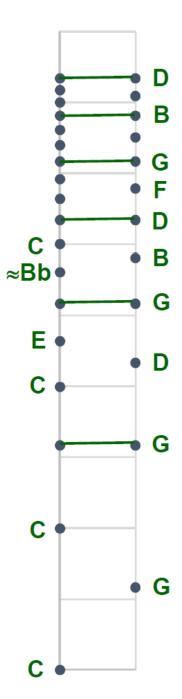
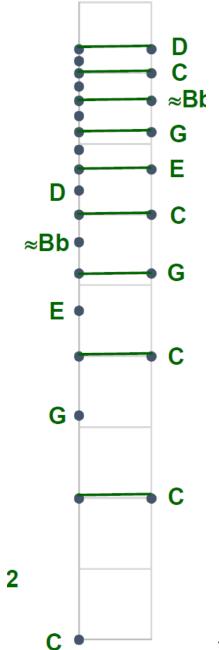
Finding Alternative Musical Scales

John Hooker Carnegie Mellon University

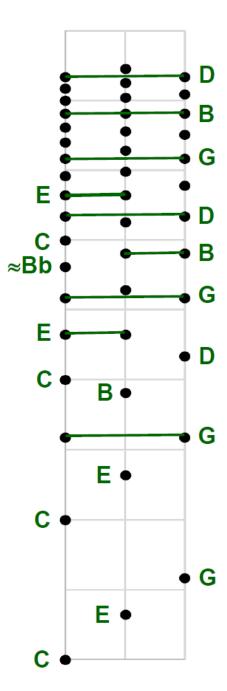

October 2017

Advantages of Classical Scales

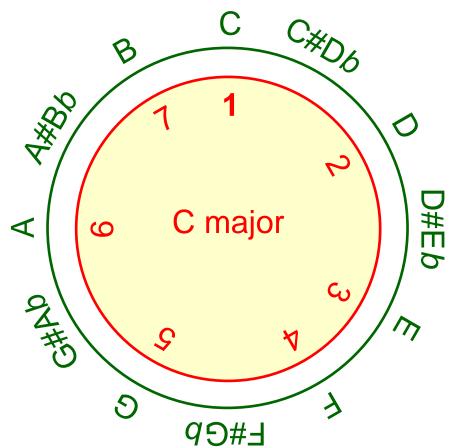
- Pitch frequencies have simple ratios.
 - Rich and intelligible harmonies
- Multiple keys based on underlying chromatic scale with tempered tuning.
 - Can play all keys on instrument with fixed tuning.
 - Complex musical structure.
- Can we find new scales with these same properties?
 - Constraint programming is well suited to solve the problem.


- Acoustic instruments produce multiple harmonic partials.
 - Frequency of partialintegral multiple offrequency of fundamental.
 - Coincidence of partials makes chords with simple ratios easy to recognize.

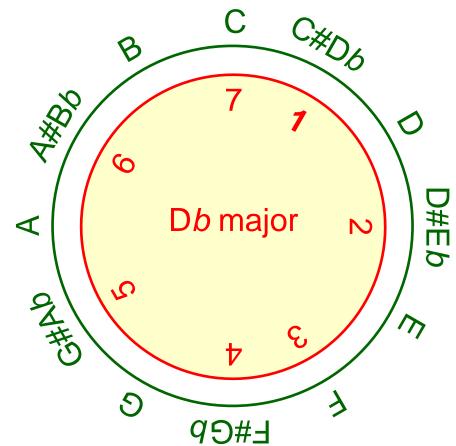
Perfect fifth **C:G** = 2:3


- Acoustic instruments produce multiple harmonic partials.
 - Frequency of partial = integral multiple of frequency of fundamental.
 - Coincidence of partials makes chords with simple ratios easy to recognize.

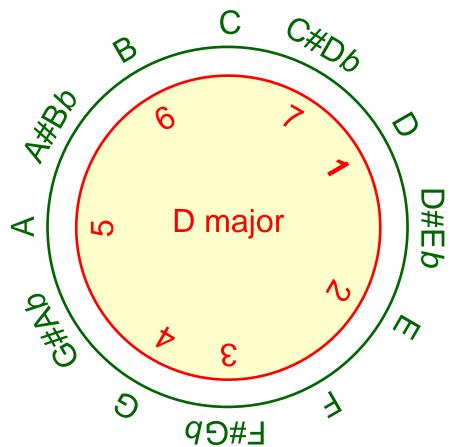
Octave C:C = 1:2

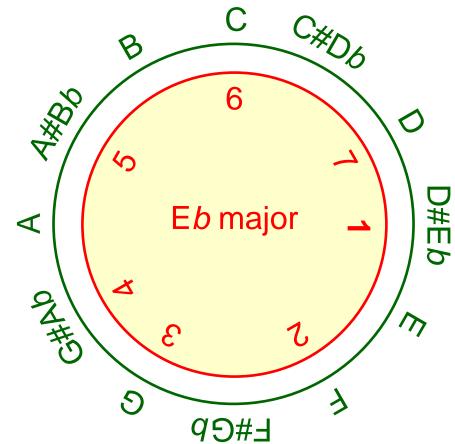

- Acoustic instruments produce multiple harmonic partials.
 - Frequency of partialintegral multiple offrequency of fundamental.
 - Coincidence of partials makes chords with simple ratios easy to recognize.

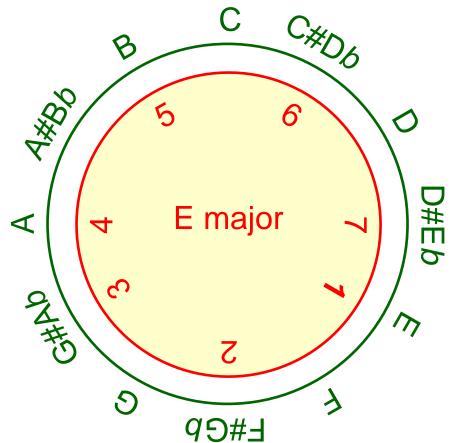
Major triad **C:E:G** = 4:5:6



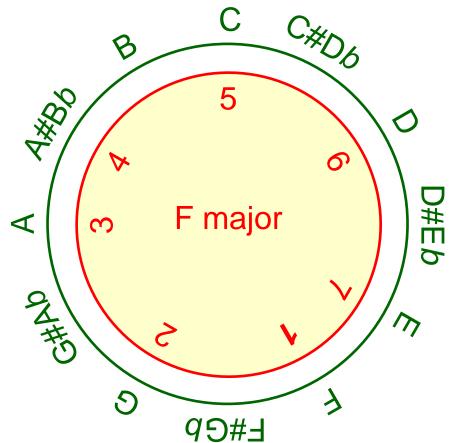
- A classical scale can start from any pitch in a chromatic with 12 semitone intervals.
 - Resulting in 12 keys.
 - An instrument with 12 pitches (modulo octaves) can play 12 different keys.
 - Can move to a different key by changing only a few notes of the scale.


Let C major be the tonic key

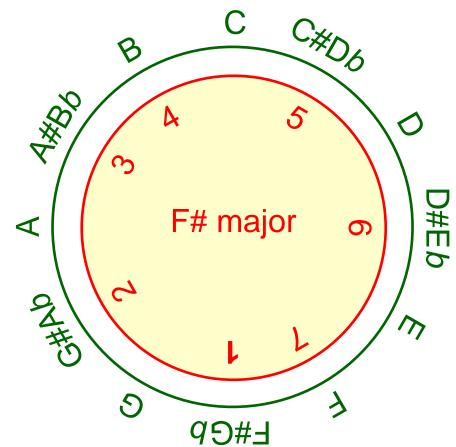

Let C major be the tonic key


Let C major be the tonic key

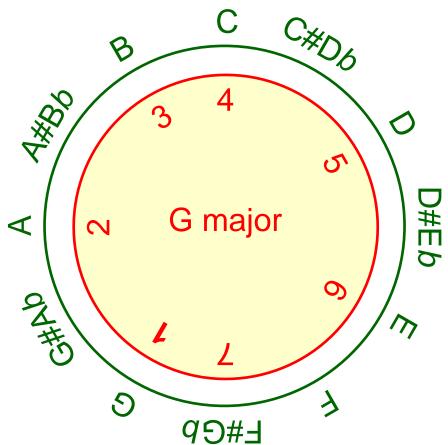
Let C major be the tonic key



Let C major be the tonic key

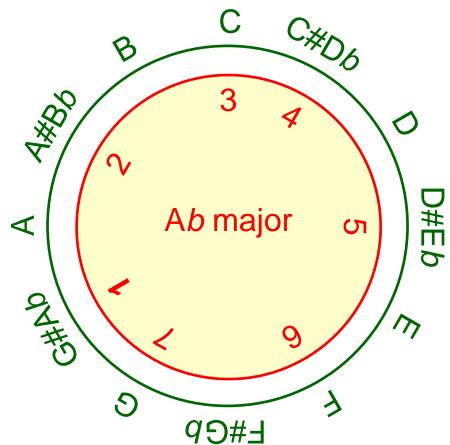

4 notes not in C major (mediant)

Let C major be the tonic key

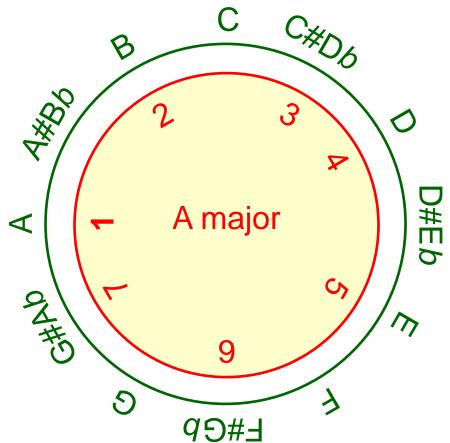


1 note not in C major (subdominant)

Let C major be the tonic key

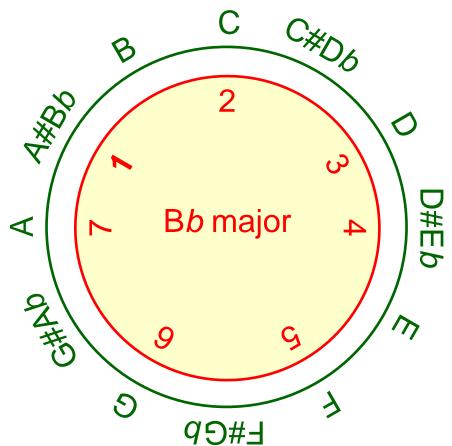


Let C major be the tonic key

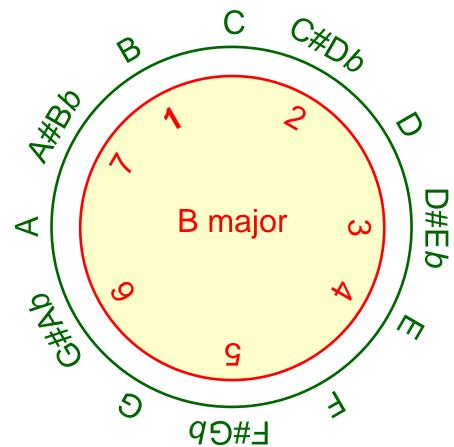


1 note not in C major (dominant)

Let C major be the tonic key



Let C major be the tonic key



3 notes not in C major (submediant)

Let C major be the tonic key

Let C major be the tonic key

- Chromatic pitches ae tempered so that intervals will have approximately correct ratios in all keys.
 - Modern practice is equal temperament.

$$\frac{\text{freq of note } k}{\text{freq of note } 1} = 2^{(k-1)/12}$$

- Resulting error is $\leq \pm 0.9\%$

Note	Perfect	Tempered	Error
	ratio	ratio	%
С	1/1	1.00000	0.000
D	9/8	1.12246	-0.226
Ε	5/4	1.25992	+0.787
F	4/3	1.33484	+0.113
G	3/2	1.49831	-0.113
Α	5/3	1.68179	+0.899
B	15/8	1.88775	+0.675

- Scales must be diatonic
 - Adjacent notes are 1 or 2 semitones apart.
- We consider *m*-note scales on an *n*-tone chromatic
 - In binary representation, let m_0 = number of 0s m_1 = number of 1s
 - Then $m_0 = 2m n$, $m_1 = n m$
 - In a major scale 1101110, there are m = 7 notes on an n = 12-tone chromatic
 - There are $m_0 = 2.7 12 = 2$ zeros
 - There are $m_1 = 12 7 = 5$ ones

0 = semitone interval1 = whole tone interval (2 semitones)

- Semitones should not be bunched together.
 - One criterion: Myhill's property
 - All intervals of a given size should contain k or k + 1 semitones.
 - For example, in a major scale:
 - All fifths are 6 or 7 semitones
 - All thirds are 3 or 4 semitones
 - All seconds are 1 or 2 semitones, etc.
 - Few scales satisfy Myhill's property

