
Modeling with Metaconstraints

and Semantic Typing of Variables

André Ciré
University of Toronto

John Hooker
Carnegie Mellon University

Tallys Yunes

University of Miami

INFORMS Journal on Computing (2016) 1-13

• Metaconstraints (in particular, global constraints) in a model

help convey problem structure to the solver.

• But they pose a fundamental problem of variable

management.

• How to solve it?

Slide 2

Basic Problem

• Metaconstraints (in particular, global constraints) in a model

help convey problem structure to the solver.

• But they pose a fundamental problem of variable

management.

• How to solve it?

• Treat variable declarations as database queries.

• In a system of semantic typing.

Slide 3

Basic Problem

Exploiting Problem Structure

• You can’t solve hard problems without exploiting special

structure (No Free Lunch Theorem).

Slide 4

• You can’t solve hard problems without exploiting special

structure (No Free Lunch Theorem).

• For SAT solvers:

• Efficient encoding of problem in SAT form

Slide 5

Exploiting Problem Structure

• You can’t solve hard problems without exploiting special

structure (No Free Lunch Theorem).

• For SAT solvers:

• Efficient encoding of problem in SAT form

• For CP solvers:

• Careful choice of global constraints

• Redundant constraints, search strategy, etc.

Slide 6

Exploiting Problem Structure

• You can’t solve hard problems without exploiting special

structure (No Free Lunch Theorem).

• For SAT solvers:

• Efficient encoding of problem in SAT form

• For CP solvers:

• Careful choice of global constraints

• Redundant constraints, search strategy, etc.

• For MIP solvers:

• Careful choice of variables for tight formulation

• Addition of valid inequalities

Slide 7

Exploiting Problem Structure

Conveying structure to the solver(s)

• Formulate problem with global constraints or metaconstraints

to reveal structure

• Automatically convert these to optimal formulation for the

solvers(s)

• Best choice of variables.

• Reformulation of constraints.

– For effective propagation or tight relaxation

• Best choice of domain filters.

• Generation of valid inequalities

Slide 8

Conveying structure to the solver(s)

• Formulate problem with global constraints or metaconstraints

to reveal structure

• Automatically convert these to optimal formulation for the

solvers(s)

• Best choice of variables.

• Reformulation of constraints.

– For effective propagation or tight relaxation

• Best choice of domain filters.

• Generation of valid inequalities

• However, metaconstraints pose a fundamental problem of

variable management…

Slide 9

Variable management problem

• Reformulation typically introduces new variables

• Different metaconstraints may introduce variables that are

functionally the same variable

• …or related in some other way.

• Recognizing these relationships is essential to obtaining a

good model (e.g., a tight continuous relaxation)

• How can the solver “understand” what is going on in the

model?

Slide 10

Variable management problem

• Reformulation typically introduces new variables

• Different metaconstraints may introduce variables that are

functionally the same variable

• …or related in some other way.

• Recognizing these relationships is essential to obtaining a

good model (e.g., a tight continuous relaxation)

• How can the solver “understand” what is going on in the

model?

• Proposal: Model with semantic typing of variables.

Slide 11

Variable management problem

• Example: Let xj = worker assigned to job j

cji = cost of assigning worker i to job j

Find min-cost assignment:

Slide 12

1

min

alldiff (, ,)

jjx

j

n

c

x x

Variable management problem

• Example: Let xj = worker assigned to job j

cji = cost of assigning worker i to job j

Find min-cost assignment:

Slide 13

1

min

alldiff (, ,)

jjx

j

n

c

x x

Objective function is reformulated

with 0-1 variables:
min ij ij

ij

c y where j ij

i

x iy

Variable management problem

• Example: Let xj = worker assigned to job j

cji = cost of assigning worker i to job j

Find min-cost assignment:

Slide 14

1

min

alldiff (, ,)

jjx

j

n

c

x x

min ij ij

ij

c y where j ij

i

x iy

Alldiff constraint is reformulated

with 0-1 variables:
1, all ; 1, all ij ij

i j

y j y i

Objective function is reformulated

with 0-1 variables:

Variable management problem

• Example: Let xj = worker assigned to job j

cji = cost of assigning worker i to job j

Find min-cost assignment:

Slide 15

1

min

alldiff (, ,)

jjx

j

n

c

x x

min ij ij

ij

c y where j ij

i

x iy

1, all ; 1, all ij ij

i j

y j y i

How does the solver know that we want yij = yij, allowing the problem

to be solved rapidly as a classical assignment problem?

