A Modeling Language Based on Semantic Typing

John Hooker
Carnegie Mellon University

Joint work with
André Ciré
University of Toronto
Tallys Yunes
University of Miami

Logic and Practice of Programming - LPOP 2018
Oxford, UK, July 2018

Logic Modeling for Optimization

- We address a recent trend in modeling systems for optimization and constraint satisfaction:
- High-level models invoke multiple solvers.
- Models are flattened to low-level models for individual solvers.
- Thesis: Semantically typed logic models are well suited to this task.
- Variable declarations become relational database queries.

Prelude: Logic in Optimization

- Logic is deeply connected to optimization and constraint satisfaction. For example:
- Optimization duals are logical inference problems.
- The resolution method of logical inference is a special case of cutting planes in combinatorial optimization.
- Constraint satisfaction problems are often formulated directly as SAT problems.
- Conflict-driven clause learning for SAT is a special case of Benders decomposition.
- BDDs provide basis for discrete optimization (relaxation, primal heuristics, constraint propagation, postoptimality).

Prelude: Logic in Optimization

- Boole's probability logic poses an optimization problem (linear programming) that can be solved with column generation.
- Inference in belief logics, nonmonotonic logics, etc., can be formulated as linear and integer programming problems.
- Infinite-dimensional integer programming is based on a compactness theorem equivalent to Herbrand's theorem in $1^{\text {st }}$ order logic.
- Bayesian logic can be solved with nonlinear programming.
- Logic models can provide high-level formulations of optimization problems.

Prelude: Logic in Optimization

- Boole's probability logic poses an optimization problem (linear programming) that can be solved with column generation.
- Inference in belief logics, nonmonotonic logics, etc., can be formulated as linear and integer programming problems.
- Infinite-dimensional integer programming is based on a compactness theorem equivalent to Herbrand's theorem in $1^{\text {st }}$ order logic.
- Bayesian logic can be solved with nonlinear programming.
- Logic models can provide high-level formulations of optimization problems.

Today's topic

Prelude: Logic in Optimization

- A constraint satisfaction problem $P(x)$ is the logic problem of finding a model (in the logical sense) for

$$
\exists x P(x)
$$

- An optimization problem $\min \{f(x) \mid P(x)\}$ is the logic problem of finding a model (in the logical sense) for

$$
\exists x \forall y[P(x) \wedge(P(y) \rightarrow(f(y) \geq f(x)))]
$$

Basic Problem

- Write a high-level model that:
- Invokes multiple solvers to exploit special structure in the problem.
- Consists of high-level metaconstraints that convey special structure to the flattening process.

Basic Problem

- Write a high-level model that:
- Invokes multiple solvers to exploit special structure in the problem.
- Consists of high-level metaconstraints that convey special structure to the flattening process.
- But metaconstraint processing introduces new variables.
- This poses a fundamental problem of variable management.
- How to solve it?

Basic Problem

- Write a high-level model that:
- Invokes multiple solvers to exploit special structure in the problem.
- Consists of high-level metaconstraints that convey special structure to the flattening process.
- But metaconstraint processing introduces new variables.
- This poses a fundamental problem of variable management.
- How to solve it?
- Treat variable declarations are database queries.
- In a logic with semantic typing.

Why Exploit Problem Structure?

- You can't solve hard problems without exploiting special structure (No Free Lunch Theorem).

Why Exploit Problem Structure?

- You can't solve hard problems without exploiting special structure (No Free Lunch Theorem).
- For SAT solvers:
- Efficient encoding of problem in SAT form

Why Exploit Problem Structure?

- You can't solve hard problems without exploiting special structure (No Free Lunch Theorem).
- For SAT solvers:
- Efficient encoding of problem in SAT form
- For CP (constraint programming) solvers:
- Careful choice of global constraints
- Redundant constraints, search strategy, etc.

Why Exploit Problem Structure?

- You can't solve hard problems without exploiting special structure (No Free Lunch Theorem).
- For SAT solvers:
- Efficient encoding of problem in SAT form
- For CP (constraint programming) solvers:
- Careful choice of global constraints
- Redundant constraints, search strategy, etc.
- For MIP (mixed integer programming) solvers:
- Careful choice of variables for tight formulation
- Addition of valid inequalities

Conveying structure to the solver(s)

- Formulate problem with global constraints or metaconstraints to reveal structure
- Automatically flatten the model in a way that best allows specific solvers to exploit structure:
- Best choice of variables.
- Reformulation of constraints.
- For effective propagation or tight relaxation
- Best choice of domain filters.
- Generation of valid inequalities

Conveying structure to the solver(s)

- Formulate problem with global constraints or metaconstraints to reveal structure
- Automatically flatten the model in a way that best allows specific solvers to exploit structure:
- Best choice of variables.
- Reformulation of constraints.
- For effective propagation or tight relaxation
- Best choice of domain filters.
- Generation of valid inequalities
- However, metaconstraints pose a fundamental problem of variable management...

Variable management problem

- Reformulation typically introduces new variables
- Different metaconstraints may introduce variables that are functionally the same variable
- ...or related in some other way.
- Recognizing these relationships is essential to obtaining a good model (e.g., a tight continuous relaxation)
- How can the solver "understand" what is going on in the model?

Variable management problem

- Example: Let $x_{j}=$ worker assigned to job j
$c_{j i}=$ cost of assigning worker i to job j

Find min-cost assignment:

$$
\begin{aligned}
& \min \sum_{j} c_{x_{j} j} \\
& \operatorname{alldiff}\left(x_{1}, \ldots, x_{n}\right)
\end{aligned}
$$

Where metaconstraint alldiff = all variables take different values

Variable management problem

Find min-cost assignment:

$$
\begin{aligned}
& \min \sum_{j} c_{x_{j} j} \\
& \operatorname{alldiff}\left(x_{1}, \ldots, x_{n}\right)
\end{aligned}
$$

This should be flattened to a classical assignment problem, which can be solved very rapidly by a specialized solver.
Let binary variable $y_{i j}=1$ if worker i is assigned to job j

$$
\begin{aligned}
& \min \sum_{i j} c_{i j} y_{i j} \\
& \sum_{j} y_{i j}=1, \text { all } i ; \quad \sum_{i} y_{i j}=1, \text { all } j ; \quad y_{i j} \in\{0,1\}
\end{aligned}
$$