- Semitones should not be bunched together.
 - We minimize the number of pairs of adjacent 0s and pairs of adjacent 1s.
 - If $m_0 \ge m_1$, number of adjacent $0s = m_0 - \min\{m_0, m_1\}$ number of adjacent 1s = 0
 - If $m_1 \ge m_0$, number of adjacent $1s = m_1 - \min\{m_0, m_1\}$ number of adjacent 0s = 0
 - In a major scale 1101110,
 number of pairs of adjacent 0s = 0
 number of pairs of adjacent 1s = 5 min{2,5} = 3

- Semitones should not be bunched together.
 - The number of scales satisfying this property is

$${\max\{m_0, m_1\} \atop \min\{m_0, m_1\}} + {\max\{m_0, m_1\} - 1 \atop \min\{m_0, m_1\} - 1}$$

 The number of 7-note scales on a 12-tone chromatic satisfying this property is

$$\binom{5}{2} + \binom{4}{1} = 14$$

- Can have fewer than n keys.
 - A "mode of limited transposition"
 - Whole tone scale 111111 (Debussy) has 2 keys
 - Scale 110110110 has 5 keys
 - Count number of semitones in repeating sequence

Temperament Requirements

- Tolerance for inaccurate tuning
 - At most $\pm 0.9\%$
 - Don't exceed tolerance of classical equal temperament

Previous Work

- Scales on a tempered chromatic
 - Bohlen-Pierce scale (1978, Mathews et al. 1988)
 - 9 notes on 13-note chromatic spanning a 12th
 - Music for Bohlen-Pierce scale
 - R.Boulanger, A. Radunskaya, J. Appleton
 - Scales of limited transposition
 - O. Messiaen
- Microtonal scales
 - Quarter-tone scale (24-tone equally tempered chromatic)
 - Bartok, Berg, Bloch, Boulez, Copeland, Enescu, Ives, Mancini.
 - 15- or 19-tone equally tempered chromatic
 - E. Blackwood

Previous Work

- "Super just" scales (perfect intervals, 1 key)
 - H. Partch (43 tones)
 - W. Carlos (12 tones)
 - L. Harrison (16 tones)
 - W. Perret (19 tones)
 - J. Chalmers (19 tones)
 - M. Harison (24 tones)
- Combinatorial properties
 - G. J. Balzano (1980)
 - T. Noll (2005, 2007, 2014)
 - E. Chew (2014), M. Pearce (2002), Zweifel (1996)

- Frequency of each note should have a simple ratio (between 1 and 2) with some other note
 - Equating notes an octave apart.
 - Let f_i = freq ratio of note i to tonic (note 1), f_1 = 1.
 - For major scale CDEFGAB,

$$(f_1,\ldots,f_7)=\left(1,\frac{9}{8},\frac{5}{4},\frac{4}{3},\frac{3}{2},\frac{5}{3},\frac{15}{8}\right)$$

- For example, B (15/8) has a simple ratio 3/2 with E (5/4)

$$\frac{f_7}{f_3} = \frac{3}{2}$$

D octave higher (9/4) has ratio 3/2 with G (3/2)

$$\frac{2f_2}{f_5} = \frac{3}{2}$$

- However, this allows two or more subsets of unrelated pitches.
 - Simple ratios with respect to pitches in same subset, but not in other subsets.
 - So we use a recursive condition.
 - For some permutation of notes, each note should have simple ratio with previous note.
 - First note in the permutation is the tonic.

- Let the simple ratios be **generators** $r_1, ..., r_p$.
 - Let (π_1, \ldots, π_m) be a permutation of 1, ..., m with $\pi_1 = 1$.
 - For each $i \in \{2, ..., m\}$, we require

$$1 < f_{\pi_i} < 2$$

and

$$\frac{f_{\pi_i}}{f_{\pi_j}} = r_q \text{ or } \frac{2f_{\pi_j}}{f_{\pi_i}} = r_q \text{ or } \frac{f_{\pi_j}}{f_{\pi_i}} = r_q \text{ or } \frac{2f_{\pi_i}}{f_{\pi_j}} = r_q$$

for some $j \in \{1, ..., i-1\}$ and some $q \in \{1, ..., p\}$.

- Ratio with previous note in the permutation π must be a generator.
 - Ratios with previous 2 or 3 notes in the permutation will be simple (product of generators)
 - Ratio with tonic need not be simple.

- Observation: No need to consider both r_q and $2/r_q$ as generators.
 - So we consider only reduced fractions with odd numerators (in order of simplicity):

$$\frac{3}{2}, \frac{5}{3}, \frac{5}{4}, \frac{7}{4}, \frac{7}{5}, \frac{9}{5}, \frac{7}{6}, \frac{11}{6}, \frac{9}{7}, \frac{11}{7}, \\ \frac{13}{7}, \frac{9}{8}, \frac{11}{8}, \frac{13}{8}, \frac{15}{8}, \frac{11}{9}, \frac{13}{9}, \frac{17}{9}, \dots$$

• CP model readily accommodates variable indices f_{π_i}

• Replace f_i with fraction a_i/b_i in lowest terms.

$$\frac{3}{2}, \frac{5}{3}, \frac{5}{4}, \frac{7}{4}, \frac{7}{5}, \frac{9}{5}, \frac{7}{6}, \frac{11}{6}, \frac{9}{7}, \frac{11}{7}, \\ \frac{13}{7}, \frac{9}{8}, \frac{11}{8}, \frac{13}{8}, \frac{15}{8}, \frac{11}{9}, \frac{13}{9}, \frac{17}{9}, \dots$$

CP Model

alldiff
$$(\pi_1, \dots, \pi_m)$$

 $\pi_1 = a_1 = b_1 = 1$
 $1 < \frac{a_i}{b_i} < 2$, coprime (a_i, b_i) , $i = 1, \dots, m$

$$\frac{a_{i-1}}{b_{i-1}} < \frac{a_i}{b_i}, i = 2, \dots, m$$

$$\bigvee_{j < i} \left[(\pi_i > \pi_j) \Rightarrow \left(\frac{a_{\pi_i}/b_{\pi_i}}{a_{\pi_j}/b_{\pi_j}} \in G \vee \frac{2a_{\pi_j}/b_{\pi_j}}{a_{\pi_i}/b_{\pi_i}} \in G \right) \right], i = 2, \dots, m$$

$$\bigvee_{j < i} \left[(\pi_i < \pi_j) \Rightarrow \left(\frac{a_{\pi_j}/b_{\pi_j}}{a_{\pi_i}/b_{\pi_i}} \in G \vee \frac{2a_{\pi_i}/b_{\pi_i}}{a_{\pi_j}/b_{\pi_j}} \in G \right) \right], i = 2, \dots, m$$

$$\frac{|a_i/b_i - 2^{(t_i-1)/n}|}{2^{(t_i-1)/n}} \le 0.009, i = 1, \dots, m$$

$$\pi_i \in \{1, \dots, m\}, a_i \in \{1, \dots, 2M\}, b_i \in \{1, \dots, M\}, i = 1, \dots, m$$

CP Model

$$\begin{aligned} & \text{alldiff}(\pi_1, \dots, \pi_m) & \longleftarrow \text{ permutation} \\ & \pi_1 = a_1 = b_1 = 1 \\ & 1 < \frac{a_i}{b_i} < 2, \quad \text{coprime}(a_i, b_i), \ i = 1, \dots, m \\ & \frac{a_{i-1}}{b_{i-1}} < \frac{a_i}{b_i}, \ i = 2, \dots, m \\ & \bigvee_{j < i} \left[(\pi_i > \pi_j) \Rightarrow \left(\frac{a_{\pi_i}/b_{\pi_i}}{a_{\pi_j}/b_{\pi_j}} \in G \ \lor \ \frac{2a_{\pi_j}/b_{\pi_j}}{a_{\pi_i}/b_{\pi_i}} \in G \right) \right], \ i = 2, \dots, m \\ & \bigvee_{j < i} \left[(\pi_i < \pi_j) \Rightarrow \left(\frac{a_{\pi_j}/b_{\pi_j}}{a_{\pi_i}/b_{\pi_i}} \in G \ \lor \ \frac{2a_{\pi_i}/b_{\pi_i}}{a_{\pi_j}/b_{\pi_j}} \in G \right) \right], \ i = 2, \dots, m \\ & \frac{|a_i/b_i - 2^{(t_i-1)/n}|}{2^{(t_i-1)/n}} \leq 0.009, \ i = 1, \dots, m \\ & \pi_i \in \{1, \dots, m\}, \ a_i \in \{1, \dots, 2M\}, \ b_i \in \{1, \dots, M\}, \ i = 1, \dots, m \end{aligned}$$

alldiff
$$(\pi_1, \dots, \pi_m)$$
 $\pi_1 = a_1 = b_1 = 1$

tonic note

 $1 < \frac{a_i}{b_i} < 2$, coprime (a_i, b_i) , $i = 1, \dots, m$

$$\frac{a_{i-1}}{b_{i-1}} < \frac{a_i}{b_i}$$
, $i = 2, \dots, m$

$$\bigvee_{j < i} \left[(\pi_i > \pi_j) \Rightarrow \left(\frac{a_{\pi_i}/b_{\pi_i}}{a_{\pi_j}/b_{\pi_j}} \in G \vee \frac{2a_{\pi_j}/b_{\pi_j}}{a_{\pi_i}/b_{\pi_i}} \in G \right) \right], i = 2, \dots, m$$

$$\bigvee_{j < i} \left[(\pi_i < \pi_j) \Rightarrow \left(\frac{a_{\pi_j}/b_{\pi_j}}{a_{\pi_i}/b_{\pi_i}} \in G \vee \frac{2a_{\pi_i}/b_{\pi_i}}{a_{\pi_j}/b_{\pi_j}} \in G \right) \right], i = 2, \dots, m$$

$$\frac{|a_i/b_i - 2^{(t_i-1)/n}|}{2^{(t_i-1)/n}} \le 0.009, i = 1, \dots, m$$

$$\pi_i \in \{1, \dots, m\}, a_i \in \{1, \dots, 2M\}, b_i \in \{1, \dots, M\}, i = 1, \dots, m$$

$$\begin{aligned} & \text{alldiff}(\pi_1, \dots, \pi_m) \\ & \pi_1 = a_1 = b_1 = 1 \\ & 1 < \frac{a_i}{b_i} < 2, \text{ coprime}(a_i, b_i), \ i = 1, \dots, m \\ & \frac{a_{i-1}}{b_{i-1}} < \frac{a_i}{b_i}, \ i = 2, \dots, m \\ & \bigvee_{j < i} \left[(\pi_i > \pi_j) \Rightarrow \left(\frac{a_{\pi_i}/b_{\pi_i}}{a_{\pi_j}/b_{\pi_j}} \in G \ \lor \ \frac{2a_{\pi_j}/b_{\pi_j}}{a_{\pi_i}/b_{\pi_i}} \in G \right) \right], \ i = 2, \dots, m \\ & \bigvee_{j < i} \left[(\pi_i < \pi_j) \Rightarrow \left(\frac{a_{\pi_j}/b_{\pi_j}}{a_{\pi_i}/b_{\pi_i}} \in G \ \lor \ \frac{2a_{\pi_i}/b_{\pi_i}}{a_{\pi_j}/b_{\pi_j}} \in G \right) \right], \ i = 2, \dots, m \\ & \frac{|a_i/b_i - 2^{(t_i-1)/n}|}{2^{(t_i-1)/n}} \le 0.009, \ i = 1, \dots, m \\ & \pi_i \in \{1, \dots, m\}, \ a_i \in \{1, \dots, 2M\}, \ b_i \in \{1, \dots, M\}, \ i = 1, \dots, m \end{aligned}$$