Alldiff constraint is reformulated

with 0-1 variables:

Objective function is reformulated

with 0-1 variables:

• We assume that variables are declared.

Slide 16

Semantic typing

• We assume that variables are declared.

• Semantic typing assigns a different meaning to each

variable…

• By associating the variable with a multi-place predicate and

keyword.

• The keyword “queries” the relation denoted by the

predicate, as one queries a relational database.

Slide 17

Semantic typing

• We assume that variables are declared.

• Semantic typing assigns a different meaning to each

variable…

• By associating the variable with a multi-place predicate and

keyword.

• The keyword “queries” the relation denoted by the

predicate, as one queries a relational database.

• Advantage:

• This allows the solver to deduce relationships between

variables, both original or introduced.

• Can automatically add channeling constraints.

• It is also good modeling practice.
Slide 18

Semantic typing

How variables are introduced

• A model may include two formulations of the problem that

use related variables.

• Common in CP, because it strengthens propagation.

Slide 19

How variables are introduced

• A model may include two formulations of the problem that

use related variables.

• Common in CP, because it strengthens propagation.

• For example,

• Solver should generate channeling constraints

to relate the variables to each other:

Slide 20

 job assigned to worker ix i

 worker assigned to job jy j

,
j iy xj x i y

How variables are introduced

• The solver may reformulate a disjunction of linear systems

using a convex hull (or big-M) formulation:

• Other constraints may be based on same set of alternatives,

and corresponding auxiliary variables (yk etc.) should be equated.

Slide 21

k

k

k

A x b

, all

, 1

0,1 , all

k k

k k

k

k

k k

k

A x b y k

x x y

y k

How variables are introduced

• A nonlinear or global solver may use McCormick factorization

to replace nonlinear subexpressions with auxiliary variables

• … to obtain a linear relaxation.

Slide 22

How variables are introduced

• A nonlinear or global solver may use McCormick factorization

to replace nonlinear subexpressions with auxiliary variables

• … to obtain a linear relaxation.

• For example, bilinear term xy can be linearized by replacing

it with new variable z and constraints

where

• Factorization of different constraints may create variables

for identical subexpressions.

• They should be identified to get a tight relaxation.

Slide 23

y x x y y x x y

y x x y y x x y

L x L y L L z L x U y L U

U x U y U U z U x L y U L

 , , ,x x y yx L U y L U

How variables are introduced

• The solver may reformulate different global constraints from CP by

introducing variables that have the same meaning.

Slide 24

How variables are introduced

• The solver may reformulate different global constraints from CP by

introducing variables that have the same meaning.

• For example, sequence constraint limits how many jobs

of a given type can occur in given time interval:

and cardinality constraint limits how many times a given

job appears

Both may introduce variables

that should be identified.

Slide 25

 sequence , job in position ix x i

 cardinality , job in position jx x j

1 when job occurs in position ijy j i

How variables are introduced

• The solver may introduce equivalent variables while interpreting

metaconstraints designed for classical MIP modeling situations:

• Fixed-charge network flow

• Facility location

• Lot sizing

• Job shop scheduling

• Assignment (3-dim, quadratic, etc.)

• Piecewise linear

Slide 26

Motivating example

• Allocate 10 advertising spots to 5 products

Slide 27

 how many spots ix

allocated to product i

 1 if spotsijy j

allocated to product i

A B C D E

Motivating example

• Allocate 10 advertising spots to 5 products

Slide 28

 how many spots ix

allocated to product i

 1 if spotsijy j

allocated to product i

 4 spots per product

A B C D E

Motivating example

• Allocate 10 advertising spots to 5 products

Slide 29

 how many spots ix

allocated to product i

 1 if spotsijy j

allocated to product i

 4 spots per product

Advertise 3 products

A B C D E

Motivating example

• Allocate 10 advertising spots to 5 products

Slide 30

 how many spots ix

allocated to product i

 1 if spotsijy j

allocated to product i

 4 spots per product

Advertise 3 products

 4 spots for at least

one product

A B C D E

Motivating example

• Allocate 10 advertising spots to 5 products

Slide 31

 how many spots ix

allocated to product i

 1 if spotsijy j

allocated to product i

 4 spots per product

Advertise 3 products

 4 spots for at least

one product

Pij = profit from

allocating j spots

to product i

Objective:

maximize profit

A B C D E

Motivating example

spots in {0..4}

product in {A,B,C,D,E})
Index sets

Slide 32

Motivating example

spots in {0..4}

product in {A,B,C,D,E}

data P{product,spots} Data input

Slide 33

Motivating example

spots in {0..4}

product in {A,B,C,D,E}

data P{product,spots}

x[i] is howmany spots allocate(product i)

