Searching for the Perfect Musical Scale

John Hooker Carnegie Mellon University

October 2022

- Music is much more than mathematics and combinatorics.
 - But almost all music relies on **mathematical structure**.
 - ... even when we are not aware of it.

- Oldest known musical instrument uses tones with mathematical relationships.
 - Prehistoric flute, from ice-age cave in Germany, 40,000 bce.
 - Based on notes of pentatonic scale: frequency ratios $1, \frac{9}{8}, \frac{5}{4}, \frac{3}{2}, \frac{5}{3}$
 - Same notes are in our modern scales!

- The 7 liberal arts
 - Trivium arts of the mind
 - logic
 - grammar
 - rhetoric
 - Quadrivium arts of matter
 - mathematics
 - music (viewed as applied math!)
 - geometry
 - astronomy (applied geometry)

- All elements of music are based on mathematical structure:
 - Harmony mathematics of overtone series.
 - **Rhythm** e.g., Indian ragas
 - Melody combinatorial structure of Western polyphonic music.
 - Scales foundation for harmony, melody, counterpoint, key relationships, etc.

Harmony

Perfect fifth

C:G = 2:3

- Acoustic instruments produce multiple harmonic partials.
 - Frequency of partial
 integral multiple of
 frequency of fundamental.
 - Coincidence of partials makes chords with simple ratios easy to recognize.

Harmony

Octave

C:C = 1:2

- Acoustic instruments produce multiple harmonic partials.
 - Frequency of partial
 integral multiple of
 frequency of fundamental.
 - Coincidence of partials makes chords with simple ratios easy to recognize.

Harmony

Major triad

- Acoustic instruments produce multiple harmonic partials.
 - Frequency of partial = integral multiple of frequency of fundamental.
 - Coincidence of partials makes chords with simple ratios easy to recognize.

Polyphony

- A challenging combinatorial problem.
 - Relationships among multiple voices must be intelligible to the ear.
- Classic example: Bach's chorale harmonizations.
 - AI-based harmonization: follows some 350 rules, result tends to be mediocre.
 - Human harmonization: requires a highly skilled composer, result can be beautiful and inspiring.

Harmonization: Bach

Passion Chorale

From St Matthew Passion (1727)

Harmonization: Bach

rit.

Harmonization: Amateur

Advantages of Classical Scales

- Pitch frequencies have **simple ratios**.
 - Rich and intelligible harmonies
- Multiple keys based on underlying chromatic scale with tempered tuning.
 - Can play all keys on instrument with fixed tuning.
 - Complex musical structure.
- Can we find **new scales** with these same properties?
 - Constraint programming is well suited to solve the problem.

- A classical scale can start from any pitch in a **chromatic** scale with 12 **semitone** intervals.
 - Resulting in 12 keys.
 - An instrument with 12 pitches (modulo octaves) can play 12 different keys.
 - Can move to a different key by changing only a few notes of the scale.

Let C major be the tonic key

distance 3 from C major

Let C major be the tonic key

Let C major be the tonic key

~

• Chromatic pitches ae **tempered** so that intervals will have approximately correct ratios in all keys.

- Modern practice is equal temperament.

$$\frac{\text{freq of note } k}{\text{freq of note } 1} = 2^{(k-1)/12}$$

- Resulting error is $\leq \pm 0.9\%$

Note	Perfect	Tempered	Error
	ratio	ratio	%
С	1/1	1.00000	0.000
D	9/8	1.12246	-0.226
Е	5/4	1.25992	+0.787
F	4/3	1.33484	+0.113
G	3/2	1.49831	-0.113
А	5/3	1.68179	+0.899
В	15/8	1.88775	+0.675

- Scales must be **diatonic**
 - Adjacent notes are 1 or 2 semitones apart.
- We consider *m*-note scales on an *n*-tone chromatic
 - In binary representation, let m_0 = number of 0s m_1 = number of 1s
 - Then $m_0 = 2m n$, $m_1 = n m$
 - In a major scale 1101110, there are *m* = 7 notes on an *n* = 12-tone chromatic
 - There are $m_0 = 2.7 12 = 2$ zeros
 - There are $m_1 = 12 7 = 5$ ones
 - 0 =semitone interval
 - 1 = whole tone interval (2 semitones)

- Semitones should not be bunched together.
 - One criterion: Myhill's property
 - All intervals of a given size should contain k or k + 1 semitones for some k.
 - For example, in a major scale:
 - All fifths are 6 or 7 semitones
 - All thirds are 3 or 4 semitones
 - All seconds are 1 or 2 semitones, etc.
 - Few scales satisfy Myhill's property

- Semitones should not be bunched together.
 - We minimize the number of pairs of adjacent 0s and pairs of adjacent 1s.
 - If $m_0 \ge m_1$,

number of adjacent $0s = m_0 - \min\{m_0, m_1\}$ number of adjacent 1s = 0

 $- \text{ If } m_1 \ge m_0,$

number of adjacent $1s = m_1 - \min\{m_0, m_1\}$ number of adjacent 0s = 0

 In a major scale 1101110, number of pairs of adjacent 0s = 0 number of pairs of adjacent 1s = 5 - min{2,5} = 3

- Semitones should not be bunched together.
 - The number of scales satisfying this property is

$$\binom{\max\{m_0, m_1\}}{\min\{m_0, m_1\}} + \binom{\max\{m_0, m_1\} - 1}{\min\{m_0, m_1\} - 1}$$

• The number of 7-note scales on a 12-tone chromatic satisfying this property is

$$\binom{5}{2} + \binom{4}{1} = 14$$

- Can have fewer than *n* keys.
 - A "mode of limited transposition"
 - Whole tone scale 111111 (Debussy) has 2 keys
 - Scale 110110110 has 5 keys
 - Count number of semitones in repeating sequence

Temperament Requirements

- Tolerance for inaccurate tuning
 - At most ±0.9%
 - Don't exceed tolerance of classical equal temperament

Previous Work

- Scales on a tempered chromatic
 - Bohlen-Pierce scale (1978, Mathews et al. 1988)
 - 9 notes on 13-note chromatic spanning a 12th
 - Music for Bohlen-Pierce scale
 - R.Boulanger, A. Radunskaya, J. Appleton
 - Scales of limited transposition
 - O. Messiaen
- Microtonal scales
 - Quarter-tone scale (24-tone equally tempered chromatic)
 - Bartok, Berg, Bloch, Boulez, Copeland, Enescu, Ives, Mancini.
 - 15- or 19-tone equally tempered chromatic
 - E. Blackwood

Previous Work

- "Super just" scales (perfect intervals, 1 key)
 - H. Partch (43 tones)
 - W. Carlos (12 tones)
 - L. Harrison (16 tones)
 - W. Perret (19 tones)
 - J. Chalmers (19 tones)
 - M. Harison (24 tones)
- Combinatorial properties
 - G. J. Balzano (1980)
 - T. Noll (2005, 2007, 2014)
 - E. Chew (2014), M. Pearce (2002), Zweifel (1996)
- Frequency of each note should have a simple ratio (between 1 and 2) with some other note
 - Equating notes an octave apart.
 - Let $f_i = \text{freq ratio of note } i \text{ to tonic (note 1)}, f_1 = 1.$
 - For major scale CDEFGAB,

$$(f_1,\ldots,f_7) = (1,\frac{9}{8},\frac{5}{4},\frac{4}{3},\frac{3}{2},\frac{5}{3},\frac{15}{8})$$

- For example, B (15/8) has a simple ratio 3/2 with E (5/4) $\frac{f_7}{f_3} = \frac{3}{2}$
- D octave higher (9/4) has ratio 3/2 with G (3/2)

$$\frac{2f_2}{f_5} = \frac{3}{2}$$

- However, this allows two or more subsets of unrelated pitches.
 - Simple ratios with respect to pitches in same subset, but not in other subsets.
 - So we use a **recursive** condition.
 - For some permutation of notes, each note should have simple ratio with previous note.
 - First note in the permutation is the tonic.

- Let the simple ratios be **generators** r_1, \ldots, r_p .
 - Let $(\pi_1, ..., \pi_m)$ be a permutation of 1, ..., *m* with $\pi_1 = 1$.
 - For each $i \in \{2, ..., m\}$, we require

$$1 < f_{\pi_i} < 2$$

and

$$\frac{f_{\pi_i}}{f_{\pi_j}} = r_q \text{ or } \frac{2f_{\pi_j}}{f_{\pi_i}} = r_q \text{ or } \frac{f_{\pi_j}}{f_{\pi_i}} = r_q \text{ or } \frac{2f_{\pi_i}}{f_{\pi_j}} = r_q$$

for some $j \in \{1, ..., i - 1\}$ and some $q \in \{1, ..., p\}$.

- Ratio with previous note in the permutation π must be a generator.
 - Ratios with previous 2 or 3 notes in the permutation will be simple (product of generators)
 - Ratio with tonic need not be simple.

