of alternatives, 

and corresponding auxiliary variables (yk etc.) should be equated. 
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How variables are introduced 

• A nonlinear or global solver may use McCormick factorization 

to replace nonlinear subexpressions with auxiliary variables 

• … to obtain a linear relaxation.  
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How variables are introduced 

• A nonlinear or global solver may use McCormick factorization 

to replace nonlinear subexpressions with auxiliary variables 

• … to obtain a linear relaxation.  

• For example, bilinear term xy can be linearized by replacing 

it with new variable z and constraints 

 

 

                       where  

• Factorization of different constraints may create variables 

for identical subexpressions. 

• They should be identified to get a tight relaxation. 
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How variables are introduced 

• The solver may reformulate different global constraints from CP by 

introducing variables that have the same meaning. 
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How variables are introduced 

• The solver may reformulate different global constraints from CP by 

introducing variables that have the same meaning. 

• For example, sequence constraint limits how many jobs  

of a given type can occur in given time interval: 

 

and cardinality constraint limits how many times a given  

job appears  

 

Both may introduce variables  

 

       that should be identified. 
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 sequence ,   job in position ix x i

 cardinality ,   job in position jx x j

1 when job  occurs in position ijy j i



How variables are introduced 

• The solver may introduce equivalent variables while interpreting 

metaconstraints designed for classical MIP modeling situations: 

• Fixed-charge network flow 

• Facility location 

• Lot sizing 

• Job shop scheduling 

• Assignment (3-dim, quadratic, etc.) 

• Piecewise linear 
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Motivating example 

• Allocate 10 advertising spots to 5 products 

MIP 2013 - Slide 19 

 how many spots ix 

allocated to product  i

 1 if  spotsijy j

allocated to product  i
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allocated to product  i
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Motivating example 

• Allocate 10 advertising spots to 5 products 
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 how many spots ix 

allocated to product  i

 1 if  spotsijy j

allocated to product  i

 4 spots per product 

Advertise  3 products 

 4 spots for at least 

one product 

Pij = profit from 

allocating j spots  

to product i 

 

Objective:   

maximize profit 

A B C D E 



Motivating example 

spots in {0..4} 

product in {A,B,C,D,E}) 
Index sets 
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Motivating example 

spots in {0..4} 

product in {A,B,C,D,E} 

data P{product,spots} 

x[i] is howmany spots allocate(product i) 

This makes it 

a variable 

declaration 

Declaration of variable xi 



Motivating example 

spots in {0..4} 

product in {A,B,C,D,E} 

data P{product,spots} 

x[i] is howmany spots allocate(product i) 

This is the 

semantic type 

Declaration of variable xi 



Motivating example 

spots in {0..4} 

product in {A,B,C,D,E} 

data P{product,spots} 

x[i] is howmany spots allocate(product i) 

Indicates an 

integer quantity 

 

Other 

keywords: 
howmuch 

whether 

Declaration of variable xi 



Motivating example 

spots in {0..4} 

product in {A,B,C,D,E} 

data P{product,spots} 

x[i] is howmany spots allocate(product i) 

How many of 

what? 

Declaration of variable xi 



Motivating example 

spots in {0..4} 

product in {A,B,C,D,E} 

data P{product,spots} 

x[i] is howmany spots allocate(product i) 

Declaration of variable xi 

2-place predicate 

associated with 

variable x 

 

Every variable is 

associated with a 

predicate that  

gives it meaning 



Motivating example 

spots in {0..4} 

product in {A,B,C,D,E} 

data P{product,spots} 

x[i] is howmany spots allocate(product i) 

Declaration of variable xi 

Other term of the 

predicate 



Motivating example 

spots in {0..4} 

product in {A,B,C,D,E} 

data P{product,spots} 

x[i] is howmany spots allocate(product i) 

Declaration of variable xi 

Associates  
index of x[i] with  

index set product 



Motivating example 

spots in {0..4} 

product in {A,B,C,D,E} 

data P{product,spots} 

x[i] is howmany spots allocate(product i) 

maximize sum{product i} P[i,x[i]] 

 

 

Objective function 
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Motivating example 

spots in {0..4} 

product in {A,B,C,D,E} 

data P{product,spots} 

x[i] is howmany spots allocate(product i) 

maximize sum{product i} P[i,x[i]] 

sum{product i} x[i] <= 10 

 

