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• Pitch frequencies have simple ratios. 

– Rich and intelligible harmonies 

 

• Multiple keys based on underlying chromatic 

scale with tempered tuning. 

– Can play all keys on instrument with fixed tuning. 

– Complex musical structure. 

 

• Can we find new scales with these same 

properties? 

– Constraint programming is well suited to solve the 

problem. 

 

Advantages of Classical Scales 
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• Acoustic instruments produce 

multiple harmonic partials. 

– Frequency of partial  

= integral multiple of 

frequency of fundamental. 

– Coincidence of partials 

makes chords with  

simple ratios easy  

to recognize. 

 

Simple Ratios 
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Perfect fifth 

C:G = 2:3 



• Acoustic instruments produce 

multiple harmonic partials. 

– Frequency of partial  

= integral multiple of 

frequency of fundamental. 

– Coincidence of partials 

makes chords with  

simple ratios easy  

to recognize. 

 

Simple Ratios 
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Octave  

C:C = 1:2 



• Acoustic instruments produce 

multiple harmonic partials. 

– Frequency of partial  

= integral multiple of 

frequency of fundamental. 

– Coincidence of partials 

makes chords with  

simple ratios easy  

to recognize. 

 

Simple Ratios 
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Major triad  

C:E:G = 4:5:6 



• A classical scale can start from any pitch in a 

chromatic with 12 semitone intervals. 

– Resulting in 12 keys. 

– An instrument with 12 pitches (modulo octaves) can 

play 12 different keys. 

– Can move to a different key by changing only a few 

notes of the scale. 

 

Multiple Keys 

6 



1 

6
 

C 

D
#
E

b
 

F#Gb 

A
 

0 notes  

not in C major 

C major 

Let C major be 

the tonic key 

7 

Multiple Keys 



2
 

4 

7 

C 

D
#
E

b
 

F#Gb 

A
 

5 notes  

not in C major 

Db major 

Let C major be 

the tonic key 

8 

Multiple Keys 



3 

5
 

C 

D
#
E

b
 

F#Gb 

A
 

2 notes  

not in C major 

D major 

Let C major be 

the tonic key 

9 

Multiple Keys 



1
 

6 

C 

D
#
E

b
 

F#Gb 

A
 

3 notes  

not in C major 

Eb major 

Let C major be 

the tonic key 

10 

Multiple Keys 



2 

4
 7

 

C 

D
#
E

b
 

F#Gb 

A
 

4 notes  

not in C major 

(mediant) 

E major 

Let C major be 

the tonic key 

11 

Multiple Keys 



3
 

5 

C 

D
#
E

b
 

F#Gb 

A
 

1 note  

not in C major 

(subdominant) 

F major 

Let C major be 

the tonic key 

12 

Multiple Keys 
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Multiple Keys 
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Multiple Keys 



• Chromatic pitches ae tempered so that intervals 

will have approximately correct ratios in all keys. 

 

– Modern practice is equal temperament. 

 

Multiple Keys 
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– Resulting error is  0.9% 

 

Multiple Keys 
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• Scales must be diatonic 

– Adjacent notes are 1 or 2 semitones apart. 

 

• We consider m-note scales on an n-tone chromatic 

– In binary representation, let m0 = number of 0s 

                                             m1 = number of 1s 

– Then m0 = 2m  n,  m1 = n  m 

• In a major scale 1101110, there are m = 7 notes on an 

n = 12-tone chromatic 

• There are m0 = 27  12 = 2 zeros 

• There are m1 = 12  7 = 5 ones 

 

Combinatorial Requirements 
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0 = semitone interval 

1 = whole tone interval (2 semitones) 



• Semitones should not be bunched together. 

– One criterion: Myhill’s property 

– All intervals of a given size should contain k or k + 1 

semitones. 

• For example, in a major scale: 

• All fifths are 6 or 7 semitones 

• All thirds are 3 or 4 semitones 

• All seconds are 1 or 2 semitones, etc. 

– Few scales satisfy Myhill’s property 

Combinatorial Requirements 
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• Semitones should not be bunched together. 

– We minimize the number of pairs of adjacent 0s and 

pairs of adjacent 1s. 

– If m0  m1, 

 

 

– If m1  m0, 

 

 

 

• In a major scale 1101110, 

number of pairs of adjacent 0s = 0 

number of pairs of adjacent 1s = 5 – min{2,5} = 3 

 

 

Combinatorial Requirements 
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• Semitones should not be bunched together. 

– The number of scales satisfying this property is 

 

 

 

 

• The number of 7-note scales on a 12-tone chromatic 

satisfying this property is 

Combinatorial Requirements 
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• Can have fewer than n keys. 