- Observation: No need to consider both r_q and $2/r_q$ as generators.
 - So we consider only reduced fractions with odd numerators (in order of simplicity):

$$\frac{3}{2}, \frac{5}{3}, \frac{5}{4}, \frac{7}{4}, \frac{7}{5}, \frac{9}{5}, \frac{7}{6}, \frac{11}{6}, \frac{9}{7}, \frac{11}{7}, \frac{13}{7}, \frac{9}{8}, \frac{11}{8}, \frac{13}{8}, \frac{15}{8}, \frac{11}{9}, \frac{13}{9}, \frac{17}{9}, \dots$$

- CP model readily accommodates variable indices f_{π_i}
- Replace f_i with fraction a_i/b_i in lowest terms.

$$\frac{3}{2}, \frac{5}{3}, \frac{5}{4}, \frac{7}{4}, \frac{7}{5}, \frac{9}{5}, \frac{7}{6}, \frac{11}{6}, \frac{9}{7}, \frac{11}{7}, \frac{13}{7}, \frac{9}{8}, \frac{11}{8}, \frac{13}{8}, \frac{15}{8}, \frac{11}{9}, \frac{13}{9}, \frac{17}{9}, \dots$$

alldiff
$$(\pi_1, \ldots, \pi_m)$$

 $\pi_1 = a_1 = b_1 = 1$
 $1 < \frac{a_i}{b_i} < 2$, coprime (a_i, b_i) , $i = 1, \ldots, m$
 $\frac{a_{i-1}}{b_{i-1}} < \frac{a_i}{b_i}$, $i = 2, \ldots, m$
 $\bigvee_{j < i} \left[(\pi_i > \pi_j) \Rightarrow \left(\frac{a_{\pi_i}/b_{\pi_i}}{a_{\pi_j}/b_{\pi_j}} \in G \lor \frac{2a_{\pi_i}/b_{\pi_i}}{a_{\pi_i}/b_{\pi_i}} \in G \right) \right]$, $i = 2, \ldots, m$
 $\bigvee_{j < i} \left[(\pi_i < \pi_j) \Rightarrow \left(\frac{a_{\pi_j}/b_{\pi_j}}{a_{\pi_i}/b_{\pi_i}} \in G \lor \frac{2a_{\pi_i}/b_{\pi_i}}{a_{\pi_j}/b_{\pi_j}} \in G \right) \right]$, $i = 2, \ldots, m$
 $\frac{|a_i/b_i - 2^{(t_i - 1)/n}|}{2^{(t_i - 1)/n}} \le 0.009$, $i = 1, \ldots, m$
 $\pi_i \in \{1, \ldots, m\}$, $a_i \in \{1, \ldots, 2M\}$, $b_i \in \{1, \ldots, M\}$, $i = 1, \ldots, m$

$$\begin{aligned} & \text{alldiff}(\pi_1, \dots, \pi_m) & \longleftarrow \text{ permutation} \\ & \pi_1 = a_1 = b_1 = 1 \\ & 1 < \frac{a_i}{b_i} < 2, \text{ coprime}(a_i, b_i), \ i = 1, \dots, m \\ & \frac{a_{i-1}}{b_{i-1}} < \frac{a_i}{b_i}, \ i = 2, \dots, m \\ & \bigvee_{j < i} \left[(\pi_i > \pi_j) \Rightarrow \left(\frac{a_{\pi_i}/b_{\pi_i}}{a_{\pi_j}/b_{\pi_j}} \in G \lor \frac{2a_{\pi_i}/b_{\pi_i}}{a_{\pi_i}/b_{\pi_i}} \in G \right) \right], \ i = 2, \dots, m \\ & \bigvee_{j < i} \left[(\pi_i < \pi_j) \Rightarrow \left(\frac{a_{\pi_j}/b_{\pi_j}}{a_{\pi_i}/b_{\pi_i}} \in G \lor \frac{2a_{\pi_i}/b_{\pi_i}}{a_{\pi_j}/b_{\pi_j}} \in G \right) \right], \ i = 2, \dots, m \\ & \frac{|a_i/b_i - 2^{(t_i - 1)/n}|}{2^{(t_i - 1)/n}} \le 0.009, \ i = 1, \dots, m \\ & \pi_i \in \{1, \dots, m\}, \ a_i \in \{1, \dots, 2M\}, \ b_i \in \{1, \dots, M\}, \ i = 1, \dots, m \end{aligned}$$

alldiff
$$(\pi_1, \dots, \pi_m)$$

 $\pi_1 = a_1 = b_1 = 1$ \leftarrow tonic note
 $1 < \frac{a_i}{b_i} < 2, \text{ coprime}(a_i, b_i), i = 1, \dots, m$
 $\frac{a_{i-1}}{b_{i-1}} < \frac{a_i}{b_i}, i = 2, \dots, m$
 $\bigvee_{j < i} \left[(\pi_i > \pi_j) \Rightarrow \left(\frac{a_{\pi_i}/b_{\pi_i}}{a_{\pi_j}/b_{\pi_j}} \in G \lor \frac{2a_{\pi_i}/b_{\pi_i}}{a_{\pi_i}/b_{\pi_i}} \in G \right) \right], i = 2, \dots, m$
 $\bigvee_{j < i} \left[(\pi_i < \pi_j) \Rightarrow \left(\frac{a_{\pi_j}/b_{\pi_j}}{a_{\pi_i}/b_{\pi_i}} \in G \lor \frac{2a_{\pi_i}/b_{\pi_i}}{a_{\pi_j}/b_{\pi_j}} \in G \right) \right], i = 2, \dots, m$
 $\frac{|a_i/b_i - 2^{(t_i-1)/n}|}{2^{(t_i-1)/n}} \le 0.009, i = 1, \dots, m$
 $\pi_i \in \{1, \dots, m\}, a_i \in \{1, \dots, 2M\}, b_i \in \{1, \dots, M\}, i = 1, \dots, m$

alldiff
$$(\pi_1, ..., \pi_m)$$

 $\pi_1 = a_1 = b_1 = 1$
 $1 < \frac{a_i}{b_i} < 2$, coprime (a_i, b_i) , $i = 1, ..., m$
 $\frac{a_{i-1}}{b_{i-1}} < \frac{a_i}{b_i}$, $i = 2, ..., m$
 $\bigvee_{j < i} \left[(\pi_i > \pi_j) \Rightarrow \left(\frac{a_{\pi_i}/b_{\pi_i}}{a_{\pi_j}/b_{\pi_j}} \in G \lor \frac{2a_{\pi_i}/b_{\pi_i}}{a_{\pi_i}/b_{\pi_i}} \in G \right) \right]$, $i = 2, ..., m$
 $\bigvee_{j < i} \left[(\pi_i < \pi_j) \Rightarrow \left(\frac{a_{\pi_j}/b_{\pi_j}}{a_{\pi_i}/b_{\pi_i}} \in G \lor \frac{2a_{\pi_i}/b_{\pi_i}}{a_{\pi_j}/b_{\pi_j}} \in G \right) \right]$, $i = 2, ..., m$
 $\frac{|a_i/b_i - 2^{(t_i-1)/n}|}{2^{(t_i-1)/n}|} \le 0.009$, $i = 1, ..., m$
 $\pi_i \in \{1, ..., m\}$, $a_i \in \{1, ..., 2M\}$, $b_i \in \{1, ..., M\}$, $i = 1, ..., m$

alldiff
$$(\pi_1, \ldots, \pi_m)$$

 $\pi_1 = a_1 = b_1 = 1$
 $1 < \frac{a_i}{b_i} < 2, \text{ coprime}(a_i, b_i), i = 1, \ldots, m$
 $\frac{a_{i-1}}{b_{i-1}} < \frac{a_i}{b_i}, i = 2, \ldots, m$ symmetry breaking
 $\bigvee_{j < i} \left[(\pi_i > \pi_j) \Rightarrow \left(\frac{a_{\pi_i}/b_{\pi_i}}{a_{\pi_j}/b_{\pi_j}} \in G \lor \frac{2a_{\pi_j}/b_{\pi_j}}{a_{\pi_i}/b_{\pi_i}} \in G \right) \right], i = 2, \ldots, m$
 $\bigvee_{j < i} \left[(\pi_i < \pi_j) \Rightarrow \left(\frac{a_{\pi_j}/b_{\pi_j}}{a_{\pi_i}/b_{\pi_i}} \in G \lor \frac{2a_{\pi_i}/b_{\pi_i}}{a_{\pi_j}/b_{\pi_j}} \in G \right) \right], i = 2, \ldots, m$
 $\frac{|a_i/b_i - 2^{(t_i-1)/n}|}{2^{(t_i-1)/n}} \le 0.009, i = 1, \ldots, m$
 $\pi_i \in \{1, \ldots, m\}, a_i \in \{1, \ldots, 2M\}, b_i \in \{1, \ldots, M\}, i = 1, \ldots, m$

alldiff
$$(\pi_1, \ldots, \pi_m)$$

 $\pi_1 = a_1 = b_1 = 1$
 $1 < \frac{a_i}{b_i} < 2$, coprime (a_i, b_i) , $i = 1, \ldots, m$
 $\frac{a_{i-1}}{b_{i-1}} < \frac{a_i}{b_i}$, $i = 2, \ldots, m$ simple ratios
 $\bigvee_{j < i} \left[(\pi_i > \pi_j) \Rightarrow \left(\frac{a_{\pi_i}/b_{\pi_i}}{a_{\pi_j}/b_{\pi_j}} \in G \lor \frac{2a_{\pi_i}/b_{\pi_i}}{a_{\pi_i}/b_{\pi_i}} \in G \right) \right]$, $i = 2, \ldots, m$
 $\bigvee_{j < i} \left[(\pi_i < \pi_j) \Rightarrow \left(\frac{a_{\pi_j}/b_{\pi_j}}{a_{\pi_i}/b_{\pi_i}} \in G \lor \frac{2a_{\pi_i}/b_{\pi_i}}{a_{\pi_j}/b_{\pi_j}} \in G \right) \right]$, $i = 2, \ldots, m$
 $\frac{|a_i/b_i - 2^{(t_i-1)/n}|}{2^{(t_i-1)/n}} \le 0.009$, $i = 1, \ldots, m$
 $\pi_i \in \{1, \ldots, m\}$, $a_i \in \{1, \ldots, 2M\}$, $b_i \in \{1, \ldots, M\}$, $i = 1, \ldots, m$