Variable management problem

Find min-cost assignment:

$$
\begin{aligned}
& \min \sum_{j} c_{x_{j} j} \\
& \operatorname{alldiff}\left(x_{1}, \ldots, x_{n}\right)
\end{aligned}
$$

Objective function is automatically
reformulated with 0-1 variables: $\min \sum_{i j} c_{i j} y_{i j}$ where $x_{j}=\sum_{i} i y_{i j}$

Variable management problem

Find min-cost assignment:

$$
\begin{aligned}
& \min \sum_{j} c_{x_{j} j} \\
& \operatorname{alldiff}\left(x_{1}, \ldots, x_{n}\right)
\end{aligned}
$$

Objective function is automatically
reformulated with 0-1 variables: $\min \sum_{i j} c_{i j} y_{i j}$ where $x_{j}=\sum_{i} i y_{i j}$
$\begin{aligned} & \text { Alldiff constraint is automatically } \\ & \text { reformulated with 0-1 variables: }\end{aligned} \sum_{i} y_{i j}^{\prime}=1$, all $j ; \quad \sum_{j} y_{i j}^{\prime}=1$, all i

Variable management problem

Find min-cost assignment:

$$
\begin{aligned}
& \min \sum_{j} c_{j x_{j}} \\
& \operatorname{alldiff}\left(x_{1}, \ldots, x_{n}\right)
\end{aligned}
$$

Objective function is automatically
reformulated with 0-1 variables: $\min \sum_{i j} c_{i j} y_{i j}$ where $x_{j}=\sum_{i} i y_{i j}$
$\begin{aligned} & \text { Alldiff constraint is automatically } \\ & \text { reformulated with 0-1 variables: }\end{aligned} \sum_{i} y_{i j}^{\prime}=1$, all $j ; \quad \sum_{j} y_{i j}^{\prime}=1$, all i How does the solver know that we want $y_{i j}=y_{i j}^{\prime}$, allowing the problem to be solved rapidly as a classical assignment problem?

Declare variables with semantic typing.

Semantic typing

- We assume that all variables are declared.

Semantic typing

- We assume that all variables are declared.
- Semantic typing assigns a different meaning to each variable...
- By associating the variable with a multi-place predicate and keyword.
- The keyword "queries" the relation denoted by the predicate, as one queries a relational database.

Semantic typing

- We assume that all variables are declared.
- Semantic typing assigns a different meaning to each variable...
- By associating the variable with a multi-place predicate and keyword.
- The keyword "queries" the relation denoted by the predicate, as one queries a relational database.
- Advantage:
- This allows the solver to deduce relationships between variables associated with the same predicate.
- Can automatically add channeling constraints.
- It is also good modeling practice.

How variables are introduced

- A model may include two formulations of the problem that use related variables.
- Common in CP, because it strengthens propagation.

How variables are introduced

- A model may include two formulations of the problem that use related variables.
- Common in CP, because it strengthens propagation.
- For example,

$$
\begin{aligned}
& x_{i}=\text { job assigned to worker } i \\
& y_{j}=\text { worker assigned to job } j
\end{aligned}
$$

- Solver should generate channeling constraints to relate the variables to each other:

$$
j=x_{y_{j}}, \quad i=y_{x_{i}}
$$

How variables are introduced

- The solver may reformulate a disjunction of linear systems

$$
\bigcup_{k} A_{k} x \geq b^{k}
$$

using a convex hull (or big- M) formulation:

$$
\begin{aligned}
& A_{k} x^{k} \geq b^{k} y_{k}, \quad \text { all } k \\
& x=\sum_{k} x^{k}, \quad \sum_{k} y_{k}=1 \\
& y_{k} \in\{0,1\}, \quad \text { all } k
\end{aligned}
$$

- Other constraints may be based on same set of alternatives, and corresponding auxiliary variables (y_{k} etc.) should be equated.

How variables are introduced

- A nonlinear or global solver may use McCormick factorization to replace nonlinear subexpressions with auxiliary variables
- ... to obtain a linear relaxation.

How variables are introduced

- A nonlinear or global solver may use McCormick factorization to replace nonlinear subexpressions with auxiliary variables
- ... to obtain a linear relaxation.
- For example, bilinear term $x y$ can be linearized by replacing it with new variable z and constraints

$$
\begin{aligned}
& L_{y} x+L_{x} y-L_{x} L_{y} \leq z \leq L_{y} x+U_{x} y-L_{x} U_{y} \\
& U_{y} x+U_{x} y-U_{x} U_{y} \leq z \leq U_{y} x+L_{x} y-U_{x} L_{y} \\
& \quad \text { where } x \in\left[L_{x}, U_{x}\right], \quad y \in\left[L_{y}, U_{y}\right]
\end{aligned}
$$

- Factorization of different constraints may create variables for identical subexpressions.
- They should be identified to get a tight relaxation.

How variables are introduced

- The solver may reformulate different global constraints from CP by introducing variables that have the same meaning.

How variables are introduced

- The solver may reformulate different global constraints from CP by introducing variables that have the same meaning.
- For example, sequence constraint limits how many jobs of a given type can occur in given time interval:

$$
\text { sequence }(x), \quad x_{i}=\text { job in position } i
$$

and cardinality constraint limits how many times a given job appears

$$
\text { cardinality }(x), \quad x_{j}=\text { job in position } j
$$

Both may introduce variables

$$
y_{i j}=1 \text { when job } j \text { occurs in position } i
$$

that should be identified.