$$\begin{aligned} &\text{alldiff}(\pi_{1},\ldots,\pi_{m}) \\ &\pi_{1} = a_{1} = b_{1} = 1 \\ &1 < \frac{a_{i}}{b_{i}} < 2, \text{ coprime}(a_{i},b_{i}), \ i = 1,\ldots,m \\ &\xrightarrow{\frac{a_{i-1}}{b_{i-1}}} < \frac{a_{i}}{b_{i}}, \ i = 2,\ldots,m \end{aligned} \qquad \text{symmetry breaking} \\ &\bigvee_{j < i} \left[(\pi_{i} > \pi_{j}) \Rightarrow \left(\frac{a_{\pi_{i}}/b_{\pi_{i}}}{a_{\pi_{j}}/b_{\pi_{j}}} \in G \ \lor \ \frac{2a_{\pi_{j}}/b_{\pi_{j}}}{a_{\pi_{i}}/b_{\pi_{i}}} \in G \right) \right], \ i = 2,\ldots,m \\ &\bigvee_{j < i} \left[(\pi_{i} < \pi_{j}) \Rightarrow \left(\frac{a_{\pi_{j}}/b_{\pi_{j}}}{a_{\pi_{i}}/b_{\pi_{i}}} \in G \ \lor \ \frac{2a_{\pi_{i}}/b_{\pi_{i}}}{a_{\pi_{j}}/b_{\pi_{j}}} \in G \right) \right], \ i = 2,\ldots,m \\ &\bigvee_{j < i} \left[(\pi_{i} < \pi_{j}) \Rightarrow \left(\frac{a_{\pi_{j}}/b_{\pi_{j}}}{a_{\pi_{i}}/b_{\pi_{i}}} \in G \ \lor \ \frac{2a_{\pi_{i}}/b_{\pi_{i}}}{a_{\pi_{j}}/b_{\pi_{j}}} \in G \right) \right], \ i = 2,\ldots,m \\ &\bigvee_{j < i} \left[(\pi_{i} < \pi_{j}) \Rightarrow \left(\frac{a_{\pi_{j}}/b_{\pi_{j}}}{a_{\pi_{i}}/b_{\pi_{i}}} \in G \ \lor \ \frac{2a_{\pi_{i}}/b_{\pi_{i}}}{a_{\pi_{j}}/b_{\pi_{j}}} \in G \right) \right], \ i = 2,\ldots,m \\ &\bigvee_{j < i} \left[(\pi_{i} < \pi_{j}) \Rightarrow \left(\frac{a_{\pi_{j}}/b_{\pi_{j}}}{a_{\pi_{i}}/b_{\pi_{i}}} \in G \ \lor \ \frac{2a_{\pi_{i}}/b_{\pi_{i}}}{a_{\pi_{j}}/b_{\pi_{j}}} \in G \right) \right], \ i = 2,\ldots,m \\ &\bigvee_{j < i} \left[(\pi_{i} < \pi_{j}) \Rightarrow \left(\frac{a_{\pi_{j}}/b_{\pi_{j}}}{a_{\pi_{i}}/b_{\pi_{i}}} \in G \ \lor \ \frac{2a_{\pi_{i}}/b_{\pi_{i}}}{a_{\pi_{j}}/b_{\pi_{j}}} \in G \right) \right], \ i = 2,\ldots,m \\ &\bigvee_{j < i} \left[(\pi_{i} < \pi_{j}) \Rightarrow \left(\frac{a_{\pi_{j}}/b_{\pi_{j}}}{a_{\pi_{i}}/b_{\pi_{i}}} \in G \ \lor \ \frac{2a_{\pi_{i}}/b_{\pi_{i}}}{a_{\pi_{j}}/b_{\pi_{j}}} \in G \right) \right], \ i = 2,\ldots,m \\ &\bigvee_{j < i} \left[(\pi_{i} < \pi_{j}) \Rightarrow \left(\frac{a_{\pi_{j}}/b_{\pi_{j}}}{a_{\pi_{i}}/b_{\pi_{i}}} \in G \ \lor \ \frac{2a_{\pi_{i}}/b_{\pi_{i}}}{a_{\pi_{j}}/b_{\pi_{j}}} \in G \right) \right], \ i = 2,\ldots,m \\ &\bigvee_{j < i} \left[(\pi_{i} < \pi_{j}) \Rightarrow \left(\frac{a_{\pi_{j}}/b_{\pi_{j}}}{a_{\pi_{i}}/b_{\pi_{i}}} \in G \right) \right], \ i = 2,\ldots,m \\ &\bigvee_{j < i} \left[(\pi_{i} < \pi_{j}) \Rightarrow \left(\frac{a_{\pi_{j}}/b_{\pi_{j}}}{a_{\pi_{i}}/b_{\pi_{i}}} \in G \right) \right] \\ &\bigvee_{j < i} \left[(\pi_{i} < \pi_{j}) \Rightarrow \left(\frac{a_{\pi_{j}}/b_{\pi_{j}}}{a_{\pi_{i}}/b_{\pi_{i}}} \in G \right) \right] \\ &\bigvee_{j < i} \left[(\pi_{i} < \pi_{j}) \Rightarrow \left(\frac{a_{\pi_{j}}/b_{\pi_{j}}}{a_{\pi_{j}}/b_{\pi_{j}}} \in G \right) \right] \\ &\bigvee_{j < i} \left[(\pi_{i} < \pi_{j}) \Rightarrow \left(\frac{a_{\pi_{j}}/b_{\pi_{j}}}{a_{\pi_{j}}/b_{\pi_{j}}} \in G \right) \right] \\ &\bigvee_{j < i} \left[(\pi_{i} < \pi_{j}) \Rightarrow \left(\frac{a_{\pi_{j}}/b_{\pi_{j}}}{a_{\pi_{j}}/b_{\pi_{j}}} \in G \right) \right] \\ &\bigvee_{j$$

$$\begin{aligned}
&\text{alldiff}(\pi_1, \dots, \pi_m) \\
&\pi_1 = a_1 = b_1 = 1 \\
&1 < \frac{a_i}{b_i} < 2, \quad \text{coprime}(a_i, b_i), \quad i = 1, \dots, m \\
&\frac{a_{i-1}}{b_{i-1}} < \frac{a_i}{b_i}, \quad i = 2, \dots, m
\end{aligned}$$

$$\bigvee_{j < i} \left[(\pi_i > \pi_j) \Rightarrow \left(\frac{a_{\pi_i}/b_{\pi_i}}{a_{\pi_j}/b_{\pi_j}} \in G \lor \frac{2a_{\pi_j}/b_{\pi_j}}{a_{\pi_i}/b_{\pi_i}} \in G \right) \right], \ i = 2, \dots, m$$

$$\bigvee_{j < i} \left[(\pi_i < \pi_j) \Rightarrow \left(\frac{a_{\pi_j}/b_{\pi_j}}{a_{\pi_i}/b_{\pi_i}} \in G \lor \frac{2a_{\pi_i}/b_{\pi_i}}{a_{\pi_j}/b_{\pi_j}} \in G \right) \right], \ i = 2, \dots, m$$

$$\frac{|a_i/b_i - 2^{(t_i-1)/n}|}{2^{(t_i-1)/n}} \le 0.009, \ i = 1, \dots, m$$

$$\pi_i \in \{1, \dots, m\}, \ a_i \in \{1, \dots, 2M\}, \ b_i \in \{1, \dots, M\}, \ i = 1, \dots, m$$

$$\begin{aligned} &\text{alldiff}(\pi_{1},\ldots,\pi_{m}) \\ &\pi_{1} = a_{1} = b_{1} = 1 \\ &1 < \frac{a_{i}}{b_{i}} < 2, \text{ coprime}(a_{i},b_{i}), \ i = 1,\ldots,m \\ &\frac{a_{i-1}}{b_{i-1}} < \frac{a_{i}}{b_{i}}, \ i = 2,\ldots,m \\ &\bigvee_{j < i} \left[(\pi_{i} > \pi_{j}) \Rightarrow \left(\frac{a_{\pi_{i}}/b_{\pi_{i}}}{a_{\pi_{j}}/b_{\pi_{j}}} \in G \right) \vee \frac{2a_{\pi_{j}}/b_{\pi_{j}}}{a_{\pi_{i}}/b_{\pi_{i}}} \in G \right) \right], \ i = 2,\ldots,m \\ &\bigvee_{j < i} \left[(\pi_{i} < \pi_{j}) \Rightarrow \left(\frac{a_{\pi_{j}}/b_{\pi_{j}}}{a_{\pi_{i}}/b_{\pi_{i}}} \in G \vee \frac{2a_{\pi_{i}}/b_{\pi_{i}}}{a_{\pi_{j}}/b_{\pi_{j}}} \in G \right) \right], \ i = 2,\ldots,m \\ &\bigvee_{j < i} \left[(\pi_{i} < \pi_{j}) \Rightarrow \left(\frac{a_{\pi_{j}}/b_{\pi_{j}}}{a_{\pi_{i}}/b_{\pi_{i}}} \in G \vee \frac{2a_{\pi_{i}}/b_{\pi_{i}}}{a_{\pi_{j}}/b_{\pi_{j}}} \in G \right) \right], \ i = 2,\ldots,m \\ &\bigvee_{j < i} \left[\frac{a_{i}/b_{i} - 2^{(t_{i}-1)/n}}{2^{(t_{i}-1)/n}} \leq 0.009, \ i = 1,\ldots,m \\ &\lim_{j < i} \left[\frac{a_{i}/b_{i} - 2^{(t_{i}-1)/n}}{2^{(t_{i}-1)/n}} \leq 0.009, \ i = 1,\ldots,m \right], \ i = 1,\ldots,m \end{aligned}$$

$$\begin{aligned} & \text{alldiff}(\pi_1, \dots, \pi_m) \\ & \pi_1 = a_1 = b_1 = 1 \\ & 1 < \frac{a_i}{b_i} < 2, \quad \text{coprime}(a_i, b_i), \ i = 1, \dots, m \\ & \frac{a_{i-1}}{b_{i-1}} < \frac{a_i}{b_i}, \ i = 2, \dots, m \\ & \bigvee_{j < i} \left[(\pi_i > \pi_j) \Rightarrow \left(\frac{a_{\pi_i}/b_{\pi_i}}{a_{\pi_j}/b_{\pi_j}} \in G \ \lor \ \frac{2a_{\pi_j}/b_{\pi_j}}{a_{\pi_i}/b_{\pi_i}} \in G \right) \right], \ i = 2, \dots, m \\ & \bigvee_{j < i} \left[(\pi_i < \pi_j) \Rightarrow \left(\frac{a_{\pi_j}/b_{\pi_j}}{a_{\pi_i}/b_{\pi_i}} \in G \ \lor \ \frac{2a_{\pi_i}/b_{\pi_i}}{a_{\pi_j}/b_{\pi_j}} \in G \right) \right], \ i = 2, \dots, m \\ & \bigvee_{j < i} \left[(\pi_i < \pi_j) \Rightarrow \left(\frac{a_{\pi_j}/b_{\pi_j}}{a_{\pi_i}/b_{\pi_i}} \in G \ \lor \ \frac{2a_{\pi_i}/b_{\pi_i}}{a_{\pi_j}/b_{\pi_j}} \in G \right) \right], \ i = 2, \dots, m \\ & \bigvee_{j < i} \left[\frac{a_i/b_i - 2^{(t_i-1)/n}}{2^{(t_i-1)/n}} \le 0.009, \ i = 1, \dots, m \right] \quad \text{tuning tolerance} \\ & \pi_i \in \{1, \dots, m\}, \ a_i \in \{1, \dots, 2M\}, \ b_i \in \{1, \dots, M\}, \ i = 1, \dots, m \} \end{aligned}$$

$$\begin{aligned} & \text{alldiff}(\pi_{1},\ldots,\pi_{m}) \\ & \pi_{1} = a_{1} = b_{1} = 1 \\ & 1 < \frac{a_{i}}{b_{i}} < 2, \text{ coprime}(a_{i},b_{i}), \ i = 1,\ldots,m \\ & \frac{a_{i-1}}{b_{i-1}} < \frac{a_{i}}{b_{i}}, \ i = 2,\ldots,m \\ & \bigvee_{j < i} \left[(\pi_{i} > \pi_{j}) \Rightarrow \left(\frac{a_{\pi_{i}}/b_{\pi_{i}}}{a_{\pi_{j}}/b_{\pi_{j}}} \in G \vee \frac{2a_{\pi_{j}}/b_{\pi_{j}}}{a_{\pi_{i}}/b_{\pi_{i}}} \in G \right) \right], \ i = 2,\ldots,m \\ & \bigvee_{j < i} \left[(\pi_{i} < \pi_{j}) \Rightarrow \left(\frac{a_{\pi_{j}}/b_{\pi_{j}}}{a_{\pi_{i}}/b_{\pi_{i}}} \in G \vee \frac{2a_{\pi_{i}}/b_{\pi_{i}}}{a_{\pi_{j}}/b_{\pi_{j}}} \in G \right) \right], \ i = 2,\ldots,m \\ & \frac{|a_{i}/b_{i} - 2^{(t_{i}-1)/n}|}{2^{(t_{i}-1)/n}} \leq 0.009, \ i = 1,\ldots,m \\ & \pi_{i} \in \{1,\ldots,m\}, \ a_{i} \in \{1,\ldots,2M\}, \ b_{i} \in \{1,\ldots,M\}, \ i = 1,\ldots,m \end{aligned}$$

Scales on a 12-note chromatic

- Use the generators mentioned earlier.
 - There are multiple solutions for each scale.
 - For each note, compute the **minimal generator**, or the simplest ratio with another note.
 - Select the solution with the simplest ratios with the tonic and/or simplest minimal generators.
 - The 7-note scales with a single generator 3/2 are precisely the classical modes!