Declaration of variable xi

Slide 34

Motivating example

spots in {0..4}

product in {A,B,C,D,E}

data P{product,spots}

x[i] is howmany spots allocate(product i)

This makes it

a variable

declaration

Declaration of variable xi

Slide 35

Motivating example

spots in {0..4}

product in {A,B,C,D,E}

data P{product,spots}

x[i] is howmany spots allocate(product i)

This is the

semantic type

Declaration of variable xi

Slide 36

Motivating example

spots in {0..4}

product in {A,B,C,D,E}

data P{product,spots}

x[i] is howmany spots allocate(product i)

Indicates an

integer quantity

Other

keywords:
howmuch

whether

Declaration of variable xi

Slide 37

Motivating example

spots in {0..4}

product in {A,B,C,D,E}

data P{product,spots}

x[i] is howmany spots allocate(product i)

How many of

what?

Declaration of variable xi

Slide 38

Motivating example

spots in {0..4}

product in {A,B,C,D,E}

data P{product,spots}

x[i] is howmany spots allocate(product i)

Declaration of variable xi

2-place predicate

associated with

variable x

Every variable is

associated with a

predicate that

gives it meaning
Slide 39

Motivating example

spots in {0..4}

product in {A,B,C,D,E}

data P{product,spots}

x[i] is howmany spots allocate(product i)

Declaration of variable xi

Other term of the

predicate

Slide 40

Motivating example

spots in {0..4}

product in {A,B,C,D,E}

data P{product,spots}

x[i] is howmany spots allocate(product i)

Declaration of variable xi

Associates
index of x[i] with

index set product

Slide 41

Motivating example

spots in {0..4}

product in {A,B,C,D,E}

data P{product,spots}

x[i] is howmany spots allocate(product i)

maximize sum{product i} P[i,x[i]] Objective function

0 4

max

10, 2, 1

1, , all

iix

i

i i i

i i i

ij i ij

j j

P

x y y

y x jy i

Slide 42

Motivating example

spots in {0..4}

product in {A,B,C,D,E}

data P{product,spots}

x[i] is howmany spots allocate(product i)

maximize sum{product i} P[i,x[i]]

sum{product i} x[i] <= 10 10 spots available

0 4

max

10, 2, 1

1, , all

iix

i

i i i

i i i

ij i ij

j j

P

x y y

y x jy i

Slide 43

Motivating example

spots in {0..4}

product in {A,B,C,D,E}

data P{product,spots}

x[i] is howmany spots allocate(product i)

maximize sum{product i} P[I,x[i]]

sum{product i} x[i] <= 10

y[i,j] is whether allocate(product i, spots j)

Declare yij

Indicates 0-1

variable

0 4

max

10, 2, 1

1, , all

iix

i

i i i

i i i

ij i ij

j j

P

x y y

y x jy i

Slide 44

Motivating example

spots in {0..4}

product in {A,B,C,D,E}

data P{product,spots}

x[i] is howmany spots allocate(product i)

maximize sum{product i} P[i,x[i]]

sum{product i} x[i] <= 10

y[i,j] is whether allocate(product i, spots j)

Declare yij

Associated with

same predicate
as x[i]

0 4

max

10, 2, 1

1, , all

iix

i

i i i

i i i

ij i ij

j j

P

x y y

y x jy i

Slide 45

Motivating example

spots in {0..4}

product in {A,B,C,D,E}

data P{product,spots}

x[i] is howmany spots allocate(product i)

maximize sum{product i} P[i,x[i]]

sum{product i} x[i] <= 10

y[i,j] is whether allocate(product i, spots j)

sum{product i} y[i,0] >= 2 At least 2 products not advertised

0 4

max

10, 2, 1

1, , all

iix

i

i i i

i i i

ij i ij

j j

P

x y y

y x jy i

Slide 46

Motivating example

spots in {0..4}

product in {A,B,C,D,E}

data P{product,spots}

x[i] is howmany spots allocate(product i)

maximize sum{product i} P[i,x[i]]

sum{product i} x[i] <= 10

y[i,j] is whether allocate(product i, spots j)

sum{product i} y[i,0] >= 2

sum{product i} y[i,4] >= 1 At least 1 product gets 4 spots

0 4

max

10, 2, 1

1, , all

iix

i

i i i

i i i

ij i ij

j j

P

x y y

y x jy i

Slide 47

Motivating example

spots in {0..4}

product in {A,B,C,D,E}

data P{product,spots}

x[i] is howmany spots allocate(product i)

maximize sum{product i} P[i,x[i]]

sum{product i} x[i] <= 10

y[i,j] is whether allocate(product i, spots j)

sum{product i} y[i,0] >= 2

sum{product i} y[i,4] >= 1

{product i} sum{spots j} y[i,j] = 1

{product i} x[i] = sum{spots j} j*y[i,j]

Solver generates linking constraints because
x[i] and y[i,j] are associated with the same predicate.