How variables are introduced

- The solver may introduce equivalent variables while interpreting metaconstraints designed for classical MIP modeling situations:
- Fixed-charge network flow
- Facility location
- Lot sizing
- Job shop scheduling
- Assignment (3-dim, quadratic, etc.)
- Piecewise linear

Motivating example

- Allocate 10 advertising spots to 5 products

$$
\begin{array}{ll}
x_{i}=\text { how many spots } & y_{i j}=1 \text { if } j \text { spots } \\
\text { allocated to product } i & \text { allocated to product } i
\end{array}
$$

Motivating example

- Allocate 10 advertising spots to 5 products

≤ 4 spots per product
$x_{i}=$ how many spots $\quad y_{i j}=1$ if j spots allocated to product $i \quad$ allocated to product i

Motivating example

- Allocate 10 advertising spots to 5 products

≤ 4 spots per product
Advertise ≤ 3 products

Motivating example

- Allocate 10 advertising spots to 5 products

$$
x_{i}=\text { how many spots }
$$ allocated to product i

$$
y_{i j}=1 \text { if } j \text { spots }
$$

≤ 4 spots per product
Advertise ≤ 3 products
≥ 4 spots for at least one product

$$
\text { allocated to product } i
$$

Motivating example

- Allocate 10 advertising spots to 5 products

$$
x_{i}=\text { how many spots }
$$ allocated to product i

$$
y_{i j}=1 \text { if } j \text { spots }
$$ allocated to product i

≤ 4 spots per product
Advertise ≤ 3 products
≥ 4 spots for at least one product
$P_{i j}=$ profit from allocating j spots to product i

Objective:
maximize profit

Motivating example

```
spots in {0..4}
product in {A,B,C,D,E}
Index sets
```


Motivating example

```
spots in {0..4}
product in {A,B,C,D,E}
data P{product,spots}
Data input
```


Motivating example

```
spots in {0..4}
product in {A,B,C,D,E}
data P{product,spots}
    Declaration of variable }\mp@subsup{x}{i}{
x[i] is howmany spots allocate (product i)
```


Motivating example

spots in $\{0 . .4\}$
product in $\{A, B, C, D, E\}$
data $\mathrm{P}\{$ product, spots\}
Declaration of variable x_{i}
x[i] is howmany spots allocate (product i)
This makes it a variable declaration

Motivating example

```
spots in \(\{0 . .4\}\)
product in \(\{A, B, C, D, E\}\)
data \(P\{p r o d u c t\), spots \(\}\)
Declaration of variable \(x_{i}\)
x[i] is howmany spots allocate product i)
This is the semantic type
```


Motivating example

```
spots in {0..4}
product in {A,B,C,D,E}
data P{product,spots}
    Declaration of variable }\mp@subsup{x}{i}{
x[i] is howmany spots allocate (product i)
            Indicates an
            integer quantity
```

Other
keywords:
howmuch
whether

Motivating example

```
spots in \(\{0 . .4\}\)
product in \(\{A, B, C, D, E\}\)
data \(\mathrm{P}\left\{\right.\) product, spots \} Declaration of variable \(x_{i}\)
x[i] is howmany spots allocate (product i)
How many of
    what?
```


Motivating example

```
spots in {0..4}
product in {A,B,C,D,E}
data P{product,spots}
Declaration of variable }\mp@subsup{x}{i}{
x[i] is howmany spots allocate(product i)
```

Every variable is associated with a predicate that gives it meaning

Motivating example

$$
\begin{aligned}
& \text { spots in }\{0 \ldots 4\} \\
& \text { product in }\{A, B, C, D, E\} \\
& \text { data } \mathrm{P}\{\text { product, spots }\} \\
& \text { x[i] is howmany spots allocate } \begin{array}{l}
\text { (product } i) \\
\uparrow \\
\text { Other term of the } \\
\text { predicate }
\end{array}
\end{aligned}
$$

Motivating example

$$
\begin{aligned}
& \text { spots in }\{0 . .4\} \\
& \text { product in }\{\mathrm{A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}\} \\
& \text { data } \mathrm{P}\{\text { product, spots }\} \\
& \mathbf{x [i]} \text { is howmany spots allocate (product i) } \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \text { Associates } \\
& \text { index of x[i] with } \\
& \text { index set product }
\end{aligned}
$$

Motivating example
 $\max \sum_{i} P_{i x_{i}}$

```
spots in {0..4}
product in {A,B,C,D,E}
data P{product,spots}
x[i] is howmany spots allocate(product i)
maximize sum{product i} P[i,x[i]] Objective function
```


Motivating example

$$
\frac{\max \sum_{i} P_{i x_{i}}}{\sum_{i} x_{i} \leq 10}
$$

```
spots in {0..4}
```

product in $\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}\}$
data $P\{p r o d u c t, s p o t s\}$
x[i] is howmany spots allocate (product i)
maximize sum\{product i\} $P[i, x[i]]$
sum\{product i\} $x[i]<=10 \quad 10$ spots available

Motivating example

$$
\begin{aligned}
& \max \sum_{i} P_{i x_{i}} \\
& \sum_{i} x_{i} \leq 10
\end{aligned}
$$

```
spots in \(\{0 . .4\}\)
product in \(\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}\}\)
data \(P\{\) product,spots\}
\(x[i]\) is howmany spots allocate (product i)
maximize sum\{product i\} \(P[I, x[i]]\)
sum\{product i\} x[i] <= 10
\(y[i, j]\) is whether allocate (product \(i\), spots \(j\) )
                                    \(\uparrow \quad\) Declare \(y_{i j}\)
Indicates 0-1
variable
```


Motivating example

$$
\begin{aligned}
& \max \sum_{i} P_{i x_{i}} \\
& \sum_{i} x_{i} \leq 10
\end{aligned}
$$

```
spots in \(\{0 . .4\}\)
product in \(\{A, B, C, D, E\}\)
data \(P\{p r o d u c t, s p o t s\}\)
x[i] is howmany spots allocate (product i)
maximize sum\{product i\} \(P[i, x[i]]\)
sum\{product i\} x[i] <= 10
\(y[i, j]\) is whether allocate (product \(i\), spots \(j\) )
\(\uparrow \quad\) Declare \(y_{i j}\)
```

Associated with same predicate
as $\mathbf{x}[i]$

Motivating example

$$
\begin{aligned}
& \max \sum_{i} P_{i x_{i}} \\
& \sum_{i} x_{i} \leq 10, \sqrt{\sum_{i} y_{i 0} \geq 2}
\end{aligned}
$$

```
spots in {0..4}
product in {A,B,C,D,E}
data P{product,spots}
x[i] is howmany spots allocate(product i)
maximize sum{product i} P[i,x[i]]
sum{product i} x[i] <= 10
y[i,j] is whether allocate(product i, spots j)
sum{product i} y[i,0] >= 2 At least 2 products not advertised
```