Scale	Solns	Rat	ios v	with	to	nic	Minimal generators
1. 0101111	27	$\frac{1}{1} \frac{16}{15}$	$\frac{6}{5} \frac{6}{5}$	$\frac{5}{4}$	$\frac{15}{32}$	$\frac{8}{5} \frac{16}{9}$	$\frac{5}{3}$ $\frac{3}{2}$ $\frac{3}{2}$ $\frac{5}{4}$ $\frac{9}{8}$ $\frac{3}{2}$ $\frac{5}{3}$
2. 0110111	10	$\frac{1}{1}$ $\frac{18}{17}$	$\frac{8}{7} \frac{6}{5}$	$\frac{4}{3}$	$\frac{24}{17}$	$\frac{8}{5} \frac{16}{9}$	$\frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2}$ Locrian mode
3. 0111011	18	$\frac{1}{1}$ $\frac{16}{15}$	$\frac{6}{5} = \frac{6}{5}$	$\frac{4}{3}$	$\frac{3}{2}$	$\frac{8}{5} \frac{16}{9}$	$\frac{3}{2}$ $\frac{3}{2}$ $\frac{3}{2}$ $\frac{3}{2}$ $\frac{3}{2}$ $\frac{3}{2}$ Phrygian mode
4. 0111101	26	$\frac{1}{1} \frac{16}{15}$	$\frac{6}{5} = \frac{6}{5}$	$\frac{4}{3}$	$\frac{3}{2}$	$\frac{16}{9}$	$\frac{3}{2}$ $\frac{5}{3}$ $\frac{5}{3}$ $\frac{3}{2}$ $\frac{3}{2}$ $\frac{5}{3}$ $\frac{3}{2}$
5. 1010111	6	$\frac{1}{1} = \frac{9}{8}$	$\frac{6}{5}$	$\frac{4}{3}$ $\frac{4}{3}$	$\frac{15}{32}$	$\frac{8}{5} \frac{16}{9}$	$\frac{3}{2}$ $\frac{5}{4}$ $\frac{3}{2}$ $\frac{3}{2}$ $\frac{5}{4}$ $\frac{3}{2}$ $\frac{3}{2}$
6. 1011011	6	$\frac{1}{1}$ $\frac{9}{8}$	$\frac{6}{5}$	$\frac{4}{3}$	$\frac{3}{2}$	$\frac{8}{5} \frac{16}{9}$	$\frac{3}{2}$ $\frac{3}{2}$ $\frac{3}{2}$ $\frac{3}{2}$ $\frac{3}{2}$ $\frac{3}{2}$ $\frac{3}{2}$ Aeolian mode (natural minor)
7. 1011101	10	$\frac{1}{1} \frac{9}{8}$	$\frac{6}{5}$	$\frac{4}{3}$	$\frac{3}{2}$	$\frac{16}{9}$	$\frac{3}{2} \frac{3}{2} \frac{5}{3} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{5}{3} \frac{3}{2}$ Dorian mode
8. 1011110	27	$\frac{1}{1}$ $\frac{9}{8}$	$\frac{6}{5}$	$\frac{4}{3}$	$\frac{3}{2}$	$\frac{5}{8} \frac{15}{8}$	$\frac{3}{2} \frac{3}{2} \frac{5}{3} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{5}{3} \frac{5}{3}$ melodic minor
9. 1101011	14	$\frac{1}{1} = \frac{9}{8}$	$\frac{5}{4}$	$\frac{4}{3}$	$\frac{3}{2}$	$\frac{8}{5} \frac{16}{9}$	$\frac{3}{2}$ $\frac{3}{2}$ $\frac{5}{3}$ $\frac{3}{2}$ $\frac{3}{2}$ $\frac{5}{3}$ $\frac{9}{8}$
10. 1101101	9	$\frac{1}{1} \frac{9}{8}$	$\frac{5}{4}$	$\frac{4}{3}$	$\frac{3}{2}$:	$\frac{16}{9}$	$\frac{3}{2}$ $\frac{3}{2}$ $\frac{3}{2}$ $\frac{3}{2}$ $\frac{3}{2}$ $\frac{3}{2}$ $\frac{3}{2}$ Mixolydian mode
11. 1101110	17	$\frac{1}{1} \frac{9}{8}$	$\frac{5}{4}$	$\frac{4}{3}$	$\frac{3}{2}$	$\frac{5}{8} \frac{15}{8}$	$\frac{3}{2}$ $\frac{3}{2}$ $\frac{3}{2}$ $\frac{3}{2}$ $\frac{3}{2}$ $\frac{3}{2}$ $\frac{3}{2}$ Ionian mode (major)
12. 1110101	10	$\frac{1}{1}$ $\frac{9}{8}$	$\frac{5}{4}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{16}{9}$	$\frac{3}{2}$ $\frac{3}{2}$ $\frac{3}{2}$ $\frac{5}{4}$ $\frac{3}{2}$ $\frac{3}{2}$ $\frac{3}{2}$
13. 1110110	16	$\frac{1}{1}$ $\frac{9}{8}$	$\frac{5}{4}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{5}{8} \frac{15}{8}$	$\frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2}$ Lydian mode
14. 1111010	34	$\frac{1}{1} = \frac{9}{8}$	$\frac{5}{4}$	$\frac{45}{32}$	$\frac{8}{5}$	$\frac{5}{8} \frac{15}{8}$	$\frac{5}{3}$ $\frac{5}{3}$ $\frac{3}{2}$ $\frac{3}{2}$ $\frac{5}{4}$ $\frac{3}{2}$ $\frac{3}{2}$

Scale	Solns	Ratios with tonic	Minimal generators
1. 0101111	27	$\frac{1}{1} \frac{16}{15} \frac{6}{5} \frac{5}{4} \frac{45}{32} \frac{8}{5} \frac{16}{9}$	$\frac{5}{3} \frac{3}{2} \frac{3}{2} \frac{5}{4} \frac{9}{8} \frac{3}{2} \frac{5}{3}$
2. 0110111	10	$\frac{1}{1} \ \frac{18}{17} \ \frac{6}{5} \ \frac{4}{3} \ \frac{24}{17} \ \frac{8}{5} \ \frac{16}{9}$	$\frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2}$ Locrian mode
3. 0111011	18	$\frac{1}{1} \ \frac{16}{15} \ \frac{6}{5} \ \frac{4}{3} \ \frac{3}{2} \ \frac{8}{5} \ \frac{16}{9}$	$\frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2}$ Phrygian mode
4. 0111101	26	$\frac{1}{1} \ \frac{16}{15} \ \frac{6}{5} \ \frac{4}{3} \ \frac{3}{2} \ \frac{5}{3} \ \frac{16}{9}$	$\frac{3}{2}$ $\frac{5}{3}$ $\frac{5}{3}$ $\frac{3}{2}$ $\frac{3}{2}$ $\frac{5}{3}$ $\frac{3}{2}$ Single generator
5. 1010111	6	$\frac{1}{1} \frac{9}{8} \frac{6}{5} \frac{4}{3} \frac{45}{32} \frac{8}{5} \frac{16}{9}$	$\frac{3}{2} \frac{5}{4} \frac{3}{2} \frac{3}{2} \frac{5}{4} \frac{3}{2} \frac{3}{2}$
6. 1011011	6	$\frac{1}{1} \frac{9}{8} \frac{6}{5} \frac{4}{3} \frac{3}{2} \frac{8}{5} \frac{16}{9}$	$\frac{3}{2}$ $\frac{3}{2}$ $\frac{3}{2}$ $\frac{3}{2}$ $\frac{3}{2}$ $\frac{3}{2}$ Aeolian mode (natural minor)
7. 1011101	10	$\frac{1}{1} \frac{9}{8} \frac{6}{5} \frac{4}{3} \frac{3}{2} \frac{5}{3} \frac{16}{9}$	$\frac{3}{2} \frac{3}{2} \frac{5}{3} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{5}{3} \frac{3}{2}$ Dorian mode
8. 1011110	27	$\frac{1}{1} \frac{9}{8} \frac{6}{5} \frac{4}{3} \frac{3}{2} \frac{5}{3} \frac{15}{8}$	$\frac{3}{2} \frac{3}{2} \frac{5}{3} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{5}{3} \frac{5}{3}$ melodic minor
9. 1101011	14	$\frac{1}{1}$ $\frac{9}{8}$ $\frac{5}{4}$ $\frac{4}{3}$ $\frac{3}{2}$ $\frac{8}{5}$ $\frac{16}{9}$	$\frac{3}{2} \frac{3}{2} \frac{5}{3} \frac{3}{2} \frac{3}{2} \frac{5}{3} \frac{9}{8}$
10. 1101101	9	$\frac{1}{1} \frac{9}{8} \frac{5}{4} \frac{4}{3} \frac{3}{2} \frac{5}{3} \frac{16}{9}$	$\frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2}$ Mixolydian mode
11. 1101110	17	$\frac{1}{1}$ $\frac{9}{8}$ $\frac{5}{4}$ $\frac{4}{3}$ $\frac{3}{2}$ $\frac{5}{3}$ $\frac{15}{8}$	$\frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2}$ Ionian mode (major)
12. 1110101	10	$\frac{1}{1} \frac{9}{8} \frac{5}{4} \frac{45}{32} \frac{3}{2} \frac{5}{3} \frac{16}{9}$	$\frac{3}{2}$ $\frac{3}{2}$ $\frac{3}{2}$ $\frac{5}{4}$ $\frac{3}{2}$ $\frac{3}{2}$ $\frac{3}{2}$
13. 1110110	16	$\frac{1}{1} \frac{9}{8} \frac{5}{4} \frac{45}{32} \frac{3}{2} \frac{5}{3} \frac{15}{8}$	$\frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2}$ Lydian mode
14. 1111010	34	$\frac{1}{1} \frac{9}{8} \frac{5}{4} \frac{45}{32} \frac{8}{5} \frac{5}{3} \frac{15}{8}$	$\frac{5}{3}$ $\frac{5}{3}$ $\frac{3}{2}$ $\frac{3}{2}$ $\frac{5}{4}$ $\frac{3}{2}$ $\frac{3}{2}$

Scale	Solns	Keys	R	atio	OS	wit	h t	oni	c			Μ	ini	ma	al	ge:	ne	rat	ιοι	.*S
1. 111111	6	2	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{5}{4}$	$\frac{45}{32}$	$\frac{8}{5}$	$\frac{16}{9}$				2	$\frac{5}{4}$ $\frac{5}{4}$	$\frac{5}{4}$	$\frac{5}{4}$	$\frac{5}{4}$	$\frac{9}{5}$			
1. 01010101	>50	3	$\frac{1}{1}$	$\frac{16}{15}$	$\frac{6}{5}$	$\frac{5}{4}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{16}{9}$		3	$\frac{5}{2}$ $\frac{5}{3}$	$\frac{5}{3}$	$\frac{3}{2}$	$\frac{9}{8}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{5}{3}$	
2. 10101010	>50	3	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{4}{3}$	$\frac{45}{32}$	$\frac{8}{5}$	$\frac{5}{3}$	$\frac{15}{8}$		$\frac{3}{2}$	$\frac{5}{2} = \frac{5}{3}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{3}{2}$	
21. 100001010	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{5}{4}$	$\frac{4}{3}$	$\frac{45}{32}$	$\frac{8}{5}$	$\frac{5}{3}$	$\frac{15}{8}$	5	$\frac{5}{2}$ $\frac{5}{3}$	$\frac{3}{2}$						
22. 100010010	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{5}{4}$	$\frac{4}{3}$	$\frac{3}{2}$	$\frac{8}{5}$	$\frac{5}{3}$	$\frac{15}{8}$	9	$\frac{3}{2}$ $\frac{3}{2}$	$\frac{3}{2}$						
23. 100010100	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{5}{4}$	$\frac{4}{3}$	$\frac{3}{2}$	$\frac{8}{5}$	$\frac{16}{9}$	$\frac{15}{8}$	9	$\frac{3}{2}$ $\frac{3}{2}$	$\frac{3}{2}$						
24. 100100010	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{5}{4}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{8}{5}$	$\frac{5}{3}$	$\frac{15}{8}$	3	$\frac{3}{2}$ $\frac{3}{2}$	$\frac{3}{2}$						
25. 100100100	>50	4	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{5}{4}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{8}{5}$	$\frac{16}{9}$	$\frac{15}{8}$	5	$\frac{3}{2}$ $\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{9}{5}$	$\frac{3}{2}$
26. 100101000	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{5}{4}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{16}{9}$	$\frac{15}{8}$	<u> </u>	$\frac{3}{2}$ $\frac{3}{2}$	$\frac{5}{3}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{9}{8}$	$\frac{3}{2}$
27. 101000010	> 50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{4}{3}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{8}{5}$	$\frac{5}{3}$	$\frac{15}{8}$	3	$\frac{3}{2}$ $\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{3}{2}$
28. 101000100	> 50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{4}{3}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{8}{5}$	$\frac{16}{9}$	$\frac{15}{8}$	5	$\frac{3}{2}$ $\frac{3}{2}$	$\frac{3}{2}$						
29. 101001000	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{4}{3}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{16}{9}$	$\frac{15}{8}$	<u> </u>	$\frac{3}{2}$ $\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{3}{2}$	$\frac{3}{2}$
30. 101010000	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{4}{3}$	$\frac{45}{32}$	$\frac{8}{5}$	$\frac{5}{3}$	$\frac{16}{9}$	$\frac{15}{8}$	5	$\frac{5}{2}$ $\frac{5}{3}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{3}{2}$	$\frac{3}{2}$ 4