 

10 spots available 
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Motivating example 

spots in {0..4} 

product in {A,B,C,D,E} 

data P{product,spots} 

x[i] is howmany spots allocate(product i) 

maximize sum{product i} P[I,x[i]] 

sum{product i} x[i] <= 10 

y[i,j] is whether allocate(product i, spots j) 

 

 
Declare yij 

Indicates 0-1 

variable 
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Motivating example 

spots in {0..4} 

product in {A,B,C,D,E} 

data P{product,spots} 

x[i] is howmany spots allocate(product i) 

maximize sum{product i} P[i,x[i]] 

sum{product i} x[i] <= 10 

y[i,j] is whether allocate(product i, spots j) 

 

 
Declare yij 

Associated with 

same predicate  
as x[i] 
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Motivating example 

spots in {0..4} 

product in {A,B,C,D,E} 

data P{product,spots} 

x[i] is howmany spots allocate(product i) 

maximize sum{product i} P[i,x[i]] 

sum{product i} x[i] <= 10 

y[i,j] is whether allocate(product i, spots j) 

sum{product i} y[i,0] >= 2 

 

 

At most 3 products advertised 
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Motivating example 

spots in {0..4} 

product in {A,B,C,D,E} 

data P{product,spots} 

x[i] is howmany spots allocate(product i) 

maximize sum{product i} P[i,x[i]] 

sum{product i} x[i] <= 10 

y[i,j] is whether allocate(product i, spots j) 

sum{product i} y[i,0] >= 2 

sum{product i} y[i,4] >= 1 

 

 

At least 1 product gets 4 spots 
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Motivating example 

spots in {0..4} 

product in {A,B,C,D,E} 

data P{product,spots} 

x[i] is howmany spots allocate(product i) 

maximize sum{product i} P[i,x[i]] 

sum{product i} x[i] <= 10 

y[i,j] is whether allocate(product i, spots j) 

sum{product i} y[i,0] >= 2 

sum{product i} y[i,4] >= 1 

{product i} sum{spots j} y[i,j] = 1  

{product i} x[i] = sum{spots j} j*y[i,j] 

 

 
Solver generates linking constraints because  
x[i] and y[i,j] are associated with the same predicate. 
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Motivating example 

spots in {0..4} 

product in {A,B,C,D,E} 

data P{product,spots} 

x[i] is howmany spots allocate (product i) 

maximize sum{product i} P[i,x[i]] 

 

 

 

 

 

y’[i,j] is whether allocate(product i, spots j) 

 

 

 

 

 

 

 

 

 

This constraint must be linearized.  Solver generates 
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Motivating example 

spots in {0..4} 

product in {A,B,C,D,E} 

data P{product,spots} 

x[i] is howmany spots allocate (product i) 

maximize sum{product i} P[i,x[i]] 

 

 

 

 

 

y’[i,j] is whether allocate(product i, spots j) 

 

 

y[i,j] is whether allocate(product i, spots j) 

 

 

 

 

This constraint must be linearized.  Solver generates 

 

 

 

 
 

y and y are identified because they have the same type: 
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Predicates and relations 

Predicate allocate denotes 2-place relation (set of tuples). 

Schematically indicated by: 
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Predicates and relations 

Predicate allocate denotes 2-place relation (set of tuples). 

Schematically indicated by: 

Column corresponding to a variable must be a function of other 

columns. 

1 2 

product spots 

i xi 



Predicates and relations 

Predicate allocate denotes 2-place relation (set of tuples). 

Schematically indicated by: 

Declaration of x[i] as  

    howmany spots allocate (product i)  

and y[i,j] as  

    whether allocate (product i, spots j)  

query the relation for how many and whether. 

1 2 

product spots 

i xi 



Predicates and relations 

Predicate allocate denotes 2-place relation (set of tuples). 

Schematically indicated by: 

Declaration of x[i] as  

    howmany spots allocate (product i)  

and y[i,j] as  

    whether allocate (product i, spots j)  

query the relation for how many and whether. 