0 4

max

10, 2, 1

1, , all

iix

i

i i i

i i i

ij i ij

j j

P

x y y

y x jy i

Slide 48

Motivating example

spots in {0..4}

product in {A,B,C,D,E}

data P{product,spots}

x[i] is howmany spots allocate (product i)

maximize sum{product i} P[i,x[i]]

y’[i,j] is whether allocate(product i, spots j)

This constraint must be linearized. Solver generates

0 4

max

10, 2, 1

1, , all

i

i

i i i

i i i

ij i ij

j j

z

x y y

y x jy i

4 4 4

0 0 0

, 1, , all
i ij ij ij i ij

j j j

z P y y x jy i

Slide 49

Motivating example

spots in {0..4}

product in {A,B,C,D,E}

data P{product,spots}

x[i] is howmany spots allocate (product i)

maximize sum{product i} P[i,x[i]]

y’[i,j] is whether allocate(product i, spots j)

y[i,j] is whether allocate(product i, spots j)

This constraint must be linearized. Solver generates

y and y are identified because they have the same type:

0 4

max

10, 2, 1

1, , all

i

i

i i i

i i i

ij i ij

j j

z

x y y

y x jy i

4 4 4

0 0 0

, 1, , all
i ij ij ij i ij

j j j

z P y y x jy i

Slide 50

Predicates and relations

Predicate allocate denotes 2-place relation (set of tuples).

Schematically indicated by:

1 2

product spots

i xi

Slide 51

Predicates and relations

Predicate allocate denotes 2-place relation (set of tuples).

Schematically indicated by:

Column corresponding to a variable must be a function of other

columns.

1 2

product spots

i xi

Slide 52

Predicates and relations

Predicate allocate denotes 2-place relation (set of tuples).

Schematically indicated by:

Declaration of x[i] as

howmany spots allocate (product i)

and y[i,j] as

whether allocate (product i, spots j)

query the relation for how many and whether.

1 2

product spots

i xi

Slide 53

Predicates and relations

Predicate allocate denotes 2-place relation (set of tuples).

Schematically indicated by:

Declaration of x[i] as

howmany spots allocate (product i)

and y[i,j] as

whether allocate (product i, spots j)

query the relation for how many and whether.

In general, keywords are queries (analogous to relational database)

1 2

product spots

i xi

Slide 54

Predicates and relations

Relation table reveals channeling constraints. For example,

x[i] is which job assign(worker i)

y[j] is which worker assign(job i)

We can read off the channeling constraints

1 2

job worker

j, xi i, yj

i

i

i y

j x

j x x

i y y

Slide 55

Predicates and relations

If several jobs can be assigned to a worker, we declare

z[i] is whichset job assign(worker i)

The channeling constraints are

iyj z

Slide 56

Previous work

• Model management uses semantic typing to help combine

models and use inheritance.

• Originally inspired by object-oriented programming

Bradley & Clemence (1988)

• Quiddity: a rigorous attempt to analyze conditions

for variable identification
Bhargava, Kimbrough & Krishnan (1991)

• SML uses typing in a structured modeling framework

Geoffrion (1992)

• Ascend uses strongly-typed, object-oriented modeling

Bhargava, Krishnan & Piela (1998)

Slide 57

Previous work

• Our semantic typing differs:

• Less ambitious because it doesn’t attempt model

management.

• There is only one model.

• More ambitious because we recognize relationships

other than equivalence.

• We manage variables introduced by solver.

Slide 58

Previous work

• Modeling systems that convey some structure to solver:

• CP modeling systems use global constraints.

• AIMMS uses typed index sets.

• MiniZinc reformulates metaconstraints for specific solvers.

• Savile Row uses common subexpression elimination.

• OPL, Xpress-Kalis, Comet, etc., use interval variables.

• SAT solver SymChaff uses high-level AI planning

language PDDL.

• SIMPL has full metaconstraint capability.

Slide 59

Previous work

• However, none of these systems deals systematically with

the variable management problem.

• We address it with semantic typing of variables.