alldiff
$$(\pi_1, \ldots, \pi_m)$$

 $\pi_1 = a_1 = b_1 = 1$
 $1 < \frac{a_i}{b_i} < 2$, coprime (a_i, b_i) , $i = 1, \ldots, m$
 $\frac{a_{i-1}}{b_{i-1}} < \frac{a_i}{b_i}$, $i = 2, \ldots, m$
 $\bigvee_{j < i} \left[(\pi_i > \pi_j) \Rightarrow \left(\frac{a_{\pi_i}/b_{\pi_i}}{a_{\pi_j}/b_{\pi_j}} \in G \lor \frac{2a_{\pi_i}/b_{\pi_i}}{a_{\pi_i}/b_{\pi_i}} \in G \right) \right]$, $i = 2, \ldots, m$
 $\bigvee_{j < i} \left[(\pi_i < \pi_j) \Rightarrow \left(\frac{a_{\pi_j}/b_{\pi_j}}{a_{\pi_i}/b_{\pi_i}} \in G \lor \frac{2a_{\pi_i}/b_{\pi_i}}{a_{\pi_j}/b_{\pi_j}} \in G \right) \right]$, $i = 2, \ldots, m$
 $\frac{|a_i/b_i - 2^{(t_i-1)/n}|}{2^{(t_i-1)/n}} \le 0.009$, $i = 1, \ldots, m$
 $\pi_i \in \{1, \ldots, m\}$, $a_i \in \{1, \ldots, 2M\}$, $b_i \in \{1, \ldots, M\}$, $i = 1, \ldots, m$

alldiff
$$(\pi_1, \dots, \pi_m)$$

 $\pi_1 = a_1 = b_1 = 1$
 $1 < \frac{a_i}{b_i} < 2$, coprime (a_i, b_i) , $i = 1, \dots, m$
 $\frac{a_{i-1}}{b_{i-1}} < \frac{a_i}{b_i}$, $i = 2, \dots, m$
 $\bigvee_{j < i} \left[(\pi_i > \pi_j) \Rightarrow \left(\frac{a_{\pi_i}/b_{\pi_i}}{a_{\pi_j}/b_{\pi_j}} \in G \lor \frac{2a_{\pi_i}/b_{\pi_i}}{a_{\pi_i}/b_{\pi_i}} \in G \right) \right]$, $i = 2, \dots, m$
 $\bigvee_{j < i} \left[(\pi_i < \pi_j) \Rightarrow \left(\frac{a_{\pi_j}/b_{\pi_j}}{a_{\pi_i}/b_{\pi_i}} \in G \lor \frac{2a_{\pi_i}/b_{\pi_i}}{a_{\pi_j}/b_{\pi_j}} \in G \right) \right]$, $i = 2, \dots, m$
 $\frac{|a_i/b_i - 2^{(t_i-1)/n}|}{2^{(t_i-1)/n}} \le 0.009$, $i = 1, \dots, m$
 $\pi_i \in \{1, \dots, m\}$, $a_i \in \{1, \dots, 2M\}$, $b_i \in \{1, \dots, M\}$, $i = 1, \dots, m$

alldiff
$$(\pi_1, ..., \pi_m)$$

 $\pi_1 = a_1 = b_1 = 1$
 $1 < \frac{a_i}{b_i} < 2, \text{ coprime}(a_i, b_i), i = 1, ..., m$
 $\frac{a_{i-1}}{b_{i-1}} < \frac{a_i}{b_i}, i = 2, ..., m$
 $\bigvee_{j < i} \left[(\pi_i > \pi_j) \Rightarrow \left(\frac{a_{\pi_i}/b_{\pi_i}}{a_{\pi_j}/b_{\pi_j}} \in G \lor \frac{2a_{\pi_i}/b_{\pi_i}}{a_{\pi_i}/b_{\pi_i}} \in G \right) \right], i = 2, ..., m$
 $\bigvee_{j < i} \left[(\pi_i < \pi_j) \Rightarrow \left(\frac{a_{\pi_j}/b_{\pi_j}}{a_{\pi_i}/b_{\pi_i}} \in G \lor \frac{2a_{\pi_i}/b_{\pi_i}}{a_{\pi_j}/b_{\pi_j}} \in G \right) \right], i = 2, ..., m$
 $\frac{|a_i/b_i - 2^{(t_i-1)/n}|}{2^{(t_i-1)/n}} \le 0.009, i = 1, ..., m$
 $\pi_i \in \{1, ..., m\}, a_i \in \{1, ..., 2M\}, b_i \in \{1, ..., M\}, i = 1, ..., m$
chromatic tone corresponding to note i
 43

Scales on a 12-note chromatic

- Use the generators mentioned earlier.
 - There are **multiple solutions** for each scale.
 - For each note, compute the **minimal generator**, or the simplest ratio with another note.
 - Select the solution with the simplest ratios with the tonic and/or simplest minimal generators.
 - The 7-note scales with a single generator 3/2 are precisely the classical modes!

Scale	Solns	Ra	atic)S 1	wit	h t	on	ic	Mi	niı	ma	al g	gei	ne	rat	ors
1.0101111	27	$\frac{1}{1}$	$\frac{16}{15}$	$\frac{6}{5}$	$\frac{5}{4}$	$\frac{45}{32}$	$\frac{8}{5}$	$\frac{16}{9}$	$\frac{5}{3}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{5}{4}$	$\frac{9}{8}$	$\frac{3}{2}$	$\frac{5}{3}$	
2.0110111	10	$\frac{1}{1}$.	$\frac{18}{17}$	$\frac{6}{5}$	$\frac{4}{3}$	$\frac{24}{17}$	$\frac{8}{5}$	$\frac{16}{9}$	$\frac{3}{2}$	Locrian mode						
3. 0111011	18	$\frac{1}{1}$.	$\frac{16}{15}$	$\frac{6}{5}$	$\frac{4}{3}$	$\frac{3}{2}$	$\frac{8}{5}$	$\frac{16}{9}$	$\frac{3}{2}$	Phrygian mode						
4. 0111101	26	$\frac{1}{1}$.	$\frac{16}{15}$	$\frac{6}{5}$	$\frac{4}{3}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{16}{9}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{5}{3}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{3}{2}$	
$5.\ 1010111$	6	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{4}{3}$	$\frac{45}{32}$	$\frac{8}{5}$	$\frac{16}{9}$	$\frac{3}{2}$	$\frac{5}{4}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{5}{4}$	$\frac{3}{2}$	$\frac{3}{2}$	
6. 1011011	6	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{4}{3}$	$\frac{3}{2}$	$\frac{8}{5}$	$\frac{16}{9}$	$\frac{3}{2}$	Aeolian mode (natural minor)						
7. 1011101	10	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{4}{3}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{16}{9}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{3}{2}$	Dorian mode
8. 1011110	27	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{4}{3}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{15}{8}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{5}{3}$	melodic minor
9. 1101011	14	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{5}{4}$	$\frac{4}{3}$	$\frac{3}{2}$	$\frac{8}{5}$	$\frac{16}{9}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{9}{8}$	
10. 1101101	9	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{5}{4}$	$\frac{4}{3}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{16}{9}$	$\frac{3}{2}$	Mixolydian mode						
11. 1101110	17	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{5}{4}$	$\frac{4}{3}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{15}{8}$	$\frac{3}{2}$	Ionian mode (major)						
12. 1110101	10	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{5}{4}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{16}{9}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{5}{4}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	
13. 1110110	16	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{5}{4}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{15}{8}$	$\frac{3}{2}$	Lydian mode						
14. 1111010	34	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{5}{4}$	$\frac{45}{32}$	$\frac{8}{5}$	$\frac{5}{3}$	$\frac{15}{8}$	$\frac{5}{3}$	$\frac{5}{3}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{5}{4}$	$\frac{3}{2}$	$\frac{3}{2}$	

