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Exploiting Problem Structure

* You can’t solve NP-hard problems without exploiting special
structure.
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Exploiting Problem Structure

* You can’t solve NP-hard problems without exploiting special
structure.

* For SAT solvers:
 Careful encoding of problem in SAT form

 This has become a minor industry
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Exploiting Problem Structure

* You can’t solve NP-hard problems without exploiting special
structure.

* For SAT solvers:
 Careful encoding of problem in SAT form
* For MIP solvers:
» Careful choice of variables for tight formulation
 Addition of valid inequalities
« SOS1, SOS2, symmetry-breaking constraints, etc.

» Solver parameters (e.g., which cuts?)
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Conveying structure to the solver(s)

* Formulate problem with global constraints or metaconstraints
to reveal structure

» Automatically convert these to optimal formulation for the
solvers(s)

e Best choice of variables.

 Reformulation of constraints.

— For effective propagation or tight relaxation
 Best choice of domain filters.

« Generation of valid inequalities
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Conveying structure to the solver(s)

* Formulate problem with global constraints or metaconstraints
to reveal structure

» Automatically convert these to optimal formulation for the
solvers(s)

e Best choice of variables.

 Reformulation of constraints.

— For effective propagation or tight relaxation
 Best choice of domain filters.
» Generation of valid inequalities

* However, metaconstraints pose a fundamental problem of
variable management...
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Variable management problem

* Reformulation typically introduces new variables

* Different metaconstraints may introduce variables that are
functionally the same variable

» ...or related in some other way.

* Recognizing these relationships is essential to obtaining a
good model (e.g., a tight continuous relaxation)

* How can the solver “understand” what is going on in the
model?
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Variable management problem

* Reformulation typically introduces new variables

* Different metaconstraints may introduce variables that are
functionally the same variable

» ...or related in some other way.

* Recognizing these relationships is essential to obtaining a
good model (e.g., a tight continuous relaxation)

* How can the solver “understand” what is going on in the
model?

* Proposal: Model with semantic typing of variables.

MIP 2013 - Slide 8



Semantic typing

* Semantic typing assigns a different meaning to each
variable...

By associating the variable with a multi-place predicate and
keyword.

* The keyword “queries” the relation denoted by the
predicate.

« Advantage:

 This allows the solver to deduce relationships between
variables, both original or introduced.

* It is also good modeling practice.
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How variables are introduced

* The solver may reformulate a constraint containing general
integer variable x; in terms of 0-1 variables y; , where

X, = Z jyij
j

* y;S may be equivalent to other variables that appear in
the model or reformulations of other constraints.
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How variables are introduced

* A model may include two formulations of the problem that
use related variables.

« Common in CP, because it strengthens propagation.
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How variables are introduced

* A model may include two formulations of the problem that
use related variables.

« Common in CP, because it strengthens propagation.
* For example,
X. = job assigned to worker |

y, = worker assigned to job |

 Solver should generate channeling constraints
to relate the variables to each other:

j:xyj, =y,
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How variables are introduced

* The solver may reformulate a disjunction of linear systems

| JAX = b"

using a convex hull (or big-M ) formulation:
A x“>b"y,, allk

x=>x >y, =1
k k

y, €{0,1}, allk

 Other constraints may be based on same set of alternatives,
and corresponding auxiliary variables (y, etc.) should be equated.
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How variables are introduced

* A nonlinear or global solver may use McCormick factorization
to replace nonlinear subexpressions with auxiliary variables

» ... to obtain a linear relaxation.
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How variables are introduced

* A nonlinear or global solver may use McCormick factorization
to replace nonlinear subexpressions with auxiliary variables

... to obtain a linear relaxation.

* For example, bilinear term xy can be linearized by replacing
It with new variable z and constraints

Lx+Ly-LL <z<Lx+Uy-LU,
Ux+Uy-UU <z<UXx+LYy-UL,
where x e[L,,U,], ye|L,.U, |

* Factorization of different constraints may create variables
for identical subexpressions.