Motivating example

$$
\begin{aligned}
& \max \sum_{i} P_{i x_{i}} \\
& \sum_{i} x_{i} \leq 10, \sum_{i} y_{i 0} \geq 2, \sum_{i} y_{i 4} \geq 1
\end{aligned}
$$

```
spots in {0..4}
```

product in $\{A, B, C, D, E\}$
data $P\{p r o d u c t, s p o t s\}$
x[i] is howmany spots allocate (product i)
maximize sum\{product i\} $P[i, x[i]]$
sum\{product i\} x[i] $<=10$
$y[i, j]$ is whether allocate (product i, spots j)
sum\{product i\} $y[i, 0]>=2$
sum\{product $i\} y[i, 4]>=1$ At least 1 product gets ≥ 4 spots

Motivating example

$$
\text { spots in }\{0 . .4\}
$$

$$
\text { product in }\{A, B, C, D, E\}
$$

$$
\begin{aligned}
& \max \sum_{i} P_{i x_{i}} \\
& \sum_{i} x_{i} \leq 10, \sum_{i} y_{i 0} \geq 2, \sum_{i} y_{i 4} \geq 1 \\
& \sum_{j} y_{i j}=1, x_{i}=\sum_{j} j y_{i j}, \text { all } i \\
& \hline
\end{aligned}
$$

data $P\{p r o d u c t, s p o t s\}$
x[i] is howmany spots allocate (product i)
maximize sum\{product i\} P[i,x[i]]
sum\{product i\} $x[i]<=10$
$y[i, j]$ is whether allocate (product i, spots j)
sum\{product i\} $y[i, 0]>=2$
sum\{product i\} $y[i, 4]>=1$
\{product i\} sum\{spots j\} $y[i, j]=1$
\{product i\} $x[i]=$ sum\{spots j\} j*y[i,j]

Solver generates linking constraints because $\mathbf{x}[i]$ and $y[i, j]$ are associated with the same predicate.

Motivating example

$$
\begin{aligned}
& \max \sum_{i} z_{i} \\
& \sum_{i} x_{i} \leq 10, \quad \sum_{i} y_{i 0} \geq 2, \quad \sum_{i} y_{i 4} \geq 1 \\
& \sum_{j} y_{i j}=1, \quad x_{i}=\sum_{j} j y_{i j}, \text { all } i
\end{aligned}
$$

spots in $\{0 . .4\}$
product in $\{A, B, C, D, E\}$
data $P\{p r o d u c t, s p o t s\}$
$x[i]$ is howmany spots allocate (product i)
maximize sum\{product i\} $P[i, x[i]]$
The objective function must be linearized. Solver generates

$$
z_{i}=\sum_{j=0}^{4} P_{i j} y_{i j}^{\prime}, \sum_{j=0}^{4} y_{i j}^{\prime}=1, x_{i}=\sum_{j=0}^{4} j y_{i j}^{\prime}, \text { all } i
$$

$Y^{\prime}[i, j]$ is whether allocate (product i, spots j)

Motivating example

$$
\begin{aligned}
& \max \sum_{i} z_{i} \\
& \sum_{i} x_{i} \leq 10, \quad \sum_{i} y_{i 0} \geq 2, \quad \sum_{i} y_{i 4} \geq 1 \\
& \sum_{j} y_{i j}=1, \quad x_{i}=\sum_{j} j y_{i j}, \text { all } i
\end{aligned}
$$

spots in $\{0 . .4\}$
product in $\{A, B, C, D, E\}$
data $P\{p r o d u c t, s p o t s\}$
x[i] is howmany spots allocate (product i)
maximize sum\{product i\} $P[i, x[i]]$
The objective function must be linearized. Solver generates

$$
z_{i}=\sum_{j=0}^{4} P_{i j} y_{i j}^{\prime}, \sum_{j=0}^{4} y_{i j}^{\prime}=1, x_{i}=\sum_{j=0}^{4} j y_{i j}^{\prime}, \text { all } i
$$

$y^{\prime}[i, j]$ is whether allocate (product i, spots j)
y and y^{\prime} are identified because they have the same type:
$y[i, j]$ is whether allocate (product i, spots j)

Predicates and relations

Predicate allocate denotes 2-place relation (set of tuples). Schematically indicated by:

Predicates and relations

Predicate allocate denotes 2-place relation (set of tuples). Schematically indicated by:

Column corresponding to a variable must be a function of other columns.

Predicates and relations

Predicate allocate denotes 2-place relation (set of tuples). Schematically indicated by:

Declaration of $\mathbf{x}[i]$ as
howmany spots allocate (product i)
and $y[i, j]$ as
whether allocate (product i, spots j)
query the relation for how many and whether.

Predicates and relations

Predicate allocate denotes 2-place relation (set of tuples).
Schematically indicated by:

Declaration of $\mathbf{x}[\mathrm{i}]$ as
howmany spots allocate (product i)
and $\mathbf{y}[\mathbf{i}, \mathbf{j}]$ as
whether allocate (product i, spots j)
query the relation for how many and whether.
In general, keywords are queries (analogous to relational database)

Predicates and relations

Relation table reveals channeling constraints. For example,
x[i] is which job assign(worker i)
y[j] is which worker assign(job i)

$$
\begin{array}{cc}
\text { job } & \text { worker } \\
j, x_{i} & i, y_{j}
\end{array}
$$

We can read off the channeling constraints

$$
\begin{aligned}
& j=x_{i}=x_{y_{i}} \\
& i=y_{j}=y_{x_{i}}
\end{aligned}
$$

Predicates and relations

If several jobs can be assigned to a worker, we declare
z[i] is whichset job assign(worker i)

The channeling constraints are

$$
j \in z_{y_{j}}
$$

Previous work

- Model management uses semantic typing to help combine models and use inheritance.
- Originally inspired by object-oriented programming

Bradley \& Clemence (1988)

- Quiddity: a rigorous attempt to analyze conditions for variable identification

Bhargava, Kimbrough \& Krishnan (1991)

- SML uses typing in a structured modeling framework Geoffrion (1992)
- Ascend uses strongly-typed, object-oriented modeling

Bhargava, Krishnan \& Piela (1998)

Previous work

- Our semantic typing differs:
- Less ambitious because it doesn't attempt model management.
- There is only one model.
- More ambitious because we recognize relationships other than equivalence.
- We manage variables introduced by solver.