Scale	Solns	Ratios with tonic	Minimal generators
1.0101111	27	$\frac{1}{1} \frac{16}{15} \frac{6}{5} \frac{5}{4} \frac{45}{32} \frac{8}{5} \frac{16}{9}$	$\frac{5}{3} \frac{3}{2} \frac{3}{2} \frac{5}{4} \frac{9}{8} \frac{3}{2} \frac{5}{3}$
2.0110111	10	$\frac{1}{1} \frac{18}{17} \frac{6}{5} \frac{4}{3} \frac{24}{17} \frac{8}{5} \frac{16}{9}$	$\frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2}$ Locrian mode
3. 0111011	18	$\frac{1}{1} \frac{16}{15} \frac{6}{5} \frac{4}{3} \frac{3}{2} \frac{8}{5} \frac{16}{9}$	$\frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2}$ Phrygian mode
4. 0111101	26	$\frac{1}{1} \frac{16}{15} \frac{6}{5} \frac{4}{3} \frac{3}{2} \frac{5}{3} \frac{16}{9}$	$\frac{3}{2} \frac{5}{3} \frac{5}{3} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{5}{3} \frac{3}{2}$ Single generator
$5.\ 1010111$	6	$\frac{1}{1} \frac{9}{8} \frac{6}{5} \frac{4}{3} \frac{45}{32} \frac{8}{5} \frac{16}{9}$	$\frac{3}{2}$ $\frac{5}{4}$ $\frac{3}{2}$ $\frac{3}{2}$ $\frac{5}{4}$ $\frac{3}{2}$ $\frac{3}{2}$
6. 1011011	6	$\frac{1}{1} \frac{9}{8} \frac{6}{5} \frac{4}{3} \frac{3}{2} \frac{8}{5} \frac{16}{9}$	$\frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2}$ Aeolian mode (natural minor)
7. 1011101	10	$\frac{1}{1} \frac{9}{8} \frac{6}{5} \frac{4}{3} \frac{3}{2} \frac{5}{3} \frac{16}{9}$	$\frac{3}{2} \frac{3}{2} \frac{5}{3} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{5}{3} \frac{3}{2}$ Dorian mode
8. 1011110	27	$\frac{1}{1} \frac{9}{8} \frac{6}{5} \frac{4}{3} \frac{3}{2} \frac{5}{3} \frac{15}{8}$	$\frac{3}{2} \frac{3}{2} \frac{5}{3} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{5}{3} \frac{5}{3}$ melodic minor
9. 1101011	14	$\frac{1}{1} \frac{9}{8} \frac{5}{4} \frac{4}{3} \frac{3}{2} \frac{8}{5} \frac{16}{9}$	$\frac{3}{2} \frac{3}{2} \frac{5}{3} \frac{3}{2} \frac{3}{2} \frac{5}{3} \frac{9}{8}$
10. 1101101	9	$\frac{1}{1} \frac{9}{8} \frac{5}{4} \frac{4}{3} \frac{3}{2} \frac{5}{3} \frac{16}{9}$	$\frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2}$ Mixolydian mode
11. 1101110	17	$\frac{1}{1} \frac{9}{8} \frac{5}{4} \frac{4}{3} \frac{3}{2} \frac{5}{3} \frac{15}{8}$	$\frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2}$ Ionian mode (major)
12. 1110101	10	$\frac{1}{1} \frac{9}{8} \frac{5}{4} \frac{45}{32} \frac{3}{2} \frac{5}{3} \frac{16}{9}$	$\frac{3}{2}$ $\frac{3}{2}$ $\frac{3}{2}$ $\frac{5}{4}$ $\frac{3}{2}$ $\frac{3}{2}$ $\frac{3}{2}$
13. 1110110	16	$\frac{1}{1} \frac{9}{8} \frac{5}{4} \frac{45}{32} \frac{3}{2} \frac{5}{3} \frac{15}{8}$	$\frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2}$ Lydian mode
14. 1111010	34	$\frac{1}{1} \frac{9}{8} \frac{5}{4} \frac{45}{32} \frac{8}{5} \frac{5}{3} \frac{15}{8}$	$\frac{5}{3} \ \frac{5}{3} \ \frac{3}{2} \ \frac{3}{2} \ \frac{5}{4} \ \frac{3}{2} \ \frac{3}{2}$

Scale	Solns	Keys	R	atio	\mathbf{S}	wit	h t	oni	с			Mi	niı	ma	al g	gei	ne	rat	or	\mathbf{S}	_
1. 111111	6	2	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{5}{4}$	$\frac{45}{32}$	$\frac{8}{5}$	$\frac{16}{9}$				$\frac{5}{4}$	$\frac{5}{4}$	$\frac{5}{4}$	$\frac{5}{4}$	$\frac{5}{4}$	$\frac{9}{5}$				_
1.01010101	>50	3	$\frac{1}{1}$	$\frac{16}{15}$	$\frac{6}{5}$	$\frac{5}{4}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{16}{9}$		$\frac{3}{2}$	$\frac{5}{3}$	$\frac{5}{3}$	$\frac{3}{2}$	$\frac{9}{8}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{5}{3}$,
2. 10101010	>50	3	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{4}{3}$	$\frac{45}{32}$	$\frac{8}{5}$	$\frac{5}{3}$	$\frac{15}{8}$		$\frac{3}{2}$	$\frac{5}{3}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{3}{2}$		
21. 100001010	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{5}{4}$	$\frac{4}{3}$	$\frac{45}{32}$	$\frac{8}{5}$	$\frac{5}{3}$	$\frac{15}{8}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{3}{2}$	I						
22. 100010010	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{5}{4}$	$\frac{4}{3}$	$\frac{3}{2}$	$\frac{8}{5}$	$\frac{5}{3}$	$\frac{15}{8}$	$\frac{3}{2}$									
23. 100010100	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{5}{4}$	$\frac{4}{3}$	$\frac{3}{2}$	$\frac{8}{5}$	$\frac{16}{9}$	$\frac{15}{8}$	$\frac{3}{2}$									
24. 100100010	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{5}{4}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{8}{5}$	$\frac{5}{3}$	$\frac{15}{8}$	$\frac{3}{2}$									
$25.\ 100100100$	>50	4	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{5}{4}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{8}{5}$	$\frac{16}{9}$	$\frac{15}{8}$	$\frac{3}{2}$	$\frac{9}{5}$	$\frac{3}{2}$							
26. 100101000	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{5}{4}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{16}{9}$	$\frac{15}{8}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{9}{8}$	$\frac{3}{2}$	
27. 101000010	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{4}{3}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{8}{5}$	$\frac{5}{3}$	$\frac{15}{8}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{3}{2}$							
28. 101000100	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{4}{3}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{8}{5}$	$\frac{16}{9}$	$\frac{15}{8}$	$\frac{3}{2}$									
29. 101001000	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{4}{3}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{16}{9}$	$\frac{15}{8}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{3}{2}$	$\frac{3}{2}$	
30. 101010000	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{4}{3}$	$\frac{45}{32}$	$\frac{8}{5}$	$\frac{5}{3}$	$\frac{16}{9}$	$\frac{15}{8}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{3}{2}$	$\frac{3}{2}$	55

Scale	Solns Ke	ys Ratios with tonic	Minimal generators
1. 111111	6 2	$2 \frac{1}{1} \frac{9}{8} \frac{5}{4} \frac{45}{32} \frac{8}{5} \frac{16}{9}$	$\frac{5}{4}$ $\frac{5}{4}$ $\frac{5}{4}$ $\frac{5}{4}$ $\frac{5}{4}$ $\frac{5}{5}$ $\frac{9}{5}$

Whole tone scale. Minimal interest musically

$21.\ 100001010$	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{5}{4}$	$\frac{4}{3}$	$\frac{45}{32}$	$\frac{8}{5}$	$\frac{5}{3}$	$\frac{15}{8}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{3}{2}$						
$22.\ 100010010$	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{5}{4}$	$\frac{4}{3}$	$\frac{3}{2}$	$\frac{8}{5}$	$\frac{5}{3}$	$\frac{15}{8}$	$\frac{3}{2}$								
$23.\ 100010100$	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{5}{4}$	$\frac{4}{3}$	$\frac{3}{2}$	$\frac{8}{5}$	$\frac{16}{9}$	$\frac{15}{8}$	$\frac{3}{2}$								
$24.\ 100100010$	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{5}{4}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{8}{5}$	$\frac{5}{3}$	$\frac{15}{8}$	$\frac{3}{2}$								
$25.\ 100100100$	>50	4	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{5}{4}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{8}{5}$	$\frac{16}{9}$	$\frac{15}{8}$	$\frac{3}{2}$	$\frac{9}{5}$	$\frac{3}{2}$						
$26.\ 100101000$	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{5}{4}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{16}{9}$	$\frac{15}{8}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{9}{8}$	$\frac{3}{2}$
27. 101000010	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{4}{3}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{8}{5}$	$\frac{5}{3}$	$\frac{15}{8}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{3}{2}$						
$28.\ 101000100$	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{4}{3}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{8}{5}$	$\frac{16}{9}$	$\frac{15}{8}$	$\frac{3}{2}$								
29. 101001000	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{4}{3}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{16}{9}$	$\frac{15}{8}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{3}{2}$	$\frac{3}{2}$
30. 101010000	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{4}{3}$	$\frac{45}{32}$	$\frac{8}{5}$	$\frac{5}{3}$	$\frac{16}{9}$	$\frac{15}{8}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{3}{2}$	$\frac{3}{2}$

Scale	Solns	Keys	Ratios with tonic Minimal genera	ators
1. 111111	6	2	$\frac{1}{1} \frac{9}{8} \frac{5}{4} \frac{45}{32} \frac{8}{5} \frac{16}{9} \qquad \qquad \frac{5}{4} \frac{5}{4} \frac{5}{4} \frac{5}{4} \frac{5}{4} \frac{9}{5}$	
1.01010101	>50	3	$\frac{1}{1} \frac{16}{15} \frac{6}{5} \frac{5}{4} \frac{45}{32} \frac{3}{2} \frac{5}{3} \frac{16}{9} \qquad \qquad \frac{3}{2} \frac{5}{3} \frac{5}{2} \frac{3}{2} \frac{9}{8} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{9}{8} \frac{3}{2} \frac{3}{2}$	$\frac{5}{3}$
$2.\ 10101010$	>50	3	$\frac{1}{1} \frac{9}{8} \frac{6}{5} \frac{4}{3} \frac{45}{32} \frac{8}{5} \frac{5}{3} \frac{15}{8} \qquad \qquad \frac{3}{2} \frac{5}{3} \frac{3}{2} \frac{3}{2} $	$\frac{3}{3}$ $\frac{3}{2}$