» They should be identified to get a tight relaxation.
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How variables are introduced

» The solver may reformulate different global constraints from CP by
iIntroducing variables that have the same meaning.
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How variables are introduced

* The solver may reformulate different global constraints from CP by
iIntroducing variables that have the same meaning.

* For example, sequence constraint limits how many jobs
of a given type can occur in given time interval:

sequence(x), X, = job in position i

and cardinality constraint limits how many times a given

job appears
cardinality(x), x, = job in position |

Both may introduce variables
y; =1when job | occurs in position i

that should be identified.
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How variables are introduced

* The solver may introduce equivalent variables while interpreting
metaconstraints designed for classical MIP modeling situations:

* Fixed-charge network flow

* Facility location

* Lot sizing

 Job shop scheduling

» Assignment (3-dim, quadratic, etc.)

* Piecewise linear
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Motivating example

* Allocate 10 advertising spots to 5 products

Y I 1 I 1 1 1 I 1 I
L d
1} ! [y ] (Y 1 (Y ] Y ]
~E i' ~E i' ~E i' ~E i' ~E i'
Ll - - L' d - - - - - -

X. = how many spots y; = lif] spots
allocated to product i allocated to product i
D E
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Motivating example

* Allocate 10 advertising spots to 5 products

L} 1 Y /]
L d
.“E f - .“5 f %
) 1 Y ]
L d
.“E f - .”E f %

) ! 1} 1 [y ]
é' é' é'
. ' d - - L] -

) ! 1 1 v ]
é' é’ é’
. PN = -

X. = how many spots y; = lif] spots
allocated to product i allocated to product i
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Motivating example

* Allocate 10 advertising spots to 5 products

OO0 < 4 spots per prodicy
é" é é ﬁ - E §> Advertise < 3 products

X. = how many spots y; = lif] spots
allocated to product i allocated to product i
D E
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Motivating example

* Allocate 10 advertising spots to 5 products

O OO0 < 4 spots per prodicy
é" é é ﬁ - E §> Advertise < 3 products

> 4 spots for at least

x, = how many spots y; = L1ifj spots one product
allocated to product i allocated to product i
2 B e
B C D E
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Motivating example

* Allocate 10 advertising spots to 5 products

OO0 < 4 spots per prodicy
é" é é ﬁ - E §> Advertise < 3 products

> 4 spots for at least

x, = how many spots y; = L1ifj spots one product
allocated to product i allocated to product i
P; = profit from
. allocating j spots
B to product |
D E .
Obijective:

maximize profit
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Motivating example

spots in {0..4}

product in {A,B,C,D,E}) Index sets




Motivating example

spots in {0..4}
product in {A,B,C,D,E}
data P{product, spots} Data input




Motivating example

spots in {0..4}

product in {A,B,C,D,E}

data P{product, spots} Declaration of variable x;
x[1] is howmany spots allocate (product 1i)



Motivating example

spots in {0..4}

product in {A,B,C,D,E}

data P{product, spots} Declaration of variable x;
x[1i] @ howmany spots allocate (product 1i)

This makes it
a variable
declaration



Motivating example

spots in {0..4}

product in {A,B,C,D,E}

data P{product, spots} Declaration of variable x;
x[1] is |howmany spots allocate(product 1i)

This is the
semantic type



Motivating example

spots in {0..4}

product in {A,B,C,D,E}

data P{product, spots} Declaration of variable x;
x[1] is |howmany|spots allocate (product 1i)

Indicates an
iInteger quantity

Other
keywords:

howmuch
whether



Motivating example

spots in {0..4}

product in {A,B,C,D,E}

data P{product, spots} Declaration of variable x;
x[1] is howmany |spots| allocate (product 1i)

How many of
what?



