Searching for the Perfect Musical Scale

John Hooker
Carnegie Mellon University

October 2022

Music and Mathematics

- Music is much more than mathematics and combinatorics.
- But almost all music relies on mathematical structure.
- ... even when we are not aware of it.

Music and Mathematics

- Oldest known musical instrument uses tones with mathematical relationships.
- Prehistoric flute, from ice-age cave in Germany, 40,000 bce.
- Based on notes of pentatonic scale: frequency ratios $1, \frac{9}{8}, \frac{5}{4}, \frac{3}{2}, \frac{5}{3}$
- Same notes are in our modern scales!

Music and Mathematics

- The 7 liberal arts
- Trivium - arts of the mind
- logic
- grammar
- rhetoric
- Quadrivium - arts of matter
- mathematics

- music (viewed as applied math!)
- geometry
- astronomy (applied geometry)

Music and Mathematics

- All elements of music are based on mathematical structure:
- Harmony - mathematics of overtone series.
- Rhythm - e.g., Indian ragas
- Melody - combinatorial structure of Western polyphonic music.
- Scales - foundation for harmony, melody, counterpoint, key relationships, etc.

Harmony

- Acoustic instruments produce multiple harmonic partials.
- Frequency of partial = integral multiple of frequency of fundamental.
- Coincidence of partials makes chords with simple ratios easy to recognize.

Perfect fifth C: $\mathbf{G}=2: 3$

Harmony

- Acoustic instruments produce multiple harmonic partials.
- Frequency of partial = integral multiple of frequency of fundamental.
- Coincidence of partials makes chords with simple ratios easy to recognize.

Harmony

- Acoustic instruments produce multiple harmonic partials.
- Frequency of partial = integral multiple of frequency of fundamental.
- Coincidence of partials makes chords with simple ratios easy to recognize.

Polyphony

- A challenging combinatorial problem.
- Relationships among multiple voices must be intelligible to the ear.
- Classic example: Bach's chorale harmonizations.
- Al-based harmonization: follows some 350 rules, result tends to be mediocre.
- Human harmonization: requires a highly skilled composer, result can be beautiful and inspiring.

Harmonization: Bach

Passion Chorale

From St Matthew Passion (1727)
J. S. Bach

TB

Harmonization: Bach

Harmonization: Amateur

Advantages of Classical Scales

- Pitch frequencies have simple ratios.
- Rich and intelligible harmonies
- Multiple keys based on underlying chromatic scale with tempered tuning.
- Can play all keys on instrument with fixed tuning.
- Complex musical structure.
- Can we find new scales with these same properties?
- Constraint programming is well suited to solve the problem.

Multiple Keys

- A classical scale can start from any pitch in a chromatic scale with 12 semitone intervals.
- Resulting in 12 keys.
- An instrument with 12 pitches (modulo octaves) can play 12 different keys.
- Can move to a different key by changing only a few notes of the scale.

Multiple Keys

Let C major be the tonic key
distance 0 from C major

Multiple Keys

Let C major be the tonic key
distance 5 from C major i.e., 5 notes do not
 occur in C major

Multiple Keys

Let C major be the tonic key
distance 2 from C major

Multiple Keys

Let C major be the tonic key
distance 3 from C major

Multiple Keys

Let C major be the tonic key
distance 4 from C major

Multiple Keys

Let C major be the tonic key
distance 1 from C major

Multiple Keys

Let C major be the tonic key
distance 6 from C major

Multiple Keys

Let C major be the tonic key
distance 1 from C major

Multiple Keys

Let C major be the tonic key
distance 4 from C major

Multiple Keys

Let C major be the tonic key
distance 3 from C major

Multiple Keys

Let C major be the tonic key
distance 2 from C major

Multiple Keys

Let C major be the tonic key
distance 5 from C major

Multiple Keys

- Chromatic pitches ae tempered so that intervals will have approximately correct ratios in all keys.
- Modern practice is equal temperament.

$$
\frac{\text { freq of note } k}{\text { freq of note } 1}=2^{(k-1) / 12}
$$

Multiple Keys

- Resulting error is $\leq \pm 0.9 \%$

Note	Perfect ratio	Tempered ratio	Error $\%$
C	$1 / 1$	1.00000	0.000
D	$9 / 8$	1.12246	-0.226
E	$5 / 4$	1.25992	+0.787
F	$4 / 3$	1.33484	+0.113
G	$3 / 2$	1.49831	-0.113
A	$5 / 3$	1.68179	+0.899
B	$15 / 8$	1.88775	+0.675

Combinatorial Requirements

- Scales must be diatonic
- Adjacent notes are 1 or 2 semitones apart.
- We consider m-note scales on an n-tone chromatic
- In binary representation, let $m_{0}=$ number of 0 s $m_{1}=$ number of 1 s
- Then $m_{0}=2 m-n, m_{1}=n-m$
- In a major scale 1101110, there are $m=7$ notes on an $n=12$-tone chromatic
- There are $m_{0}=2.7-12=2$ zeros
- There are $m_{1}=12-7=5$ ones

$$
\begin{aligned}
& 0=\text { semitone interval } \\
& 1=\text { whole tone interval (} 2 \text { semitones })
\end{aligned}
$$

Combinatorial Requirements

- Semitones should not be bunched together.
- One criterion: Myhill's property
- All intervals of a given size should contain k or $k+1$ semitones for some k.
- For example, in a major scale:
- All fifths are 6 or 7 semitones
- All thirds are 3 or 4 semitones
- All seconds are 1 or 2 semitones, etc.
- Few scales satisfy Myhill's property

Combinatorial Requirements

- Semitones should not be bunched together.
- We minimize the number of pairs of adjacent 0s and pairs of adjacent 1s.
- If $m_{0} \geq m_{1}$,
number of adjacent $0 \mathrm{~s}=m_{0}-\min \left\{m_{0}, m_{1}\right\}$ number of adjacent $1 \mathrm{~s}=0$
- If $m_{1} \geq m_{0}$,
number of adjacent $1 \mathrm{~s}=m_{1}-\min \left\{m_{0}, m_{1}\right\}$
number of adjacent $0 \mathrm{~s}=0$
- In a major scale 1101110, number of pairs of adjacent $0 s=0$ number of pairs of adjacent $1 \mathrm{~s}=5-\min \{2,5\}=3$

Combinatorial Requirements

- Semitones should not be bunched together.
- The number of scales satisfying this property is

$$
\binom{\max \left\{m_{0}, m_{1}\right\}}{\min \left\{m_{0}, m_{1}\right\}}+\binom{\max \left\{m_{0}, m_{1}\right\}-1}{\min \left\{m_{0}, m_{1}\right\}-1}
$$

- The number of 7-note scales on a 12-tone chromatic satisfying this property is

$$
\binom{5}{2}+\binom{4}{1}=14
$$

Combinatorial Requirements

- Can have fewer than n keys.
- A "mode of limited transposition"
- Whole tone scale 111111 (Debussy) has 2 keys
- Scale 110110110 has 5 keys
- Count number of semitones in repeating sequence

Temperament Requirements

- Tolerance for inaccurate tuning
- At most $\pm 0.9 \%$
- Don't exceed tolerance of classical equal temperament

Previous Work

- Scales on a tempered chromatic
- Bohlen-Pierce scale (1978, Mathews et al. 1988)
- 9 notes on 13 -note chromatic spanning a $12^{\text {th }}$
- Music for Bohlen-Pierce scale
- R.Boulanger, A. Radunskaya, J. Appleton
- Scales of limited transposition
- O. Messiaen
- Microtonal scales
- Quarter-tone scale (24-tone equally tempered chromatic)
- Bartok, Berg, Bloch, Boulez, Copeland, Enescu, Ives, Mancini.
- 15- or 19-tone equally tempered chromatic
- E. Blackwood

Previous Work

- "Super just" scales (perfect intervals, 1 key)
- H. Partch (43 tones)
- W. Carlos (12 tones)
- L. Harrison (16 tones)
- W. Perret (19 tones)
- J. Chalmers (19 tones)
- M. Harison (24 tones)
- Combinatorial properties
- G. J. Balzano (1980)
- T. Noll $(2005,2007,2014)$
- E. Chew (2014), M. Pearce (2002), Zweifel (1996)

Simple Ratios

- Frequency of each note should have a simple ratio (between 1 and 2) with some other note
- Equating notes an octave apart.
- Let $f_{i}=$ freq ratio of note i to tonic (note 1), $f_{1}=1$.
- For major scale CDEFGAB,

$$
\left(f_{1}, \ldots, f_{7}\right)=\left(1, \frac{9}{8}, \frac{5}{4}, \frac{4}{3}, \frac{3}{2}, \frac{5}{3}, \frac{15}{8}\right)
$$

- For example, B (15/8) has a simple ratio $3 / 2$ with $E(5 / 4)$

$$
\frac{f_{7}}{f_{3}}=\frac{3}{2}
$$

- D octave higher (9/4) has ratio $3 / 2$ with $G(3 / 2)$

$$
\frac{2 f_{2}}{f_{5}}=\frac{3}{2}
$$

Simple Ratios

- However, this allows two or more subsets of unrelated pitches.
- Simple ratios with respect to pitches in same subset, but not in other subsets.
- So we use a recursive condition.
- For some permutation of notes, each note should have simple ratio with previous note.
- First note in the permutation is the tonic.

