MIP Modeling with Metaconstraints
and Semantic Typing

André Ciré, John Hooker
Carnegie Mellon University

Tallys Yunes
University of Miami

MIP Workshop, July 2013

Two Perspectives on Optimization

* Reduce problems to standard form using atomistic constraints
* Lose structure, but use highly engineered solvers
 Current orthodoxy for MIP, SAT communities
« Solver must rely on specific problem structure
« Use special purpose solver, or...
« Convey structure to general solver with global constraints.

 Current practice for CP solvers

MIP 2013 - Slide 2

In reality...

* You can’t solve NP-hard problems without exploiting special
structure.

MIP 2013 - Slide 3

In reality...

* You can’t solve NP-hard problems without exploiting special
structure.

* For SAT solvers:
 Careful reduction of problem to SAT form

 This has become a minor industry

MIP 2013 - Slide 4

In reality...

* You can’t solve NP-hard problems without exploiting special
structure.

* For SAT solvers:
 Careful reduction of problem to SAT form
* This has become a minor industry
* For MIP solvers:
» Careful choice of variables for tight formulation
 Addition of valid inequalities
« SOS1, SOS2, symmetry-breaking constraints, etc.

» Solver parameters (e.g., which cuts?)

MIP 2013 - Slide 5

How to take advantage of structure

* Use a general solver that exploits structure directly
« Such as a CP or integrated solver

* ILOG CP Optimizer, CHIP, Gecode, Google CP Solver,
ECLIPSe, G12, SIMPL, Xpress-Mosel

« Convey structure to MIP (or SAT) solver

* Formulate problem with global constraints or
metaconstraints to reveal structure

» Automatically convert these to optimal MIP formulation

MIP 2013 - Slide 6

Conveying structure to MIP

* Given the advanced state of MIP technology...

* Perhaps a logical next step is to convey problem structure
to the solver.

MIP 2013 - Slide 7

Conveying structure to MIP

* Given the advanced state of MIP technology...

* Perhaps a logical next step is to convey problem structure
to the solver.

« Advantages of using metaconstraints
* Better MIP formulation, tighter LP relaxation

* Opportunity to enhance solver with domain filtering,
constraint propagation.

MIP 2013 - Slide 8

Conveying structure to MIP

* Given the advanced state of MIP solvers...

* Perhaps a logical next step is to convey problem structure
to the solver.

« Advantages of using metaconstraints
* Better MIP formulation, tighter LP relaxation

* Opportunity to enhance solver with domain filtering,
constraint propagation.

» However, metaconstraints pose a fundamental problem of
variable management...

MIP 2013 - Slide 9

Variable management problem

* MIP formulation typically introduces new variables

* Different metaconstraints may introduce variables that are
functionally the same variable

» ...or related in some other way.

* Recognizing these relationships is essential to obtaining a
good model (in particular, a tight relaxation)

* How can the solver “understand” what is going on in the
model?

MIP 2013 - Slide 10

Variable management problem

* MIP formulation typically introduces new variables

* Different metaconstraints may introduce variables that are
functionally the same variable

» ...or related in some other way.

* Recognizing these relationships is essential to obtaining a
good model (in particular, a tight relaxation)

* How can the solver “understand” what is going on in the
model?

* Proposal: Model with semantic typing of variables.

MIP 2013 - Slide 11

Metaconstraints and semantic typing

* Metaconstraints convey problem structure

* Each represents a structured collection of more elementary
constraints.

« Semantic typing assigns a meaning to each variable.
* Allows solver to deduce relationships among variables.

» Good modeling practice in general.

MIP 2013 - Slide 12

How variables are introduced

* The MIP solver may reformulate a constraint containing general
integer variable x; in terms of 0-1 variables y; , where

X, = Z jyij
j

* y;S may be equivalent to other variables that appear in
the model or MIP formulations of other constraints.

MIP 2013 - Slide 13

How variables are introduced

* The solver may reformulate a disjunction of linear systems

| JAX = b"

using a convex hull (or big-M) formulation:
A x“>b"y,, allk

x=>x >y, =1
k k

y, €{0,1}, allk

 Other constraints may be based on same set of alternatives,
and corresponding auxiliary variables (y, etc.) should be equated.