8-note scales. Only 3 keys.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	23. 100010100	> 50	12	$\frac{1}{1}$	$\frac{5}{8}$	$\frac{3}{5}$	$\frac{3}{4}$	$\frac{1}{3}$	$\frac{3}{2}$	$\frac{3}{5}$	$\frac{10}{9}$	$\frac{10}{8}$	$\frac{3}{2}$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24. 100100010	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{5}{4}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{8}{5}$	$\frac{5}{3}$	$\frac{15}{8}$	$\frac{3}{2}$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$25.\ 100100100$	>50	4	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{5}{4}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{8}{5}$	$\frac{16}{9}$	$\frac{15}{8}$	$\frac{3}{2}$	$\frac{9}{5}$	$\frac{3}{2}$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26. 100101000	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{5}{4}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{16}{9}$	$\frac{15}{8}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{9}{8}$	$\frac{3}{2}$	
28. 101000100 >50 12 $\frac{1}{1}$ $\frac{9}{8}$ $\frac{6}{5}$ $\frac{4}{3}$ $\frac{3}{22}$ $\frac{3}{2}$ <	27. 101000010	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{4}{3}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{8}{5}$	$\frac{5}{3}$	$\frac{15}{8}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{3}{2}$							
29. 101001000 >50 12 $\frac{1}{1}$ $\frac{9}{8}$ $\frac{6}{5}$ $\frac{4}{32}$ $\frac{3}{2}$ $\frac{5}{3}$ $\frac{3}{2}$ <	28. 101000100	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{4}{3}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{8}{5}$	$\frac{16}{9}$	$\frac{15}{8}$	$\frac{3}{2}$									
$30. \ 101010000 > 50 12 \frac{1}{1} \ \frac{9}{8} \ \frac{6}{5} \ \frac{4}{3} \ \frac{45}{32} \ \frac{8}{5} \ \frac{5}{3} \ \frac{16}{9} \ \frac{15}{8} \frac{3}{2} \ \frac{5}{3} \ \frac{3}{2} \ $	29. 101001000	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{4}{3}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{16}{9}$	$\frac{15}{8}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{3}{2}$	$\frac{3}{2}$	
	30. 101010000	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{4}{3}$	$\frac{45}{32}$	$\frac{8}{5}$	$\frac{5}{3}$	$\frac{16}{9}$	$\frac{15}{8}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{3}{2}$	$\frac{3}{2}$	57

Scale	Solns	Keys	Ratios with tonic	Minimal generators
1. 111111	6	2	$\frac{1}{1} \frac{9}{8} \frac{5}{4} \frac{45}{32} \frac{8}{5} \frac{16}{9}$	$\frac{5}{4}$ $\frac{5}{4}$ $\frac{5}{4}$ $\frac{5}{4}$ $\frac{5}{4}$ $\frac{5}{4}$ $\frac{9}{5}$

9-note scales beginning with whole tone interval

21. 100001010	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{5}{4}$	$\frac{4}{3}$	$\frac{45}{32}$	$\frac{8}{5}$	$\frac{5}{3}$	$\frac{15}{8}$		$\frac{3}{2}$	$\frac{5}{3}$	$\frac{3}{2}$							
22. 100010010	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{5}{4}$	$\frac{4}{3}$	$\frac{3}{2}$	$\frac{8}{5}$	$\frac{5}{3}$	$\frac{15}{8}$		$\frac{3}{2}$									
23. 100010100	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{5}{4}$	$\frac{4}{3}$	$\frac{3}{2}$	$\frac{8}{5}$	$\frac{16}{9}$	$\frac{15}{8}$		$\frac{3}{2}$									
$24.\ 100100010$	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{5}{4}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{8}{5}$	$\frac{5}{3}$	$\frac{15}{8}$	-	$\frac{3}{2}$									
$25.\ 100100100$	>50	4	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{5}{4}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{8}{5}$	$\frac{16}{9}$	$\frac{15}{8}$	-	$\frac{3}{2}$	$\frac{9}{5}$	$\frac{3}{2}$							
26. 100101000	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{5}{4}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{16}{9}$	$\frac{15}{8}$	-	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{9}{8}$	$\frac{3}{2}$	
27. 101000010	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{4}{3}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{8}{5}$	$\frac{5}{3}$	$\frac{15}{8}$	-	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{3}{2}$							
28. 101000100	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{4}{3}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{8}{5}$	$\frac{16}{9}$	$\frac{15}{8}$	-	$\frac{3}{2}$									
29. 101001000	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{4}{3}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{16}{9}$	$\frac{15}{8}$	-	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{3}{2}$	$\frac{3}{2}$	
30. 101010000	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{4}{3}$	$\frac{45}{32}$	$\frac{8}{5}$	$\frac{5}{3}$	$\frac{16}{9}$	$\frac{15}{8}$	-	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{3}{2}$	$\frac{3}{2}$	58

Scale	Solns	Keys	Ratios with tonic	Minimal generators
1. 111111	6	2	$\frac{1}{1} \frac{9}{8} \frac{5}{4} \frac{45}{32} \frac{8}{5} \frac{16}{9}$	$\frac{5}{4} \frac{5}{4} \frac{5}{4} \frac{5}{4} \frac{5}{4} \frac{5}{4} \frac{9}{5}$

Most appealing scales. Simple ratios, good distribution of semitones.

$22.\ 100010010$	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{5}{4}$	$\frac{4}{3}$	$\frac{3}{2}$	$\frac{8}{5}$	$\frac{5}{3}$	$\frac{15}{8}$	$\frac{3}{2}$								
23. 100010100	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{5}{4}$	$\frac{4}{3}$	$\frac{3}{2}$	$\frac{8}{5}$	$\frac{16}{9}$	$\frac{15}{8}$	$\frac{3}{2}$								
$24.\ 100100010$	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{5}{4}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{8}{5}$	$\frac{5}{3}$	$\frac{15}{8}$	$\frac{3}{2}$								
$25.\ 100100100$	>50	4	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{5}{4}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{8}{5}$	$\frac{16}{9}$	$\frac{15}{8}$	$\frac{3}{2}$	$\frac{9}{5}$	$\frac{3}{2}$						
$26.\ 100101000$	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{5}{4}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{16}{9}$	$\frac{15}{8}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{9}{8}$	$\frac{3}{2}$
$27.\ 101000010$	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{4}{3}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{8}{5}$	$\frac{5}{3}$	$\frac{15}{8}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{3}{2}$						
$28.\ 101000100$	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{4}{3}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{8}{5}$	$\frac{16}{9}$	$\frac{15}{8}$	$\frac{3}{2}$								
29. 101001000	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{4}{3}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{16}{9}$	$\frac{15}{8}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{3}{2}$	$\frac{3}{2}$
30. 101010000	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{4}{3}$	$\frac{45}{32}$	$\frac{8}{5}$	$\frac{5}{3}$	$\frac{16}{9}$	$\frac{15}{8}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{3}{2}$	$\frac{3}{2}$

9

Scale	Solns	Keys	Ratios with tonic	Minimal generators
1. 111111	6	2	$\frac{1}{1} \frac{9}{8} \frac{5}{4} \frac{45}{32} \frac{8}{5} \frac{16}{9}$	$\frac{5}{4}$ $\frac{5}{4}$ $\frac{5}{4}$ $\frac{5}{4}$ $\frac{5}{4}$ $\frac{5}{4}$ $\frac{9}{5}$

Will illustrate this scale with a Chorale and Fugue for organ

22. 100010010	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{5}{4}$	$\frac{4}{3}$	$\frac{3}{2}$	$\frac{8}{5}$	$\frac{5}{3}$	$\frac{15}{8}$	$\frac{3}{2}$									
23. 100010100	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{5}{4}$	$\frac{4}{3}$	$\frac{3}{2}$	$\frac{8}{5}$	$\frac{16}{9}$	$\frac{15}{8}$	$\frac{3}{2}$									
24. 100100010	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{5}{4}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{8}{5}$	$\frac{5}{3}$	$\frac{15}{8}$	$\frac{3}{2}$									
$25.\ 100100100$	>50	4	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{5}{4}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{8}{5}$	$\frac{16}{9}$	$\frac{15}{8}$	$\frac{3}{2}$	$\frac{9}{5}$	$\frac{3}{2}$							
$26.\ 100101000$	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{5}{4}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{16}{9}$	$\frac{15}{8}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{9}{8}$	$\frac{3}{2}$	
27. 101000010	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{4}{3}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{8}{5}$	$\frac{5}{3}$	$\frac{15}{8}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{3}{2}$							
28. 101000100	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{4}{3}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{8}{5}$	$\frac{16}{9}$	$\frac{15}{8}$	$\frac{3}{2}$									
29. 101001000	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{4}{3}$	$\frac{45}{32}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{16}{9}$	$\frac{15}{8}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{3}{2}$	$\frac{3}{2}$	
30. 101010000	>50	12	$\frac{1}{1}$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{4}{3}$	$\frac{45}{32}$	$\frac{8}{5}$	$\frac{5}{3}$	$\frac{16}{9}$	$\frac{15}{8}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{3}{2}$	$\frac{3}{2}$	0

Demonstration: 9-note scale

- Chorale and Fugue for organ
- Chorale
 - In A, cycles through 2 most closely related keys: A, C \ddagger , F, A
 - Modulate to $C \ddagger$ at bar 27
 - Final sections starts at bar 72 (5:56)
- Fugue
 - Double fugue
 - First subject enters at pitches A, C#, F
 - Second subject enters at bar 96.
 - Final episode at bar 164 (13:36)
 - Recapitulation at bar 170

Demonstration: 9-note scale

Key of A and 2 most closely related keys.