Simple Ratios

- Let the simple ratios be generators r_{1}, \ldots, r_{p}.
- Let $\left(\pi_{1}, \ldots, \pi_{m}\right)$ be a permutation of $1, \ldots, m$ with $\pi_{1}=1$.
- For each $i \in\{2, \ldots, m\}$, we require

$$
1<f_{\pi_{i}}<2
$$

and

$$
\begin{aligned}
& \frac{f_{\pi_{i}}}{f_{\pi_{j}}}=r_{q} \text { or } \frac{2 f_{\pi_{j}}}{f_{\pi_{i}}}=r_{q} \text { or } \frac{f_{\pi_{j}}}{f_{\pi_{i}}}=r_{q} \text { or } \frac{2 f_{\pi_{i}}}{f_{\pi_{j}}}=r_{q} \\
& \text { for some } j \in\{1, \ldots, i-1\} \text { and some } q \in\{1, \ldots, p\} \text {. }
\end{aligned}
$$

Simple Ratios

- Ratio with previous note in the permutation π must be a generator.
- Ratios with previous 2 or 3 notes in the permutation will be simple (product of generators)
- Ratio with tonic need not be simple.

Simple Ratios

- Observation: No need to consider both r_{q} and $2 / r_{q}$ as generators.
- So we consider only reduced fractions with odd numerators (in order of simplicity):

$$
\begin{aligned}
& \frac{3}{2}, \frac{5}{3}, \frac{5}{4}, \frac{7}{4}, \frac{7}{5}, \frac{9}{5}, \frac{7}{6}, \frac{11}{6}, \frac{9}{7}, \frac{11}{7}, \\
& \frac{13}{7}, \frac{9}{8}, \frac{11}{8}, \frac{13}{8}, \frac{15}{8}, \frac{11}{9}, \frac{13}{9}, \frac{17}{9}, \ldots
\end{aligned}
$$

Simple Ratios

- CP model readily accommodates variable indices

$$
f_{\pi_{i}}
$$

- Replace f_{i} with fraction a_{i} / b_{i} in lowest terms.

$$
\begin{aligned}
& \frac{3}{2}, \frac{5}{3}, \frac{5}{4}, \frac{7}{4}, \frac{7}{5}, \frac{9}{5}, \frac{7}{6}, \frac{11}{6}, \frac{9}{7}, \frac{11}{7} \\
& \frac{13}{7}, \frac{9}{8}, \frac{11}{8}, \frac{13}{8}, \frac{15}{8}, \frac{11}{9}, \frac{13}{9}, \frac{17}{9}, \ldots
\end{aligned}
$$

CP Model

alldiff $\left(\pi_{1}, \ldots, \pi_{m}\right)$
$\pi_{1}=a_{1}=b_{1}=1$
$1<\frac{a_{i}}{b_{i}}<2$, coprime $\left(a_{i}, b_{i}\right), i=1, \ldots, m$
$\frac{a_{i-1}}{b_{i-1}}<\frac{a_{i}}{b_{i}}, i=2, \ldots, m$
$\bigvee_{j<i}\left[\left(\pi_{i}>\pi_{j}\right) \Rightarrow\left(\frac{a_{\pi_{i}} / b_{\pi_{i}}}{a_{\pi_{j}} / b_{\pi_{j}}} \in G \vee \frac{2 a_{\pi_{j}} / b_{\pi_{j}}}{a_{\pi_{i}} / b_{\pi_{i}}} \in G\right)\right], i=2, \ldots, m$
$\bigvee_{j<i}\left[\left(\pi_{i}<\pi_{j}\right) \Rightarrow\left(\frac{a_{\pi_{j}} / b_{\pi_{j}}}{a_{\pi_{i}} / b_{\pi_{i}}} \in G \vee \frac{2 a_{\pi_{i}} / b_{\pi_{i}}}{a_{\pi_{j}} / b_{\pi_{j}}} \in G\right)\right], i=2, \ldots, m$
$\frac{\left|a_{i} / b_{i}-2^{\left(t_{i}-1\right) / n}\right|}{2^{\left(t_{i}-1\right) / n}} \leq 0.009, i=1, \ldots, m$
$\pi_{i} \in\{1, \ldots, m\}, a_{i} \in\{1, \ldots, 2 M\}, b_{i} \in\{1, \ldots, M\}, i=1, \ldots, m$

CP Model

$$
\begin{aligned}
& \hline \text { alldiff }\left(\pi_{1}, \ldots, \pi_{m}\right) \text { permutation } \\
& \pi_{1}=a_{1}=b_{1}=1 \\
& 1<\frac{a_{i}}{b_{i}}<2, \text { coprime }\left(a_{i}, b_{i}\right), i=1, \ldots, m \\
& \frac{a_{i-1}}{b_{i-1}}<\frac{a_{i}}{b_{i}}, i=2, \ldots, m \\
& \bigvee_{j<i}\left[\left(\pi_{i}>\pi_{j}\right) \Rightarrow\left(\frac{a_{\pi_{i}} / b_{\pi_{i}}}{a_{\pi_{j}} / b_{\pi_{j}}} \in G \vee \frac{2 a_{\pi_{j}} / b_{\pi_{j}}}{a_{\pi_{i}} / b_{\pi_{i}}} \in G\right)\right], i=2, \ldots, m \\
& \bigvee_{j<i}\left[\left(\pi_{i}<\pi_{j}\right) \Rightarrow\left(\frac{a_{\pi_{j}} / b_{\pi_{j}}}{a_{\pi_{i}} / b_{\pi_{i}}} \in G \vee \frac{2 a_{\pi_{i}} / b_{\pi_{i}}}{a_{\pi_{j}} / b_{\pi_{j}}} \in G\right)\right], i=2, \ldots, m \\
& \frac{\mid a_{i} / b_{i}-2^{\left(t_{i}-1\right) / n}}{2^{\left(t_{i}-1\right) / n}} \leq 0.009, i=1, \ldots, m \\
& \pi_{i} \in\{1, \ldots, m\}, a_{i} \in\{1, \ldots, 2 M\}, b_{i} \in\{1, \ldots, M\}, i=1, \ldots, m
\end{aligned}
$$

CP Model

$$
\begin{aligned}
& \text { alldiff }\left(\pi_{1}, \ldots, \pi_{m}\right) \\
& \begin{array}{l}
\pi_{1}=a_{1}=b_{1}=1 \\
1<\frac{a_{i}}{b_{i}}<2, \text { coprime }\left(a_{i}, b_{i}\right), i=1, \ldots, m \\
\frac{a_{i-1}}{b_{i-1}}<\frac{a_{i}}{b_{i}}, i=2, \ldots, m \\
\bigvee_{j<i}\left[\left(\pi_{i}>\pi_{j}\right) \Rightarrow\left(\frac{a_{\pi_{i}} / b_{\pi_{i}}}{a_{\pi_{j}} / b_{\pi_{j}}} \in G \vee \frac{2 a_{\pi_{j}} / b_{\pi_{j}}}{a_{\pi_{i}} / b_{\pi_{i}}} \in G\right)\right], i=2, \ldots, m \\
\bigvee_{j<i}\left[\left(\pi_{i}<\pi_{j}\right) \Rightarrow\left(\frac{a_{\pi_{j}} / b_{\pi_{j}}}{a_{\pi_{i}} / b_{\pi_{i}}} \in G \vee \frac{2 a_{\pi_{i}} / b_{\pi_{i}}}{a_{\pi_{j}} / b_{\pi_{j}}} \in G\right)\right], i=2, \ldots, m \\
\frac{\mid a_{i} / b_{i}-2^{\left(t_{i}-1\right) / n}}{2^{\left(t_{i}-1\right) / n}} \leq 0.009, i=1, \ldots, m \\
\pi_{i} \in\{1, \ldots, m\}, a_{i} \in\{1, \ldots, 2 M\}, b_{i} \in\{1, \ldots, M\}, i=1, \ldots, m
\end{array}
\end{aligned}
$$