Motivating example

spots in {0..4}

product in {A,B,C,D,E}

data P{product, spots} Declaration of variable x;
x[i] is howmany spots |allocate|(product i)

2-place predicate
associated with
variable x

Every variable is
associated with a
predicate that
gives it meaning



Motivating example

spots in {0..4}

product in {A,B,C,D,E}

data P{product, spots} Declaration of variable x;
x[1] is howmany spots allocate|(product|i)

Other term of the
predicate



Motivating example

spots in {0..4}

product in {A,B,C,D,E}
data P{product, spots} Declaration of variable x;
x[1] is howmany spots allocate (product|i)

Associates
iIndex of x[i] with
Index set product



max Z:Pixi
Motivating example ‘

spots in {0..4}

product in {A,B,C,D,E}

data P{product, spots}

x[1] is howmany spots allocate (product i)
maximize sum{product i} P[i,x[i]] Objective function



Motivating example |

spots in {0..4}

product in {A,B,C,D,E}

data P{product, spots}

x[1] is howmany spots allocate (product 1i)
maximize sum{product i} P[i,x[1i]]
sum{product i} x[i] <= 10 10 spots available



Motivating example |

spots in {0..4}

product in {A,B,C,D,E}

data P{product, spots}

x[1] is howmany spots allocate (product i)

maximize sum{product i} P[I,x[1i]]

sum{product i} x[i] <= 10

v[i,j] is|whether|allocate(product i, spots j)
Declare y;

Indicates 0-1
variable



Motivating example |

spots in {0..4}

product in {A,B,C,D,E}

data P{product, spots}

x[1] is howmany spots allocate (product i)

maximize sum{product i} P[i,x[1i]]

sum{product i} x[i] <= 10

v[i,j] is whether|allocate|(product i, spots j)
Declare y;

Associated with
same predicate
as x[i]



max »_ Py

D % <10, Yy, =2

Motivating example

spots in {0..4}

product in {A,B,C,D,E}

data P{product, spots}

x[1i] is howmany spots allocate (product i)

maximize sum{product i} P[i,x[1i]]

sum{product i} x[i] <= 10

v[i,]J] is whether allocate(product i, spots j)
sum{product i} y[i,0] >= 2 At most 3 products advertised



max »_ Py

D> % <10, Yy, 22 Dy, =1

Motivating example

spots in {0..4}

product in {A,B,C,D,E}

data P{product, spots}

x[1i] is howmany spots allocate (product i)

maximize sum{product i} P[i,x[1i]]

sum{product i} x[i] <= 10

v[i,]J] is whether allocate(product i, spots j)
sum{product i} y[i,0] >= 2

sum{product i} y[i,4] >= 1 Atleast 1 product gets >4 spots



max ZPiXi
D> % <10, Yy, 22 Dy, =1

spots in {0..4} Zyij =1 X =ijij, all i
j j

Motivating example

product in {A,B,C,D,E}

data P{product, spots}

x[1] is howmany spots allocate (product 1i)
maximize sum{product i} P[i,x[1i]]

sum{product i} x[i] <= 10

v[i,]] is whether allocate (product i, spots 7j)
sum{product i} y[i,0] >= 2

sum{product i} y[i,4] >= 1

{product i} sum{spots j} y[i,]] =1

{product i} x[1] = sum{spots J} J*yI[i,]]

Solver generates linking constraints because
x[i] and y[i,3j] are associated with the same predicate.



max » P,
D> % <10, Yy, 22 Dy, =1

spots in {0..4} Zyij =1 X :ijij' all i
product in {A,B,C,D,E} i j

data P{product, spots}

x[1] is howmany spots allocate (product 1i)

maximize sum{product i} P[i,x[1i]]

Motivating example

This constraint must be linearized. Solver generates

4 4 4
Z, :Z(;Pijyi;’ Zoylj =1 X :;jyi;’ all
i= i= j=

vy’ [1,]J] is whether allocate(product i, spots j)



max » P,
D> % <10, Yy, 22 Dy, =1

spots in {0..4} Zyij =1 X :ijij’ all i
product in {A,B,C,D,E} i j

data P{product, spots}

x[1] is howmany spots allocate (product 1i)

maximize sum{product i} P[i,x[1i]]

Motivating example

This constraint must be linearized. Solver generates

4 4 4
Z, :Z(;Pijyi;’ Zoylj =1 X :;jyi;’ all
i= i= j=

vy’ [1,]J] is whether allocate(product i, spots j)

y and y' are identified because they have the same type:

y[i,]j] is whether allocate(product i, spots j)



Predicates and relations

Predicate allocate denotes 2-place relation (set of tuples).
Schematically indicated by:

product spots

i X



Predicates and relations

Predicate allocate denotes 2-place relation (set of tuples).
Schematically indicated by:

product spots
i X;

Column corresponding to a variable must be a function of other
columns.