New notes are circled

Chorale and Fugue On a 9-note Scale

J. N. Hooker Revised 2013

Chorale and Fugue

On a 9-note Scale

Chorale and Fugue

On a 9-note Scale

Chorale and Fugue On a 9-note Scale

J. N. Hooker Revised 2013

Where does modulation to Db actually occur?

New key (Db = C#)

Where does modulation to Db actually occur?

Final cadence from lowered submediant (F), double leading tone, pivot on tonic

• Which chromatics have the most simple ratios with the tonic, within tuning tolerance?

Ratio	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
3/2	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠
4/3	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
5/3	•	•	•			•	•		•	•	•	•	•	•	•		•	•	•
5/4	•	•		•			•		•	•	•	•	•	•		•	•	•	•
7/4		•			•	•	•		•	•	•		•	•	•	•	•	•	
6/5	•	•	•			•	•	•	•	•		•	•	•			•	•	•
7/5		•	•	•		•	•	•	•		•	•	•	•		٠	•	•	•
8/5	•	•	•	•		•	•	•	•	•	•	•	•	•		٠	•	•	•
9/5	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

• Which chromatics have the most simple ratios with the tonic, within tuning tolerance?

Ratio	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
3/2	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
4/3	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•
5/3		•	•			•	•			•	•	•	•	•	•		•	•	•
5/4	•			•			•		•	•	•		•	•		•	•	•	•
7/4				•	•	•			•	•	•		•	•	•	•	•	•	•
6/5		•	•	•	•	•			•	•	•	•	•	•			•	•	•
7/5			•	•					•			•	•	•		٠	•	•	•
8/5	•			•			•		•	•	•		•	•		٠	•	•	•
9/5		•						•	•					•	•	•			
,								<u> </u>											

Classical 12-tone chromatic is 2nd best

• Which chromatics have the most simple ratios with the tonic, within tuning tolerance?

Ratio	6	$\overline{7}$	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
3/2	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•
4/3	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•
5/3	•		•			•	•		•	•	•	•	•	•	•		•	•	•
5/4	•			•			•		•	•	•	•	•	•		•			•
7/4					•	•			•	•	•	•	•		•	•			
6/5	•	•	•			•			•	•		•	•	•			•	•	
7/5	•	•	•						•			•	•	•		•	•	•	
8/5	•	•	•	•			•		•	•	•	•	•	•		•	•		•
9/5		•				•		•	•			•	•	•	•	•		•	
•																			

Quarter-tone scale adds nothing 79

• Which chromatics have the most simple ratios with the tonic, within tuning tolerance?

Ratio	6	$\overline{7}$	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
3/2	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
4/3	•	•	•	•	•	•	•	•	•	•	•	•		•		•	•	•	•
5/3	•	•	•	•		•	•		•	•	•	•		•	•		•	٠	٠
5/4	•	•		٠			•			•	•	•	•	•		•	•	•	•
7/4		•			•	•				•	•	•			•	•	•	•	
6/5		•				•	•	•		•		•		•			•	•	•
7/5		•					•	•				•		•		•	•	•	•
8/5	•	•	•	•		•	•	•	•	•	•	•	•	•		•	•	•	•
9/5		•				•		•	•					•	•	•			•
	1														<u> </u>				

19-tone chromatic dominates all others 80

Historical Sidelight

- Advantage of 19-tone chromatic was discovered during Renaissance.
 - Spanish organist and music theorist Franciso de Salinas (1530-1590) recommended
 19-tone chromatic due to desirable tuning properties for traditional intervals.
 - He used meantone temperament rather than equal temperament.

Historical Sidelight

- 19-tone chromatic has received some additional attention over the years
 - W. S. B. Woolhouse (1835)
 - M. J. Mandelbaum (1961)
 - E. Blackwood (1992)
 - W. A. Sethares (2005)

Demonstration: 19-note chromatic

- "Etude" by Easley Blackwood, 1980 (41:59)
 - Uses entire 19-note scale
 - Emphasis on traditional intervals
 - Renaissance/Baroque sound
 - Musical syntax is basically tonal
 - We wish to introduce new intervals and a new syntax by using 11-note or other scales on the 19-note chromatic

Scales on 19-note chromatic

- But what are the **best scales** on this chromatic?
 - 10-note scales have only 1 semitone, not enough for musical interest.
 - 12-note scales have 5 semitones, but this makes scale notes very closely spaced.
 - 11-note scales have 3 semitones, which seems a good compromise (1 more semitone than classical scales).

11-note scales on 19-note chromatic

• There are 77 scales satisfying our requirements

$$\binom{8}{3} + \binom{7}{2} = 77$$

- Solve CP problem for all 77.
- For each scale, determine largest set of simple ratios that occur in at least one solution.
- 37 different sets of ratios appear in the 77 scales.

Simple ratios in 11-note scales

Ratio	A E	8 C	D	\mathbf{E}	F	G	Η	Ι.	JΚ	L	\mathbf{M}	Ν	Ο	\mathbf{P}	Q	R	S ′	Г	U	V	\mathbf{W}	Х	Y	Ζ	a	b	с	d	e	fş	g h	i	j k
3/2	• •	•	٠	٠	٠	٠	٠	• •	•	٠	٠	٠	٠	٠	٠	٠	•	•	•	٠	•	•	•	•	•	•	•	•	•	•		•	• •
4/3	••	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•		•	
5/3	• •	•	•	•	•	•	•	• •	•	•	٠	٠	٠	٠	٠	٠	•	•	•	•	٠	٠	•	٠	٠	•	•	•	• •	• •	• •	٠	
5/4	••	•	•	•	٠	٠	•	• •	•	•	٠	٠	٠	•	•	•	•	•	•	•	٠	٠	•	•	•	•	•	•	• •	• (•	•	• •
7/4		•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	
6/5		•		•	•		•	• •	•	٠			•	٠	٠	٠	•	•	•	٠	•	٠	•	٠	٠	•			•	•	•	٠	
7/5	••	•	•	•	•	٠	•	• •	•	•	٠	٠	٠	٠	٠	٠	•	•	•	•	•	•	•	•	•	•	·	•	• •	• •	• •	٠	• •
8/5	• •	•	•	•	٠	٠	•	• •	•	•	٠	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	·	•	•		•	• •
9/5	• •		•	•	•	٠	•	• •	•	•	•	٠	•	٠	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	•	•	• •
	$ \begin{array}{r} \mathbf{A} - 7; \\ B - 6; \\ C - 6; \\ D - 7; \\ \mathbf{E} - 7; \\ F - 2; \\ G - 7; \\ H - 2 \end{array} $	$2 \\ 9,70 \\ 8 \\ 4,75 \\ 8 \\ 2,23 \\ 3 $,71	_]]] (]]]]]]]]]]]]]]]]	K - M N - Q - R -	- 12 - 28 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	2,43 5,6 3,6 2 0,4 0,2 9,3	$3 \\ 6 \\ 4 \\ 1,5 \\ 1,3 \\ 7,5 $	5,5 8,3 2	6 9,5	3		U V X Y Z b	-5 -4 -5 -1 -5 -1 -2 -2 -9	7 $26,$ $0,1$ $,6$ $5,3$ $4,30$ $,24$	27 1,2 1,3 0,4	$25 \\ 2, 5 \\ 5$	46,	,47	,	e f h i j k	- 1 - 6 - : - 1 - 5 - :	13, 50, 59 18, 7, 58 16,	$,29\\61,35\\34$,33	,4 ,5,3 ,49 ,49 ,49	4 6,3 9 8	50	,51	.,5	4		

Simple ratios in 11-note scales

Ratio		\mathbf{A}	в	\mathbf{C}	D	\mathbf{E}	\mathbf{F}	G	Η	IJ	K	\mathbf{L}	М	Ν	Ο	\mathbf{P}	Q	R	\mathbf{S}	Т	U	\mathbf{V}	W	Х	Y	Ζ	a	b	с	d	e f	fg	g h	i	j k
3/2	Т	٠	٠	٠	•	٠	٠	•	٠	• •	•	•	٠	•	٠	٠	٠	•	•	•	٠	٠	·	•	•	•	•	•	•	•	•		•	•	• •
4/3		٠	٠	•	•	•	•	•	•	• •	•	•	•	·	•	·	•	•	•	·	·	•	•	٠	•	•	•	•	•	•	•		•	·	•••
5/3		٠	٠	٠	٠	·	•	•	·	• •	·	·	٠	٠	٠	•	•	٠	•	·	•	•	٠	٠	•	٠	٠	·	•	•	•		•	•	• •
5/4		٠	•	•	•	•	•	•	•	• •	•••	·	•	•	•	·	·	·	•	•	•	·	٠	٠	•	·	•	•	•	•	·		•	•	• •
7/4		•	•	•	•	·	•	•	•	• •	•	•	•	•	•	·	•	•	•	·	•	•	·	·	•	•	•	·	•	•	• •	• •	•	•	• •
$\frac{6}{5}$		·	·	•	•	•	•	•	•	• •	•	٠	·	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	• •	•	•	•
1/5		•	•	•	·	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	·	•	•	•	•	•	•	•		•	•	••
8/3		•		•	•	•	•	•	•	• •	•	•	•		•	•	•	•	•	•	•	•	•	·	•		•	•	•	•	•		•	•	••
9/0	Т	•	-	•	•	· ·	·	•	•	• ·	•	•	•	•	•	•	-	•	•	•	•	•	•	·	•	•	•	·	•	•	•		•	•	· ·
			79					K	1	2.49	2					ΤT	5	7						0	1	2	20	4	4						
	R	- 1	$\frac{12}{60}$	70	7-	1		rx - T	ב - ספ	2,40)					\mathbf{v}	- 0 1	2						e f	נ - פ	.ə, ∩ (29 61	,4	4						
	C	_	68	,70	, , ,	L		ц - М	- 20 - 6	56	6					v W	- 4	:2 26	27	1				r o	- 0	0,1 (9	01								
	D) _	74	75				\mathbf{N} .	- 6	3.64	1					X	- 1	$\frac{20}{0}$	1 1	25				b b	- e	18	35	3	6.5	50	51	54	1		
	Ē	- 1	7.8	3				O .	- 6	$2^{,0}$	•					Y	- 5	$.6^{-1}$, .	_0				i	- 1	7.3	34.	.49) }	ζ,	,01	,0	•		
	F	-	22	23			- E	\mathbf{P}	- 4	- 0,4:	1,5!	5,5	6			$\hat{\mathbf{Z}}$ -	- 1	5.3	1.3	32,	46	,47		i	- 5	8	,	, _0							
	G	- -	73	r				Q	- 2	0,21	1,38	3,3	9,5	3		a -	14	4,3	0, 4	$5^{'}$		/		k	-]	l6,	,33	,4	8						
	Η	-	2					R ·	- 19	9,37	7,52	2	-			b -	. 9	,24	e									-							

These 9 scales dominate all the others.