CP Model

$$
\begin{aligned}
& \text { alldiff }\left(\pi_{1}, \ldots, \pi_{m}\right) \\
& \pi_{1}=a_{1}=b_{1}=1 \\
& 1<\frac{a_{i}}{b_{i}}<2, \text { coprime }\left(a_{i}, b_{i}\right), i=1, \ldots, m \\
& \frac{a_{i-1}}{b_{i-1}}<\frac{a_{i}}{b_{i}}, i=2, \ldots, m \\
& \bigvee_{j<i}\left[\left(\pi_{i}>\pi_{j}\right) \Rightarrow\left(\frac{a_{\pi_{i}} / b_{\pi_{i}}}{a_{\pi_{j}} / b_{\pi_{j}}} \in G \vee \frac{2 a_{\pi_{j}} / b_{\pi_{j}}}{a_{\pi_{i}} / b_{\pi_{i}}} \in G\right)\right], i=2, \ldots, m \\
& \bigvee_{j<i}\left[\left(\pi_{i}<\pi_{j}\right) \Rightarrow\left(\frac{a_{\pi_{j}} / b_{\pi_{j}}}{a_{\pi_{i}} / b_{\pi_{i}}} \in G \vee \frac{2 a_{\pi_{i}} / b_{\pi_{i}}}{a_{\pi_{j}} / b_{\pi_{j}}} \in G\right)\right], i=2, \ldots, m \\
& \frac{\left|a_{i} / b_{i}-2^{\left(t_{i}-1\right) / n}\right|}{2^{\left(t_{i}-1\right) / n} \leq 0.009, i=1, \ldots, m} \\
& \pi_{i} \in\{1, \ldots, m\}, a_{i} \in\{1, \ldots, 2 M\}, b_{i} \in\{1, \ldots, M\}, i=1, \ldots, m
\end{aligned}
$$

CP Model

$$
\begin{aligned}
& \text { alldiff }\left(\pi_{1}, \ldots, \pi_{m}\right) \\
& \pi_{1}=a_{1}=b_{1}=1 \\
& 1<\frac{a_{i}}{b_{i}}<2, \text { coprime }\left(a_{i}, b_{i}\right), i=1, \ldots, m \\
& \frac{a_{i-1}}{b_{i-1}}<\frac{a_{i}}{b_{i}}, i=2, \ldots, m \\
& \bigvee_{j<i}\left[\left(\pi_{i}>\pi_{j}\right) \Rightarrow\left(\frac{a_{\pi_{i}} / b_{\pi_{i}}}{a_{\pi_{j}} / b_{\pi_{j}}} \in G \vee \frac{2 a_{\pi_{j}} / b_{\pi_{j}}}{a_{\pi_{i}} / b_{\pi_{i}}} \in G\right)\right], i=2, \ldots, m \\
& \bigvee_{j<i}\left[\left(\pi_{i}<\pi_{j}\right) \Rightarrow\left(\frac{a_{\pi_{j}} / b_{\pi_{j}}}{a_{\pi_{i}} / b_{\pi_{i}}} \in G \vee \frac{2 a_{\pi_{i}} / b_{\pi_{i}}}{a_{\pi_{j}} / b_{\pi_{j}}} \in G\right)\right], i=2, \ldots, m \\
& \frac{\left|a_{i} / b_{i}-2^{\left(t_{i}-1\right) / n}\right|}{2^{\left(t_{i}-1\right) / n} \leq 0.009, i=1, \ldots, m} \\
& \pi_{i} \in\{1, \ldots, m\}, a_{i} \in\{1, \ldots, 2 M\}, b_{i} \in\{1, \ldots, M\}, i=1, \ldots, m
\end{aligned}
$$

CP Model

$$
\begin{aligned}
& \text { alldiff }\left(\pi_{1}, \ldots, \pi_{m}\right) \\
& \pi_{1}=a_{1}=b_{1}=1 \\
& 1<\frac{a_{i}}{b_{i}}<2, \text { coprime }\left(a_{i}, b_{i}\right), i=1, \ldots, m \\
& \frac{a_{i-1}}{b_{i-1}}<\frac{a_{i}}{b_{i}}, i=2, \ldots, m \quad \text { simple ratios } \\
& \bigvee_{j<i}\left[\left(\pi_{i}>\pi_{j}\right) \Rightarrow\left(\frac{a_{\pi_{i}} / b_{\pi_{i}}}{a_{\pi_{j}} / b_{\pi_{j}}} \in G \vee \frac{2 a_{\pi_{j}} / b_{\pi_{j}}}{a_{\pi_{i}} / b_{\pi_{i}}} \in G\right)\right], i=2, \ldots, m \\
& \bigvee_{j<i}\left[\left(\pi_{i}<\pi_{j}\right) \Rightarrow\left(\frac{a_{\pi_{j}} / b_{\pi_{j}}}{a_{\pi_{i}} / b_{\pi_{i}}} \in G \vee \frac{2 a_{\pi_{i}} / b_{\pi_{i}}}{a_{\pi_{j}} / b_{\pi_{j}}} \in G\right)\right], i=2, \ldots, m \\
& \frac{\left|a_{i} / b_{i}-2^{\left(t_{i}-1\right) / n}\right|}{2^{\left(t_{i}-1\right) / n} \leq 0.009, i=1, \ldots, m} \\
& \pi_{i} \in\{1, \ldots, m\}, a_{i} \in\{1, \ldots, 2 M\}, b_{i} \in\{1, \ldots, M\}, i=1, \ldots, m
\end{aligned}
$$

CP Model

$$
\begin{aligned}
& \text { alldiff }\left(\pi_{1}, \ldots, \pi_{m}\right) \\
& \pi_{1}=a_{1}=b_{1}=1 \\
& 1<\frac{a_{i}}{b_{i}}<2, \text { coprime }\left(a_{i}, b_{i}\right), i=1, \ldots, m \\
& \frac{a_{i-1}}{b_{i-1}}<\frac{a_{i}}{b_{i}}, i=2, \ldots, m \\
& \bigvee_{j<i}\left[\left(\pi_{i}>\pi_{j}\right) \Rightarrow\left(\frac{a_{\pi_{i}} / b_{\pi_{i}}}{a_{\pi_{j}} / b_{\pi_{j}}} \in G \vee \frac{2 a_{\pi_{j}} / b_{\pi_{j}}}{a_{\pi_{i}} / b_{\pi_{i}}} \in G\right)\right], i=2, \ldots, m \\
& \bigvee_{j<i}\left[\left(\pi_{i}<\pi_{j}\right) \Rightarrow\left(\frac{a_{\pi_{j}} / b_{\pi_{j}}}{a_{\pi_{i}} / b_{\pi_{i}}} \in G \vee \frac{2 a_{\pi_{i}} / b_{\pi_{i}}}{a_{\pi_{j}} / b_{\pi_{j}}} \in G\right)\right], i=2, \ldots, m \\
& \frac{\left|a_{i} / b_{i}-2^{\left(t_{i}-1\right) / n}\right|}{2^{\left(t_{i}-1\right) / n} \leq 0.009, i=1, \ldots, m} \\
& \pi_{i} \in\{1, \ldots, m\}, a_{i} \in\{1, \ldots, 2 M\}, b_{i} \in\{1, \ldots, M\}, i=1, \ldots, m
\end{aligned}
$$

CP Model

$$
\begin{aligned}
& \text { alldiff }\left(\pi_{1}, \ldots, \pi_{m}\right) \\
& \pi_{1}=a_{1}=b_{1}=1 \\
& 1<\frac{a_{i}}{b_{i}}<2, \text { coprime }\left(a_{i}, b_{i}\right), i=1, \ldots, m \\
& \frac{a_{i-1}}{b_{i-1}}<\frac{a_{i}}{b_{i}}, i=2, \ldots, m \\
& \bigvee_{j<i}\left[\left(\pi_{i}>\pi_{j}\right) \Rightarrow\left(\frac{a_{\pi_{i}} / b_{\pi_{i}}}{a_{\pi_{j}} / b_{\pi_{j}}} \in G \vee \frac{2 a_{\pi_{j}} / b_{\pi_{j}}}{a_{\pi_{i}} / b_{\pi_{i}}} \in G\right)\right], i=2, \ldots, m \\
& \bigvee_{j<i}\left[\left(\pi_{i}<\pi_{j}\right) \Rightarrow\left(\frac{a_{\pi_{j}} / b_{\pi_{j}}}{a_{\pi_{i}} / b_{\pi_{i}}} \in G \vee \frac{2 a_{\pi_{i}} / b_{\pi_{i}}}{a_{\pi_{j}} / b_{\pi_{j}}} \in G\right)\right], i=2, \ldots, m \\
& \frac{\mid a_{i} / b_{i}-2^{\left(t_{i}-1\right) / n}}{2^{\left(t_{i}-1\right) / n}} \leq 0.009, i=1, \ldots, m \\
& \pi_{i} \in\{1, \ldots, m\}, a_{i} \in\{1, \ldots, 2 M\}, b_{i} \in\{1, \ldots, M\}, i=1, \ldots, m
\end{aligned}
$$