Predicates and relations

Predicate allocate denotes 2-place relation (set of tuples).
Schematically indicated by:

product spots
i X;
Declaration of x[1] as
howmany spots allocate (product i)
andy[i,j] as
whether allocate (product i, spots j)
guery the relation for how many and whether.



Predicates and relations

Predicate allocate denotes 2-place relation (set of tuples).
Schematically indicated by:

product spots

i X;

Declaration of x[1] as

howmany spots allocate (product i)
andy[i,j] as

whether allocate (product i, spots j)
guery the relation for how many and whether.

In general, keywords are queries (analogous to relational database)



Predicates and relations

Relation table reveals channeling constraints. For example,

x[1i] is which job assign (worker 1i)
y[j] is which worker assign(job 1i)

job worker

) X LY,

We can read off the channeling constraints

=% =x,

|:>/J :>/Xi



Predicates and relations

If several jobs can be assigned to a worker, we declare

z[i] is whichset job assign (worker 1i)

The channeling constraints are

JEZYi



Previous work

 Model management uses semantic typing to help combine
models and use inheritance.

« Originally inspired by object-oriented programming
Bradley & Clemence (1988)

 Quiddity: a rigorous attempt to analyze conditions
for variable identification
Bhargava, Kimbrough & Krishnan (1991)

« SML uses typing in a structured modeling framework
Geoffrion (1992)

» Ascend uses strongly-typed, object-oriented modeling
Bhargava, Krishnan & Piela (1998)
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Previous work

« Our semantic typing differs:

* Less ambitious because it doesn’t attempt model
management.

* There is only one model.

 More ambitious because we recognize relationships
other than equivalence.

* \We manage variables introduced by solver.
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Previous work

* Modeling systems that convey some structure to solver:
 All CP modelers (OPL, CHIP, etc.) use global constraints.
* AIMMS uses typed index sets.

* Zinc/MiniZinc (G12 system) reformulates metaconstraints
for specific solvers.

* OPL, Xpress-Kalis, Comet, etc., use interval variables.

» SAT solver SymChaff uses high-level Al planning
language PDDL.

 Lopes and Fourer (2009) use UML (Unified Modeling
Language) to model multistage stochastic LPs with recourse.

« SIMPL has full metaconstraint capability.
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Previous work

 However, none of these systems deals systematically with
the variable management problem.

« We address it with semantic typing of variables.
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Assignment problem min Zcix_

worker in {1..m}

I
job in {1..n) alldiff (x,,...

data C{worker, job}

x[1i] is which job assign (worker 1i)
minimize sum{worker i} C[i,x[1]]
alldiff{x[*]}
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Assignment problem min Zcix_

worker in {1..m} !

job in {1..n} alldiff (x,,..., X, )
data C{worker, job} 1 "
x[1i] is which job assign (worker 1i)

minimize sum{worker i} C[i,x[1]]

alldiff{x[*]}

Obijective function _ -
max C.V., X = _all
is formulated Z i Yijr % Zj:y”

y[i,]J] is whether assign(worker i, job j)
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Assignment problem min Zcix_

worker in {1..m}

]
job in {1..n} alldiff (x,,...,x,)
data C{worker, job}

x[1i] is which job assign (worker 1i)
minimize sum{worker i} C[i,x[1]]
alldiff{x[*]}

Obijective function _ -
max C.V., X = _all
is formulated Z i Yijr % Zj:y”

y[1i,]J] is whether assign(worker i, job j)

Alldiff Syi=1alli, Y yi=1allj, x, =Y jy; alli
j i ]

Is formulated

vy’ [1,]J] is whether assign(worker i, job j)

_ Solver identifies y and y’ to create classical AP.
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Latin squares
J

3
1 2
2

Numbers in every row and column are distinct.
We will use three formulations to improve propagation.