Previous work

- Modeling systems that convey some structure to solver:
- CP modeling systems use global constraints.
- AIMMS uses typed index sets.
- MiniZinc reformulates metaconstraints for specific solvers.
- Savile Row uses common subexpression elimination.
- OPL, Xpress-Kalis, Comet, etc., use interval variables.
- SAT solver SymChaff uses high-level AI planning language PDDL.
- SIMPL has full metaconstraint capability.

Previous work

- However, none of these systems deals systematically with the variable management problem.
- We address it with semantic typing of variables.

Assignment problem

```
worker in {1..m}
job in {1..n}
data C{worker,job}
```

x[j] is which worker assign(job j)
minimize sum\{job j\} C[x[j],j]
alldiff $\{\mathrm{x}[$] $]$

Assignment problem

worker in \{1..m\}
job in \{1..n\}
data C\{worker,job\}
$\min \sum_{j} c_{x_{j} j}$
alldiff $\left(x_{1}, \ldots, x_{n}\right)$
$\mathrm{x}[\mathrm{j}]$ is which worker assign(job j)
minimize sum\{worker j\} C[x[j],j]
alldiff\{x[*]\}

Objective function is reformulated

$$
\max \sum_{i} c_{i j} y_{i j}, x_{i}=\sum_{j} y_{i j}, \text { all } i
$$

$$
y[i, j] \text { is whether assign(worker i, job j) }
$$

Assignment problem

worker in \{1..m\}
job in \{1..n\}
data C\{worker,job\}
$\min \sum_{j} c_{x_{j} j}$
alldiff $\left(x_{1}, \ldots, x_{n}\right)$
$\mathrm{x}[\mathrm{j}]$ is which worker assign(job j)
minimize sum\{worker j\} C[x[j],j]
alldiff\{x[*]\}

Objective function
is automatically

$$
\max \sum_{i} c_{i j} y_{i j}, x_{i}=\sum_{j} y_{i j}, \text { all } i
$$

reformulated

$$
y[i, j] \text { is whether assign(worker i, job j) }
$$

Alldiff is automatically $\sum_{j} y_{i j}^{\prime}=1$, all $i, \quad \sum_{i} y_{i j}^{\prime}=1$, all $j, x_{i}=\sum_{j} j y_{i j}^{\prime}$, all i reformulated

$$
y^{\prime}[i, j] \text { is whether assign(worker i, job j) }
$$

Latin squares

j		
2	3	1
3	1	2
1	2	3

Numbers in every row and column are distinct. We will use three formulations to improve propagation.

Latin squares

2	3	1
3	1	2
1	2	3

Numbers in every row and column are distinct. We will use three formulations to improve propagation.

```
row, col, num in {1..n}
x[i,j] is which num assign(row i, col j)
y[i,k] is which col assign(row i, num k)
z[j,k] is which row assign(col j, num k)
```

Latin squares

2	3	1
3	1	2
1	2	3

Numbers in every row and column are distinct.
We will use three formulations to improve propagation.

```
row, col, num in {1..n}
x[i,j] is which num assign(row i, col j)
y[i,k] is which col assign(row i, num k)
z[j,k] is which row assign(col j, num k)
{row i} alldiff{x[i,*]); {col j} alldiff{x[*,j])
{row i} alldiff{y[i,*]); {num k} alldiff{y[*,j])
{col j} alldiff{z[j,*]); {num k} alldiff{z[*,k])
```


Latin squares

The predicate assign denotes the 3-place relation


```
row, col, num in {1..n}
x[i,j] is which num assign(row i, col j)
y[i,k] is which col assign(row i, num k)
z[j,k] is which row assign(col j, num k)
{row i} alldiff{x[i,*]); {col j} alldiff{x[*,j])
{row i} alldiff{y[i,*]); {num k} alldiff{y[*,j])
{col j} alldiff{z[j,*]); {num k} alldiff{z[*,k])
```


Latin squares

The predicate assign denotes the 3-place relation

1	2	3
num	col	row
$k, x_{i j}$	$j, y_{i k}$	$i, z_{j k}$

We can read off the channeling constraints:

$$
k=x_{z_{j k} y_{i k}}, \quad j=y_{z_{j k} x_{i j}}, \quad i=z_{y_{i k} x_{i j}}, \text { all } i, j, k
$$

which can be propagated.

Latin squares

```
{row i} alldiff{x[i,*]); {col j} alldiff{x[*,j])
{row i} alldiff{y[i,*]); {num k} alldiff{y[*,j])
{col j} alldiff{z[j,*]); {num k} alldiff{z[*,k])
```

The 3 formulations generate 3 identical MIP models:
$x_{i j}=\sum_{k} k \delta_{i j k}^{x} ; \sum_{k} \delta_{i j k}^{x}=1$, all $i, j ; \sum_{j} \delta_{i j k}^{x}=1$, all $i, k ; \sum_{i} \delta_{i j k}^{x}=1$, all j, k
$y_{i k}=\sum_{j} j \delta_{i j k}^{y}, \sum_{j} \delta_{i j k}^{y}=1$, all $i, k ; \sum_{k} \delta_{i j k}^{y}=1$, all $i, j ; \quad \sum_{i} \delta_{i j k}^{y}=1$, all j, k
$z_{j k}=\sum_{i} i \delta_{i j k}^{z}, \sum_{i} \delta_{i j k}^{z}=1$, all $j, k ; \sum_{k} \delta_{i j k}^{z}=1$, all $i, j ; \quad \sum_{j} \delta_{i j k}^{z}=1$, all i, k

Latin squares

```
{row i} alldiff{x[i,*]); {col j} alldiff{x[*,j])
{row i} alldiff{y[i,*]); {num k} alldiff{y[*,j])
{col j} alldiff{z[j,*]); {num k} alldiff{z[*,k])
```

The 3 formulations generate 3 identical MIP models:
$x_{i j}=\sum_{k} k \delta_{i j k}^{x} ; \sum_{k} \delta_{i j k}^{x}=1$, all $i, j ; \sum_{j} \delta_{i j k}^{x}=1$, all $i, k ; \sum_{i} \delta_{i j k}^{x}=1$, all j, k
$y_{i k}=\sum_{j} j \delta_{i j k}^{y}, \sum_{j} \delta_{i j k}^{y}=1$, all $i, k ; \sum_{k} \delta_{i j k}^{y}=1$, all $i, j ; \sum_{i} \delta_{i j k}^{y}=1$, all j, k
$z_{j k}=\sum_{i} i \delta_{i j k}^{z}, \quad \sum_{i} \delta_{i j k}^{z}=1$, all $j, k ; \sum_{k} \delta_{i j k}^{z}=1$, all $i, j ; \quad \sum_{j} \delta_{i j k}^{z}=1$, all i, k
The solver declares $\delta_{i j k}^{x}, \delta_{i j k}^{y}, \delta_{i j k}^{z}$
whether assign(row i, col j, num k)

So it treats them as the same variable and generates only 1 MIP model.