MIP 2013 - Slide 14

How variables are introduced

* A nonlinear or global solver may use McCormick factorization
to replace nonlinear subexpressions with auxiliary variables

» ... to obtain a linear relaxation.

MIP 2013 - Slide 15

How variables are introduced

* A nonlinear or global solver may use McCormick factorization
to replace nonlinear subexpressions with auxiliary variables

... to obtain a linear relaxation.

* For example, bilinear term xy can be linearized by replacing
It with new variable z and constraints

Lx+Ly-LL <z<Lx+Uy-LU,
Ux+Uy-UU <z<UXx+LYy-UL,
where x e[L,,U,], ye|L,.U, |

* Factorization of different constraints may create variables
for identical subexpressions.

» They should be identified to get a tight relaxation.

MIP 2013 - Slide 16

How variables are introduced

» The MIP solver may reformulate global constraints from CP by
iIntroducing variables that have the same meaning.

MIP 2013 - Slide 17

How variables are introduced

* The MIP solver may reformulate global constraints from CP by
iIntroducing variables that have the same meaning.

* For example, sequence constraint limits how many jobs
of a given type can occur in given time interval:

sequence(x), X, = job in position i

and cardinality constraint limits how many times a given

job appears
cardinality(x), x, = job in position |

Both may introduce variables
y; =1when job | occurs in position i

that should be identified.

MIP 2013 - Slide 18

How variables are introduced

 Popular global constraints include:

all-different lex greater
among nvalues
cardinality path
circuit range
clique reqular
cumulative roots
cutset same
cycle sort

diffn spread
element sum

flow symmetric alldiff

MIP 2013 - Slide 19

How variables are introduced

* The solver may introduce equivalent variables while interpreting
metaconstraints designed for classical MIP modeling situations:

* Fixed-charge network flow

* Facility location

* Lot sizing

 Job shop scheduling

» Assignment (3-dim, quadratic, etc.)

* Piecewise linear

MIP 2013 - Slide 20

How variables are introduced

* A model may include two formulations of the problem that
use related variables.

« Common in CP, because it strengthens propagation.

MIP 2013 - Slide 21

How variables are introduced

* A model may include two formulations of the problem that
use related variables.

« Common in CP, because it strengthens propagation.
* For example,
X. = job assigned to worker |

y, = worker assigned to job |

 Solver should generate channeling constraints
to relate the variables to each other:

j:xyj, =y,

MIP 2013 - Slide 22

Motivating example

* Allocate 10 advertising spots to 5 products

Y I 1 I 1 1 1 I 1 I
L d
1} ! [y] (Y 1 (Y] Y]
~E i' ~E i' ~E i' ~E i' ~E i'
Ll - - L' d - - - - - -

X. = how many spots y; = lif] spots
allocated to product i allocated to product i
D E

MIP 2013 - Slide 23

Motivating example

* Allocate 10 advertising spots to 5 products

L} 1 Y /]
L d
.“E f - .“5 f %
) 1 Y]
L d
.“E f - .”E f %

) ! 1} 1 [y]
é' é' é'
. ' d - - L] -

) ! 1 1 v]
é' é’ é’
. PN = -

X. = how many spots y; = lif] spots
allocated to product i allocated to product i

MIP 2013 - Slide 24

< 4 spots per product

Motivating example

* Allocate 10 advertising spots to 5 products

OO0 < 4 spots per prodicy
é" é é ﬁ - E §> Advertise < 3 products

X. = how many spots y; = lif] spots
allocated to product i allocated to product i
D E

MIP 2013 - Slide 25

Motivating example

* Allocate 10 advertising spots to 5 products

O OO0 < 4 spots per prodicy
é" é é ﬁ - E §> Advertise < 3 products

> 4 spots for at least

x, = how many spots y; = L1ifj spots one product
allocated to product i allocated to product i
2 B e
B C D E