 

In general, keywords are queries (analogous to relational database) 

1 2 

product spots 

i xi 



Predicates and relations 

Relation table reveals channeling constraints.  For example, 

 
x[i] is which job assign(worker i) 

y[j] is which worker assign(job i) 

We can read off the channeling constraints 

1 2 

job worker 

j, xi i, yj 

i

i

i y

j x

j x x

i y y

 

 



Predicates and relations 

If several jobs can be assigned to a worker, we declare 

 
z[i] is whichset job assign(worker i) 

 

  

The channeling constraints are 


iyj z



Previous work 

• Model management uses semantic typing to help combine 

models and use inheritance. 

• Originally inspired by object-oriented programming  

 Bradley & Clemence (1988) 

• Quiddity: a rigorous attempt to analyze conditions  

for variable identification 
 Bhargava, Kimbrough & Krishnan (1991) 

• SML uses typing in a structured modeling framework 

 Geoffrion (1992) 

• Ascend uses strongly-typed, object-oriented modeling 

 Bhargava, Krishnan & Piela (1998) 
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Previous work 

• Our semantic typing differs: 

• Less ambitious because it doesn’t attempt model 

management. 

• There is only one model. 

• More ambitious because we recognize relationships 

other than equivalence. 

• We manage variables introduced by solver. 
 

MIP 2013 - Slide 50 



Previous work 

• Modeling systems that convey some structure to solver: 

• All CP modelers (OPL, CHIP, etc.) use global constraints. 

• AIMMS uses typed index sets. 

• Zinc/MiniZinc (G12 system) reformulates metaconstraints 

for specific solvers. 

• OPL, Xpress-Kalis, Comet, etc., use interval variables. 

• SAT solver SymChaff uses high-level AI planning 

language PDDL. 

• Lopes and Fourer (2009) use UML (Unified Modeling 

Language) to model multistage stochastic LPs with recourse. 

• SIMPL has full metaconstraint capability. 
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Previous work 

• However, none of these systems deals systematically with 

the variable management problem. 

• We address it with semantic typing of variables. 
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Assignment problem 

 1

min  

alldiff , ,

iix

i

n

c

x x


worker in {1..m} 

job in {1..n} 

data C{worker,job} 

x[i] is which job assign(worker i) 

minimize sum{worker i} C[i,x[i]] 

alldiff{x[*]} 
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Assignment problem 

 1

min  

alldiff , ,

iix

i

n

c

x x


worker in {1..m} 

job in {1..n} 

data C{worker,job} 

x[i] is which job assign(worker i) 

minimize sum{worker i} C[i,x[i]] 

alldiff{x[*]} 
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Assignment problem 

 1

min  

alldiff , ,

iix

i

n

c

x x


worker in {1..m} 

job in {1..n} 

data C{worker,job} 

x[i] is which job assign(worker i) 

minimize sum{worker i} C[i,x[i]] 

alldiff{x[*]} 
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Objective function 

is formulated 
max  ,  , all ij ij i ij

i j

c y x y i 

y[i,j] is whether assign(worker i, job j)   

Alldiff 

is formulated 
1,  all ,  1,  all ,  , all ij ij i ij

j i j

y i y j x jy i      

y’[i,j] is whether assign(worker i, job j)   

Solver identifies y and y to create classical AP. 



Latin squares 
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Latin squares 
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Numbers in every row and column are distinct. 

We will use three formulations to improve propagation. 

row, col, num in {1..n} 

x[i,j] is which num assign(row i, col j)   

y[i,k] is which col assign(row i, num k) 

z[j,k] is which row assign(col j, num k) 

 

 
1

1

alldiff , , all  

alldiff , , all 

i in

j nj

x x i

x x j

 

 
1

1

alldiff , , all  

alldiff , all 

i in

k nk

y y i

y y k

 
 

1

1

alldiff , , all  

alldiff , , all 

j jn

k nk

z x j

z x k

i 

j 



Latin squares 
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Numbers in every row and column are distinct. 