MIP 2013 - Slide 56



alldiff (
Latin squares alldiff (x,;,...
J alldiff (
3 1 :
alldiff (y,, ...
1 | 2 |
T3 aIIdlfszjl,...

Numbers in every row and column are distinct.
We will use three formulations to improve propagation.

row, col,
x[1,3] is
v[i,k] is
z[j,k] is

MIP 2013 - Slide 57

num in {1l..n}

which num assign(row i, col j)
which col assign(row i, num k)
which row assign(col j, num k)

1,..0

Yigs---

alldiff (z,,...



Latin squares

J

1

2

3
1
2

3

alldiff (x,,...x,, ), all i
alldiff (x,;,...x,

(
(
alldiff (y,,...y,
(
(
(

)

)
alldiff (y,, ...y, ), all k

)

)

alldiff (z,,,...x,
alldiff (z,,...

Numbers in every row and column are distinct.
We will use three formulations to improve propagation.

row, col,
x[1,3] is
v[i,k] is
z[j,k] is

num in {1..

which num
which col
which row

{row 1} alldiff{x[1i

' *1)
{row i} alldiff{y[i,*]);
{col 3§} alldiff{z[j,*]);
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n}

assign(row i, col j)
assign(row i, num k)
assign(col j, num k)

{col j} alldiff{x[*,]])
{num k} alldiff{y[*,Jj])
{num k} alldiff{z[*,k])



Latin squares

The predicate assign denotes the 3-place relation

num col row

K, X; s Yik I, Zj

row, col, num in {1..n}

x[1,J] is which num assign(row i, col j)

v[i,k] is which col assign(row i, num k)

z[j,k] is which row assign(col j, num k)

{row i} alldiff{x[i,*]); {col j} alldiff{x[*,]])
{row i} alldiff{y[i,*]); {num k} alldiff{y[*,]])
{col j} alldiff{z[]j,*]); {num k} alldiff{z[*,k])
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Latin squares

The predicate assign denotes the 3-place relation

num col row

K, X; s Yik I, Zj
We can read off the channeling constraints:

K=X, yr 1= Y0 V=12 all 1, ],k

YMKM

which can be propagated.
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Latin squares

{row i} alldiff{x[i,*]); {col Jj} alldiff{x[*,]])
{row i} alldiff{y[i,*]),; {num k} alldiff{y[*,]])
{col j} alldiff{z[],*]); {num k} alldiff{z[*,6k])

The 3 formulations generate 3 identical MIP models:
X; :Zkéijxk; Zﬁijxk =1, all1, j; Zﬁijxk =1, all I,k; Zﬁijxk =1, all J,k
k k j i

Vo =D, 160 D65 =1 allik; Y &) =1, alli, j; > &) =1 alljk
J J k i

2, =ik, YL =1 alljk; Y% =1, alli,j; Y55 =1, alli,k
i i k j



Latin squares

{row i} alldiff{x[i,*]); {col Jj} alldiff{x[*,]])
{row i} alldiff{y[i,*]),; {num k} alldiff{y[*,]])
{col j} alldiff{z[],*]); {num k} alldiff{z[*,6k])

The 3 formulations generate 3 identical MIP models:
X; :Zk:kﬁijxk; Zkléijxk =1, all1, j; Zéijxk =1, all I,k; Zéijxk =1, all J,k
J [
Vi =D 065 D 65 =1 allik; > 85 =1 alli,j; > &) =1 alljk
] j k i
Zi =Zié‘ijzk, Z&ijzk =1, all j,k; Z&ijzk =1, all i, J; Zé‘ijzk =1, all i,k
i i k j

The solver declares &, G, S,
whether assign(row i, col j, num k)

So it treats them as the same variable and generates only 1 MIP model.
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Multiple which variables

In general, an n-place predicate that denotes the relation

term, e term, term, ., e term
I 1 e : k ; e -
I Xi(l) s Xi(k) i l,

for which variables, where 1(]) = i1"'ij_1ij+1"' )
generates the channeling constraints

Py
=X, o o alli.

b %y %i(my %G Xigk) ke o ok

1=1...