CP Model

$$
\begin{aligned}
& \text { alldiff }\left(\pi_{1}, \ldots, \pi_{m}\right) \\
& \pi_{1}=a_{1}=b_{1}=1 \\
& 1<\frac{a_{i}}{b_{i}}<2, \text { coprime }\left(a_{i}, b_{i}\right), i=1, \ldots, m \\
& \frac{a_{i-1}}{b_{i-1}}<\frac{a_{i}}{b_{i}}, i=2, \ldots, m \\
& \bigvee_{j<i}\left[\left(\pi_{i}>\pi_{j}\right) \Rightarrow\left(\frac{a_{\pi_{i}} / b_{\pi_{i}}}{a_{\pi_{j}} / b_{\pi_{j}}} \in G \vee \frac{2 a_{\pi_{j}} / b_{\pi_{j}}}{a_{\pi_{i}} / b_{\pi_{i}}} \in G\right)\right], i=2, \ldots, m \\
& \begin{array}{l}
\bigvee_{j<i}
\end{array}\left(\left(\pi_{i}<\pi_{j}\right) \Rightarrow\left(\frac{a_{\pi_{j}} / b_{\pi_{j}}}{a_{\pi_{i}} / b_{\pi_{i}}} \in G \vee \frac{2 a_{\pi_{i}} / b_{\pi_{i}}}{a_{\pi_{j}} / b_{\pi_{j}}} \in G\right)\right], i=2, \ldots, m \\
& \frac{\mid a_{i} / b_{i}-2^{\left(t_{i}-1\right) / n}}{2^{\left(t_{i}-1\right) / n}} \leq 0.009, i=1, \ldots, m \\
& \pi_{i} \in\{1, \ldots, m\}, a_{i} \in\{1, \ldots, 2 M\}, b_{i} \in\{1, \ldots, M\}, i=1, \ldots, m \\
& \text { chromatic tone corresponding to note } i
\end{aligned}
$$

Scales on a 12-note chromatic

- Use the generators mentioned earlier.
- There are multiple solutions for each scale.
- For each note, compute the minimal generator, or the simplest ratio with another note.
- Select the solution with the simplest ratios with the tonic and/or simplest minimal generators.
- The 7-note scales with a single generator 3/2 are precisely the classical modes!

7-note scales on a 12-note chromatic

Scale Solns Ratios with tonic Minimal generators

1. 0101111	27	$\frac{1}{1} \frac{16}{15} \frac{6}{5} \frac{5}{4} \frac{45}{32} \frac{8}{5} \frac{16}{9}$	$\frac{5}{3} \frac{3}{2} \frac{3}{2} \frac{5}{4} \frac{9}{8} \frac{3}{2} \frac{5}{3}$	
2. 0110111	10	$\frac{1}{1} \frac{18}{17} \frac{6}{5} \frac{4}{3} \frac{24}{17} \frac{8}{5} \frac{16}{9}$	$\frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2}$	Locrian mode
3. 0111011	18	$\frac{1}{1} \frac{16}{15} \frac{6}{5} \quad \frac{4}{3} \quad \frac{3}{2} \quad \frac{8}{5} \frac{16}{9}$	$\frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2}$	Phrygian mode
4. 0111101	26	$\frac{1}{1} \frac{16}{15} \frac{6}{5} \quad \frac{4}{3} \quad \frac{3}{2} \quad \frac{5}{3} \frac{16}{9}$	$\frac{3}{2} \frac{5}{3} \frac{5}{3} \frac{3}{2} \frac{3}{2} \frac{5}{3} \frac{3}{2}$	
5. 1010111	6	$\frac{1}{1} \frac{9}{8} \frac{6}{5} \quad \frac{4}{3} \frac{45}{32} \frac{8}{5} \frac{16}{9}$	$\frac{3}{2} \frac{5}{4} \frac{3}{2} \frac{3}{2} \frac{5}{4} \frac{3}{2} \frac{3}{2}$	
6. 1011011	6	$\frac{1}{1} \frac{9}{8} \frac{6}{5} \frac{4}{3} \quad \frac{3}{2} \frac{8}{5} \frac{16}{9}$	$\frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2}$	Aeolian mode (natural minor)
7. 1011101	10	$\frac{1}{1} \frac{9}{8} \frac{6}{5} \quad \frac{4}{3} \quad \frac{3}{2} \quad \frac{5}{3} \frac{16}{9}$	$\frac{3}{2} \frac{3}{2} \frac{5}{3} \frac{3}{2} \frac{3}{2} \frac{5}{3} \frac{3}{2}$	Dorian mode
8. 1011110	27	$\frac{1}{1} \frac{9}{8} \frac{6}{5} \quad \frac{4}{3} \quad \frac{3}{2} \frac{5}{3} \frac{15}{8}$	$\frac{3}{2} \frac{3}{2} \frac{5}{3} \frac{3}{2} \frac{3}{2} \frac{5}{3} \frac{5}{3}$	melodic minor
9. 1101011	14	$\frac{1}{1} \frac{9}{8} \quad \frac{5}{4} \quad \frac{4}{3} \quad \frac{3}{2} \quad \frac{8}{5} \frac{16}{9}$	$\frac{3}{2} \frac{3}{2} \frac{5}{3} \frac{3}{2} \frac{3}{2} \frac{5}{3} \frac{9}{8}$	
10. 1101101	9	$\frac{1}{1} \frac{9}{8} \quad \frac{5}{4} \quad \frac{4}{3} \quad \frac{3}{2} \quad \frac{5}{3} \frac{16}{9}$	$\frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2}$	Mixolydian mode
11. 1101110	17	$\frac{1}{1} \frac{9}{8} \quad \frac{5}{4} \quad \frac{4}{3} \quad \frac{3}{2} \quad \frac{5}{3} \frac{15}{8}$	$\frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2}$	Ionian mode (major)
12. 1110101	10	$\frac{1}{1} \frac{9}{8} \quad \frac{5}{4} 4 \frac{45}{32} \quad \frac{3}{2} \quad \frac{5}{3} \frac{16}{9}$	32 $\frac{3}{2} \frac{3}{2} \frac{5}{4} \frac{3}{2} \frac{3}{2} \frac{3}{2}$	
13. 1110110	16	$\frac{1}{1} \quad \frac{9}{8} \quad \frac{5}{4} \frac{45}{32} \quad \frac{3}{2} \quad \frac{5}{3} \frac{15}{8}$	32 $\frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2}$	Lydian mode
14. 1111010	34		$\frac{5}{3} \frac{5}{3} \frac{3}{2} \frac{3}{2} \frac{5}{4} \frac{3}{2} \frac{3}{2}$	

7-note scales on a 12-note chromatic

Scale Solns Ratios with tonic Minimal generators

1. 0101111	27	$\frac{1}{1} \frac{16}{15}$	$\frac{6}{5} \quad \frac{5}{4}$	$\frac{45}{32} \frac{8}{5} \quad \frac{16}{9}$	$\frac{5}{3} \frac{3}{2} \frac{3}{2} \quad \frac{5}{4} \quad \frac{9}{8} \quad \frac{3}{2} \frac{5}{3}$	
2. 0110111	10	$\frac{1}{1} \frac{18}{17}$	$\frac{6}{5} \quad \frac{4}{3}$	$\frac{24}{17} \frac{8}{5} \frac{16}{9}$	$\frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2}$	Locrian mode
3. 0111011	18	$\frac{1}{1} \frac{16}{15}$	$\frac{6}{5} \quad \frac{4}{3}$	$\begin{array}{llll}\frac{3}{2} & \frac{8}{5} & \frac{16}{9}\end{array}$	$\frac{3}{2}$ $\frac{3}{2}$ $\frac{3}{2}$ $\frac{3}{2}$ $\frac{3}{2}$ $\frac{3}{2}$ $\frac{3}{2}$	Phrygian mode
4. 0111101	26	$\frac{1}{1} \frac{16}{15}$	$\frac{6}{5} \quad \frac{4}{3}$	$\begin{array}{llll}\frac{3}{2} & \frac{5}{3} & \frac{16}{9}\end{array}$	$\frac{3}{2} \frac{5}{3} \frac{5}{3} \frac{3}{2} \frac{3}{2} \frac{5}{3} \frac{3}{2}$	Single generator
5. 1010111	6	$\frac{1}{1} \frac{9}{8}$	$\begin{array}{lll}\frac{6}{5} & \frac{4}{3}\end{array}$	$\frac{45}{32} \quad \frac{8}{5} \quad \frac{16}{9}$	$\frac{3}{2} \frac{5}{4} \frac{3}{2} \frac{3}{2} \frac{5}{4} \frac{3}{2} \frac{3}{2}$	
6. 1011011	6	$\begin{array}{lll}\frac{1}{1} & \frac{9}{8}\end{array}$	$\frac{6}{5} \quad \frac{4}{3}$	$\frac{3}{2} \quad \frac{8}{5} \quad \frac{16}{9}$	$\frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2}$	Aeolian mode (natural minor)
7. 1011101	10	$\begin{array}{ll}1 & \frac{9}{8}\end{array}$	$\frac{6}{5} \quad \frac{4}{3}$	$\begin{array}{llll}\frac{3}{2} & \frac{5}{3} & \frac{16}{9}\end{array}$		Dorian mode
8. 1011110	27	$\frac{1}{1} \frac{9}{8}$	$\frac{6}{5} \quad \frac{4}{3}$	$\begin{array}{llll}\frac{3}{2} & \frac{5}{3} & \frac{15}{8}\end{array}$	$\frac{3}{2} \frac{3}{2} \frac{5}{3} \frac{3}{2} \frac{3}{2} \frac{5}{3} \frac{5}{3}$	melodic minor
9. 1101011	14	$\frac{1}{1} \frac{9}{8}$	$\begin{array}{lll}5 & \frac{4}{4}\end{array}$	$\frac{3}{2} \quad \frac{8}{5} \quad \frac{16}{9}$	$\frac{3}{2} \frac{3}{2} \frac{5}{3} \frac{3}{2} \frac{3}{2} \frac{5}{3} \frac{9}{8}$	
10. 1101101	9	$\begin{array}{lll}1 & \frac{9}{8}\end{array}$	$\begin{array}{lll}5 & \frac{4}{3}\end{array}$	$\begin{array}{llll}\frac{3}{2} & \frac{5}{3} & \frac{16}{9}\end{array}$	$\frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2}$	Mixolydian mode
11. 1101110	17	$\frac{1}{1} \frac{9}{8}$	$\frac{5}{4} \quad \frac{4}{3}$	$\begin{array}{llll}\frac{3}{2} & \frac{5}{3} & \frac{15}{8}\end{array}$	$\frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2}$	Ionian mode (major)
12. 1110101	10	$\begin{array}{ll}1 & \frac{9}{8}\end{array}$	$\frac{5}{4} \frac{45}{32}$	$\begin{array}{llll}\frac{3}{2} & \frac{5}{3} & \frac{16}{9}\end{array}$	$\frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{5}{4} \frac{3}{2} \frac{3}{2} \frac{3}{2}$	
13. 1110110	16	$\frac{1}{1} \frac{9}{8}$	$\frac{5}{4} \frac{45}{32}$	$\frac{3}{2} \quad \frac{5}{3} \quad \frac{15}{8}$	$\frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2}$	Lydian mode
14. 1111010	34	$\frac{1}{1} \frac{9}{8}$	$\frac{5}{4} \frac{45}{32}$	$\begin{array}{lllll}\frac{8}{5} & \frac{5}{3} & \frac{15}{8}\end{array}$	$\frac{5}{3} \frac{5}{3} \frac{3}{2} \frac{3}{2} \frac{5}{4} \frac{3}{2} \frac{3}{2}$	