Scale	Solns Keys Ratios with tonic	Minimal generators
1. 111111	$6 2 \frac{1}{1} \frac{9}{8} \frac{5}{4} \frac{45}{32} \frac{8}{5} \frac{16}{9}$	$\frac{5}{4} \frac{5}{4} \frac{5}{4} \frac{5}{4} \frac{5}{4} \frac{9}{5}$

Whole tone scale. Minimal interest musically

21. 100001010	> 50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{5}{4}$	$\frac{4}{3}$	$\frac{45}{32}$	$\frac{8}{5}$		$\frac{15}{8}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{3}{2}$						
22. 100010010	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{5}{4}$	$\frac{4}{3}$	$\frac{3}{2}$	$\frac{8}{5}$	$\frac{5}{3}$	$\frac{15}{8}$	$\frac{3}{2}$								
23. 100010100	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{5}{4}$	$\frac{4}{3}$	$\frac{3}{2}$	$\frac{8}{5}$	$\frac{16}{9}$	$\frac{15}{8}$	$\frac{3}{2}$								
24. 100100010	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{5}{4}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{8}{5}$	$\frac{5}{3}$	$\frac{15}{8}$	$\frac{3}{2}$								
25. 100100100	>50	4	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{5}{4}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{8}{5}$	$\frac{16}{9}$	$\frac{15}{8}$	$\frac{3}{2}$	$\frac{9}{5}$	$\frac{3}{2}$						
26. 100101000	> 50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{5}{4}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{16}{9}$	$\frac{15}{8}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{9}{8}$	$\frac{3}{2}$
27. 101000010	> 50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{4}{3}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{8}{5}$	$\frac{5}{3}$	$\frac{15}{8}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{3}{2}$						
28. 101000100	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{4}{3}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{8}{5}$	$\frac{16}{9}$	$\frac{15}{8}$	$\frac{3}{2}$								
29. 101001000	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{4}{3}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{16}{9}$	$\frac{15}{8}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{3}{2}$	$\frac{3}{2}$
30. 101010000	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{4}{3}$	$\frac{45}{32}$	$\frac{8}{5}$	$\frac{5}{3}$	$\frac{16}{9}$	$\frac{15}{8}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{3}{2}$	$\frac{3}{2}$

Scale	Solns	Keys	R	atio	OS	wit	h t	oni	c		Mi	ni	ma	al	ge:	ne	rat	tors	
1. 111111	6	2	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{5}{4}$	$\frac{45}{32}$	$\frac{8}{5}$	$\frac{16}{9}$			$\frac{5}{4}$	$\frac{5}{4}$	$\frac{5}{4}$	$\frac{5}{4}$	$\frac{5}{4}$	$\frac{9}{5}$			
1. 01010101	>50	3	$\frac{1}{1}$	$\frac{16}{15}$	$\frac{6}{5}$	$\frac{5}{4}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{16}{9}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{5}{3}$	$\frac{3}{2}$	$\frac{9}{8}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{5}{3}$	
2. 10101010	>50	3	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{4}{3}$	$\frac{45}{32}$	$\frac{8}{5}$	$\frac{5}{3}$	$\frac{15}{8}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{3}{2}$	

8-note scales. Only 3 keys.

23. 100010100	>50	12	$\frac{1}{1}$	$\frac{5}{8}$	$\frac{3}{5}$	$\frac{3}{4}$	$\frac{\cdot}{3}$	$\frac{3}{2}$	$\frac{\smile}{5}$	9	8	$\frac{3}{2}$									
24. 100100010	> 50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{5}{4}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{8}{5}$	$\frac{5}{3}$	$\frac{15}{8}$	$\frac{3}{2}$									
25. 100100100	>50	4	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{5}{4}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{8}{5}$	$\frac{16}{9}$	$\frac{15}{8}$	$\frac{3}{2}$	$\frac{9}{5}$	$\frac{3}{2}$							
26. 100101000	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{5}{4}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{16}{9}$	$\frac{15}{8}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{9}{8}$	$\frac{3}{2}$	
27. 101000010	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{4}{3}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{8}{5}$	$\frac{5}{3}$	$\frac{15}{8}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{3}{2}$							
28. 101000100	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{4}{3}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{8}{5}$	$\frac{16}{9}$	$\frac{15}{8}$	$\frac{3}{2}$									
29. 101001000	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{4}{3}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{16}{9}$	$\frac{15}{8}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{3}{2}$	$\frac{3}{2}$	
30. 101010000	> 50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{4}{3}$	$\frac{45}{32}$	$\frac{8}{5}$	$\frac{5}{3}$	$\frac{16}{9}$	$\frac{15}{8}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{3}{2}$	$\frac{3}{2}$	4

Scale	Solns Keys Ratios with tonic	Minimal generators
1. 111111	$6 2 \frac{1}{1} \frac{9}{8} \frac{5}{4} \frac{45}{32} \frac{8}{5} \frac{16}{9}$	$\frac{5}{4}$ $\frac{5}{4}$ $\frac{5}{4}$ $\frac{5}{4}$ $\frac{5}{4}$ $\frac{9}{5}$

9-note scales beginning with whole tone interval

21. 100001010	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{5}{4}$	$\frac{4}{3}$	$\frac{45}{32}$	$\frac{8}{5}$	$\frac{5}{3}$	$\frac{15}{8}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{3}{2}$						
22. 100010010	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{5}{4}$	$\frac{4}{3}$	$\frac{3}{2}$	$\frac{8}{5}$	$\frac{5}{3}$	$\frac{15}{8}$	$\frac{3}{2}$								
23. 100010100	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{5}{4}$	$\frac{4}{3}$	$\frac{3}{2}$	$\frac{8}{5}$	$\frac{16}{9}$	$\frac{15}{8}$	$\frac{3}{2}$								
24. 100100010	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{5}{4}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{8}{5}$	$\frac{5}{3}$	$\frac{15}{8}$	$\frac{3}{2}$								
25. 100100100	>50	4	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{5}{4}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{8}{5}$	$\frac{16}{9}$	$\frac{15}{8}$	$\frac{3}{2}$	$\frac{9}{5}$	$\frac{3}{2}$						
26. 100101000	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{5}{4}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{16}{9}$	$\frac{15}{8}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{9}{8}$	$\frac{3}{2}$
27. 101000010	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{4}{3}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{8}{5}$	$\frac{5}{3}$	$\frac{15}{8}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{3}{2}$						
28. 101000100	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{4}{3}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{8}{5}$	$\frac{16}{9}$	$\frac{15}{8}$	$\frac{3}{2}$								
29. 101001000	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{4}{3}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{16}{9}$	$\frac{15}{8}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{3}{2}$	$\frac{3}{2}$
30. 101010000	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{4}{3}$	$\frac{45}{32}$	$\frac{8}{5}$	$\frac{5}{3}$	$\frac{16}{9}$	$\frac{15}{8}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{3}{2}$	$\frac{3}{2}$

Scale	Solns Keys R	Ratios with tonic	Minimal generators
1. 1111111	6 2 $\frac{1}{1}$	$\frac{9}{8}$ $\frac{5}{4}$ $\frac{45}{32}$ $\frac{8}{5}$ $\frac{16}{9}$	$\frac{5}{4}$ $\frac{5}{4}$ $\frac{5}{4}$ $\frac{5}{4}$ $\frac{5}{4}$ $\frac{9}{5}$

Most appealing scales. Simple ratios, good distribution of semitones.

					_	_		_	_			_							_	
22. 100010010	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{5}{4}$	$\frac{4}{3}$	$\frac{3}{2}$	$\frac{8}{5}$	$\frac{5}{3}$	$\frac{15}{8}$		$\frac{3}{2}$	$\frac{3}{2} = \frac{3}{2}$	$\frac{3}{2} \frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$
23. 100010100	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{5}{4}$	$\frac{4}{3}$	$\frac{3}{2}$	$\frac{8}{5}$	$\frac{16}{9}$	$\frac{15}{8}$		$\frac{3}{2} = \frac{3}{2}$	$\frac{3}{2} = \frac{3}{2}$	$\frac{3}{2} \frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$
24. 100100010	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{5}{4}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{8}{5}$	$\frac{5}{3}$	$\frac{15}{8}$		$\frac{3}{2} = \frac{3}{2}$	$\frac{3}{2} = \frac{3}{2}$	$\frac{3}{2} \frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$
25. 100100100	> 50	4	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{5}{4}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{8}{5}$	$\frac{16}{9}$	$\frac{15}{8}$		$\frac{3}{2}$	$\frac{3}{2} = \frac{3}{2}$	$\frac{3}{2} \frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{9}{5}$	$\frac{3}{2}$
26. 100101000	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{5}{4}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{16}{9}$	$\frac{15}{8}$		$\frac{3}{2}$	$\frac{3}{2} = \frac{5}{3}$	$\frac{3}{3}$ $\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{9}{8}$	$\frac{3}{2}$
27. 101000010	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{4}{3}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{8}{5}$	$\frac{5}{3}$	$\frac{15}{8}$		$\frac{3}{2}$ $\frac{3}{2}$	$\frac{3}{2} = \frac{3}{2}$	$\frac{3}{2} \frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{3}{2}$
28. 101000100	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{4}{3}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{8}{5}$	$\frac{16}{9}$	$\frac{15}{8}$		$\frac{3}{2}$	$\frac{3}{2} = \frac{3}{2}$	$\frac{3}{2} \frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$
29. 101001000	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{4}{3}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{16}{9}$	$\frac{15}{8}$		$\frac{3}{2}$	$\frac{3}{2} = \frac{3}{2}$	$\frac{3}{2} \frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{3}{2}$	$\frac{3}{2}$
30. 101010000	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{4}{3}$	$\frac{45}{32}$	$\frac{8}{5}$	$\frac{5}{3}$	$\frac{16}{9}$	$\frac{15}{8}$		$\frac{3}{2}$	5 3 3 2	$\frac{3}{2} \frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{3}{2}$	$\frac{3}{2}$

Scale	Solns Keys Ratios with tonic	Minimal generators
1. 1111111	$6 2 \frac{1}{1} \frac{9}{8} \frac{5}{4} \frac{45}{32} \frac{8}{5} \frac{16}{9}$	$\frac{5}{4}$ $\frac{5}{4}$ $\frac{5}{4}$ $\frac{5}{4}$ $\frac{5}{4}$ $\frac{9}{5}$

Will illustrate this scale with a Chorale and Fugue for organ

22. 100010010	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{5}{4}$	$\frac{4}{3}$	$\frac{3}{2}$	$\frac{8}{5}$	$\frac{5}{3}$	$\frac{15}{8}$	$\frac{3}{2}$								
23. 100010100	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{5}{4}$	$\frac{4}{3}$	$\frac{3}{2}$	$\frac{8}{5}$	$\frac{16}{9}$	$\frac{15}{8}$	$\frac{3}{2}$								
24. 100100010	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{5}{4}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{8}{5}$	$\frac{5}{3}$	$\frac{15}{8}$	$\frac{3}{2}$								
25. 100100100	> 50	4	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{5}{4}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{8}{5}$	$\frac{16}{9}$	$\frac{15}{8}$	$\frac{3}{2}$	$\frac{9}{5}$	$\frac{3}{2}$						
26. 100101000	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{5}{4}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{16}{9}$	$\frac{15}{8}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{9}{8}$	$\frac{3}{2}$
27. 101000010	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{4}{3}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{8}{5}$	$\frac{5}{3}$	$\frac{15}{8}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{3}{2}$						
28. 101000100	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{4}{3}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{8}{5}$	$\frac{16}{9}$	$\frac{15}{8}$	$\frac{3}{2}$								
29. 101001000	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{4}{3}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{16}{9}$	$\frac{15}{8}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{3}{2}$	$\frac{3}{2}$
30. 101010000	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{4}{3}$	$\frac{45}{32}$	$\frac{8}{5}$	$\frac{5}{3}$	$\frac{16}{9}$	$\frac{15}{8}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{3}{2}$	$\frac{3}{2}$

Ratio	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
-3/2		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
4/3							•					•		•			•		•
5/3			•			•	•			•	•			•	•		•	•	•
5/4	•			•			•			•	•		•	•		•			•
7/4					•	•				•	•				•	•			
6/5						•				•				•			•	•	
7/5														•		•		•	
8/5	•			•			•			•	•		•	•		•	•		•
9/5	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

Ratio	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
3/2							•					•		•			•	•	•
4/3							•					•		•			•		•
5/3			•			•	•			•	•			•	•		•	•	•
5/4	•			•			•			•	•		•	•		•			•
7/4					•	•				•	•				•	•			
6/5						•				•				•			•	•	
7/5														•		•		•	
8/5	•			•			•			•	•		•	•		•	•		•
9/5		•						•	•					•	•	•			

Ratio	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
-3/2		•	•	•	•		•		•	•	•	•	•	•	•	•	•	•	•
4/3							•				•	•		•			•		•
5/3			•			•	•			•	•			•	•		•	•	•
5/4	•			•			•			•	•		•	•		•			•
7/4					•	•				•	•				•	•			
6/5						•				•			•	•			•	•	
7/5													•	•		•		•	
8/5	•			•			•			•	•	•	•	•		•	•		•
9/5		•						•	•					•	•	•			

Ratio	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
3/2		•	•				•					•		•			•	•	•
4/3							•					•		•			•	•	•
5/3			•			•	•			•	•			•	•		•	•	•
5/4	•			•			•			•	•		•	•		•			•
7/4					•	•				•	•				•	•			
6/5						•				•				•			•	•	
7/5														•		•		•	
8/5	•			•			•			•	•		•	•		•	•		•
9/5		•						•	•					•	•	•			
	•																		

Historical Sidelight

- Advantage of 19-tone chromatic was discovered during Renaissance.
 - Spanish organist and music theorist Franciso de Salinas (1530-1590) recommended 19-tone chromatic due to desirable tuning properties for traditional intervals.
 - He used meantone temperament rather than equal temperament.