MIP 2013 - Slide 26

Motivating example

* Allocate 10 advertising spots to 5 products

OO0 < 4 spots per prodicy
é" é é ﬁ - E §> Advertise < 3 products

> 4 spots for at least

x, = how many spots y; = L1ifj spots one product
allocated to product i allocated to product i
P; = profit from
. allocating j spots
B to product |
D E .
Obijective:

maximize profit

MIP 2013 - Slide 27

Motivating example

spots in {0..4}

product in {A,B,C,D,E}) Index sets

Motivating example

spots in {0..4}
product in {A,B,C,D,E}
data P{product, spots} Data input

Motivating example

spots in {0..4}

product in {A,B,C,D,E}

data P{product, spots} Declaration of variable x;
x[1] is howmany spots allocate (product 1i)

Motivating example

spots in {0..4}

product in {A,B,C,D,E}

data P{product, spots} Declaration of variable x;
x[1i] @ howmany spots allocate (product 1i)

This makes it
a variable
declaration

Motivating example

spots in {0..4}

product in {A,B,C,D,E}

data P{product, spots} Declaration of variable x;
x[1] is |howmany spots allocate(product 1i)

This is the
semantic type

Motivating example

spots in {0..4}

product in {A,B,C,D,E}

data P{product, spots} Declaration of variable x;
x[1] is |howmany|spots allocate (product 1i)

Indicates an
iInteger quantity

Other
keywords:

howmuch
whether

Motivating example

spots in {0..4}

product in {A,B,C,D,E}

data P{product, spots} Declaration of variable x;
x[1] is howmany |spots| allocate (product 1i)

How many of
what?

Motivating example

spots in {0..4}

product in {A,B,C,D,E}

data P{product, spots} Declaration of variable x;
x[i] is howmany spots |allocate|(product i)

Predicate associated
with variable x

Every variable is
associated with a
predicate that
gives it meaning

Motivating example

spots in {0..4}

product in {A,B,C,D,E}

data P{product, spots} Declaration of variable x;
x[1] is howmany spots allocate|(product|i)

Other term of the
predicate

Motivating example

spots in {0..4}

product in {A,B,C,D,E}
data P{product, spots} Declaration of variable x;
x[1] is howmany spots allocate (product|i)

Associates
iIndex of x[i] with
Index set product

max Z:Pixi
Motivating example ‘

spots in {0..4}

product in {A,B,C,D,E}

data P{product, spots}

x[1] is howmany spots allocate (product i)
maximize sum{product i} P[i,x[i]] Objective function

Motivating example |

spots in {0..4}

product in {A,B,C,D,E}

data P{product, spots}

x[1] is howmany spots allocate (product 1i)
maximize sum{product i} P[i,x[1i]]
sum{product i} x[i] <= 10 10 spots available

Motivating example |

spots in {0..4}

product in {A,B,C,D,E}

data P{product, spots}

x[1] is howmany spots allocate (product i)

maximize sum{product i} P[I,x[1i]]

sum{product i} x[i] <= 10

v[i,j] is|whether|allocate(product i, spots j)
Declare y;

Indicates 0-1
variable

Motivating example |

spots in {0..4}

product in {A,B,C,D,E}

data P{product, spots}

x[1] is howmany spots allocate (product i)

maximize sum{product i} P[i,x[1i]]

sum{product i} x[i] <= 10

v[i,j] is whether|allocate|(product i, spots j)
Declare y;

Associated with
same predicate
as x[i]

max »_ Py

D % <10, Yy, =2

Motivating example

spots in {0..4}

product in {A,B,C,D,E}

data P{product, spots}

x[1i] is howmany spots allocate (product i)

maximize sum{product i} P[i,x[1i]]

sum{product i} x[i] <= 10

v[i,]J] is whether allocate(product i, spots j)
sum{product i} y[i,0] >= 2 At most 3 products advertised

max »_ Py

D> % <10, Yy, 22 Dy, =1

Motivating example

spots in {0..4}

product in {A,B,C,D,E}

data P{product, spots}

x[1i] is howmany spots allocate (product i)

maximize sum{product i} P[i,x[1i]]

sum{product i} x[i] <= 10

v[i,]J] is whether allocate(product i, spots j)
sum{product i} y[i,0] >= 2

sum{product i} y[i,4] >= 1 Atleast 1 product gets >4 spots

max ZPiXi
D> % <10, Yy, 22 Dy, =1

spots in {0..4} Zyij =1 X =ijij, all i
j j

Motivating example

product in {A,B,C,D,E}

data P{product, spots}

x[1] is howmany spots allocate (product 1i)
maximize sum{product i} P[i,x[1i]]

sum{product i} x[i] <= 10

v[i,]] is whether allocate (product i, spots 7j)
sum{product i} y[i,0] >= 2

sum{product i} y[i,4] >= 1

{product i} sum{spots j} y[i,]] =1

{product i} x[1] = sum{spots J} J*yI[i,]]