Other scales on a 12-note chromatic

Scale	Solns	Keys	Ratios with tonic					Minimal generators					
1. 111111	6	2	$\frac{1}{1} \frac{9}{8} \quad \frac{5}{4}$	$\frac{5}{4} \frac{45}{32}$	$\frac{8}{5}$	$\frac{16}{9}$		$\frac{5}{4} \frac{5}{4} \frac{5}{4} \frac{5}{4}$	$\frac{5}{4} \frac{5}{4}$	$\frac{5}{4} \frac{9}{5}$			
1. 01010101	>50	3	$\frac{1}{1} \frac{16}{15} \frac{6}{5}$	$\frac{6}{5} \quad \frac{5}{4}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{5}{3} \frac{16}{9}$	$\frac{3}{2} \frac{5}{3} \frac{5}{3} \frac{3}{2}$	$\frac{3}{2} \frac{9}{8}$	$\frac{9}{8}$			
2. 10101010	>50	3	$\frac{1}{1} \frac{9}{8} \quad \frac{6}{5}$	$\frac{6}{5} \quad \frac{4}{3}$	$\frac{45}{32}$	$\frac{8}{5}$	$\frac{5}{3} \frac{15}{8}$	$\frac{3}{2} \frac{5}{3} \frac{3}{2} \frac{3}{2}$	$\frac{3}{2} \frac{3}{2}$	$\frac{3}{2}$	$\frac{5}{3}$		
21. 100001010	>50	12	$\begin{array}{llll}1 & \frac{9}{8} & \frac{6}{5}\end{array}$	$\frac{6}{5} \frac{5}{4}$	$\frac{4}{3}$	$\frac{45}{32} \frac{8}{5}$	$\frac{8}{5} \frac{5}{3} \quad \frac{15}{8}$	$\frac{3}{2} \frac{5}{3} \frac{3}{2} \frac{3}{2}$	22	2	2	2	
22. 100010010	>50	12	$\frac{1}{1} \frac{9}{8} \quad \frac{6}{5}$	$\frac{6}{5} \quad \frac{5}{4}$	$\frac{4}{3}$	$\frac{3}{2} \frac{8}{5}$	$\begin{array}{llll}\frac{8}{5} & \frac{5}{3} & \frac{15}{8}\end{array}$	$\frac{3}{2} \frac{3}{2} \frac{3}{2}$	22	2	2	2	
23. 100010100	>50	12	$\begin{array}{llll}\frac{1}{1} & \frac{9}{8} & \frac{6}{5}\end{array}$	$\frac{6}{5} \quad \frac{5}{4}$	$\frac{4}{3}$	$\frac{3}{2} \frac{8}{5}$	$\begin{array}{llll}\frac{8}{5} & \frac{16}{9} & \frac{15}{8}\end{array}$	$\frac{3}{2} \frac{3}{2} \frac{3}{2}$	22	-	$\frac{3}{2}$	$\frac{3}{2}$	
24. 100100010	>50	12	$\frac{1}{1} \frac{9}{8} \quad \frac{6}{5}$	$\frac{6}{5} \quad \frac{5}{4}$	$\frac{45}{32}$	$\frac{3}{2} \frac{8}{5}$	$\frac{8}{5} \quad \frac{5}{3} \quad \frac{15}{8}$	$\frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2}$	$\frac{3}{2} \frac{3}{2}$	$\frac{3}{2}$,		
25. 100100100	>50	4	$\begin{array}{llll}1 & \frac{9}{8} & \frac{6}{5}\end{array}$	$\frac{6}{5} \quad \frac{5}{4}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{8}{5} \frac{16}{9} \frac{15}{8}$	$\frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2}$	$\frac{3}{2} \frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	5	
26. 100101000	>50	12	$\frac{1}{1} \frac{9}{8} \frac{6}{5}$	$\frac{6}{5} \frac{5}{4}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{5}{3} \frac{16}{9} \frac{15}{8}$	$\frac{3}{2} \frac{3}{2} \frac{5}{3} \frac{3}{2}$	$\frac{3}{2} \frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{9}{8}$	
27. 101000010	>50	12	$\frac{1}{1} \frac{9}{8} \quad \frac{6}{5}$	$\frac{6}{5} \quad \frac{4}{3}$	$\frac{45}{32}$	$\frac{3}{2}$	$\begin{array}{llll}5 & \frac{5}{3} & \frac{15}{8}\end{array}$	$\frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2}$	$\frac{3}{2} \frac{3}{2}$	$\frac{3}{2}$	2		
28. 101000100	>50	12	$\frac{1}{1} \frac{9}{8} \frac{6}{5}$	$\frac{6}{5} \frac{4}{3}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{8}{5} \frac{16}{9} \frac{15}{8}$	$\frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2}$	$\frac{3}{2} \frac{3}{2}$	$2 \frac{3}{2}$		$\frac{3}{2}$	
29. 101001000	>50	12	$\frac{1}{1} \frac{9}{8} \quad \frac{6}{5}$	$\frac{6}{5} \quad \frac{4}{3}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{5}{3} \frac{16}{9} \frac{15}{8}$	$\frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2}$	2	$\frac{3}{2}$			
30. 101010000	>50	12	$\begin{array}{lll}1 & \frac{9}{8} & \frac{6}{5}\end{array}$	$\frac{6}{5} \quad \frac{4}{3}$	$\frac{45}{32}$	$\frac{8}{5}$	$\frac{5}{3} \frac{16}{9} \quad \frac{15}{8}$	$\frac{3}{2} \frac{5}{3} \frac{3}{2} \frac{3}{2}$	$\frac{5}{2}$	2	3	$\overline{2}$	

Other scales on a 12-note chromatic

Scale Solns Keys Ratios with tonic Minimal generators

1.111111	6	2	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{5}{4}$	$\frac{45}{32}$	$\frac{8}{5}$	$\frac{16}{9}$	$\frac{5}{4}$	$\frac{5}{4}$	$\frac{5}{4}$	$\frac{5}{4}$	$\frac{5}{4}$	$\frac{9}{5}$

Whole tone scale. Minimal interest musically

Other scales on a 12-note chromatic

Scale1.111111	$\begin{array}{r} \text { Solns } \\ 6 \end{array}$	Keys	Ratios with tonic					Minimal generators						
		2	$\frac{1}{1} \frac{9}{8}$	$\frac{45}{32}$	$\frac{8}{5}$	$\frac{16}{9}$			$\frac{5}{4} \frac{5}{4}$	$\frac{5}{4}$	$\frac{5}{4}$			
1. 01010101	>50	3	$\frac{1}{1} \frac{16}{15}$	$\frac{5}{4}$	$\frac{45}{32}$	$\frac{3}{2} \quad \frac{5}{3}$	$\frac{16}{9}$,	5 $\frac{3}{2}$	$\frac{9}{8}$			
2. 10101010	>50	3	$\frac{1}{1} \frac{9}{8} \quad \frac{6}{5}$	$\frac{6}{5} \frac{4}{3}$	$\frac{45}{32}$	$\frac{8}{5} \frac{5}{3}$	$\frac{5}{3} \frac{15}{8}$	$\frac{3}{2}$	$\frac{5}{3} \frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$			

8-note scales. Only 3 keys.