Simple ratios in 11-note scales

Ratio		\mathbf{A}	в	\mathbf{C}	D	\mathbf{E}	\mathbf{F}	G	Η	ΙJ	K	L	М	Ν	Ο	\mathbf{P}	Q	R	\mathbf{S}	Т	U	\mathbf{V}	W	Х	Y	Ζ	a	b	сc	d e	e f	g	h	i	j k
3/2	Π	٠	٠	•	٠	٠	٠	•	•	• •	•	٠	•	٠	٠	٠	٠	٠	•	•	٠	•	·	•	•	•	•	•	•			•	•	•	
4/3		٠	٠	•	•	•	•	٠	٠	• •	•	٠	•	•	•	•	•	•	·	·	•	·	•	٠	•	•	•	•	• •		•	•	•	•	• •
5/3		٠	٠	٠	٠	·	·	•	·	• •	•	·	٠	٠	٠	٠	٠	٠	·	•	·	·	٠	٠	٠	٠	٠	•	•	•	•	٠	٠	•	• •
5/4		٠	٠	٠	٠	•	•	٠	٠	• •	•	·	٠	٠	٠	·	•	·	•	•	·	•	•	٠	•	·	•	•	• •		•	٠	•	·	•
7/4		·	•	•	•	·	•	•	•	• •	•	•	•	·	•	·	•	•	•	·	·	•	·	•	•	·	•	·	•	•	•••	·	•	•	•••
6/5		·	•	·	·	•	•	·	·	• •	•	٠	·	•	•	•	•	٠	·	·	•	•	•	٠	·	•	•	•	•	•	• •	·	•	•	•
7/5		•	•	•	·	•	·	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	·	·	•	·	•	·	•	•	•	•	•	• •	• •
8/5		•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	·	•	•	•	•	·	•	·	·	·	•	•	•	•	•••	·	•	•	• •
9/5	Ц	•	•	•	•	·	·	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	·	•	•	•	•	•	•	•	•	•	•	• •
				_				T 7		0.46						.		_								2	20								
	A	· -	72		_			K ·	- 1	2,43	3					U	- 5	7						e	- 1	3,	29	,44	1						
	В	-	69 _:	,70	,71	L		L -	- 28	5	~					V	- 4	2		1				t	- 6	0,0	61								
	C	-	68					Μ	- 6	5,6	6					W	-	26,	27	J				g	- 5	59									
	D	-	74	,75				Ν·	- 6	3,64	l					Х	- 1	0,1	1,:	25				h	- 1	18,	,35	,3	6,5	0,	51,	54			
	\mathbf{E}	-	7,8	3				O -	- 6	2		_	_			Υ	- 5	,6						i ·	- 1	$^{7,:}$	34,	49)						
	\mathbf{F}	- :	22,	23				\mathbf{P}	- 4	0,41	1,55	5, 5	6			Ζ.	- 1	5,3	1,3	32,	46	,47		j	- 5	8									
	G	_	73					\mathbf{Q} .	- 2	0,21	1,38	3, 3	9,5	3		a -	14	4,3	0,4	5				k	- 1	l6,	,33	,48	8						
	Η	-	2					R ·	- 19	9,37	7,52	2				b -	- 9	,24																	

We will focus on 1 scale from each class.

4 attractive 11-note scales

Scale	Class	Ratios with tonic Minimal ge	enerators
7. 01101011111	Ε	$\frac{1}{1} \frac{25}{24} \frac{9}{8} \frac{6}{5} \frac{5}{4} \frac{4}{3} \frac{7}{5} \frac{3}{2} \frac{8}{5} \frac{12}{7} \frac{25}{18} \qquad \frac{3}{2} \frac{5}{3} \frac{3}{2} \frac{3}{2} $	$\frac{5}{3}$ $\frac{3}{3}$ $\frac{3}{2}$ $\frac{3}{2}$ $\frac{3}{2}$ $\frac{3}{2}$ $\frac{7}{4}$ $\frac{3}{2}$
		$\frac{1}{1} \frac{36}{35} \frac{9}{8} \frac{6}{5} \frac{5}{4} \frac{4}{3} \frac{7}{5} \frac{3}{2} \frac{8}{5} \frac{12}{7} \frac{13}{17} \qquad \frac{3}{2} \frac{5}{3} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{3} \frac{3}{2} \frac{3}{2} $	$\frac{5}{3}$ $\frac{4}{2}$ $\frac{7}{4}$ $\frac{3}{2}$ $\frac{3}{2}$ $\frac{3}{2}$ $\frac{5}{3}$ $\frac{13}{7}$
27. 10101111110	W	$\frac{1}{1} \frac{15}{14} \frac{9}{8} \frac{6}{5} \frac{5}{4} \frac{4}{3} \frac{10}{7} \frac{54}{35} \frac{5}{3} \frac{9}{5} \frac{27}{14} \qquad \frac{3}{2} \frac{3}{2} \frac{5}{4} \frac{3}{2} \frac{3}{2}$	$\frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{5}{4} \frac{3}{2} \frac{3}{2} \frac{5}{4}$
		$\frac{1}{1} \frac{16}{15} \frac{9}{8} \frac{6}{5} \frac{5}{4} \frac{4}{3} \frac{10}{7} \frac{14}{9} \frac{5}{3} \frac{9}{5} \frac{35}{18} \qquad \frac{3}{2} \frac{5}{4} \frac{5}{4} \frac{3}{2} \frac{3}{2}$	$\frac{3}{2}$ $\frac{3}{2}$ $\frac{7}{4}$ $\frac{5}{4}$ $\frac{3}{2}$ $\frac{3}{2}$ $\frac{5}{4}$
56. 11011110110	Р	$\frac{1}{1} \frac{15}{14} \frac{7}{6} \frac{6}{5} \frac{9}{7} \frac{7}{5} \frac{3}{2} \frac{8}{5} \frac{5}{3} \frac{9}{5} \frac{27}{14} \qquad \frac{3}{2} \frac{5}{3} \frac{5}{3} \frac{3}{2} \frac{3}{2}$	$\frac{3}{2}$ $\frac{5}{3}$ $\frac{3}{2}$ $\frac{3}{2}$ $\frac{3}{2}$ $\frac{5}{3}$ $\frac{3}{2}$ $\frac{3}{2}$
		$\frac{1}{1} \frac{13}{12} \frac{7}{6} \frac{6}{5} \frac{9}{7} \frac{7}{5} \frac{3}{2} \frac{8}{5} \frac{5}{3} \frac{9}{5} \frac{35}{18} \qquad \frac{3}{2} \frac{13}{7} \frac{5}{3} \frac{3}{2} \frac{7}{5}$	$\frac{5}{5}$ $\frac{5}{3}$ $\frac{3}{2}$ $\frac{3}{2}$ $\frac{5}{3}$ $\frac{3}{2}$ $\frac{5}{3}$ $\frac{3}{2}$ $\frac{5}{3}$
72. 11110110110	А	$\frac{1}{1} \frac{16}{15} \frac{7}{6} \frac{5}{4} \frac{4}{3} \frac{7}{5} \frac{3}{2} \frac{8}{5} \frac{5}{3} \frac{9}{5} \frac{35}{18} \qquad \frac{3}{2} \frac{3}{2} \frac{5}{3} \frac{3}{2} $	$\frac{3}{2}$ $\frac{5}{3}$ $\frac{3}{2}$ $\frac{3}{2}$ $\frac{3}{2}$ $\frac{3}{2}$ $\frac{5}{3}$ $\frac{5}{3}$
		$\frac{1}{1} \frac{15}{14} \frac{7}{6} \frac{5}{4} \frac{4}{3} \frac{7}{5} \frac{3}{2} \frac{8}{5} \frac{5}{3} \frac{9}{5} \frac{27}{14} \qquad \frac{3}{2} \frac{7}{5} \frac{5}{3} \frac{3}{2} \frac{3}{2}$	$\frac{5}{2}$ $\frac{5}{3}$ $\frac{3}{2}$ $\frac{5}{3}$ $\frac{3}{2}$ $\frac{5}{3}$ $\frac{9}{5}$

Showing 2 simplest solutions for each scale. One with simplest generators, one with simplest ratios to tonic.