Solver generates linking constraints because
x[i] and y[i,3j] are associated with the same predicate.

max » P,
D> % <10, Yy, 22 Dy, =1

spots in {0..4} Zyij =1 X :ijij' all i
product in {A,B,C,D,E} i j

data P{product, spots}

x[1] is howmany spots allocate (product 1i)

maximize sum{product i} P[i,x[1i]]

Motivating example

This constraint must be linearized. Solver generates

4 4 4
Z, :Z(;Pijyi;’ Zoylj =1 X :;jyi;’ all
i= i= j=

vy’ [1,]J] is whether allocate(product i, spots j)

max » P,
D> % <10, Yy, 22 Dy, =1

spots in {0..4} Zyij =1 X :ijij’ all i
product in {A,B,C,D,E} i j

data P{product, spots}

x[1] is howmany spots allocate (product 1i)

maximize sum{product i} P[i,x[1i]]

Motivating example

This constraint must be linearized. Solver generates

4 4 4
Z, :Z(;Pijyi;’ Zoylj =1 X :;jyi;’ all
i= i= j=

vy’ [1,]J] is whether allocate(product i, spots j)

y and y' are identified because they have the same type:

y[i,]j] is whether allocate(product i, spots j)

Predicates and relations

Predicate allocate denotes 2-place relation (set of tuples).
Schematically indicated by:

i X;

howmany

product spots

Predicates and relations

Predicate allocate denotes 2-place relation (set of tuples).
Schematically indicated by:

i X;

howmany

product spots

Column corresponding to a variable must be a function of other
columns.

Predicates and relations

Predicate allocate denotes 2-place relation (set of tuples).
Schematically indicated by:

i X;
howmany

product spots

Declaration of y[i,3] as
whether allocate (product i, spots j)

creates the 3-place relation

| Xi Yi
howmany whether

product spots binary

Predicates and relations

Relation table reveals channeling constraints. For example,

x[1i] is which job assign (worker 1i)
y[jJ] is which worker assign (job 1)

) X LY,
which which
job worker

We can read off the channeling constraints

=% =x,

|:>/J :>/Xi

Previous work

 Model management uses semantic typing to help combine
models and use inheritance.

« Originally inspired by object-oriented programming
Bradley & Clemence (1988)

 Quiddity: a rigorous attempt to analyze conditions
for variable identification
Bhargava, Kimbrough & Krishnan (1991)

« SML uses typing in a structured modeling framework
Geoffrion (1992)

» Ascend uses strongly-typed, object-oriented modeling
Bhargava, Krishnan & Piela (1998)

MIP 2013 - Slide 51

Previous work

« Our semantic typing differs:

* Less ambitious because it doesn’t attempt model
management.

* There is only one model.

 More ambitious because we recognize relationships
other than equivalence.

* \We manage variables introduced by solver.

MIP 2013 - Slide 52

Previous work

* Modeling systems that convey some structure to solver:
 All CP modelers (OPL, CHIP, etc.) use global constraints.
* AIMMS uses typed index sets.
* OPL, Xpress-Kalis, Comet, etc., use interval variables.

» SAT solver SymChaff uses high-level Al planning
language PDDL.

 Lopes and Fourer (2009) use UML (Unified Modeling
Language) to model multistage stochastic LPs with recourse.

« SIMPL has full metaconstraint capability.

MIP 2013 - Slide 53

Previous work

 However, none of these systems deals systematically with
the variable management problem.

« We address it with semantic typing of variables.