Other scales on a 12-note chromatic

Scale	Solns	Keys	Ratios with tonic	Minimal generators					
1.111111	6	2	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{5}{4}$	$\frac{45}{32}$	$\frac{8}{5}$	$\frac{16}{9}$	$\frac{5}{4}$

9 -note scales beginning with whole tone interval

21. 100001010	$>$	12	$\frac{1}{1} \frac{9}{8}$	$\frac{6}{5}$	$\frac{5}{4}$	$\frac{4}{3}$	$\frac{4}{3} \frac{45}{32}$	$\frac{8}{5}$	5					$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	2		
22. 100010010	>50	12	$\frac{1}{1} \frac{9}{8}$	$\frac{6}{5}$	5	4	3	8	5					$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$			
23. 100010100	>50	12	$\frac{1}{1} \frac{9}{8}$	$\frac{6}{5}$	$\frac{5}{4}$	4	$\frac{4}{3} \frac{3}{2}$	5	$\frac{16}{9}$					$\frac{3}{2}$	$\frac{3}{2}$	2	2		$\frac{3}{2} \frac{3}{2}$	
24. 100100010	>50	12	$\frac{1}{1} \frac{9}{8}$	$\frac{6}{5}$	$\frac{5}{4}$	$\frac{45}{32}$	$52 \frac{3}{2}$	$\frac{8}{5}$	$\frac{5}{3}$					$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$			
25. 100100100	>50	4	$\frac{1}{1} \frac{9}{8}$		$\frac{5}{4}$	$\frac{45}{32}$	$5 \frac{5}{2}$	8	16					-	-	-	-			
26. 100101000	>50	12	$\frac{1}{1} \frac{9}{8}$	$\frac{6}{5}$	$\frac{5}{4}$	$\frac{45}{32}$	$5{ }^{5} \frac{3}{2}$	$\frac{5}{3}$	$\frac{16}{9}$					3	2	$\frac{3}{2}$	2	$\frac{3}{2}$		
27. 101000010	>50	12	$\frac{1}{1} \frac{9}{8}$	5	$\frac{4}{3}$	$\frac{45}{32}$	22	$\frac{8}{5}$						2	$\frac{3}{2}$	2	2	2	-	
28. 101000100	>50	12	$\frac{1}{1} \frac{9}{8}$	$\overline{5}$	$\frac{4}{3}$	32	$52 \frac{3}{2}$	$\frac{8}{5}$	$\frac{16}{9}$					$\frac{3}{2}$	2	2	2	2		
29. 101001000	>50	12	$\frac{1}{1} \frac{9}{8}$	$\frac{6}{5}$	$\frac{4}{3}$	45	$52 \frac{3}{2}$	$\frac{5}{3}$	$\frac{16}{9}$					$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	2	3		
30. 101010000	>50	12	$\frac{1}{1} \frac{9}{8}$	$\frac{6}{5}$	$\frac{4}{3}$	$\frac{45}{32}$	$5 \frac{8}{5}$	$\frac{5}{3}$	$\frac{16}{9}$			$\frac{3}{2}$		$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{5}{3}$		

Other scales on a 12-note chromatic

Scale Solns Keys Ratios with tonic Minimal generators

Most appealing scales. Simple ratios, good distribution of semitones.

22.100010010	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{5}{4}$	$\frac{4}{3}$	$\frac{3}{2}$	$\frac{8}{5}$	$\frac{5}{3}$	$\frac{15}{8}$	$\frac{3}{2}$								
23.100010100	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{5}{4}$	$\frac{4}{3}$	$\frac{3}{2}$	$\frac{8}{5}$	$\frac{16}{9}$	$\frac{15}{8}$	$\frac{3}{2}$								
24.100100010	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{5}{4}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{8}{5}$	$\frac{5}{3}$	$\frac{15}{8}$	$\frac{3}{2}$								
25.100100100	>50	4	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{5}{4}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{8}{5}$	$\frac{16}{9}$	$\frac{15}{8}$	$\frac{3}{2}$	$\frac{9}{5}$	$\frac{3}{2}$						
26.100101000	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{5}{4}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{16}{9}$	$\frac{15}{8}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{9}{8}$	$\frac{3}{2}$
27.101000010	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{4}{3}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{8}{5}$	$\frac{5}{3}$	$\frac{15}{8}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{3}{2}$						
28.101000100	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{4}{3}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{8}{5}$	$\frac{16}{9}$	$\frac{15}{8}$	$\frac{3}{2}$								
29. 101001000	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{4}{3}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{16}{9}$	$\frac{15}{8}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{3}{2}$	$\frac{3}{2}$
30.101010000	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{4}{3}$	$\frac{45}{32}$	$\frac{8}{5}$	$\frac{5}{3}$	$\frac{16}{9}$	$\frac{15}{8}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{3}{2}$	$\frac{3}{2}$

Other scales on a 12-note chromatic

Scale	Solns	Keys	Ratios with tonic	Minimal generators										
1.111111	6	2	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{5}{4}$	$\frac{45}{32}$	$\frac{8}{5}$	$\frac{16}{9}$	$\frac{5}{4}$	$\frac{5}{4}$	$\frac{5}{4}$	$\frac{5}{4}$	$\frac{5}{4}$	$\frac{9}{5}$

Will illustrate this scale with a Chorale and Fugue for organ

Demonstration: 9-note scale

- Chorale and Fugue for organ
- Chorale
- In A, cycles through 2 most closely related keys: A, C\#, F, A
- Modulate to $\mathrm{C} \#$ at bar 27
- Final sections starts at bar 72 (5:56)
- Fugue
- Double fugue
- First subject enters at pitches A, C \#, F
- Second subject enters at bar 96.
- Final episode at bar 164 (13:36)
- Recapitulation at bar 170

Demonstration: 9-note scale

Key of A and 2 most closely related keys.

New notes are circled

Chorale and Fugue

On a 9-note Scale
J.N. Hooker
Revised 2013

Chorale

Chorale and Fugue

On a 9-note Scale

Chorale and Fugue

On a 9-note Scale
Resolve from lowered $\begin{array}{r}\text { J. N. Hooker } \\ \text { Revised } 2013\end{array}$
Chorale submediant (F)

Chorale and Fugue
On a 9-note Scale

Where does modulation

 to Db actually occur?

Where does modulation to Db actually occur?

$$
1.48 \quad \text { It occurs here }
$$

New key (Db = C\#)

$2^{\text {nd }}$ entrance at $\mathrm{C} \#$ but still in key of A

3rd entrance at F

Counter-

subject

-

 9
 \%

Other Chromatic Scales

- Which chromatics have the most simple ratios with the tonic, within tuning tolerance?

| Ratio | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |
| :---: |
| $3 / 2$ | \cdot | \cdot | \cdot | \cdot | \cdot | \cdot | \bullet | \cdot | \cdot | \cdot | \cdot | \bullet | \cdot | \bullet | \cdot | \cdot | \bullet | \cdot | \bullet |
| $4 / 3$ | \cdot | \cdot | \cdot | \cdot | \cdot | \cdot | \bullet | \cdot | \cdot | \cdot | \cdot | \bullet | \cdot | \bullet | \cdot | \cdot | \bullet | \cdot | \bullet |
| $5 / 3$ | \cdot | \cdot | \bullet | \cdot | \cdot | \bullet | \bullet | \cdot | \cdot | \bullet | \bullet | \cdot | \cdot | \bullet | \bullet | \cdot | \bullet | \bullet | \bullet |
| $5 / 4$ | \bullet | \cdot | \cdot | \bullet | \cdot | \cdot | \bullet | \cdot | \cdot | \bullet | \bullet | \cdot | \bullet | \bullet | \cdot | \bullet | \cdot | \cdot | \bullet |
| $7 / 4$ | \cdot | \cdot | \cdot | \cdot | \bullet | \bullet | \cdot | \cdot | \cdot | \bullet | \bullet | \cdot | \cdot | \cdot | \bullet | \bullet | \cdot | \cdot | \cdot |
| $6 / 5$ | \cdot | \cdot | \cdot | \cdot | \cdot | \bullet | \cdot | \cdot | \cdot | \bullet | \cdot | \cdot | \cdot | \bullet | \cdot | \cdot | \bullet | \bullet | \cdot |
| $7 / 5$ | \cdot | \bullet | \cdot | \bullet | \cdot | \bullet | \cdot |
| $8 / 5$ | \bullet | \cdot | \cdot | \bullet | \cdot | \cdot | \bullet | \cdot | \cdot | \bullet | \bullet | \cdot | \bullet | \bullet | \cdot | \bullet | \bullet | \cdot | \bullet |
| $9 / 5$ | \cdot | \bullet | \cdot | \cdot | \cdot | \cdot | \cdot | \bullet | \bullet | \cdot | \cdot | \cdot | \cdot | \bullet | \bullet | \bullet | \cdot | \cdot | \cdot |