Slide 60

Assignment problem

 1

min

alldiff , ,

iix

i

n

c

x x

worker in {1..m}

job in {1..n}

data C{worker,job}

x[i] is which job assign(worker i)

minimize sum{worker i} C[i,x[i]]

alldiff{x[*]}

Slide 61

Assignment problem

 1

min

alldiff , ,

iix

i

n

c

x x

worker in {1..m}

job in {1..n}

data C{worker,job}

x[i] is which job assign(worker i)

minimize sum{worker i} C[i,x[i]]

alldiff{x[*]}

Slide 62

Objective function

is formulated
max , , all ij ij i ij

i j

c y x y i

y[i,j] is whether assign(worker i, job j)

Assignment problem

 1

min

alldiff , ,

iix

i

n

c

x x

worker in {1..m}

job in {1..n}

data C{worker,job}

x[i] is which job assign(worker i)

minimize sum{worker i} C[i,x[i]]

alldiff{x[*]}

Slide 63

Objective function

is formulated
max , , all ij ij i ij

i j

c y x y i

y[i,j] is whether assign(worker i, job j)

Alldiff

is formulated
1, all , 1, all , , all ij ij i ij

j i j

y i y j x jy i

y’[i,j] is whether assign(worker i, job j)

Solver identifies y and y to create classical AP.

Latin squares

Slide 64

Numbers in every row and column are distinct.

We will use three formulations to improve propagation.

i

j

Latin squares

Slide 65

Numbers in every row and column are distinct.

We will use three formulations to improve propagation.

row, col, num in {1..n}

x[i,j] is which num assign(row i, col j)

y[i,k] is which col assign(row i, num k)

z[j,k] is which row assign(col j, num k)

1

1

alldiff , , all

alldiff , , all

i in

j nj

x x i

x x j

1

1

alldiff , , all

alldiff , all

i in

k nk

y y i

y y k

1

1

alldiff , , all

alldiff , , all

j jn

k nk

z x j

z x k

i

j

Latin squares

Slide 66

Numbers in every row and column are distinct.

We will use three formulations to improve propagation.

row, col, num in {1..n}

x[i,j] is which num assign(row i, col j)

y[i,k] is which col assign(row i, num k)

z[j,k] is which row assign(col j, num k)

{row i} alldiff{x[i,*]); {col j} alldiff{x[*,j])

{row i} alldiff{y[i,*]); {num k} alldiff{y[*,j])

{col j} alldiff{z[j,*]); {num k} alldiff{z[*,k])

1

1

alldiff , , all

alldiff , , all

i in

j nj

x x i

x x j

1

1

alldiff , , all

alldiff , all

i in

k nk

y y i

y y k

1

1

alldiff , , all

alldiff , , all

j jn

k nk

z x j

z x k

i

j

Latin squares

Slide 67

The predicate assign denotes the 3-place relation

row, col, num in {1..n}

x[i,j] is which num assign(row i, col j)

y[i,k] is which col assign(row i, num k)

z[j,k] is which row assign(col j, num k)

{row i} alldiff{x[i,*]); {col j} alldiff{x[*,j])

{row i} alldiff{y[i,*]); {num k} alldiff{y[*,j])

{col j} alldiff{z[j,*]); {num k} alldiff{z[*,k])

1 2 3

num col row

k, xij j, yik i, zjk

Latin squares

Slide 68

The predicate assign denotes the 3-place relation

We can read off the channeling constraints:

which can be propagated.

, , , all , ,
jk ik jk ij ik ikjz y z x y xk x j y i z i j k

1 2 3

num col row

k, xij j, yik i, zjk

Latin squares

The 3 formulations generate 3 identical MIP models:

{row i} alldiff{x[i,*]); {col j} alldiff{x[*,j])

{row i} alldiff{y[i,*]); {num k} alldiff{y[*,j])

{col j} alldiff{z[j,*]); {num k} alldiff{z[*,k])

; 1, all , ; 1, all , ; 1, all ,

, 1, all , ; 1, all , ; 1, all ,

, 1, all , ; 1

x x x x

ij ijk ijk ijk ijk

k k j i

y y y y

ik ijk ijk ijk ijk

j j k i

z z z

jk ijk ijk ijk

i k

x k i j i k j k

y j i k i j j k

z i j k

 , all , ; 1, all ,z

ijk

i j

i j i k

Slide 69

Latin squares

Slide 70

The 3 formulations generate 3 identical MIP models:

{row i} alldiff{x[i,*]); {col j} alldiff{x[*,j])

{row i} alldiff{y[i,*]); {num k} alldiff{y[*,j])

{col j} alldiff{z[j,*]); {num k} alldiff{z[*,k])

; 1, all , ; 1, all , ; 1, all ,

, 1, all , ; 1, all , ; 1, all ,

, 1, all , ; 1

x x x x

ij ijk ijk ijk ijk

k k j i

y y y y

ik ijk ijk ijk ijk

j j k i

z z z

jk ijk ijk ijk

i k

x k i j i k j k

y j i k i j j k

z i j k

 , all , ; 1, all ,z

ijk

i j

i j i k

whether assign(row i, col j, num k)

So it treats them as the same variable and generates only 1 MIP model.