– A “mode of limited transposition” 

– Whole tone scale 111111 (Debussy) has 2 keys 

– Scale 110110110 has 5 keys 

• Count number of semitones in repeating sequence 

 

 

Combinatorial Requirements 
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• Tolerance for inaccurate tuning 

– At most 0.9% 

– Don’t exceed tolerance of classical equal 

temperament 

 

Temperament Requirements 
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• Scales on a tempered chromatic 

– Bohlen-Pierce scale (1978, Mathews et al. 1988)   

• 9 notes on 13-note chromatic spanning a 12th 

– Music for Bohlen-Pierce scale 

• R.Boulanger, A. Radunskaya, J. Appleton 

– Scales of limited transposition 

• O. Messiaen 

• Microtonal scales 

– Quarter-tone scale (24-tone equally tempered 

chromatic) 

• Bartok, Berg, Bloch, Boulez, Copeland, Enescu, Ives, 

Mancini. 

– 15- or 19-tone equally tempered chromatic 

• E. Blackwood 

 

Previous Work 
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• “Super just” scales (perfect intervals, 1 key) 

– H. Partch (43 tones) 

– W. Carlos (12 tones) 

– L. Harrison (16 tones) 

– W. Perret (19 tones) 

– J. Chalmers (19 tones) 

– M. Harison (24 tones) 

• Combinatorial properties 

– G. J. Balzano (1980) 

– T. Noll (2005, 2007, 2014) 

– E. Chew (2014), M. Pearce (2002), Zweifel (1996) 

 

 

Previous Work 
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• Frequency of each note should have a simple 

ratio (between 1 and 2) with some other note 

– Equating notes an octave apart. 

– Let fi = freq ratio of note i to tonic (note 1), f1 = 1. 

– For major scale CDEFGAB, 

 

 

– For example, B (15/8) has a simple ratio 3/2 with E (5/4) 

 

 

– D octave higher (9/4) has ratio 3/2 with G (3/2) 

Simple Ratios 
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• However, this allows two or more subsets of 

unrelated pitches. 

– Simple ratios with respect to pitches in same subset, 

but not in other subsets. 

– So we use a recursive condition. 

– For some permutation of notes, each note should have 

simple ratio with previous note. 

– First note in the permutation is the tonic. 

Simple Ratios 
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• Let the simple ratios be generators r1, …, rp. 

 

– Let (1, …, m) be a permutation of 1, …, m  with 1 = 1. 

– For each i  {2, …, m}, we require 

 

    and  

 

 

    for some j  {1, …, i  1} and some q  {1, …, p}. 

Simple Ratios 
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• Ratio with previous note in the permutation  

must be a generator. 

 

– Ratios with previous 2 or 3 notes in the permutation will 

be simple (product of generators) 

– Ratio with tonic need not be simple. 

   

Simple Ratios 
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• Observation:  No need to consider both rq and 2/rq 

as generators. 

 

– So we consider only reduced fractions with odd 

numerators (in order of simplicity): 

Simple Ratios 
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• CP model readily accommodates variable indices 

 

 

• Replace fi with fraction ai /bi in lowest terms. 

Simple Ratios 
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CP Model 
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CP Model 
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CP Model 
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CP Model 
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CP Model 
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CP Model 
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CP Model 
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CP Model 
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CP Model 
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• Use the generators mentioned earlier. 

– There are multiple solutions for each scale. 

– For each note, compute the minimal generator, or the 

simplest ratio with another note. 

– Select the solution with the simplest ratios with the 

tonic and/or simplest minimal generators. 

– The 7-note scales with a single generator 3/2 are 

precisely the classical modes! 

   

Scales on a 12-note chromatic 
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7-note scales on a 12-note chromatic 
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7-note scales on a 12-note chromatic 
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Other scales on a 12-note chromatic 
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Other scales on a 12-note chromatic 
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Other scales on a 12-note chromatic 
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Other scales on a 12-note chromatic 
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Other scales on a 12-note chromatic 
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Other scales on a 12-note chromatic 
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• Which chromatics have the most simple ratios 

with the tonic, within tuning tolerance? 

Other Chromatic Scales 
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• Which chromatics have the most simple ratios 

with the tonic, within tuning tolerance? 

Other Chromatic Scales 

54 Classical 12-tone chromatic is 2nd best 



• Which chromatics have the most simple ratios 

with the tonic, within tuning tolerance? 

Other Chromatic Scales 

55 Quarter-tone scale adds nothing 



• Which chromatics have the most simple ratios 

with the tonic, within tuning tolerance? 