Multiple which variables

In general, an n-place predicate that denotes the relation

1	k	$k+1$	\ldots	n	
term_{1}	\ldots	$\operatorname{term}_{\mathrm{k}}$	$\operatorname{term}_{\mathrm{k}+1}$	\ldots	term $_{\mathrm{n}}$
$i_{1}, x_{i(1)}^{1}$	\ldots	$i_{k}, x_{i(k)}^{k}$	i_{k+1}	\ldots	i_{n}

for which variables, where $i(j)=i_{1} \cdots i_{j-1} i_{j+1} \cdots i_{n}$
generates the channeling constraints

$$
i_{j}=x_{x_{i(1)}^{1} \cdots x_{i(j-1)}^{j-1}}^{j}{ }_{i(j+1)}^{j+1} \cdots x_{i(k)}^{k} i_{k+1} \cdots i_{n}, \text { all } i_{1}, \ldots, i_{n}, j=1, \ldots, k
$$

Multiple whether variables

whether keywords serve as projection operators on the relation.
$y[i, j, d]$ is whether assign(worker i, job j, day d)
Project out d :
y1[i,j] is whether assign(worker i, job j)
Project out j and d :
y2[i] is whether assign(worker i)

Short forms

Declare x_{i} to be cost of activity i :
x[i] is howmuch cost(activity i)
which is short for the formal declaration
x[i] is howmuch cost cost(activity i)
in which a new term cost is generated

Declare x to be cost:
x is howmuch cost
which is short for
x is howmuch cost cost()

Piecewise linear

Piecewise linear function $z=f(x)$ Breakpoints in A, ordinates in C
\mathbf{x} is howmuch output index in \{1..n\}
data A,C\{index\}

z is howmuch cost
piecewise ($\mathbf{x}, \mathbf{z}, \mathbf{A}, \mathbf{C}$) this metaconstraint defines $z=f(x)$

Piecewise linear

Piecewise linear function $z=f(x)$ Breakpoints in A, ordinates in C
\mathbf{x} is howmuch output index in \{1..n\}
data A,C\{index\}

z is howmuch cost piecewise ($\mathrm{x}, \mathrm{z}, \mathrm{A}, \mathrm{C}$)

Solver generates the locally ideal model

$$
\begin{aligned}
& x=a_{1}+\sum_{i=1}^{n-1} \bar{x}_{i}, \quad z=c_{1}+\sum_{i=1}^{n-1} \frac{c_{i+1}-c_{i}}{a_{i+1}-a_{i}} \bar{x}_{i} \\
& \left(a_{i+1}-a_{i}\right) \delta_{i+1} \leq \bar{x}_{i} \leq\left(a_{i+1}-a_{i}\right) \delta_{i}, \quad \delta_{i} \in\{0,1\}, i=1, \ldots, n-1
\end{aligned}
$$

We need to declare auxiliary variables δ_{i}, x_{i}

Piecewise linear

Piecewise linear function $z=f(x)$ Breakpoints in A, ordinates in C
\mathbf{x} is howmuch output index in $\{1 . . \mathrm{n}\}$
data A,C\{index\}

z is howmuch cost piecewise (x,z,A,C)
piecewise constraint induces solver to declare a new index set that associates index with \mathbf{A}, and use it to declare δ_{i}, x_{i} xbar[i] is howmuch output.A(index i) delta[i] is whether lastpositive output.A(index i)

Both declarations create predicates inherited from output and A

Piecewise linear

Suppose there is another piecewise function on the same break points

```
x is howmuch output
index in {1..n}
data A,C{index}
z is howmuch cost
piecewise(x,z,A,C)
data C'{index}
z' is howmuch profit
piecewise(x,z',A,C')
x'[i] is howmuch cost output.A(index i)
delta'[i] is whether lastpositive output.A(index)
```


Piecewise linear

Suppose there is another piecewise function on the same break points

```
x is howmuch output
index in {1..n}
data A,C{index}
z is howmuch cost
piecewise(x,z,A,C)
data C'{index}
z' is howmuch profit
piecewise(x,z',A,C')
\(x^{\prime}[i]\) is howmuch cost output.A(index i) delta'[i] is whether lastpositive output.A(index)
```


Because new piecewise constraint is associated with the same x and A, solver again creates output. A.

The solver creates variables δ_{i}^{\prime} and x_{i}^{\prime} with same types as δ_{i} and x_{i} and so identifies them.