, , x y z

ijk ijk ijk The solver declares

Multiple which variables

In general, an n-place predicate that denotes the relation

1 … k k + 1 … n

term1 … termk termk+1 … termn

… …
(), k

k i ki x 1ki ni

for which variables, where

generates the channeling constraints

1 1 1() j j ni j i i i i

1 1 1
(1) () 1(1) (1)

1, all , , , 1, ,j j k
i i k k ni j i j

j

j nx x x x i i
i x i i j k

1

1 (1), ii x

Slide 71

Multiple whether variables

whether keywords serve as projection operators on the relation.

y[i,j,d] is whether assign(worker i, job j, day d)

Project out d :

y1[i,j] is whether assign(worker i, job j)

Project out j and d :

y2[i] is whether assign(worker i)

Slide 72

Short forms

Declare xi to be cost of activity i :

x[i] is howmuch cost(activity i)

which is short for the formal declaration

x[i] is howmuch cost cost(activity i)

in which a new term cost is generated

Declare x to be cost:

x is howmuch cost

which is short for

x is howmuch cost cost()

Slide 73

x is howmuch output

index in {1..n}

data A,C{index}

z is howmuch cost

piecewise(x,z,A,C)

Piecewise linear

Slide 74

Piecewise linear function z = f(x)

Breakpoints in A, ordinates in C

f(x)

x

Ci

Ai

this metaconstraint defines z = f(x)

x is howmuch output

index in {1..n}

data A,C{index}

z is howmuch cost

piecewise(x,z,A,C)

Piecewise linear

Slide 75

Piecewise linear function z = f(x)

Breakpoints in A, ordinates in C

Solver generates the locally ideal model

f(x)

x

Ci

Ai

1 1
1

1 1

1 1 1

1 1 1

,

() () , 0,1 , 1, , 1

n n
i i

i i

i i i i

i i i i i i i i

c c
x a x z c x

a a

a a x a a i n

We need to declare auxiliary variables i, xi

x is howmuch output

index in {1..n}

data A,C{index}

z is howmuch cost

piecewise(x,z,A,C)

Piecewise linear

Slide 76

Piecewise linear function z = f(x)

Breakpoints in A, ordinates in C

piecewise constraint induces solver to declare a new index

set that associates index with A, and use it to declare i, xi

f(x)

x

Ci

Ai

Both declarations create predicates inherited from output and A

xbar[i] is howmuch output.A(index i)

delta[i] is whether lastpositive output.A(index i)

x is howmuch output

index in {1..n}

data A,C{index}

z is howmuch cost

piecewise(x,z,A,C)

data C’{index}

z’ is howmuch profit

piecewise(x,z’,A,C’)

Piecewise linear

Slide 77

Suppose there is another piecewise

function on the same break points

f(x)

x

Ai

f(x)

x’[i] is howmuch cost output.A(index i)

delta’[i] is whether lastpositive output.A(index)

x is howmuch output

index in {1..n}

data A,C{index}

z is howmuch cost

piecewise(x,z,A,C)

data C’{index}

z’ is howmuch profit

piecewise(x,z’,A,C’)

Piecewise linear

Slide 78

Suppose there is another piecewise

function on the same break points

The solver creates variables i and xi with same types as i and xi

and so identifies them.

x’[i] is howmuch cost output.A(index i)

delta’[i] is whether lastpositive output.A(index)

f(x)

x

Ai

f(x)

Because new piecewise constraint

is associated with the same x and A,
solver again creates output.A.

job in {1..n}

time in {t..T}

data W,D,R{job}

running in [time,time]

x[j] is when running sched(job j) subset W[j]

cumulative(x,D,R,L)

Interval variables

Slide 79

Each job j runs for a time interval xj.

We wish to schedule jobs so that total resource consumption

never exceeds L.

 cumulative , , ,

, all j j

x D R L

x W j

window, duration, resource

L

makes running an interval variable

Interval variables

Slide 80

Each job j runs for a time interval xj.