MIP 2013 - Slide 54

Assignment problem min Zcix_

worker in {1..m}

I
job in {1..n) alldiff (x,,...

data C{worker, job}

x[1i] is which job assign (worker 1i)
minimize sum{worker i} C[i,x[1]]
alldiff{x[*]}

MIP 2013 - Slide 55

Assignment problem min Zcix_

worker in {1..m} !

job in {1..n} alldiff (x,,..., X,)
data C{worker, job} 1 "
x[1i] is which job assign (worker 1i)

minimize sum{worker i} C[i,x[1]]

alldiff{x[*]}

Obijective function _ -
max C.V., X = _all
is formulated Z i Yijr % Zj:y”

y[i,]J] is whether assign(worker i, job j)

MIP 2013 - Slide 56

Assignment problem min Zcix_

worker in {1..m}

]
job in {1..n} alldiff (x,,...,x,)
data C{worker, job}

x[1i] is which job assign (worker 1i)
minimize sum{worker i} C[i,x[1]]
alldiff{x[*]}

Obijective function _ -
max C.V., X = _all
is formulated Z i Yijr % Zj:y”

y[1i,]J] is whether assign(worker i, job j)

Alldiff Syi=1alli, Y yi=1allj, x, =Y jy; alli
j i]

Is formulated

vy’ [1,]J] is whether assign(worker i, job j)

_ Solver identifies y and y’ to create classical AP.
MIP 2013 - Slide 57

Latin squares
J

3
1 2
2

Numbers in every row and column are distinct.
We will use three formulations to improve propagation.

MIP 2013 - Slide 58

alldiff (
Latin squares alldiff (x,;,...
J alldiff (
3 1 :
alldiff (y,, ...
1 | 2 |
T3 aIIdlfszjl,...

Numbers in every row and column are distinct.
We will use three formulations to improve propagation.

row, col,
x[1,3] is
v[i,k] is
z[j,k] is

MIP 2013 - Slide 59

num in {1l..n}

which num assign(row i, col j)
which col assign(row i, num k)
which row assign(col j, num k)

1,..0

Yigs---

alldiff (z,,...

Latin squares

J

1

2

3
1
2

3

alldiff (x,,...x,,), all i
alldiff (x,;,...x,

(
(
alldiff (y,,...y,
(
(
(

)

)
alldiff (y,, ...y,), all k

)

)

alldiff (z,,,...x,
alldiff (z,,...

Numbers in every row and column are distinct.
We will use three formulations to improve propagation.

row, col,
x[1,3] is
v[i,k] is
z[j,k] is

num in {1..

which num
which col
which row

{row 1} alldiff{x[1i

' *1)
{row i} alldiff{y[i,*]);
{col 3§} alldiff{z[j,*]);

MIP 2013 - Slide 60

n}

assign(row i, col j)
assign(row i, num k)
assign(col j, num k)

{col j} alldiff{x[*,]])
{num k} alldiff{y[*,Jj])
{num k} alldiff{z[*,k])

Latin squares

The predicate assign denotes the 3-place relation

K, X; s Yik l, Z;
which which which
num col row

row, col, num in {1..n}

x[1,J] is which num assign(row i, col j)

v[i,k] is which col assign(row i, num k)

z[j,k] is which row assign(col j, num k)

{row i} alldiff{x[i,*]); {col j} alldiff{x[*,]])
{row i} alldiff{y[i,*]); {num k} alldiff{y[*,]])
{col j} alldiff{z[]j,*]); {num k} alldiff{z[*,k])

MIP 2013 - Slide 61

Latin squares

The predicate assign denotes the 3-place relation

K, Xij Js Yik , Zix
which which which
num col row

We can read off the channeling constraints:

K=X, yr 1= Y0 V=12 all 1,],k

YMKM

which can be propagated.

MIP 2013 - Slide 62

Latin squares

{row i} alldiff{x[i,*]); {col Jj} alldiff{x[*,]])
{row i} alldiff{y[i,*]),; {num k} alldiff{y[*,]])
{col j} alldiff{z[],*]); {num k} alldiff{z[*,6k])

The 3 formulations generate 3 identical MIP models:
X; :Zkéijxk; Zﬁijxk =1, all1, j; Zﬁijxk =1, all I,k; Zﬁijxk =1, all J,k
k k j i

Vo =D, 160 D65 =1 allik; Y &) =1, alli, j; > &) =1 alljk
J J k i

2, =ik, YL =1 alljk; Y% =1, alli,j; Y55 =1, alli,k
i i k j

Latin squares

{row i} alldiff{x[i,*]); {col Jj} alldiff{x[*,]])
{row i} alldiff{y[i,*]),; {num k} alldiff{y[*,]])
{col j} alldiff{z[],*]); {num k} alldiff{z[*,6k])