We will use three formulations to improve propagation. 

row, col, num in {1..n} 

x[i,j] is which num assign(row i, col j)   

y[i,k] is which col assign(row i, num k) 

z[j,k] is which row assign(col j, num k) 

{row i} alldiff{x[i,*]); {col j} alldiff{x[*,j]) 

{row i} alldiff{y[i,*]); {num k} alldiff{y[*,j]) 

{col j} alldiff{z[j,*]); {num k} alldiff{z[*,k]) 

 

 

   

 

 

 
1

1

alldiff , , all  

alldiff , , all 

i in

j nj

x x i

x x j

 

 
1

1

alldiff , , all  

alldiff , all 

i in

k nk

y y i

y y k

 
 

1

1

alldiff , , all  

alldiff , , all 

j jn

k nk

z x j

z x k

i 

j 



Latin squares 
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The predicate assign denotes the 3-place relation 

row, col, num in {1..n} 

x[i,j] is which num assign(row i, col j)   

y[i,k] is which col assign(row i, num k) 

z[j,k] is which row assign(col j, num k) 

{row i} alldiff{x[i,*]); {col j} alldiff{x[*,j]) 

{row i} alldiff{y[i,*]); {num k} alldiff{y[*,j]) 

{col j} alldiff{z[j,*]); {num k} alldiff{z[*,k]) 

 

 

   

 

1 2 3 

num col row 

k, xij j, yik i, zjk 



Latin squares 
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The predicate assign denotes the 3-place relation 

We can read off the channeling constraints: 

 

 

 

 

which can be propagated. 

,   ,   ,  all , ,
jk ik jk ij ik ikjz y z x y xk x j y i z i j k  

1 2 3 

num col row 

k, xij j, yik i, zjk 



Latin squares 

The 3 formulations generate 3 identical MIP models: 

{row i} alldiff{x[i,*]); {col j} alldiff{x[*,j]) 

{row i} alldiff{y[i,*]); {num k} alldiff{y[*,j]) 

{col j} alldiff{z[j,*]); {num k} alldiff{z[*,k]) 

;  1,  all , ;   1,  all , ;   1,  all ,

,  1,  all , ;  1,  all , ;   1,  all ,

,  1,  all , ;  1

x x x x

ij ijk ijk ijk ijk

k k j i

y y y y

ik ijk ijk ijk ijk

j j k i

z z z

jk ijk ijk ijk

i k

x k i j i k j k

y j i k i j j k

z i j k

   

   

  

   

   

  

   

   

  ,  all , ;   1,  all ,z

ijk

i j

i j i k  
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The 3 formulations generate 3 identical MIP models: 

{row i} alldiff{x[i,*]); {col j} alldiff{x[*,j]) 

{row i} alldiff{y[i,*]); {num k} alldiff{y[*,j]) 

{col j} alldiff{z[j,*]); {num k} alldiff{z[*,k]) 

;  1,  all , ;   1,  all , ;   1,  all ,

,  1,  all , ;  1,  all , ;   1,  all ,

,  1,  all , ;  1

x x x x

ij ijk ijk ijk ijk

k k j i

y y y y

ik ijk ijk ijk ijk

j j k i

z z z

jk ijk ijk ijk

i k

x k i j i k j k

y j i k i j j k

z i j k

   

   

  

   

   

  

   

   

  ,  all , ;   1,  all ,z

ijk

i j

i j i k  

whether assign(row i, col j, num k) 

So it treats them as the same variable and generates only 1 MIP model. 

,  ,  x y z

ijk ijk ijk  The solver declares  



Multiple  which variables 

In general, an n-place predicate that denotes the relation 

1 … k k + 1 … n 

term1 … termk termk+1 … termn 

 

 

 

… … 
( ),  k

k i ki x 1ki  ni

for which variables, where  

 

generates the channeling constraints 

1 1 1( ) j j ni j i i i i 

1 1 1
(1) ( ) 1( 1) ( 1)

1,  all , , ,  1, ,j j k
i i k k ni j i j

j

j nx x x x i i
i x i i j k 

 

 

1

1 (1),  ii x



Multiple  whether variables 

whether keywords serve as projection operators on the relation. 