We wish to schedule jobs so that total resource consumption

never exceeds L.

delta[j,t] is whether running.start sched(job j, time t)

phi[j,t] is whether running sched(job j, time t)

Solver generates the model

 cumulative , , ,

, all j j

x D R L

x W j

1, all ; , all

, all , with 0 , all

jt j jt

t j

jt jt j

j R L t

t t t t D j

job in {1..n}

time in {t..T}

data W,D,R{job}

running in [time,time]

x[j] is when running sched(job j) subset W[j]

cumulative(x,D,R,L)

window, duration, resource
makes running an interval variable

job in {1..n}

time in {t..T}

data W,D,R{job}

running in [time,time]

x[j] is when running sched(job j) subset W[j]

cumulative(x,D,R,L)

{job j, job k | j<>k} |x[j].end – x[k].end| >= T0

Interval variables

Slide 81

Suppose we want finish times

to be separated by at least T0

end end

0

cumulative , , ,

, all

, all , ,

j j

j k

x D R L

x W j

x x T j k j k

delta[j,t] is whether running.start sched(job j, time t)

phi[j,t] is whether running sched(job j, time t)

Interval variables

Slide 82

Suppose we want finish times

to be separated by at least T0

Solver generates

01, all , with 0 , all , with jt kt t t t t T j t j k

epsilon[j,t] is whether running.end sched(job j, time t)

job in {1..n}

time in {t..T}

data W,D,R{job}

running in [time,time]

x[j] is when running sched(job j) subset W[j]

cumulative(x,D,R,L)

{job j, job k | j<>k} |x[j].end – x[k].end| >= T0

delta[j,t] is whether running.start sched(job j, time t)

phi[j,t] is whether running sched(job j, time t)

end end

0

cumulative , , ,

, all

, all , ,

j j

j k

x D R L

x W j

x x T j k j k

Interval variables

Slide 83

Variables jt and jt are related by an offset.
Solver associates running.end in declaration of jt

with running.start in declaration of jt and deduces

epsilon[j,t] is whether running.end sched(job j, time t)

delta[j,t] is whether running.start sched(job j, time t)

phi[j,t] is whether running sched(job j, time t)

, , all ,
jj t D jte j t

Interval variables

Slide 84

Variables jt and jt are related by an offset.
Solver associates running.end in declaration of jt

with running.start in declaration of jt and deduces

, , all ,
jj t D jte j t

Solver also associates running.end in declaration of jt

with running in declaration of jt and deduces

the redundant constraints

, all , with 0 , all jt jt jt t t t D j

epsilon[j,t] is whether running.end sched(job j, time t)

delta[j,t] is whether running.start sched(job j, time t)

phi[j,t] is whether running sched(job j, time t)

TSP with Side Constraints

Slide 85

Traveling salesman problem with missing

arcs and precedence constraints.

city, position in {1..n}

data D{city, city} Distances

data Prec{city, city} Prec[i,j]=1 if i must precede j

data Succ{city} Succ[j] = set of successors of city j

min

alldiff , circuit

, all , with prec 1

 Succ

iis

i

i j ij

i i

D

x s

x x i j

s

TSP with Side Constraints

Slide 86

Traveling salesman problem with missing

arcs and precedence constraints.

city, position in {1..n}

data D{city, city} Distances

data Prec{city, city} Prec[i,j]=1 if i must precede j

data Succ{city} Succ[j] = set of successors of city j

Two variable systems:

x[i] is which position ordering(city i)

s[i] is successor city ordering(city i) subset Succ[i]

min

alldiff , circuit

, all , with prec 1

 Succ

iis

i

i j ij

i i

D

x s

x x i j

s

TSP with Side Constraints

Slide 87

Traveling salesman problem with missing

arcs and precedence constraints.

city, position in {1..n}

data D{city, city} Distances

data Prec{city, city} Prec[i,j]=1 if i must precede j

data Succ{city} Succ[j] = set of successors of city j

Two variable systems:

x[i] is which position ordering(city i)

s[i] is successor city ordering(city i) subset Succ[i]

Precedence constraints require x variables

prec{city i, city j | Prec[i,j] = 1}: x[i] < x[j]

Missing arc constraints (implicit in data Succ) require s variables

min

alldiff , circuit

, all , with prec 1

 Succ

iis

i

i j ij

i i

D

x s

x x i j

s

TSP with Side Constraints

Slide 88

Traveling salesman problem with missing

arcs and precedence constraints.

city, position in {1..n}

data D{city, city} Distances

data Prec{city, city} Prec[i,j]=1 if i must precede j

data Succ{city} Succ[j] = set of successors of city j

Two variable systems:

x[i] is which position ordering(city i)

s[i] is successor city ordering(city i) subset Succ[i]