The 3 formulations generate 3 identical MIP models:
X; :Zk:kﬁijxk; Zkléijxk =1, all1, j; Zéijxk =1, all I,k; Zéijxk =1, all J,k
J [
Vi =D 065 D 65 =1 allik; > 85 =1 alli,j; > &) =1 alljk
] j k i
Zi =Zié‘ijzk, Z&ijzk =1, all j,k; Z&ijzk =1, all i, J; Zé‘ijzk =1, all i,k
i i k j

The solver declares &, G, S,
whether assign(row i, col j, num k)

So it treats them as the same variable and generates only 1 MIP model.

MIP 2013 - Slide 64

Relating which variables

In general, an n-place predicate that denotes the relation

- 1 - k - -
I Xi(1) s Xi(k)) I,
which which

entity, ... entity, entity,,; ... entity,

where i(j) =iy, 4i 1,

generates the channeling constraints
vyl
=X 0 oa o alll,.]1=1..

b %y %i(my %G Xigk) ke o b

Piecewise linear

Piecewise linear function z = f(x)
Breakpoints in A, ordinates in C

X is howmuch output C
index in {1l..n}

data A,C{index 1}
Zz 1is howmuch cost

piecewise(x,z,A,C) this metaconstraint defines z = f(x)

A

MIP 2013 - Slide 66

Piecewise linear

Piecewise linear function z = f(x)
Breakpoints in A, ordinates in C
X is howmuch output C
index in {1l..n}

data A,C{index 1}
z 1is howmuch cost
piecewise(x,z,A,C)

Solver generates the model

X = a1+Zx,, Z=C, +Za'+1 i
i=1
(&, —a)0., <X <(a,,—&)J,, 5i €{0,1}, i=1...,n-1

We need to declare auxiliary variables o;, X;

MIP 2013 - Slide 67

Piecewise linear

Piecewise linear function z = f(x)
Breakpoints in A, ordinates in C

X is howmuch output C
index in {1l..n}

data A,C{index 1}
z 1is howmuch cost
piecewise(x,z,A,C)

piecewise constraint induces solver to declare a new index
set that associates index with A, and use it to declare 9, X;
indexA in {1l..n}

delta[i] is whether output (indexA i)

x[1i] is howmuch output (indexA 1i)

Both declarations create predicates inherited from output

MIP 2013 - Slide 68

Piecewise linear

Suppose there is another piecewise
function on the same break points

X is howmuch output
index in {1l..n}

data A,C{index 1i}

z is howmuch cost
piecewise(x,z,A,C)
data C’ {index 1i}

z’ is howmuch profit
piecewise(x,z’ ,A,C’)
indexA in {1l..n}
delta[i] is whether output (indexA i)
x[1i] is howmuch output (indexA 1i)

MIP 2013 - Slide 69

Piecewise linear f(x)

Suppose there is another piecewise
function on the same break points

X is howmuch output
index in {1..n}
data A,C{index i} A
z is howmuch cost
piecewise(x,z,A,C)
data C’ {index 1i}

z’ is howmuch profit
piecewise(x,z’ ,A,C’)
indexA in {1l..n}
delta[i] is whether output (indexA i)
x[1i] is howmuch output (indexA 1i)

Because new piecewise constraint

IS associated with the same x and A,
solver again creates indexA.

MIP model creates variables ¢, and x;" with same types as 6, and x;
and so identifies them.