Multiple whether variables

whether keywords serve as projection operators on the relation.
y[i,]j,d] is whether assign(worker i, job j, day d)

Project out d :
vyl[i,j] is whether assign(worker i, job j)

Projectoutjand d:
y2[1i] is whether assign (worker 1)



Short forms

Declare x; to be cost of activity i :
x[1] is howmuch cost(activity i)

which is short for the formal declaration
x[1] is howmuch cost cost(activity 1)
In which a new term cost is generated

Declare x to be cost:
x is howmuch cost

which is short for
X is howmuch cost cost()



Piecewise linear

Piecewise linear function z = f(x)
Breakpoints in A, ordinates in C

X is howmuch output C
index in {1l..n}

data A,C{index}
Zz 1is howmuch cost

piecewise(x,z,A,C) this metaconstraint defines z = f(x)

A
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Piecewise linear

Piecewise linear function z = f(x)
Breakpoints in A, ordinates in C
X is howmuch output C
index in {1l..n}

data A,C{index}
z 1is howmuch cost
piecewise(x,z,A,C)

Solver generates the model

X = a1+Zx,, Z=C¢, +Za'+1 Ga=CGy
i=1
(a,-8)0., <X <(a,—-a)s, 5i €{0,1},i=1...,n-1

We need to declare auxiliary variables o;, X;
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Piecewise linear

Piecewise linear function z = f(x)
Breakpoints in A, ordinates in C

X is howmuch output C
index in {1l..n}

data A,C{index}

z is howmuch cost
piecewise(x,z,A,C)

piecewise constraint induces solver to declare a new index
set that associates index with A, and use it to declare 9, X;

xbar[i] is howmuch output.A(index i)
delta[i] is whether lastpositive output.A(index 1i)

Both declarations create predicates inherited from output and A
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Piecewise linear

Suppose there is another piecewise
function on the same break points

X is howmuch output
index in {1l..n}

data A,C{index}

z is howmuch cost
piecewise(x,z,A,C)
data C’ {index}

z’ is howmuch profit
piecewise(x,z’ ,A,C’)
x’ [1] i1s howmuch cost output.A(index i)

delta’ [1] is whether lastpositive output.A (index)
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Piecewise linear f(x)

Suppose there is another piecewise
function on the same break points

X is howmuch output
index in {1l..n}
data A,C{index} A
z is howmuch cost
piecewise(x,z,A,C)
data C’ {index}

z’ is howmuch profit
piecewise(x,z’ ,A,C’)
x’ [1] 1s howmuch cost output.A(index i)

delta’ [1] is whether lastpositive output.A (index)

i
Because new piecewise constraint

IS associated with the same x and A,
solver again creates output.A.

The solver creates variables ¢, and x;" with same types as §, and x;
and so identifies them.
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cumulative(x,D,R, L)
X, cW,, all

Interval variables

Each job j runs for a time interval x;.
We wish to schedule jobs so that total resource consumption

never exceeds L.
job in {1..n}
time in {t..T}
data W,D,R{job} window, duration, resource
running in [time,time] makes running an interval variable

x[j] is when running sched(job j) subset W[]]
cumulative(x,D,R,L)
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cumulative(x,D,R, L)
X, cW,, all

Interval variables

Each job j runs for a time interval x;.
We wish to schedule jobs so that total resource consumption

never exceeds L.
job in {1..n}
time in {t..T}
data W,D,R{job} window, duration, resource
running in [time,time] makes running an interval variable

x[j] is when running sched(job j) subset W[]]
cumulative(x,D,R,L)

Solver generates the model
Y s.,=Lallj; > Rg <L, allt
t j

@y 20, Al with0<t-t'<D,, all |

delta[j,t] is whether running.start sched(job j, time t)
phi[j,t] is whether running sched(job j, time t)
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Interval variables cumulative(x, D. R, L)