Interval variables

Each job j runs for a time interval x_{j}. $x_{j} \subseteq W_{j}$, all j We wish to schedule jobs so that total resource consumption never exceeds L.

```
job in {1..n}
```

time in $\{\mathrm{t} . . \mathrm{T}\}$
data $\mathrm{W}, \mathrm{D}, \mathrm{R}\{\mathrm{j} 0 \mathrm{~b}\}$ window, duration, resource running in [time,time] makes running an interval variable $\mathrm{x}[\mathrm{j}]$ is when running sched (job j$)$ subset $\mathrm{W}[\mathrm{j}]$ cumulative ($\mathrm{x}, \mathrm{D}, \mathrm{R}, \mathrm{L}$)

Interval variables

Each job j runs for a time interval x_{j}. $x_{j} \subseteq W_{j}$, all j We wish to schedule jobs so that total resource consumption never exceeds L.

```
job in {1..n}
```

time in $\{\mathrm{t} . . \mathrm{T}\}$
data $\mathrm{W}, \mathrm{D}, \mathrm{R}\{\mathrm{job}\}$ window, duration, resource running in [time,time] makes running an interval variable $\mathrm{x}[\mathrm{j}]$ is when running sched (job j$)$ subset $\mathrm{W}[\mathrm{j}]$ cumulative ($\mathrm{x}, \mathrm{D}, \mathrm{R}, \mathrm{L}$)
Solver generates the model

$$
\begin{aligned}
& \sum_{t} \delta_{j t}=1, \text { all } j ; \quad \sum_{j} R_{j} \phi_{j t} \leq L, \text { all } t \\
& \varphi_{j t} \geq \delta_{j t^{\prime}}, \text { all } t, t^{\prime} \text { with } 0 \leq t-t^{\prime}<D_{j}, \text { all } j
\end{aligned}
$$

delta[j,t] is whether running.start sched (job j, time t) phi[j,t] is whether running sched(job j, time t)

Interval variables

Suppose we want finish times to be separated by at least T_{0}
job in $\{1 \ldots n\}$
cumulative (x, D, R, L)

$$
x_{j} \subseteq W_{j}, \text { all } j
$$

$$
\left|x_{j}^{\text {end }}-x_{k}^{\text {end }}\right| \geq T_{0}, \text { all } j, k, j \neq k
$$

time in \{t..T\}
data W,D,R\{job\}
running in [time, time]
x[j] is when running sched(job j) subset W[j]
cumulative ($\mathrm{x}, \mathrm{D}, \mathrm{R}, \mathrm{L}$)
$\{j o b j, j o b k \mid j<>k\} \mid x[j] . e n d-x[k]$. end $\mid>=T 0$
delta[j,t] is whether running.start sched(job j, time t)
phi[j,t] is whether running sched (job j, time t)

Interval variables

Suppose we want finish times to be separated by at least T_{0}
job in \{1..n\}
time in \{t..T\}
data W,D,R\{job\}
running in [time,time]
x[j] is when running sched(job j) subset W[j]
cumulative ($\mathrm{x}, \mathrm{D}, \mathrm{R}, \mathrm{L}$)
\{job j, job k \mid j<>k\} |x[j].end $-x[k] . e n d \mid>=T 0$
delta[j,t] is whether running.start sched(job j, time t) phi [j,t] is whether running sched(job j, time t)

Solver generates

$$
\varepsilon_{j t}+\varepsilon_{k t^{\prime}} \leq 1, \text { all } t, t^{\prime} \text { with } 0<t^{\prime}-t<T_{0}, \text { all } j, t \text { with } j \neq k
$$

epsilon[j,t] is whether running.end sched(job j, time t)
Slide 88

Interval variables

Variables $\delta_{j t}$ and $\varepsilon_{j t}$ are related by an offset. Solver associates running. end in declaration of $\varepsilon_{j t}$ with running. start in declaration of $\delta_{j t}$ and deduces

$$
e_{j, t+D_{j}}=\delta_{j t}, \text { all } j, t
$$

```
delta[j,t] is whether running.start sched(job j, time t)
phi[j,t] is whether running sched(job j, time t)
epsilon[j,t] is whether running.end sched(job j, time t)
```


Interval variables

Variables $\delta_{j t}$ and $\varepsilon_{j t}$ are related by an offset. Solver associates running. end in declaration of $\varepsilon_{j t}$ with running. start in declaration of $\delta_{j t}$ and deduces

$$
e_{j, t+D_{j}}=\delta_{j t}, \text { all } j, t
$$

Solver also associates running. end in declaration of $\varepsilon_{j t}$ with running in declaration of $\phi_{j t}$ and deduces the redundant constraints

$$
\phi_{j t} \geq \varepsilon_{j t^{\prime}}, \text { all } t, t^{\prime} \text { with } 0 \leq t^{\prime}-t<D_{j}, \text { all } j
$$

delta[j,t] is whether running.start sched(job j, time t) phi[j,t] is whether running sched (job j, time t) epsilon[j,t] is whether running.end sched(job j, time t)

TSP with Side Constraints $\min \sum_{i} D_{i s_{i}}$

Traveling salesman problem with missing $\operatorname{alldiff}(x), \operatorname{circuit}(s)$ arcs and precedence constraints.

$$
x_{i}<x_{j}, \text { all } i, j \text { with } \operatorname{prec}_{i j}=1
$$

```
city, position in \(\{1 . . n\}\)
\(s_{i} \in\) Succ \(_{i}\)
``` data D\{city, city\} Distances data Prec\{city, city\} Prec[i,j]=1 if \(i\) must precede \(j\) data Succ\{city\} Succ [j] = set of successors of city \(j\)

\section*{TSP with Side Constraints \(\min \sum_{i} D_{i s_{i}}\)}

Traveling salesman problem with missing \(\operatorname{alldiff}(x), \operatorname{circuit}(s)\) arcs and precedence constraints.
\(x_{i}<x_{j}\), all \(i, j\) with \(\operatorname{prec}_{i j}=1\)
city, position in \(\{1 . . \mathrm{n}\} \quad s_{i} \in \operatorname{Succ}_{i}\) data D\{city, city\} Distances data Prec\{city, city\} Prec[i,j]=1 if \(i\) must precede \(j\) data Succ\{city\} Succ [j] = set of successors of city \(j\)

Two variable systems:
x[i] is which position ordering(city i)
s[i] is successor city ordering(city i) subset Succ[i]

\section*{TSP with Side Constraints \(\quad \min \sum_{i} D_{i s_{i}}\)}

Traveling salesman problem with missing alldiff \((x)\), circuit \((s)\) arcs and precedence constraints.
\[
x_{i}<x_{j}, \text { all } i, j \text { with } \operatorname{prec}_{i j}=1
\]
city, position in \(\{1 . \mathrm{n}\} \quad s_{i} \in \operatorname{Succ}_{i}\) data D\{city, city\} Distances data Prec\{city, city\} Prec[i,j]=1 if \(i\) must precede \(j\) data Succ\{city\} Succ[j] = set of successors of city \(j\)