MIP 2013 - Slide 70

cumulative(x,D,R, L)
X, cW,, all

Interval variables

Each job j runs for a time interval x;.
We wish to schedule jobs so that total resource consumption
never exceeds L.
job in {1..n}
time in {t..T}
data W{job}, D{job}, R{job} window, duration, resource
x[j] is interval running(job j) in W[]J]
cumulative(x,D,R,L)

MIP 2013 - Slide 71

cumulative(x,D,R, L)
X, cW,, all

Interval variables

Each job j runs for a time interval x;.
We wish to schedule jobs so that total resource consumption

never exceeds L.
job in {1..n}

time in {t..T}
data W{job}, D{job}, R{job} window, duration, resource

x[j] is interval running(job j) in W[]J]
cumulative(x,D,R,L)

Solver generates the MIP model
Y. s.=Lallj; > Rg, <L, allt
t j

@, >6,, allt,t' with0<t—t'<D,, allj

delta[j,t] is whether running.start(job j, time t)
phi[j,t] is whether running(job j, time t)

MIP 2013 - Slide 72

Interval variables cumulative(x,D,R, L)
X, cW,, all

end end -

Suppose we want finish times
to be separated by at least T,

job in {1..n}

time in {t..T}

data W{job}, D{job}, R{job}
x[j] is interval running(job j) in W[]J]
cumulative(x,D,R,L)

{job j, job k} |x[j].end - x[k].end| >= TO
delta[j,t] is whether running.start(job j, time t)
phi[j,t] is whether running(job j, time t)

X

MIP 2013 - Slide 73

Interval variables cumulative(x,D,R, L)

Suppose we want finish times Xj ng’ all J

to be separated by at least T, ‘X?nd B lend > To’ all j, K

job in {1..n}

time in {t..T}

data W{job}, D{job}, R{job}
x[j] is interval running(job j) in W[]J]
cumulative(x,D,R,L)

{job j, job k} |x[j].end - x[k].end| >= TO
delta[j,t] is whether running.start(job j, time t)
phi[j,t] is whether running(job j, time t)

Solver generates
£, &g <Lallt,t with 0<t' —t<T,, all j,t with j =k
epsilon[]j,t] is whether running.end(job j, time t)

MIP 2013 - Slide 74

Interval variables

Variables &; and g; are related by an offset.
Solver associates running. end in declaration of g;
with running. start in declaration of 6; and deduces

€ o, = O all]t

delta[]j,t] is whether running.start(job j, time t)
phi[]j,t] is whether running(job j, time t)
epsilon[]j,t] is whether running.end(job j, time t)

MIP 2013 - Slide 75

Interval variables

Variables &; and g; are related by an offset.
Solver associates running. end in declaration of g;
with running. start in declaration of 6; and deduces

€ o, = O all]t

Solver also assoclates running. end in declaration of g;
with running Iin declaration of ¢, and deduces
the redundant constraints

Py Z & all t,t" with0<t'—-t< D., all |

delta[]j,t] is whether running.start(job j, time t)
phi[]j,t] is whether running(job j, time t)
epsilon[]j,t] is whether running.end(job j, time t)

MIP 2013 - Slide 76

Pros and Cons of Semantic Typing

* Pros
« Conveys problem structure to MIP solver
— ...by allowing use of metaconstaints
* Incorporates state of the art in formulation, valid inequalities
* Allows solver to expand repertory of techniques
— Domain filtering, propagation
« Good modeling practice

— Self-documenting

— Bug detection

MIP 2013 - Slide 77

Pros and Cons of Semantic Typing

 Cons

* Modeler must be familiar with a large collection of
metaconstraints

— Rather than few primitive constraints

MIP 2013 - Slide 78

Pros and Cons of Semantic Typing

 Cons

* Modeler must be familiar with a large collection of
metaconstraints

— Rather than few primitive constraints
* Response
— Modeler must be familiar with the underlying concepts anyway

— Modeling system can offer sophisticated help, improve modeling

MIP 2013 - Slide 79

Pros and Cons of Semantic Typing

 Cons

* Modeler must be familiar with a large collection of
metaconstraints

— Rather than few primitive constraints
* Response
— Modeler must be familiar with the underlying concepts anyway

— Modeling system can offer sophisticated help, improve modeling

* OR community is not accustomed to high-level modeling

— Typed languages like Ascend never really caught on.

MIP 2013 - Slide 80

Pros and Cons of Semantic Typing

 Cons

* Modeler must be familiar with a large collection of
metaconstraints

— Rather than few primitive constraints

* Response
— Modeler must be familiar with the underlying concepts anyway
— Modeling system can offer sophisticated help, improve modeling
* OR community is not accustomed to high-level modeling
— Typed languages like Ascend never really caught on.
* Response

— Train the next generation!

MIP 2013 - Slide 81