Historical Sidelight

- 19-tone chromatic has received some additional attention over the years
 - W. S. B. Woolhouse (1835)
 - M. J. Mandelbaum (1961)
 - E. Blackwood (1992)
 - W. A. Sethares (2005)

Scales on 19-note chromatic

- But what are the best scales on this chromatic?
 - 10-note scales have only 1 semitone, not enough for musical interest.
 - 12-note scales have 5 semitones, but this makes scale notes very closely spaced.
 - 11-note scales have 3 semitones, which seems a good compromise (1 more semitone than classical scales).

11-note scales on 19-note chromatic

There are 77 scales satisfying our requirements

$$\binom{8}{3} + \binom{7}{2} = 77$$

- Solve CP problem for all 77.
- For each scale, determine largest set of simple ratios that occur in at least one solution.
- 37 different sets of ratios appear in the 77 scales.

Simple ratios in 11-note scales

Ratio	A	.]	В	\mathbf{C}	D	F	£	F	G	Η	Ι	J	K	L	, 1	M	Ν	Ο	\mathbf{P}	Q	R	S	T	U	V	W	X	Y	\mathbf{Z}	a	b	\mathbf{c}	d	е	f	g	h	i	j	k
3/2	•	•	•	•	•	•	•	•	•	•	•	•	•	•	,	•	•	•	•	•	•	•	•	•	•	•		•		•	•	•	•	•	٠	•	•	•	•	•
4/3	•	•	•	•	•	•		•	•	•	•	•	•	•	•											•	•	•	•	•	•	•	•	•						
5/3	•	•	•	•	•											•	•	•	•	•	•					•	•	•	•	•					•	•	•	•		
5/4	•	•	•	•	•			•	•	•	•	•				•	•	•				•	•			•	•	•			•	•	•		•	•			•	
7/4	.																																							
6/5								•					•	•	,				•	•	•			•	•	•	•		•	•	•						•	•		•
7/5	•	•	•	•		•			•	•						•	•	•	•	•	•	•	•	•	•										•	•	•	•	•	•
8/5	•	•			•			•	•	•	•	•	•			•			•			•	•	•							•	•		•					•	•
9/5	•	•	•		•				•		•			•		•	•		•	•		•	•	•	•	•	•		•	•		•			•	٠	•	•		•

A - 72 B - 69,70,71 L - 28 C - 68

D - 74,75 N - 63,64 **E** - 7,8

G - 73

H - 2

K - 12,43

M - 65,66

O - 62

Q - 20,21,38,39,53 a - 14,30,45

R - 19,37,52

U - 57

V - 42

W - 26.27

Y - 5,6

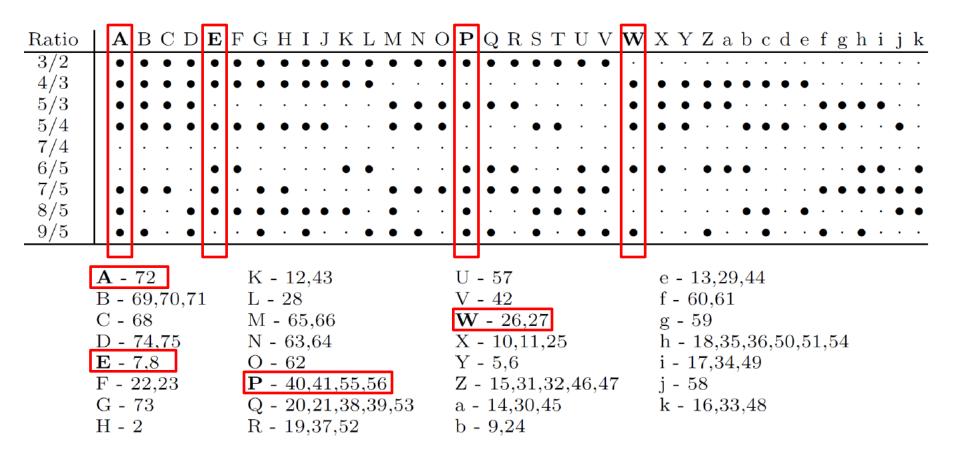
F - 22,23 P - 40,41,55,56 Z - 15,31,32,46,47

b - 9,24

e - 13,29,44

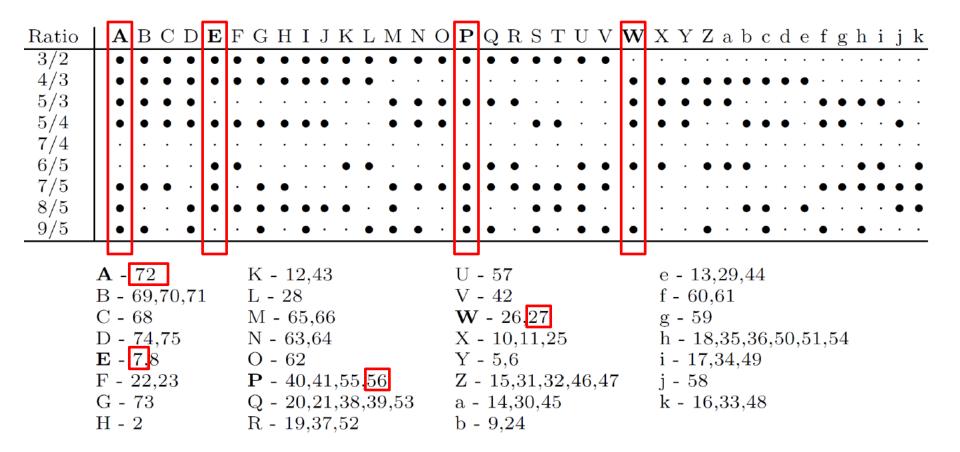
f - 60,61

g - 59


X - 10,11,25 h - 18,35,36,50,51,54

i - 17,34,49

j - 58


k - 16,33,48

Simple ratios in 11-note scales

These 9 scales dominate all the others.

Simple ratios in 11-note scales

We will focus on 1 scale from each class.

4 attractive 11-note scales

Scale	Class	Ratios with tonic Minimal generators	
7. 01101011111	\mathbf{E}	$\frac{1}{1} \frac{25}{24} \frac{9}{8} \frac{6}{5} \frac{5}{4} \frac{4}{3} \frac{7}{5} \frac{3}{2} \frac{8}{5} \frac{12}{7} \frac{25}{18} \qquad \frac{3}{2} \frac{5}{3} \frac{3}{2} \frac{3}{2} \frac{3}{3} \frac{3}{2} \frac{3}{2} $	3 2
		$\frac{1}{1} \frac{36}{35} \frac{9}{8} \frac{6}{5} \frac{5}{4} \frac{4}{3} \frac{7}{5} \frac{3}{2} \frac{8}{5} \frac{12}{7} \frac{13}{17} \qquad \frac{3}{2} \frac{5}{3} \frac{3}{2} \frac{3}{2} \frac{5}{2} \frac{4}{3} \frac{7}{2} \frac{3}{2} \frac{3}{2} \frac{5}{3} \frac{13}{2} 1$	<u>3</u>
27. 101011111110	W	$\frac{1}{1} \frac{15}{14} \frac{9}{8} \frac{6}{5} \frac{5}{4} \frac{4}{3} \frac{10}{7} \frac{54}{35} \frac{5}{3} \frac{9}{5} \frac{27}{14} \qquad \frac{3}{2} \frac{3}{2} \frac{3}{4} \frac{3}{2} \frac{3}{2}$	$\frac{5}{4}$
		$\frac{1}{1} \frac{16}{15} \frac{9}{8} \frac{6}{5} \frac{5}{4} \frac{4}{3} \frac{10}{7} \frac{14}{9} \frac{5}{3} \frac{9}{5} \frac{35}{18} \qquad \frac{3}{2} \frac{5}{4} \frac{3}{4} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{7}{4} \frac{5}{4} \frac{3}{2} \frac{3}{2} \frac{3}{4} \frac{3}{4} \frac{3}{4} $	<u>5</u>
56. 11011110110	Р	$\frac{1}{1} \frac{15}{14} \frac{7}{6} \frac{6}{5} \frac{9}{7} \frac{7}{5} \frac{3}{2} \frac{8}{5} \frac{5}{3} \frac{9}{5} \frac{27}{14} \qquad \frac{3}{2} \frac{5}{3} \frac{3}{2} $	3 2
		$\frac{1}{1} \frac{13}{12} \frac{7}{6} \frac{6}{5} \frac{9}{7} \frac{7}{5} \frac{3}{2} \frac{8}{5} \frac{5}{3} \frac{9}{5} \frac{35}{18} \qquad \frac{3}{2} \frac{13}{7} \frac{5}{3} \frac{3}{2} \frac{7}{5} \frac{5}{3} \frac{3}{2} \frac{3}{2} \frac{5}{3} \frac{5}{3} $	<u>5</u>
72. 11110110110	A	$\frac{1}{1} \frac{16}{15} \frac{7}{6} \frac{5}{4} \frac{4}{3} \frac{7}{5} \frac{3}{2} \frac{8}{5} \frac{5}{3} \frac{9}{5} \frac{35}{18} \qquad \frac{3}{2} $	<u>5</u>
		$\frac{1}{1} \frac{15}{14} \frac{7}{6} \frac{5}{4} \frac{4}{3} \frac{7}{5} \frac{3}{2} \frac{8}{5} \frac{5}{3} \frac{9}{5} \frac{27}{14} \qquad \frac{3}{2} \frac{7}{5} \frac{5}{3} \frac{3}{2} \frac{3}{2} \frac{5}{3} $	<u>}</u>

Showing 2 simplest solutions for each scale. One with simplest generators, one with simplest ratios to tonic.

Key structure of scales

Classical me	ajor	sca	le																
Note	1	$1\sharp$	2	$2\sharp$	3	4	$4\sharp$	5	$5\sharp$	6	$6\sharp$	7							
Interval			2^{nd}		3^{rd}	$4^{ m th}$		$5^{ m th}$		6^{th}		$7^{ m th}$							
Distance	0	5	2	3	4	1	5	1	4	3	2	5							
Scale 23 of	9 no	tes	on	12-ne	ote	chrom	atic												
Note	1	$1\sharp$	2	3	4		$5\sharp$	6	7	$7\sharp$	8	9							
Interval			$2^{\rm nd}$	$\mathrm{m3}^{\mathrm{rd}}$	$3^{\rm rd}$	$4^{ m th}$		$5^{ m th}$	${ m m6^{th}}$		$\mathrm{m7}^{\mathrm{th}}$	$7^{ m th}$							
Distance	0	3	3	2	2	2	3	2	2	2	3	3							
Scale 7 of 1	1 no	tes	on	19-ne	ote d	chrom	atic												
Note	1	2	$2\sharp$	3	$3\sharp$	4	5	$5\sharp$	6	7	$7\sharp$	8	8#	9	9#	10	$10\sharp$	11	$11\sharp$
Interval				2^{nd}		$\mathrm{m3}^{\mathrm{rd}}$	$3^{\rm rd}$		$4^{ m th}$			$5^{ m th}$		${ m m6}^{ m th}$	L				
Distance	0	8	3	5	5	4	5	5	4	5	5	4	5	5	4	5	5	3	8
Scale 27 of	11 n	ote	s on	19-n	note	chro	mati	c											
Note	1	$1\sharp$	2	3	$3\sharp$	4	5	$5\sharp$	6	$6\sharp$	7	7#	8	8#	9	$9\sharp$	10	$10\sharp$	11
Interval				2^{nd}		$\mathrm{m3}^{\mathrm{rd}}$	$3^{\rm rd}$		$4^{ m th}$						$6^{ m th}$				
Distance	0	8	3	5	4	6	3	6	4	5	5	4	6	3	6	4	5	3	8
Scale 56 of	11 n	ote	s on	19-n	note		mati	c											
Note	1	$1\sharp$	2	$2\sharp$	3	4	$4\sharp$	5	$5\sharp$	6	$6\sharp$	7	$7\sharp$	8		$9\sharp$	10	$10\sharp$	11
Interval						$m3^{rd}$						$5^{ m th}$		${\rm m6^{th}}$	6^{th}				
Distance	0	8	3	5	6	2	7	3	6	4	4	6	3	7	2	6	5	3	8
Scale 72 of	11 n	ote	s on	. 19-n	note	chroning	mati	c											
Note	1	$1\sharp$	2	$2\sharp$	3	$3\sharp$	4	$4\sharp$	5	6	$6\sharp$	7	$7\sharp$	8		9#	10	$10\sharp$	11
Interval							$3^{\rm rd}$		4^{th}			$5^{ m th}$		${ m m6}^{ m th}$	6^{th}				
Distance	0	8	3	5	6	2	7	3	6	4	4	6	3	7	2	6	5	3	8