Other Chromatic Scales

- Which chromatics have the most simple ratios with the tonic, within tuning tolerance?

| Ratio | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |
| :---: |
| $3 / 2$ | \cdot | \cdot | \cdot | \cdot | \cdot | \cdot | \bullet | \cdot | \cdot | \cdot | \cdot | \bullet | \cdot | \bullet | \cdot | \cdot | \bullet | \cdot | \bullet |
| $4 / 3$ | \cdot | \cdot | \cdot | \cdot | \cdot | \cdot | \bullet | \cdot | \cdot | \cdot | \cdot | \bullet | \cdot | \bullet | \cdot | \cdot | \bullet | \cdot | \bullet |
| $5 / 3$ | \cdot | \cdot | \bullet | \cdot | \cdot | \bullet | \bullet | \cdot | \cdot | \bullet | \bullet | \cdot | \cdot | \bullet | \bullet | \cdot | \bullet | \bullet | \bullet |
| $5 / 4$ | \bullet | \cdot | \cdot | \bullet | \cdot | \cdot | \bullet | \cdot | \cdot | \bullet | \bullet | \cdot | \bullet | \bullet | \cdot | \bullet | \cdot | \cdot | \bullet |
| $7 / 4$ | \cdot | \cdot | \cdot | \cdot | \bullet | \bullet | \cdot | \cdot | \cdot | \bullet | \bullet | \cdot | \cdot | \cdot | \bullet | \bullet | \cdot | \cdot | \cdot |
| $6 / 5$ | \cdot | \cdot | \cdot | \cdot | \cdot | \bullet | \cdot | \cdot | \cdot | \bullet | \cdot | \cdot | \cdot | \bullet | \cdot | \cdot | \bullet | \bullet | \cdot |
| $7 / 5$ | \cdot | \bullet | \cdot | \bullet | \cdot | \bullet | \cdot |
| $8 / 5$ | \bullet | \cdot | \cdot | \bullet | \cdot | \cdot | \bullet | \cdot | \cdot | \bullet | \bullet | \cdot | \bullet | \bullet | \cdot | \bullet | \bullet | \cdot | \bullet |
| $9 / 5$ | \cdot | \bullet | \cdot | \cdot | \cdot | \cdot | \cdot | \bullet | \bullet | \cdot | \cdot | \cdot | \cdot | \bullet | \bullet | \bullet | \cdot | \cdot | \cdot |

Classical 12-tone chromatic is $2^{\text {nd }}$ best

Other Chromatic Scales

- Which chromatics have the most simple ratios with the tonic, within tuning tolerance?

| Ratio | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |
| :---: |
| $3 / 2$ | \cdot | \cdot | \cdot | \cdot | \cdot | \cdot | \bullet | \cdot | \cdot | \cdot | \cdot | \bullet | \cdot | \bullet | \cdot | \cdot | \bullet | \cdot | \bullet |
| $4 / 3$ | \cdot | \cdot | \cdot | \cdot | \cdot | \cdot | \bullet | \cdot | \cdot | \cdot | \cdot | \bullet | \cdot | \bullet | \cdot | \cdot | \bullet | \cdot | \bullet |
| $5 / 3$ | \cdot | \cdot | \bullet | \cdot | \cdot | \bullet | \bullet | \cdot | \cdot | \bullet | \bullet | \cdot | \cdot | \bullet | \bullet | \cdot | \bullet | \bullet | \bullet |
| $5 / 4$ | \bullet | \cdot | \cdot | \bullet | \cdot | \cdot | \bullet | \cdot | \cdot | \bullet | \bullet | \cdot | \bullet | \bullet | \cdot | \bullet | \cdot | \cdot | \bullet |
| $7 / 4$ | \cdot | \cdot | \cdot | \cdot | \bullet | \bullet | \cdot | \cdot | \cdot | \bullet | \bullet | \cdot | \cdot | \cdot | \bullet | \bullet | \cdot | \cdot | \cdot |
| $6 / 5$ | \cdot | \cdot | \cdot | \cdot | \cdot | \bullet | \cdot | \cdot | \cdot | \bullet | \cdot | \cdot | \cdot | \bullet | \cdot | \cdot | \bullet | \bullet | \cdot |
| $7 / 5$ | \cdot | \bullet | \cdot | \bullet | \cdot | \bullet | \cdot |
| $8 / 5$ | \bullet | \cdot | \cdot | \bullet | \cdot | \cdot | \bullet | \cdot | \cdot | \bullet | \bullet | \cdot | \bullet | \bullet | \cdot | \bullet | \bullet | \cdot | \bullet |
| $9 / 5$ | \cdot | \bullet | \cdot | \cdot | \cdot | \cdot | \cdot | \bullet | \bullet | \cdot | \cdot | \cdot | \cdot | \bullet | \bullet | \bullet | \cdot | \cdot | \cdot |

Quarter-tone scale adds nothing 79

Other Chromatic Scales

- Which chromatics have the most simple ratios with the tonic, within tuning tolerance?

Ratio	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
$3 / 2$	\cdot	\cdot	\cdot	\cdot	\cdot	\cdot	\bullet	\cdot	\cdot	\cdot	\cdot	\bullet	\cdot	\bullet	\cdot	\cdot	\bullet	\cdot	\bullet
$4 / 3$	\cdot	\cdot	\cdot	\cdot	\cdot	\cdot	\bullet	\cdot	\cdot	\cdot	\cdot	\bullet	\cdot	\bullet	\cdot	\cdot	\bullet	\cdot	\bullet
$5 / 3$	\cdot	\cdot	\bullet	\cdot	\cdot	\bullet	\bullet	\cdot	\cdot	\bullet	\bullet	\cdot	\cdot	\bullet	\bullet	\cdot	\bullet	\bullet	\bullet
$5 / 4$	\bullet	\cdot	\cdot	\bullet	\cdot	\cdot	\bullet	\cdot	\cdot	\bullet	\bullet	\cdot	\bullet	\bullet	\cdot	\bullet	\cdot	\cdot	\bullet
$7 / 4$	\cdot	\cdot	\cdot	\cdot	\bullet	\bullet	\cdot	\cdot	\cdot	\bullet	\bullet	\cdot	\cdot	\cdot	\bullet	\bullet	\cdot	\cdot	\cdot
$6 / 5$	\cdot	\cdot	\cdot	\cdot	\cdot	\bullet	\cdot	\cdot	\cdot	\bullet	\cdot	\cdot	\cdot	\bullet	\cdot	\cdot	\bullet	\bullet	\cdot
$7 / 5$	\cdot	\bullet	\cdot	\bullet	\cdot	\bullet	\cdot												
$8 / 5$	\bullet	\cdot	\cdot	\bullet	\cdot	\cdot	\bullet	\cdot	\cdot	\bullet	\bullet	\cdot	\bullet	\bullet	\cdot	\bullet	\bullet	\cdot	\bullet
$9 / 5$	\cdot	\bullet	\cdot	\cdot	\cdot	\cdot	\cdot	\bullet	\bullet	\cdot	\cdot	\cdot	\cdot	\bullet	\bullet	\bullet	\cdot	\cdot	\cdot

19-tone chromatic dominates all others

Historical Sidelight

- Advantage of 19 -tone chromatic was discovered during Renaissance.
- Spanish organist and music theorist Franciso de Salinas (1530-1590) recommended 19-tone chromatic due to desirable tuning properties for traditional intervals.
- He used meantone temperament rather than equal temperament.

Historical Sidelight

- 19-tone chromatic has received some additional attention over the years
- W. S. B. Woolhouse (1835)
- M. J. Mandelbaum (1961)
- E. Blackwood (1992)
- W. A. Sethares (2005)

Demonstration: 19-note chromatic

- "Etude" by Easley Blackwood, 1980 (41:59)
- Uses entire 19-note scale
- Emphasis on traditional intervals
- Renaissance/Baroque sound
- Musical syntax is basically tonal
- We wish to introduce new intervals and a new syntax by using 11-note or other scales on the 19-note chromatic

Scales on 19-note chromatic

- But what are the best scales on this chromatic?
- 10-note scales have only 1 semitone, not enough for musical interest.
- 12-note scales have 5 semitones, but this makes scale notes very closely spaced.
- 11-note scales have 3 semitones, which seems a good compromise (1 more semitone than classical scales).

11-note scales on 19-note chromatic

- There are 77 scales satisfying our requirements

$$
\binom{8}{3}+\binom{7}{2}=77
$$

- Solve CP problem for all 77.
- For each scale, determine largest set of simple ratios that occur in at least one solution.
- 37 different sets of ratios appear in the 77 scales.

Simple ratios in 11-note scales

Simple ratios in 11-note scales

These 9 scales dominate all the others.