Other Chromatic Scales 

56 19-tone chromatic dominates all others 



• Advantage of 19-tone chromatic was discovered 

during Renaissance. 

 

– Spanish organist and music 

theorist Franciso de Salinas 

(1530-1590) recommended 

19-tone chromatic due to  

desirable tuning properties  

for traditional intervals. 

– He used meantone  

temperament rather than 

equal temperament. 

Historical Sidelight 
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• 19-tone chromatic has received some additional 

attention over the years 

– W. S. B. Woolhouse (1835) 

– M. J. Mandelbaum (1961) 

– E. Blackwood (1992) 

– W. A. Sethares (2005) 

 

Historical Sidelight 
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• But what are the best scales on this chromatic? 

 

– 10-note scales have only 1 semitone, not enough  

for musical interest. 

– 12-note scales have 5 semitones, but this makes scale 

notes very closely spaced. 

– 11-note scales have 3 semitones, which seems a good 

compromise (1 more semitone than classical scales). 

Scales on 19-note chromatic 
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• There are 77 scales satisfying our requirements 

 

 

 

 

– Solve CP problem for all 77. 

– For each scale, determine largest set of simple ratios 

that occur in at least one solution. 

– 37 different sets of ratios appear in the 77 scales. 

11-note scales on 19-note chromatic 
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Simple ratios in 11-note scales 
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Simple ratios in 11-note scales 
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These 9 scales dominate all the others. 



Simple ratios in 11-note scales 
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We will focus on 1 scale from each class. 



4 attractive 11-note scales 

64 

Showing 2 simplest solutions for each scale. 

One with simplest generators, one with simplest ratios to tonic.  



Key structure of scales 
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Key structure of scales 
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No key with  

distance 1. 

Good or bad? 

A limited cycle 

in scale 72 that 

skips 2. 



4 attractive 9-note scales 
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Further focus on scale 72, which has largest number of simple ratios. 

A limited cycle 

in scale 72 that 

skips 2. 



• Software 

– Hex MIDI sequencer for scales satisfying Myhill’s property 

– We trick it into generating a 19-tone chromatic 

– Viking synthesizer for use with Hex 

– LoopMIDI virtual MIDI cable 

 

 

Demonstration: 11-note scale 
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• Classic major scale 

– Major triad C:E:G = 4:5:6, major 7 chord C:E:G:B = 8:10:12:15 

– Minor triad A:C:E = 10:12:15, minor 7 chord A:C:E:G = 10:12:15:18 

– Dominant 7 chord G:B:D:F = 36:45:54:64 

– Tensions (from jazz) C E G B D F# A 

• Scale 72 

– Major triad 1-4-7 = 4:5:6 

– Minor triad 5-8-12 = 10:12:15 

– Minor 7 chord 9-12-15-18 = 10:12:15:18 

– New chord 9-12-14-18 = 5:6:7:9 

– New chord 1-3-5-9 = 6:7:8:10 

– New chord 3-5-9-12 = 7:8:10:12 

– New chord 5-9-12-15 = 4:5:6:7 

– Tensions 1-4-7-10-13-15b-16-19-22 

 

Harmonic Comparison 
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• “Etude” by Easley Blackwood, 1980 (41:59) 

– Uses entire 19-note scale 

– Emphasis on traditional intervals 

– Renaissance/Baroque sound 

– Musical syntax is basically tonal 

– We wish to introduce new intervals and a new syntax  

by using 11-note or other scales on the 19-note chromatic 

Demonstration: 19-note chromatic 
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https://www.youtube.com/watch?v=HbuFPpiJL1o&t=2519s


• There are eleven 11-note scales on a 19-note 

chromatic in which keys can differ by one note. 

– As in classical 7-note scales. 

– One can therefore cycle through all keys. 

– This may be seen as a desirable property. 

– The key distances are the same for all the scales. 

11-note Scales with Adjacent Keys 
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72 



73 

Scales with 

most 

attractive 

intervals 



• Chorale and Fugue for organ 

• Chorale 

– In A, cycles through 2 most closely related keys: A, C#, F, A 

– Modulate to C# at bar 27 

– Final sections starts at bar 72 (5:56) 

• Fugue 

– Double fugue 

– First subject enters at pitches A, C#, F 

– Second subject enters at bar 96. 

– Final episode at bar 164 (13:36) 

– Recapitulation at bar 170 

 

Demonstration: 9-note scale 
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Demonstration: 9-note scale 
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Begin in key of A 
Cadence 
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Resolve from lowered 

submediant (F) 
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Pivot on tonic 
0:16 
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It occurs here 
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