Key structure of scales

Classical m Note	najo 1	$r sca$ $1 \sharp$	$\frac{ale}{2}$	2#	3	4	4±	5	5 #	6	6±	7		N	lo ke	эу w	/ith		
Interval			2^{nd}		3^{rd}			$5^{ m th}$	- FT	6^{th}	- 41	$7^{ m th}$		d	istaı	nce	1.		
Distance	0	5	2	3	4	1	5	1	4	3	2	5		G	3000	or	bad	?	
Scale 23 of	9 r													Д	limi	ited	сус	le	
Note	1	$1\sharp$	2	$\frac{3}{\text{and}}$	$\frac{4}{\text{ard}}$	$\frac{5}{4^{ ext{th}}}$	$5\sharp$	6 ~th	7	7‡	$8 \ \mathrm{m7^{th}}$	9 -th					72 th		
Interval	0			$^{\rm m3^{rd}}$	3.4				$m6^{th}$				1		kips			iat	
Distance	0	3	3	2	. 2	2	3	2	2	2	3	3			Kips	۷.			
Scale 7 of . Note		$notes \\ 2$		$\frac{19-n}{3}$	$ote \ c \ 3\sharp$	2hron 4	tatic	5 #	6	7	7 H	8	8#	9	OH	10	10#	11	114
Interval	1	4	$2\sharp$	2^{nd}		4 1		ЭД	$4^{ m th}$	1	7‡	$5^{ m th}$	ОН	${ m m6}^{ m th}$	9#	10	тон	11	11#
Distance	0	8	3	5	5	4	5	5	4	5	5	4	5	5	4	5	5	3	8
Scale 27 of	11	$not \epsilon$	es on	ı 19-1	note	chro	mati	c											_
Note	1	$1\sharp$	2	3	$3\sharp$	4	5	$5\sharp$	6	$6\sharp$	7	$7\sharp$	8	8#	9	$9\sharp$	10	$10\sharp$	11
Interval				2^{nd}		$m3^{\rm rd}$	$3^{\rm rd}$		4^{th}						6^{th}				
Distance	0	8	3	5	4	6	3	6	4	5	5	4	6	3	6	4	5	3	8
Scale 56 of	11																		
Note	1	$1\sharp$	2	$2\sharp$	3	4	$4\sharp$	5	5#	6	$6\sharp$	7	$7\sharp$	8 ath	9	$9\sharp$	10	$10\sharp$	11
Interval	_					$m3^{rd}$			_			$5^{ m th}$	_	$^{\mathrm{m6^{th}}}$		_			_
Distance	0	8	3	5	6	2	7	3	6	4	4	6	3	7	2	6	5	3	8
Scale 72 of									_		0.11	_		0		0.11	4.0	4.011	
Note	1	$1\sharp$	2	$2\sharp$	3	3♯	$\frac{4}{\text{ard}}$	$4\sharp$	$4^{ m th}$	6	6#	$^{7}_{5^{ m th}}$	7‡	$^{8}_{ m m6^{th}}$	9 oth	9#	10	$10\sharp$	11
Interval	0	0	0	-		0	$3^{\rm rd}$	0		4	4		0			C			0
Distance	0	8	3	5	6	2	7	3	6	4	4	6	3	7	2	6	5	3	8

4 attractive 9-note scales

Scale	Class	Ratios with tonic	Minimal generators
7. 01101011111	E	$\frac{1}{1} \frac{25}{24} \frac{9}{8} \frac{6}{5} \frac{5}{4} \frac{4}{3} \frac{7}{5} \frac{3}{2} \frac{8}{5} \frac{12}{7} \frac{25}{18}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
		$\frac{1}{1} \frac{36}{35} \frac{9}{8} \frac{6}{5} \frac{5}{4} \frac{4}{3} \frac{7}{5} \frac{3}{2} \frac{8}{5} \frac{12}{7} \frac{13}{17}$	$\frac{3}{2} \frac{5}{3} \frac{3}{2} \frac{3}{2} \frac{5}{3} \frac{4}{2} \frac{7}{4} \frac{3}{2} \frac{3}{2} \frac{5}{3} \frac{13}{7}$
27. 10101111110	W	$\frac{1}{1} \frac{15}{14} \frac{9}{8} \frac{6}{5} \frac{5}{4} \frac{4}{3} \frac{10}{7} \frac{54}{35} \frac{5}{3} \frac{9}{5} \frac{27}{14}$	$\frac{3}{2} \frac{3}{2} \frac{5}{4} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{5}{4} \frac{3}{2} \frac{3}{2} \frac{5}{4}$
		$\frac{1}{1} \frac{16}{15} \frac{9}{8} \frac{6}{5} \frac{5}{4} \frac{4}{3} \frac{10}{7} \frac{14}{9} \frac{5}{3} \frac{9}{5} \frac{35}{18}$	$\frac{3}{2} \frac{5}{4} \frac{5}{4} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{7}{4} \frac{5}{4} \frac{3}{2} \frac{3}{2} \frac{5}{4}$
56. 11011110110	P	$\frac{1}{1} \frac{15}{14} \frac{7}{6} \frac{6}{5} \frac{9}{7} \frac{7}{5} \frac{3}{2} \frac{8}{5} \frac{5}{3} \frac{9}{5} \frac{27}{14}$	$\frac{3}{2} \frac{5}{3} \frac{5}{3} \frac{3}{2} \frac{3}{2} \frac{5}{3} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2}$
		$\frac{1}{1} \frac{13}{12} \frac{7}{6} \frac{6}{5} \frac{9}{7} \frac{7}{5} \frac{3}{2} \frac{8}{5} \frac{5}{3} \frac{9}{5} \frac{35}{18}$	$\frac{3}{2} \frac{13}{7} \frac{5}{3} \frac{3}{2} \frac{7}{5} \frac{5}{3} \frac{3}{2} \frac{3}{2} \frac{5}{3} \frac{3}{2} \frac{5}{3}$
72. 11110110110	A	$\frac{1}{1} \frac{16}{15} \frac{7}{6} \frac{5}{4} \frac{4}{3} \frac{7}{5} \frac{3}{2} \frac{8}{5} \frac{5}{3} \frac{9}{5} \frac{35}{18}$	$\frac{3}{2} \frac{3}{2} \frac{5}{3} \frac{3}{2} \frac{3}{2} \frac{5}{3} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{5}{3} \frac{5}{3}$
		$\frac{1}{1} \ \frac{15}{14} \ \frac{7}{6} \ \frac{5}{4} \ \frac{4}{3} \ \frac{7}{5} \ \frac{3}{2} \ \frac{8}{5} \ \frac{5}{3} \ \frac{9}{5} \ \frac{27}{14}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Further focus on scale 72, which has largest number of simple ratios.

Demonstration: 11-note scale

Software

- Hex MIDI sequencer for scales satisfying Myhill's property
- We trick it into generating a 19-tone chromatic
- Viking synthesizer for use with Hex
- LoopMIDI virtual MIDI cable

Harmonic Comparison

Classic major scale

- Major triad C:E:G = 4:5:6, major 7 chord C:E:G:B = 8:10:12:15
- Minor triad A:C:E = 10:12:15, minor 7 chord A:C:E:G = 10:12:15:18
- Dominant 7 chord G:B:D:F = 36:45:54:64
- Tensions (from jazz) C E G B D F# A

Scale 72

- Major triad 1-4-7 = 4:5:6
- Minor triad 5-8-12 = 10:12:15
- Minor 7 chord 9-12-15-18 = 10:12:15:18
- New chord 9-12-14-18 = 5:6:7:9
- New chord 1-3-5-9 = 6:7:8:10
- New chord 3-5-9-12 = 7:8:10:12
- New chord 5-9-12-15 = 4:5:6:7
- Tensions 1-4-7-10-13-15*b*-16-19-22

Demonstration: 19-note chromatic

- "<u>Etude</u>" by Easley Blackwood, 1980 (41:59)
 - Uses entire 19-note scale
 - Emphasis on traditional intervals
 - Renaissance/Baroque sound
 - Musical syntax is basically tonal
 - We wish to introduce **new intervals** and a **new syntax** by using 11-note or other scales on the 19-note chromatic

11-note Scales with Adjacent Keys

- There are eleven 11-note scales on a 19-note chromatic in which keys can differ by one note.
 - As in classical 7-note scales.
 - One can therefore cycle through all keys.
 - This may be seen as a desirable property.
 - The key distances are the same for all the scales.

$ \begin{array}{ccc} Scale \ 9 \ (class \ b) \\ Note & 1 & 2 \\ Interval \end{array} $	2#	3 2 nd	3♯ 4 m3 ^{rc}	5 1 3rd	5#	6	6#	$\frac{7}{\frac{10}{7}}$	7 #	$\frac{8}{\frac{14}{9}}$	9 m6 th	9#	$\frac{10}{\frac{12}{7}}$	10#	$\begin{array}{c} 11 \\ 7^{\rm th} \end{array}$	11#
Distance 0 8	3	5	6 2	8	1	7	4	4	7	1	8	2	6	5	3	8
Scale 13 (class e) Note 1 2 Interval	2#	3 : 2 nd	3♯ 4 m3 ^r	4# 1	5 9 7	6 4 th	6#	7	7 #	8 14 9	9	9‡ m6 th	$\frac{10}{\frac{12}{7}}$	10#	11 13 7	11#
Scale 14 (class a) Note 1 2 Interval	2#	3 3 2 nd	3♯ 4 m3 ^r °	4# 1	5 9 7	$^{6}_{4^{\rm th}}$	6♯	$\frac{7}{\frac{10}{7}}$	7 #	$\frac{8}{\frac{14}{9}}$	8#	9 6 th	$\frac{10}{\frac{12}{7}}$	10♯	11 7 th	11#
$\begin{array}{cccc} Scale \ 30 \ (class \ a) \\ Note & 1 & 1 \sharp \\ Interval \end{array}$	2	3 3 2 nd	3♯ 4 m3 ^r °	4‡ 1	5 9 7	$^{6}_{4^{\rm th}}$	6♯	$\begin{array}{c} 7 \\ \underline{10} \\ 7 \end{array}$	7 #	8	8# 14 9	9 6 th	$\frac{10}{\frac{12}{7}}$	10♯	11 13 7	11♯
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	3 3 2 nd	3♯ 4 m3 ^{rc}	4# 1	5 9 7	$_{4^{ ext{th}}}^{5\sharp}$	6	$\frac{7}{\frac{10}{7}}$	7 #	8	$\begin{array}{c} 8\sharp \\ \frac{14}{9} \end{array}$	9 6 th	$\frac{10}{\frac{9}{5}}$	10#	11 13 7	11#
$\begin{array}{ccc} Scale \ 35 \ (class \ h) \\ Note & 1 & 1 \sharp \\ Interval \end{array}$	2	3 2 nd	3♯ 4 m3 ^{rc}	4# 1	5 9 7	5# 4 th	6	$\begin{array}{c} 7 \\ 10 \\ \hline 7 \end{array}$	7 #	8	8# 14 9	9 6 th	9# 9 5	10	11 13 7	11#
	2		$\frac{3}{\frac{7}{6}} \frac{4}{\text{m}}$	4# 1	5 9 7	5#	6 7 5	$\begin{array}{c} 7 \\ \frac{10}{7} \end{array}$	7 #	$\frac{8}{\frac{14}{9}}$	8#	9 6 th	9#	$\frac{10}{\frac{9}{5}}$	11 13 7	11#
$\begin{array}{ccc} Scale \ 53 \ (class \ Q) \\ Note & 1 & 1 \sharp \\ Interval & \end{array}$	2		$\frac{3}{\frac{7}{6}} \frac{4}{\text{m}}$	4# 1	5 9 7	5#	6 7 5	6# 10 7	$_{5^{\rm th}}^{7}$	8	8#	9 6 th	9#	10 <u>9</u> <u>5</u>	11 13 7	11#
Scale 54 (class h) Note 1 1 \sharp Interval	2	2 [‡] 2 nd	$\frac{3}{\frac{7}{6}} \frac{4}{\text{m}}$	4# 1	5 9 7	5 ‡	6 7 5	6# 10 7	$_{5^{ ext{th}}}^{7}$	$\frac{8}{\frac{14}{9}}$	8#	9 6 th	9#	$\frac{10}{\frac{9}{5}}$	10♯	11
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2		3 3# 7	$^{4}_{3^{\rm rd}}$	5 <u>9</u> 7	5#	$\frac{6}{\frac{7}{5}}$	6#	$_{5^{ ext{th}}}^{7}$	8 14 9	8#	9 6 th	9#	$\frac{10}{\frac{9}{5}}$	10♯	11
$\begin{array}{ccc} Scale \ 66 \ (class \ M) \\ Note & 1 & 1 \sharp \\ Interval \end{array}$	2	2# 2 nd	3 3♯ 7	$^{4}_{3^{\rm rd}}$	5 9 7	5#	$\frac{6}{\frac{7}{5}}$	6#	$_{5^{ ext{th}}}^{7}$	7 ‡	8 8 5	9 6 th	9#	$\frac{10}{\frac{9}{5}}$	10♯	11