Simple ratios in 11-note scales

Ratio	A B C D E	F G H I J K L M N O	P Q R S T U V		X Y Z abcdefghi j k
3/2	$\bullet \bullet \bullet \bullet \bullet$	- • • • - • • • -	$\bullet \bullet \bullet \bullet \bullet \bullet \bullet$		$\cdots \cdot \cdot$
4/3	$\bullet \bullet \bullet \bullet \bullet$	- • - • - . . .	-		- • - • - • . . .
5/3	$\bullet \bullet \bullet \bullet$ - • •	- - .		- • - - • -
5/4	-	- • - . . - • -	-	\bullet	-
7/4	$\cdots \cdot \cdots$	-		-
6/5	- . . . -	- -	- - . . - •	-	- - - -
7/5	- - . -	-	- - • - • -		- • • • • •
8/5	-	- - -	\bullet - . - • .		- . . - • •
9/5	- - .	- - . . . - - - .	\bullet	\bullet	- . - . - . - . - .
	A - 72	K - 12,43	U-57		e - 13,29,44
	B - $69,70,71$	L-28	V - 42		f - 60,61
	C-68	M - 65,66	W-26,27		$\mathrm{g}-59$
	D - 74,75	N-63,64	X - 10,11,25		h - 18,35,36,50,51,54
	E-7.8	O-62	Y - 5,6		i - 17,34,49
	F-22,23	P - 40,41,55,56	Z - 15,31,32,46,47		j - 58
	G-73	Q - 20,21, $38,39,53$	a - 14,30,45		k - 16,33,48
	H-2	R - 19,37,52	b-9,24		

We will focus on 1 scale from each class.

4 attractive 11-note scales

Scale Class Ratios with tonic Minimal generators

Showing 2 simplest solutions for each scale.
One with simplest generators, one with simplest ratios to tonic.

Key structure of scales

Classical major scale																			
Note	1	$1 \#$	2	$2 \sharp$	3	4	$4 \#$	5	5\#	6	$6 \#$	7							
Interval			$2^{\text {nd }}$		$3^{\text {rd }}$	$4^{\text {th }}$		$5^{\text {th }}$		$6^{\text {th }}$		$7^{\text {th }}$							
Distance	0	5	2	3	4	1	5	1	4	3	2	5							
Scale 23 of 9 notes on 12-note chromatic																			
Note	1	1\#	2	3	4	5	5\#	6	7	$7 \#$	8	9							
Interval			$2^{\text {nd }}$	m3 ${ }^{\text {rd }}$	$3^{\text {rd }}$	$4^{\text {th }}$		$5^{\text {th }}$	$m 6^{\text {th }}$		$7^{\text {t }}$								
Distance	0	3	3	2	2	2	3	2	2	2	3	3							
Scale 7 of 11 notes on 19-note chromatic																			
Note	1	2	$2 \sharp$	3	$3 \#$	4	5	5\#	6	7	$7 \#$	8	8\#	9	9\#	10	10\#	11	11\#
Interval				$2^{\text {nd }}$		m3 ${ }^{\text {rd }}$	$3^{\text {rd }}$		$4^{\text {th }}$			$5^{\text {th }}$		$\mathrm{m} 6^{\text {th }}$					
Distance	0	8	3	5	5	4	5	5	4	5	5	4	5	5	4	5	5	3	8
Scale 27 of 11 notes on 19-note chromatic																			
Note	1	$1 \#$	2	3	$3 \#$	4	5	5\#	6	$6 \#$	7	$7 \#$	8	8\#	9	9\#	10	$10 \sharp$	11
Interval				$2^{\text {nd }}$		m3 ${ }^{\text {rd }}$	$3^{\text {rd }}$		$4^{\text {th }}$						$6^{\text {th }}$				
Distance	0	8	3	5	4	6	3	6	4	5	5	4	6	3	6	4	5	3	8
Scale 56 of 11 notes on 19-note chromatic																			
Note	1	$1 \#$	2	$2 \sharp$	3	4	$4 \sharp$	5	$5 \#$	6	$6 \sharp$	7	$7 \#$	8	9	9\#	10	$10 \sharp$	11
Interval						m3 ${ }^{\text {rd }}$						$5^{\text {th }}$		$m 6^{\text {th }}$	$6^{\text {th }}$				
Distance	0	8	3	5	6	2	7	3	6	4	4	6	3	7	2	6	5	3	8
Scale 72 of 11 notes on 19-note chromatic																			
Note	1	$1 \#$	2	$2 \#$	3	3\#	4	4\#	5	6	$6 \#$	7	7\#	8	9	$9 \#$	10	$10 \sharp$	11
Interval							$3^{\text {rd }}$		$4^{\text {th }}$			$5^{\text {th }}$		$m 6^{\text {th }}$	$6^{\text {th }}$				
Distance	0	8	3	5	6	2	7	3	6	4	4	6	3	7	2	6	5	3	8

Key structure of scales

4 attractive 9 -note scales

Scale	Class	Ratios with tonic		Minimal generators
7. 01101011111	E	$\frac{1}{1} \frac{25}{24} \frac{9}{8} \frac{6}{5} \frac{5}{4} \frac{4}{3} \frac{7}{5}$	$\begin{array}{lllll}\frac{3}{2} & \frac{8}{5} & \frac{12}{7} & \frac{25}{18}\end{array}$	
			$\begin{array}{llllll}\frac{3}{2} & \frac{8}{5} & \frac{12}{7} & \frac{13}{17}\end{array}$	
27. 10101111110	W	$\begin{array}{lllllllll}\frac{1}{1} & \frac{15}{14} & \frac{9}{8} & \frac{6}{5} & \frac{5}{4} & \frac{4}{3} & \frac{10}{7}\end{array}$	$\begin{array}{lllll}\frac{54}{35} & \frac{5}{3} & \frac{9}{5} & \frac{27}{14}\end{array}$	
			$\begin{array}{lllll}\frac{14}{9} & \frac{5}{3} & \frac{9}{5} & \frac{35}{18}\end{array}$	
56.11011110110	P	$\begin{array}{lllllllll}1 & \frac{15}{14} & \frac{7}{6} & \frac{6}{5} & \frac{9}{7} & \frac{7}{5} & \frac{3}{2}\end{array}$	$\begin{array}{llllll}\frac{8}{5} & \frac{5}{3} & \frac{9}{5} & \frac{27}{14}\end{array}$	
		$\frac{1}{1} \frac{13}{12} \quad \frac{7}{6} \quad \frac{6}{5} \frac{9}{7} \frac{7}{5} \frac{3}{2}$	$\begin{array}{lllll}\frac{8}{5} & \frac{5}{3} & \frac{9}{5} & \frac{35}{18}\end{array}$	$\frac{3}{2} \frac{13}{7} \quad \frac{5}{3} \frac{3}{2} \quad \frac{7}{5} 5 \frac{5}{3} \frac{3}{2} \quad \frac{3}{2} \quad \frac{5}{3} \frac{3}{2} \quad \frac{5}{3}$
72.11110110110	A		$\begin{array}{lllll}\frac{8}{5} & \frac{5}{3} & \frac{9}{5} & \frac{35}{18}\end{array}$	
		$\frac{1}{1} \frac{15}{14} \frac{7}{6} \quad \frac{5}{4} \frac{4}{3} \frac{7}{5} \quad \frac{3}{2}$	$\begin{array}{lllll}\frac{8}{5} & \frac{5}{3} & \frac{9}{5} & \frac{27}{14}\end{array}$	

Further focus on scale 72, which has largest number of simple ratios.

Demonstration: 11-note scale

- Software
- Hex MIDI sequencer for scales satisfying Myhill's property
- We trick it into generating a 19-tone chromatic
- Viking synthesizer for use with Hex
- LoopMIDI virtual MIDI cable

Harmonic Comparison

- Classic major scale
- Major triad C:E:G = 4:5:6, major 7 chord C:E:G:B = 8:10:12:15
- Minor triad $A: C: E=10: 12: 15$, minor 7 chord $A: C: E: G=10: 12: 15: 18$
- Dominant 7 chord G:B:D:F = 36:45:54:64
- Tensions (from jazz) C E G B D F\# A
- Scale 72
- Major triad 1-4-7 = 4:5:6
- Minor triad 5-8-12 = 10:12:15
- Minor 7 chord 9-12-15-18 = 10:12:15:18
- New chord 9-12-14-18 = 5:6:7:9
- New chord 1-3-5-9 = 6:7:8:10
- New chord 3-5-9-12 = 7:8:10:12
- New chord 5-9-12-15 = 4:5:6:7
- Tensions 1-4-7-10-13-15b-16-19-22

11-note Scales with Adjacent Keys

- There are eleven 11-note scales on a 19-note chromatic in which keys can differ by one note.
- As in classical 7-note scales.
- One can therefore cycle through all keys.
- This may be seen as a desirable property.
- The key distances are the same for all these scales.

Scales with most attractive intervals

That's it.