 

y[i,j,d] is whether assign(worker i, job j, day d) 

 
Project out d : 
y1[i,j] is whether assign(worker i, job j) 

 

Project out j and d : 

y2[i] is whether assign(worker i) 



Short forms 

Declare xi to be cost of activity i : 

x[i] is howmuch cost(activity i) 

 
which is short for the formal declaration 

x[i] is howmuch cost cost(activity i) 

in which a new term cost is generated 

 

 

Declare x to be cost: 

x is howmuch cost 

 

which is short for 

x is howmuch cost cost() 

 



x is howmuch output 

index in {1..n} 

data A,C{index} 

z is howmuch cost 

piecewise(x,z,A,C) 

Piecewise linear 
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Piecewise linear function z = f(x) 

Breakpoints in A, ordinates in C 

f(x) 

x 

Ci 

Ai 

this metaconstraint defines z = f(x) 



x is howmuch output 

index in {1..n} 

data A,C{index} 

z is howmuch cost 

piecewise(x,z,A,C) 

Piecewise linear 
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Piecewise linear function z = f(x) 

Breakpoints in A, ordinates in C 

Solver generates the model 

f(x) 

x 

Ci 

Ai 

 

1 1
1

1 1

1 1 1

1 1 1

,   

( ) ( ) ,   0,1 ,  1, , 1

n n
i i

i i

i i i i

i i i i i i i i

c c
x a x z c x

a a

a a x a a i n  

 


  

  


   



      

 

We need to declare auxiliary variables i, xi 



x is howmuch output 

index in {1..n} 

data A,C{index} 

z is howmuch cost 

piecewise(x,z,A,C) 

Piecewise linear 
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Piecewise linear function z = f(x) 

Breakpoints in A, ordinates in C 

piecewise constraint induces solver to declare a new index 

set that associates  index with  A, and use it to declare i, xi 

 

f(x) 

x 

Ci 

Ai 

Both declarations create predicates inherited from output and A 

xbar[i] is howmuch output.A(index i) 

delta[i] is whether lastpositive output.A(index i) 



x is howmuch output 

index in {1..n} 

data A,C{index} 

z is howmuch cost 

piecewise(x,z,A,C) 

data C’{index} 

z’ is howmuch profit 

piecewise(x,z’,A,C’) 

Piecewise linear 
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Suppose there is another piecewise  

function on the same break points 

f(x) 

x 

Ai 

f(x) 

x’[i] is howmuch cost output.A(index i) 

delta’[i] is whether lastpositive output.A(index) 



x is howmuch output 

index in {1..n} 

data A,C{index} 

z is howmuch cost 

piecewise(x,z,A,C) 

data C’{index} 

z’ is howmuch profit 

piecewise(x,z’,A,C’) 

Piecewise linear 
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Suppose there is another piecewise  

function on the same break points 

The solver creates variables i and xi with same types as i and xi 

and so identifies them.  

x’[i] is howmuch cost output.A(index i) 

delta’[i] is whether lastpositive output.A(index) 

f(x) 

x 

Ai 

f(x) 

Because new piecewise constraint  

is associated with the same x and A, 
solver again creates output.A. 



job in {1..n} 

time in {t..T} 

data W,D,R{job} 

running in [time,time] 

x[j] is when running sched(job j) subset W[j] 

cumulative(x,D,R,L) 

Interval variables 
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Each job j runs for a time interval xj.   

We wish to schedule jobs so that total resource consumption  

never exceeds L. 

 cumulative , , ,

, all j j

x D R L

x W j

window, duration, resource 

L 

makes running an interval variable  



Interval variables 
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Each job j runs for a time interval xj.   

We wish to schedule jobs so that total resource consumption  

never exceeds L. 

delta[j,t] is whether running.start sched(job j, time t)   

phi[j,t] is whether running sched(job j, time t) 

Solver generates the model 

 cumulative , , ,

, all j j

x D R L

x W j

1,  all ;    ,  all 

,  all ,  with 0 ,  all 

jt j jt

t j

jt jt j

j R L t

t t t t D j

 

  

 

    

 

job in {1..n} 

time in {t..T} 

data W,D,R{job} 

running in [time,time] 

x[j] is when running sched(job j) subset W[j] 

cumulative(x,D,R,L) 

window, duration, resource 
makes running an interval variable  



job in {1..n} 

time in {t..T} 

data W,D,R{job} 

running in [time,time] 

x[j] is when running sched(job j) subset W[j] 

cumulative(x,D,R,L) 

{job j, job k | j<>k} |x[j].end – x[k].end| >= T0 

Interval variables 
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Suppose we want finish times 

to be separated by at least T0 

 

end end

0

cumulative , , ,

, all 

,  all , ,   

j j

j k

x D R L

x W j

x x T j k j k



  

delta[j,t] is whether running.start sched(job j, time t)   

phi[j,t] is whether running sched(job j, time t) 