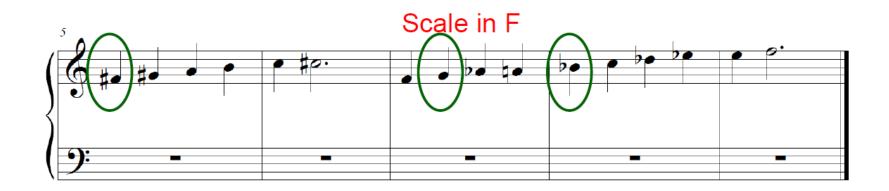
Note Interval	1	2	2#	3 2 nd	3# c	4 m3 rd		5# 1	6	6 [‡]	$\frac{7}{\frac{10}{7}}$	7‡	9	$\frac{9}{\text{m6}^{\text{th}}}$		10 12 7	10♯	11 7 th	11#
Distance	0	8	3	5	6	2	8	1	7	4	4	7	1	8	2	6	5	3	8
Scale 13 (Note Interval	class e 1	2	2#	$_{2^{\mathrm{nd}}}^{3}$	3♯	$^{4}_{ m m3^{rd}}$	4#	5 9 7	$^{6}_{4^{\rm th}}$	6#	7	7 ‡	$\frac{8}{\frac{14}{9}}$	9	9♯ m6 th		10#	$\begin{array}{c} 11 \\ \underline{13} \\ 7 \end{array}$	11#
Scale 14 (Note Interval	class o	a) 2	2#	$_{2^{\mathrm{nd}}}^{3}$	3♯	4 m3 rd	4#	5 9 7	6 4 th	6#	$\begin{array}{c} 7 \\ \frac{10}{7} \end{array}$	7‡	8 14 9	8#	9 6 th	$\frac{10}{\frac{12}{7}}$	10#	11 7 th	11#
Scale 30 (Note Interval			2	$3 \\ 2^{\mathrm{nd}}$	3♯	4 m3 rd	4#	5 9 7	$^{6}_{4^{\rm th}}$	6 #	$\begin{array}{c} 7 \\ \underline{10} \\ 7 \end{array}$	7♯	8	8# 14 9	9 6 th	$\begin{array}{c} 10 \\ \underline{12} \\ 7 \end{array}$	10♯	11 13 7	11#
Scale 34 (Note Interval			2	$\begin{array}{c} 3 \\ 2^{\rm nd} \end{array}$	3♯	$\begin{array}{c} 4 \\ \mathrm{m3^{rd}} \end{array}$	$4\sharp$	5 9 7	$_{4^{ ext{th}}}^{5\sharp}$	6	$\begin{array}{c} 7 \\ \frac{10}{7} \end{array}$	7 ‡	8	$\begin{array}{c} 8\sharp \\ \frac{14}{9} \end{array}$	9 6 th	$\frac{10}{\frac{9}{5}}$	10#	$\frac{11}{\frac{13}{7}}$	11#
Scale 35 (Note Interval	class I 1		2	$\begin{array}{c} 3 \\ 2^{\mathrm{nd}} \end{array}$	3♯	$^{4}_{ m m3^{rd}}$	4 ‡	5 9 7	$5\sharp 4^{ m th}$	6	$\begin{array}{c} 7 \\ \underline{10} \\ 7 \end{array}$	7 ‡	8	8# 14 9	9 6 th	9# 9 5	10	11 13 7	11#
Scale 50 (Note Interval			2	2# 2 nd	$\frac{3}{\frac{7}{6}}$	4 m 3^{rd}	$4\sharp$	5 9 7	5#	$\frac{6}{\frac{7}{5}}$	$\begin{array}{c} 7 \\ \frac{10}{7} \end{array}$	7‡	$\begin{array}{c} 8 \\ \frac{14}{9} \end{array}$	8#	9 6 th	9#	$\frac{10}{\frac{9}{5}}$	$\frac{11}{\frac{13}{7}}$	11#
Scale 53 (Note Interval	class (- /	2	2# 2 nd	$\frac{3}{\frac{7}{6}}$	$4 \\ \mathrm{m3^{rd}}$	4‡	5 9 7	5#	6 <u>7</u> 5	6♯ <u>10</u> 7	$_{5^{\mathrm{th}}}^{7}$	8	8#	6^{th}	9#	$\frac{10}{\frac{9}{5}}$	$\frac{11}{\frac{13}{7}}$	11#
Scale 54 (Note Interval	class I 1		2	2‡ 2 nd	$\frac{3}{\frac{7}{6}}$	4 m 3^{rd}	4♯	5 9 7	5#	$\frac{6}{\frac{7}{5}}$	6♯ <u>10</u> 7	$_{5^{ m th}}^{7}$	$\frac{8}{\frac{14}{9}}$	8#	9 6^{th}	9#	$\frac{10}{\frac{9}{5}}$	10♯	11
Scale 64 (Note Interval			2	2♯ 2 nd	$\frac{3}{\frac{7}{6}}$	3♯	$\frac{4}{3^{\mathrm{rd}}}$	5 9 7	5#	$\frac{6}{\frac{7}{5}}$	6#	$^{7}_{5^{ m th}}$	8 <u>14</u> 9	8#	$6^{ m th}$	9#	$\frac{10}{\frac{9}{5}}$	10♯	11
Scale 66 (Note Interval	class I 1	M) 1♯	2	2 [‡] 2 nd	$\frac{3}{\frac{7}{6}}$	3#	$^{4}_{3^{\mathrm{rd}}}$	5 9 7	5#	6 7 5	6#	$_{5^{ m th}}^{7}$	7‡	8 8 5	9 6 th	9#	10 9 5	10♯	11

Scales with most attractive intervals

Scale 9 (class b)

Demonstration: 9-note scale

- Chorale and Fugue for organ
- Chorale
 - In A, cycles through 2 most closely related keys: A, C#, F, A
 - Modulate to C# at bar 27
 - Final sections starts at bar 72 (5:56)


Fugue

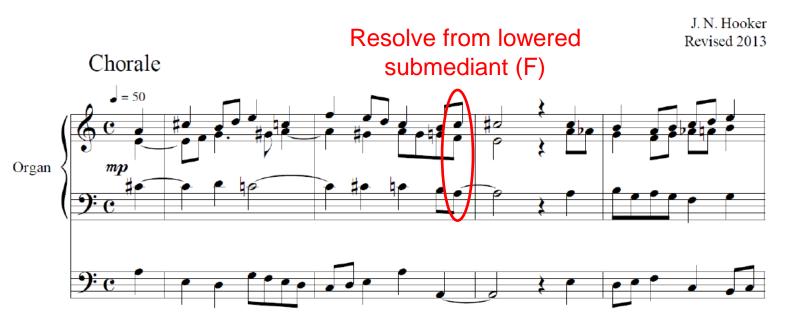
- Double fugue
- First subject enters at pitches A, C#, F
- Second subject enters at bar 96.
- Final episode at bar 164 (13:36)
- Recapitulation at bar 170

Demonstration: 9-note scale

Key of A and 2 most closely related keys.

On a 9-note Scale

J. N. Hooker Revised 2013



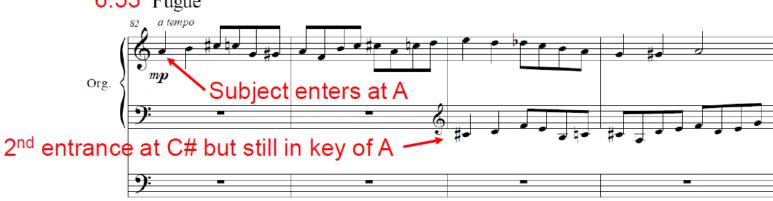
On a 9-note Scale

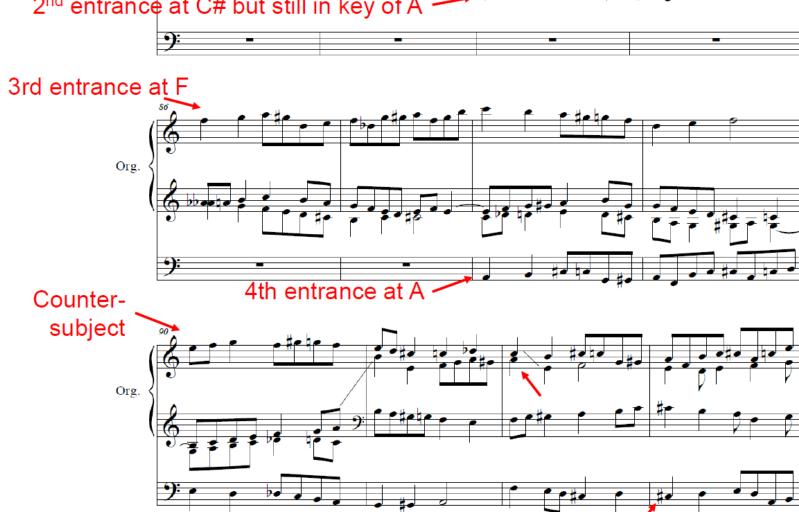
On a 9-note Scale

On a 9-note Scale

J. N. Hooker Revised 2013

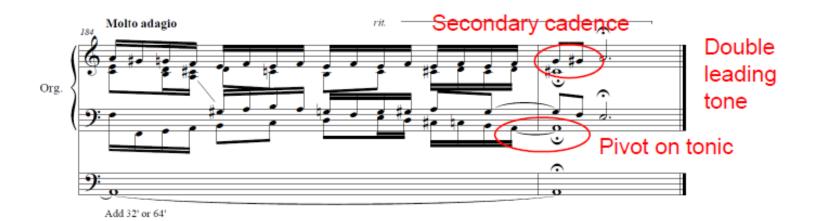
Where does modulation to Db actually occur?

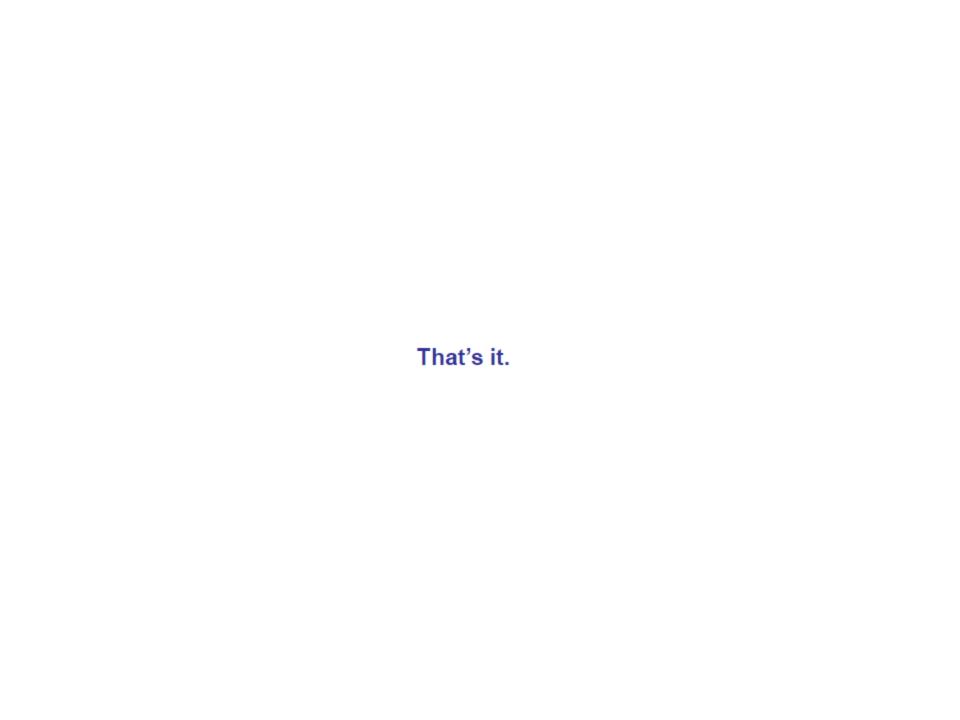

Where does modulation to Db actually occur?



Skip to final section

Final cadence from lowered submediant (F), double leading tone, pivot on tonic





Q