Suppose we want finish times Xj ng, all J
to be separated by at least T, Xgnd _ XEnd > To’ all j, k, J 2k
job in {1..n} J
time in {t..T}
data W,D,R{job}
running in [time, time]
x[j] is when running sched(job j) subset W[]]
cumulative(x,D,R,L)
{job j, job k | j<>k} |x[]j].end - x[k].end| >= TO
delta[]j,t] is whether running.start sched(job j, time t)
phi[j,t] is whether running sched(job j, time t)
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Interval variables cumulative(x, D. R, L)

Suppose we want finish times Xj ng, all J
to be separated by at least T, Xgnd _ XEnd > To’ all j, k, J 2k
job in {1..n} J
time in {t..T}
data W,D,R{job}
running in [time, time]
x[j] is when running sched(job j) subset W[]]
cumulative(x,D,R,L)
{job j, job k | j<>k} |x[]j].end - x[k].end| >= TO
delta[]j,t] is whether running.start sched(job j, time t)
phi[j,t] is whether running sched(job j, time t)

Solver generates
Ep + & <l allt,t' withO<t'—t<T,, all J,t with j =k

epsilon[j,t] is whether running.end sched(job j, time t)
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Interval variables

Variables &; and g; are related by an offset.
Solver associates running. end in declaration of g;
with running. start in declaration of 6; and deduces

€ o, = O all ]t

delta[]j,t] is whether running.start sched(job j, time t)
phi[]j,t] is whether running sched(job j, time t)
epsilon[]j,t] is whether running.end sched(job j, time t)
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Interval variables

Variables &; and g; are related by an offset.
Solver associates running. end in declaration of g;
with running. start in declaration of 6; and deduces

€ o, = O all ]t

Solver also assoclates running. end in declaration of g;
with running Iin declaration of ¢, and deduces
the redundant constraints

Py Z & all t,t" with0<t'—-t< D., all |

delta[]j,t] is whether running.start sched(job j, time t)
phi[]j,t] is whether running sched(job j, time t)
epsilon[]j,t] is whether running.end sched(job j, time t)
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TSP with Side Constraints mi”ZDisi

Traveling salesman problem with missing  alldiff (x), circuit(s)

arcs and precedence constraints. .
¥ X <X;, all'l, J with prec;, =1

city, position in {1..n} S, € Succ.

data D{city, city} Distances

data Prec{city, city} Prec[i,j]=1Iifi must precede |
data Succ{city} Succ[j] = set of successors of city |
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TSP with Side Constraints mi”ZDisi

Traveling salesman problem with missing  alldiff (x), circuit(s)

arcs and precedence constraints. .
¥ X <X;, all'l, J with prec;, =1

city, position in {1..n} S, € Succ.

data D{city, city} Distances

data Prec{city, city} Prec[i,j]=1Iifi must precede |
data Succ{city} Succ[j] = set of successors of city |

Two variable systems:
x[1] is which position ordering(city 1)
s[i] is successor city ordering(city i) subset Succ[i]
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TSP with Side Constraints mi”ZDisi

Traveling salesman problem with missing  alldiff (x), circuit(s)

arcs and precedence constraints. .
¥ X <X;, all'l, J with prec;, =1

city, position in {1..n} S, € Succ.

data D{city, city} Distances

data Prec{city, city} Prec[i,j]=1Iifi must precede |
data Succ{city} Succ[j] = set of successors of city |

Two variable systems:
x[1] is which position ordering(city 1)
s[i] is successor city ordering(city i) subset Succ[i]

Precedence constraints require x variables
prec{city 1, city j | Prec|[1i, ] 1}: x[1i] < x[]]
Missing arc constraints (implicit in data Succ) require s variables
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TSP with Side Constraints mi”ZDisi

Traveling salesman problem with missing  alldiff (x), circuit(s)

arcs and precedence constraints. .
¥ X <X;, all'l, J with prec;, =1

city, position in {1..n} S, € Succ.

data D{city, city} Distances

data Prec{city, city} Prec[i,j]=1Iifi must precede |
data Succ{city} Succ[j] = set of successors of city |

Two variable systems:
x[1] is which position ordering(city 1)
s[i] is successor city ordering(city i) subset Succ[i]