Precedence constraints require x variables

prec{city i, city j | Prec[i,j] = 1}: x[i] < x[j]

Missing arc constraints (implicit in data Succ) require s variables

min sum {city i} D[i,s[i]] Objective function

min

alldiff , circuit

, all , with prec 1

 Succ

iis

i

i j ij

i i

D

x s

x x i j

s

TSP with Side Constraints

Slide 89

The solver can give alldiff(x) a conventional assignment model

using zik = whether city i is in position k.

z[i,k] is whether ordering(city i, position k)

TSP with Side Constraints

Slide 90

The solver can give alldiff(x) a conventional assignment model

using zik = whether city i is in position k.

z[i,k] is whether ordering(city i, position k)

For circuit(s), the solver can introduce

wij = whether city i immediately precedes city j.

w[i,j] is whether successor ordering(city i, city j)

TSP with Side Constraints

Slide 91

The solver can give alldiff(x) a conventional assignment model

using zik = whether city i is in position k.

z[i,k] is whether ordering(city i, position k)

For circuit(s), the solver can introduce

wij = whether city i immediately precedes city j.

w[i,j] is whether successor ordering(city i, city j)

Declaration of z tells solver that predicate is

ordering(city,position), not ordering(city,city).

The solver can give alldiff(x) a conventional assignment model

using zik = whether city i is in position k.

z[i,k] is whether ordering(city i, position k)

For circuit(s), the solver can introduce

wij = whether city i immediately precedes city j.

w[i,j] is whether successor ordering(city i, city j)

Declaration of z tells solver that predicate is

ordering(city,position), not ordering(city,city).

Solver generates cutting planes in w-space and s-space.

TSP with Side Constraints

Slide 92

The solver can give alldiff(x) a conventional assignment model

using zik = whether city i is in position k.

z[i,k] is whether ordering(city i, position k)

For circuit(s), the solver can introduce

wij = whether city i immediately precedes city j.

w[i,j] is whether successor ordering(city i, city j)

Declaration of z tells solver that predicate is

ordering(city,position), not ordering(city,city).

Solver generates cutting planes in w-space and s-space.

The successor keyword tells solver how z and w relate.

TSP with Side Constraints

Slide 93

, all , with 0 , all jt jt jt t t t D j

TSP with Side Constraints

Slide 94

Suppose we also have constraints on which city is in position k.

Simply declare

y[k] = which city ordering(position k)

The solver generates the channeling constraints between y[k]

and x[i] = which position is city i

TSP with Side Constraints

MIP 2013 - Slide 95

Suppose we also have constraints on which city is in position k.

Simply declare

y[k] = which city ordering(position k)

The solver generates the channeling constraints between y[k]

and x[i] = which position is city i

The solver can also introduce a second (equivalent) objective function

min sum{position k} D[y[k],y[k+1]]

which may improve bounding.

Pros and Cons of Semantic Typing

• Pros

• Conveys problem structure to the solver(s)

– …by allowing use of metaconstaints

• Incorporates state of the art in formulation, valid inequalities

• Allows solver to expand repertory of techniques

– Domain filtering, propagation, cutting plane algorithms

• Good modeling practice

– Self-documenting

– Bug detection

Slide 96

Pros and Cons of Semantic Typing

• Cons

• Modeler must be familiar with a large collection of

metaconstraints

– Rather than few primitive constraints

Slide 97

Pros and Cons of Semantic Typing

• Cons

• Modeler must be familiar with a large collection of

metaconstraints

– Rather than few primitive constraints

• Response

– Modeler must be familiar with the underlying concepts anyway

– Modeling system can offer sophisticated help, improve modeling

Slide 98

Pros and Cons of Semantic Typing

• Cons

• Modeler must be familiar with a large collection of

metaconstraints

– Rather than few primitive constraints

• Response

– Modeler must be familiar with the underlying concepts anyway

– Modeling system can offer sophisticated help, improve modeling

• OR, SAT community is not accustomed to high-level modeling

– Typed languages like Ascend never really caught on, resistance

to CP.

Slide 99

Pros and Cons of Semantic Typing

• Cons

• Modeler must be familiar with a large collection of

metaconstraints

– Rather than few primitive constraints

• Response

– Modeler must be familiar with the underlying concepts anyway

– Modeling system can offer sophisticated help, improve modeling

• OR, SAT community is not accustomed to high-level modeling

– Typed languages like Ascend never really caught on, resistance

to CP.

• Response

– Train the next generation!

Slide 100