Interval variables 
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Suppose we want finish times 

to be separated by at least T0 

Solver generates 

01, all ,  with 0 ,  all ,  with jt kt t t t t T j t j k  
      

epsilon[j,t] is whether running.end sched(job j, time t) 

job in {1..n} 

time in {t..T} 

data W,D,R{job} 

running in [time,time] 

x[j] is when running sched(job j) subset W[j] 

cumulative(x,D,R,L) 

{job j, job k | j<>k} |x[j].end – x[k].end| >= T0 

delta[j,t] is whether running.start sched(job j, time t)   

phi[j,t] is whether running sched(job j, time t) 

 

end end

0

cumulative , , ,

, all 

,  all , ,   

j j

j k

x D R L

x W j

x x T j k j k



  



Interval variables 
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Variables jt and jt are related by an offset. 
Solver associates running.end in declaration of jt 

with running.start in declaration of jt and deduces 

epsilon[j,t] is whether running.end sched(job j, time t) 

delta[j,t] is whether running.start sched(job j, time t)   

phi[j,t] is whether running sched(job j, time t)  

, ,  all ,
jj t D jte j t 



Interval variables 
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Variables jt and jt are related by an offset. 
Solver associates running.end in declaration of jt 

with running.start in declaration of jt and deduces 

, ,  all ,
jj t D jte j t 

Solver also associates running.end in declaration of jt 

with running in declaration of jt and deduces  

the redundant constraints 

,  all ,  with 0 , all jt jt jt t t t D j  
    

epsilon[j,t] is whether running.end sched(job j, time t) 

delta[j,t] is whether running.start sched(job j, time t)   

phi[j,t] is whether running sched(job j, time t)  



TSP with Side Constraints 
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Traveling salesman problem with missing  

arcs and precedence constraints. 

 
city, position in {1..n} 

data D{city, city}    Distances 

data Prec{city, city} Prec[i,j]=1 if i must precede j 

data Succ{city}       Succ[j] = set of successors of city j 
 

 

 

 

 

   

min

alldiff ,  circuit

,  all ,  with prec 1

 Succ

iis

i

i j ij

i i

D

x s

x x i j

s

 




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Traveling salesman problem with missing  

arcs and precedence constraints. 

 
city, position in {1..n} 

data D{city, city}    Distances 

data Prec{city, city} Prec[i,j]=1 if i must precede j 

data Succ{city}       Succ[j] = set of successors of city j 

 
Two variable systems: 

x[i] is which position ordering(city i) 

s[i] is successor city ordering(city i) subset Succ[i] 

 

 

 

 

   

min

alldiff ,  circuit

,  all ,  with prec 1

 Succ

iis

i

i j ij

i i

D

x s

x x i j

s

 




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Traveling salesman problem with missing  

arcs and precedence constraints. 

 
city, position in {1..n} 

data D{city, city}    Distances 

data Prec{city, city} Prec[i,j]=1 if i must precede j 

data Succ{city}       Succ[j] = set of successors of city j 

 
Two variable systems: 

x[i] is which position ordering(city i) 

s[i] is successor city ordering(city i) subset Succ[i] 

 
Precedence constraints require x variables  

prec{city i, city j | Prec[i,j] = 1}: x[i] < x[j] 

Missing arc constraints (implicit in data Succ) require s variables 

 

 

 

 

 

   

min

alldiff ,  circuit

,  all ,  with prec 1

 Succ

iis

i

i j ij

i i

D

x s

x x i j

s

 







TSP with Side Constraints 

MIP 2013 - Slide 80 

Traveling salesman problem with missing  

arcs and precedence constraints. 

 
city, position in {1..n} 

data D{city, city}    Distances 

data Prec{city, city} Prec[i,j]=1 if i must precede j 

data Succ{city}       Succ[j] = set of successors of city j 

 
Two variable systems: 

x[i] is which position ordering(city i) 

s[i] is successor city ordering(city i) subset Succ[i] 

 
Precedence constraints require x variables  

prec{city i, city j | Prec[i,j] = 1}: x[i] < x[j] 

Missing arc constraints (implicit in data Succ) require s variables 

 
min sum {city i} D[i,s[i]]  Objective function 
 

 

 

 

 

   

min

alldiff ,  circuit

,  all ,  with prec 1

 Succ

iis

i

i j ij

i i

D

x s

x x i j

s

 




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The solver can give alldiff(x) a conventional assignment model 

using zik = whether city i is in position k. 

 
z[i,k] is whether ordering(city i, position k) 
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The solver can give alldiff(x) a conventional assignment model 

using zik = whether city i is in position k. 

 
z[i,k] is whether ordering(city i, position k) 

  
For circuit(s), the solver can introduce  

wij = whether city i immediately precedes city j. 