Precedence constraints require x variables
prec{city 1, city j | Prec|[1i, ] 1}: x[1i] < x[]]
Missing arc constraints (implicit in data Succ) require s variables

min sum {city i} D[i,s[i]] Objective function
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TSP with Side Constraints

The solver can give alldiff (x) a conventional assignment model
using z; = whether city i is in position k.

z[i,k] is whether ordering(city i, position k)
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TSP with Side Constraints

The solver can give alldiff (x) a conventional assignment model
using z; = whether city i is in position k.

z[i,k] is whether ordering(city i, position k)

For circuit (s), the solver can introduce
w;; = whether city | immediately precedes city |.

w[i,j] is whether successor ordering(city i, city Jj)
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TSP with Side Constraints

The solver can give alldiff (x) a conventional assignment model
using z; = whether city i is in position k.

z[i,k] is whether ordering(city i, position k)

For circuit (s), the solver can introduce
w;; = whether city | immediately precedes city |.

w[i,j] is whether successor ordering(city i, city Jj)

Declaration of z tells solver that predicate is
ordering (city,position), N0t ordering(city,city).
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TSP with Side Constraints

The solver can give alldiff (x) a conventional assignment model
using z; = whether city i is in position k.

z[i,k] is whether ordering(city i, position k)

For circuit (s), the solver can introduce
w;; = whether city | immediately precedes city |.

w[i,j] is whether successor ordering(city i, city Jj)
Declaration of z tells solver that predicate is

ordering (city,position), N0t ordering(city,city).
Solver generates cutting planes in w-space and s-space.
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TSP with Side Constraints

The solver can give alldiff (x) a conventional assignment model
using z; = whether city i is in position k.

z[i,k] is whether ordering(city i, position k)

For circuit (s), the solver can introduce
w;; = whether city | immediately precedes city |.

w[i,j] is whether successor ordering(city i, city Jj)

Declaration of z tells solver that predicate is
ordering (city,position), N0t ordering(city,city).
Solver generates cutting planes in w-space and s-space.

The successor keyword tells solver how z and w relate.
$. > e, allt,t' with 0<t'—t<D;, all j
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TSP with Side Constraints

Suppose we also have constraints on which city is in position k.
Simply declare

y[k] = which city ordering(position k)

The solver generates the channeling constraints between y [k]
and x[i] = which position is city |
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TSP with Side Constraints

Suppose we also have constraints on which city is in position k.
Simply declare

y[k] = which city ordering(position k)

The solver generates the channeling constraints between y [k]
and x[i] = which position is city |

The solver can also introduce a second (equivalent) objective function
min sum{position k} D[y[k],y[k+1]]

which may improve bounding.
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Pros and Cons of Semantic Typing

* Pros
« Conveys problem structure to the solver(s)
— ...by allowing use of metaconstaints
* Incorporates state of the art in formulation, valid inequalities
* Allows solver to expand repertory of techniques
— Domain filtering, propagation, cutting plane algorithms

« Good modeling practice
— Self-documenting

— Bug detection
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Pros and Cons of Semantic Typing

 Cons

* Modeler must be familiar with a large collection of
metaconstraints

— Rather than few primitive constraints
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Pros and Cons of Semantic Typing

 Cons

* Modeler must be familiar with a large collection of
metaconstraints

— Rather than few primitive constraints
* Response
— Modeler must be familiar with the underlying concepts anyway

— Modeling system can offer sophisticated help, improve modeling
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Pros and Cons of Semantic Typing

 Cons

* Modeler must be familiar with a large collection of
metaconstraints

— Rather than few primitive constraints
* Response
— Modeler must be familiar with the underlying concepts anyway

— Modeling system can offer sophisticated help, improve modeling

* OR, SAT community is not accustomed to high-level modeling

— Typed languages like Ascend never really caught on.
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Pros and Cons of Semantic Typing

 Cons

* Modeler must be familiar with a large collection of
metaconstraints

— Rather than few primitive constraints

* Response
— Modeler must be familiar with the underlying concepts anyway
— Modeling system can offer sophisticated help, improve modeling

* OR, SAT community is not accustomed to high-level modeling
— Typed languages like Ascend never really caught on.

* Response

— Train the next generation!
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