Two variable systems:
x[i] is which position ordering(city i)
\(s[i]\) is successor city ordering(city i) subset Succ[i]
Precedence constraints require \(\mathbf{x}\) variables
prec\{city i, city j l Prec[i,j] = 1\}: \(x[i]<x[j]\)
Missing arc constraints (implicit in data Succ) require s variables

\section*{TSP with Side Constraints \(\quad \min \sum_{i} D_{i s_{i}}\)}

Traveling salesman problem with missing alldiff \((x)\), circuit \((s)\) arcs and precedence constraints.
\[
x_{i}<x_{j}, \text { all } i, j \text { with } \operatorname{prec}_{i j}=1
\]
city, position in \(\{1 . \mathrm{n}\} \quad s_{i} \in \operatorname{Succ}_{i}\) data D\{city, city\} Distances data Prec\{city, city\} Prec[i,j]=1 if \(i\) must precede \(j\) data Succ\{city\} Succ[j] = set of successors of city \(j\)

Two variable systems:
x[i] is which position ordering(city i)
\(s[i]\) is successor city ordering(city i) subset Succ[i]
Precedence constraints require \(\mathbf{x}\) variables
prec\{city i, city \(j\) l Prec[i,j] = 1\}: \(x[i]<x[j]\)
Missing arc constraints (implicit in data Succ) require s variables
min sum \{city i\} D[i,s[i]] Objective function
Slide 94

\section*{TSP with Side Constraints}

The solver can give alldiff(x) a conventional assignment model using \(z_{i k}=\) whether city \(i\) is in position \(k\).
z[i,k] is whether ordering(city i, position k)

\section*{TSP with Side Constraints}

The solver can give alldiff(x) a conventional assignment model using \(z_{i k}=\) whether city \(i\) is in position \(k\).
z[i,k] is whether ordering(city i, position k)
For circuit(s), the solver can introduce
\(w_{i j}=\) whether city \(i\) immediately precedes city \(j\).
w[i,j] is whether successor ordering(city i, city j)

\section*{TSP with Side Constraints}

The solver can give alldiff(x) a conventional assignment model using \(z_{i k}=\) whether city \(i\) is in position \(k\).
z[i,k] is whether ordering(city i, position k)
For circuit(s), the solver can introduce \(w_{i j}=\) whether city \(i\) immediately precedes city \(j\).
w[i,j] is whether successor ordering(city i, city j)
Declaration of \(\mathbf{z}\) tells solver that predicate is ordering (city, position), not ordering (city, city).

\section*{TSP with Side Constraints}

The solver can give alldiff(x) a conventional assignment model using \(z_{i k}=\) whether city \(i\) is in position \(k\).
z[i,k] is whether ordering(city i, position k)
For circuit(s), the solver can introduce \(w_{i j}=\) whether city \(i\) immediately precedes city \(j\).
w[i,j] is whether successor ordering(city i, city j)
Declaration of \(\mathbf{z}\) tells solver that predicate is ordering (city, position), not ordering (city, city). Solver generates cutting planes in w-space and s-space.

\section*{TSP with Side Constraints}

The solver can give alldiff(x) a conventional assignment model using \(z_{i k}=\) whether city \(i\) is in position \(k\).
z[i,k] is whether ordering(city i, position k)
For circuit(s), the solver can introduce
\(w_{i j}=\) whether city \(i\) immediately precedes city \(j\).
w[i,j] is whether successor ordering(city i, city j)
Declaration of \(\mathbf{z}\) tells solver that predicate is ordering (city, position), not ordering (city, city). Solver generates cutting planes in w-space and s-space.

The successor keyword tells solver how \(\mathbf{z}\) and w relate.
\[
\phi_{j t} \geq \varepsilon_{j t^{\prime}}, \text { all } t, t^{\prime} \text { with } 0 \leq t^{\prime}-t<D_{j}, \text { all } j
\]

\section*{TSP with Side Constraints}

Suppose we also have constraints on which city is in position \(k\). Simply declare
\(\mathrm{y}[\mathrm{k}]=\) which city ordering(position k\()\)
The solver generates the channeling constraints between \(\mathrm{y}[\mathrm{k}\)] and \(\mathbf{x}\) [i] \(=\) which position is city \(i\)

\section*{TSP with Side Constraints}

Suppose we also have constraints on which city is in position \(k\). Simply declare
\(\mathrm{y}[\mathrm{k}]=\) which city ordering(position k\()\)
The solver generates the channeling constraints between \(y[k]\) and \(\mathbf{x}\) [i] = which position is city \(i\)

The solver can also introduce a second (equivalent) objective function
min \(\operatorname{sum}\{\) position \(k\} ~ D[y[k], y[k+1]]\)
which may improve bounding.

\section*{Pros and Cons of Semantic Typing}
- Pros
- Conveys problem structure to the solver(s)
- ...by allowing use of metaconstaints
- Incorporates state of the art in formulation, valid inequalities
- Allows solver to expand repertory of techniques
- Domain filtering, propagation, cutting plane algorithms
- Good modeling practice
- Self-documenting
- Bug detection

\section*{Pros and Cons of Semantic Typing}
- Cons
- Modeler must be familiar with a library of metaconstraints
- Rather than few primitive constraints

\section*{Pros and Cons of Semantic Typing}
- Cons
- Modeler must be familiar with a library of metaconstraints
- Rather than few primitive constraints
- Response
- Modeler must be familiar with the underlying concepts anyway
- Modeling system can offer sophisticated help, improve modeling

\section*{Pros and Cons of Semantic Typing}
- Cons
- Modeler must be familiar with a library of metaconstraints
- Rather than few primitive constraints
- Response
- Modeler must be familiar with the underlying concepts anyway
- Modeling system can offer sophisticated help, improve modeling
- OR, SAT community is not accustomed to high-level modeling
- Typed languages like Ascend never really caught on, resistance to CP.

\section*{Pros and Cons of Semantic Typing}
- Cons
- Modeler must be familiar with a library of metaconstraints
- Rather than few primitive constraints
- Response
- Modeler must be familiar with the underlying concepts anyway
- Modeling system can offer sophisticated help, improve modeling
- OR, SAT community is not accustomed to high-level modeling
- Typed languages like Ascend never really caught on, resistance to CP.
- Response
- Train the next generation!```