 

w[i,j] is whether successor ordering(city i, city j) 
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The solver can give alldiff(x) a conventional assignment model 

using zik = whether city i is in position k. 

 
z[i,k] is whether ordering(city i, position k) 

  
For circuit(s), the solver can introduce  

wij = whether city i immediately precedes city j. 

 

w[i,j] is whether successor ordering(city i, city j) 

 
Declaration of z tells solver that predicate is 

ordering(city,position), not ordering(city,city). 
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The solver can give alldiff(x) a conventional assignment model 

using zik = whether city i is in position k. 

 
z[i,k] is whether ordering(city i, position k) 

  
For circuit(s), the solver can introduce  

wij = whether city i immediately precedes city j. 

 

w[i,j] is whether successor ordering(city i, city j) 

 
Declaration of z tells solver that predicate is 

ordering(city,position), not ordering(city,city). 

Solver generates cutting planes in w-space and s-space.  
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The solver can give alldiff(x) a conventional assignment model 

using zik = whether city i is in position k. 

 
z[i,k] is whether ordering(city i, position k) 

  
For circuit(s), the solver can introduce  

wij = whether city i immediately precedes city j. 

 

w[i,j] is whether successor ordering(city i, city j) 

 
Declaration of z tells solver that predicate is 

ordering(city,position), not ordering(city,city). 

Solver generates cutting planes in w-space and s-space.  

 

The successor keyword tells solver how z and w relate. 

 

 
  

,  all ,  with 0 , all jt jt jt t t t D j  
    
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Suppose we also have constraints on which city is in position k. 

Simply declare 

 
y[k] = which city ordering(position k) 

 

The solver generates the channeling constraints between y[k] 

and x[i] = which position is city i 
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Suppose we also have constraints on which city is in position k. 

Simply declare 

 
y[k] = which city ordering(position k) 

 

The solver generates the channeling constraints between y[k] 

and x[i] = which position is city i 

 

The solver can also introduce a second (equivalent) objective function 

 
min sum{position k} D[y[k],y[k+1]] 

 

which may improve bounding. 

 

 
  



Pros and Cons of Semantic Typing 

• Pros 

• Conveys problem structure to the solver(s) 

–  …by allowing use of metaconstaints 

• Incorporates state of the art in formulation, valid inequalities 

• Allows solver to expand repertory of techniques  

–  Domain filtering, propagation, cutting plane algorithms 

• Good modeling practice 

– Self-documenting 

– Bug detection 
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Pros and Cons of Semantic Typing 

• Cons 

• Modeler must be familiar with a large collection of 

metaconstraints 

–  Rather than  few primitive constraints 
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• Modeler must be familiar with a large collection of 

metaconstraints 
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• Response 

– Modeler must be familiar with the underlying concepts anyway 

– Modeling system can offer sophisticated help, improve modeling 
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Pros and Cons of Semantic Typing 

• Cons 

• Modeler must be familiar with a large collection of 

metaconstraints 

–  Rather than  few primitive constraints 

• Response 

– Modeler must be familiar with the underlying concepts anyway 

– Modeling system can offer sophisticated help, improve modeling 

• OR, SAT community is not accustomed to high-level modeling 

–  Typed languages like Ascend never really caught on. 
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Pros and Cons of Semantic Typing 

• Cons 

• Modeler must be familiar with a large collection of 

metaconstraints 

–  Rather than  few primitive constraints 

• Response 

– Modeler must be familiar with the underlying concepts anyway 

– Modeling system can offer sophisticated help, improve modeling 

• OR, SAT community is not accustomed to high-level modeling 

–  Typed languages like Ascend never really caught on. 

• Response 

–  Train the next generation! 
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