Key structure of scales

Classical n	najo	r sca	le																
Note	1	$1 \ddagger$	2	$2\sharp$	3	4	4♯	5	$5 \ddagger$	6	6#	7							
Interval			2^{nd}		3^{rd}	4^{th}		5^{th}		6^{th}		7^{th}							
Distance	0	5	2	3	4	1	5	1	4	3	2	5							
Scale 23 of	f 9 n	notes	on	12-no	ote d	chrom	natic												
Note	1	$1 \sharp$	2	3	4	5	$5\sharp$	6	7	7‡	8	9							
Interval			2^{nd}	$\mathrm{m3}^{\mathrm{rd}}$	3^{rd}	4^{th}		5^{th}	${\rm m6}^{{\rm th}}$		$\mathrm{m7^{tl}}$	$^{ m 1}7^{ m th}$							
Distance	0	3	3	2	2	2	3	2	2	2	3	3							
Scale 7 of	11 n	notes	on	19-no	ote d	ehrom	natic												
Note	1	2	$2\sharp$	3	$3\sharp$	4	5	$5 \ddagger$	6	7	7 	8	8‡	9	9#	10	10	11	$11 \ddagger$
Interval				2^{nd}		$m3^{rd}$	3^{rd}		4^{th}			5^{th}		${ m m6^{th}}$					
Distance	0	8	3	5	5	4	5	5	4	5	5	4	5	5	4	5	5	3	8
Scale 27 of	f 11	note	es o i	n 19-1	note	chro	mati	c											
Note	1	$1 \sharp$	2	3	$3\sharp$	4	5	$5 \sharp$	6	6‡	7	7 	8	8#	9	9‡	10	$10 \sharp$	11
Interval				2^{nd}		$m3^{rd}$	3^{rd}		4^{th}						6^{th}				
Distance	0	8	3	5	4	6	3	6	4	5	5	4	6	3	6	4	5	3	8
Scale 56 of	f 11	note	es or	n 19-1	note	chro	mati	c											
Note	1	$1 \ddagger$	2	$2\sharp$	3	4	$4 \sharp$	5	5#	6	6#	7	7‡	8	9	9‡	10	$10 \sharp$	11
Interval						$m3^{rd}$						5^{th}		${\rm m6^{th}}$	6^{th}				
Distance	0	8	3	5	6	2	7	3	6	4	4	6	3	7	2	6	5	3	8
Scale 72 of	f 11	note	es o i	n 19-1	note	chro	mati	c											
Note	1	$1 \sharp$	2	$2\sharp$	3	$3\sharp$	4	$4 \sharp$	5	6	6#	$\overline{7}$	$7\sharp$	8	9	9‡	10	$10 \sharp$	11
Interval							3^{rd}		4^{th}			5^{th}		${ m m6}^{ m th}$	6^{th}				
Distance	0	8	3	5	6	2	7	3	6	4	4	6	3	7	2	6	5	3	8

Key structure of scales

Classical m	ajoi	r sca	le	0.4	9	4	44	F	гц	C		-		N	lo ke	ev w	/ith		
Note	T	ΤĦ	2 ond	2‡	3 ard	4 ∡th	4	b ⊷th	b₽	0 eth	6‡			h	ietar	-) -) -)	1		
Interval			2""		3.4	4 ***		5^{m}		6		7 ***		u	13101		 	•	
Distance	0	5	2	3	4	1	5	1	4	3	2	5		G	000	l or	bad	?	
Scale 23 of	9 n	otes	on	12-na	ote e	hrom	atic							Δ	limi	itad	cyc		
Note	1	$1 \sharp$	2	3	4	5	$5\sharp$	6	$\overline{7}$	7‡	8	9							
Interval			2^{nd}	$m3^{rd}$	$3^{ m rd}$	4^{th}		5^{th}	${\rm m6}^{{\rm th}}$		$m7^{th}$	$^{ m n}7^{ m th}$		ır	n SCa		$^{\prime 2}$ tr	nat	
Distance	0	3	3	2	2	2	3	2	2	2	3	3		S	kips	2.			
Scale 7 of	11 n	otes	on	19-na	ote c	hrom	natic												
Note	1	2	$2\sharp$	3	3‡	4	5	5#	6	$\overline{7}$	7 	8	8‡	9	9#	10	10 #	11	11 #
Interval				2^{nd}		$m3^{rd}$	3^{rd}		4^{th}			5^{th}		${ m m6}^{ m th}$					
Distance	0	8	3	5	5	4	5	5	4	5	5	4	5	5	4	5	5	3	8
Scale 27 of	11	note	$s \ or$	n 19-r	note	chroe	mati	с											
Note	1	$1 \ddagger$	2	3	3	4	5	5 ‡	6	6‡	$\overline{7}$	7♯	8	8 ‡	9	9‡	10	10	11
Interval				2^{nd}		$m3^{rd}$	3^{rd}		4^{th}						6^{th}				
Distance	0	8	3	5	4	6	3	6	4	5	5	4	6	3	6	4	5	3	8
Scale 56 of	11	note	s or	n 19-r	note	chro	mati	с											
Note	1	1	2	$2\sharp$	3	4	4₿	5	5 ±	6	6#	7	7♯	8	9	9#	10	10	11
Interval		1.		1.		$m3^{rd}$	1.		1.		1.	5^{th}	1.	${\rm m6}^{\rm th}$	6^{th}	1.		1.	
Distance	0	8	3	5	6	2	7	3	6	4	4	6	3	7	2	6	5	3	8
Scale 72 of	11	note	$s \ or$	n 19-r	note	chroe	mati	c											
Note	1	1#	2	$2\sharp$	3	3♯	4	4♯	5	6	6#	7	7♯	8	9	9‡	10	10	11
Interval							3^{rd}		4^{th}			5^{th}		${ m m6}^{ m th}$	6^{th}				
Distance	0	8	3	5	6	2	7	3	6	4	4	6	3	7	2	6	5	3	8

4 attractive 9-note scales

Scale	Class	atios with tonic Mini	mal generators
7. 01101011111	Ε	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{3}{2} \frac{3}{2} \frac{5}{3} \frac{3}{3} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{7}{4} \frac{3}{2}$
		$\frac{36}{35} \ \frac{9}{8} \ \frac{6}{5} \ \frac{5}{4} \ \frac{4}{3} \ \frac{7}{5} \ \frac{3}{2} \ \frac{8}{5} \ \frac{12}{7} \ \frac{13}{17} \qquad \frac{3}{2} \ \frac{5}{3}$	$\frac{3}{2} \frac{3}{2} \frac{5}{3} \frac{4}{2} \frac{7}{4} \frac{3}{2} \frac{3}{2} \frac{5}{3} \frac{13}{7}$
27. 10101111110	W	$\frac{15}{14} \ \frac{9}{8} \ \frac{6}{5} \ \frac{5}{4} \ \frac{4}{3} \ \frac{10}{7} \ \frac{54}{35} \ \frac{5}{3} \ \frac{9}{5} \ \frac{27}{14} \qquad \frac{3}{2} \ \frac{3}{2}$	$\frac{5}{4} \ \frac{3}{2} \ \frac{3}{2} \ \frac{3}{2} \ \frac{3}{2} \ \frac{3}{2} \ \frac{3}{2} \ \frac{5}{4} \ \frac{3}{2} \ \frac{3}{2} \ \frac{3}{4}$
		$\frac{16}{15} \begin{array}{c} 9 \\ \overline{8} \\ \overline{5} \\ \overline{4} \\ \overline{4} \\ \overline{3} \\ \overline{7} \\ \overline{9} \\ \overline{9} \\ \overline{3} \\ \overline{5} \\ \overline{5} \\ \overline{18} \\ \overline{18} \\ \overline{2} \\ \overline{4} \\ \overline{4} \\ \overline{5} \\ \overline{4} \\ \overline{5} \\ \overline{18} \\ \overline{5} \\ \overline{5} \\ \overline{5} \\ \overline{18} \\ \overline{5} \\ \overline$	$\frac{5}{4} \ \frac{3}{2} \ \frac{3}{2} \ \frac{3}{2} \ \frac{3}{2} \ \frac{7}{4} \ \frac{5}{4} \ \frac{3}{2} \ \frac{3}{2} \ \frac{3}{4} \ \frac{5}{4}$
$56.\ 11011110110$	Р	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{5}{3} \frac{3}{2} \frac{3}{2} \frac{5}{3} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{5}{3} \frac{3}{2} \frac{3}{2}$
		$\frac{13}{12} \frac{7}{6} \frac{6}{5} \frac{9}{7} \frac{7}{5} \frac{3}{2} \frac{8}{5} \frac{5}{3} \frac{9}{5} \frac{35}{18} \qquad \frac{3}{2} \frac{13}{7}$	$\frac{5}{3} \frac{3}{2} \frac{7}{5} \frac{5}{3} \frac{3}{2} \frac{3}{2} \frac{5}{3} \frac{3}{2} \frac{5}{3} \frac{3}{2} \frac{5}{3}$
72. 11110110110	А	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{5}{3} \frac{3}{2} \frac{3}{2} \frac{5}{3} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{5}{3} \frac{5}{3}$
		$\frac{15}{14} \begin{array}{c} 7 \\ \overline{6} \end{array} \begin{array}{c} 5 \\ \overline{4} \end{array} \begin{array}{c} 4 \\ \overline{5} \end{array} \begin{array}{c} 7 \\ \overline{5} \end{array} \begin{array}{c} 3 \\ \overline{5} \end{array} \begin{array}{c} 8 \\ \overline{5} \end{array} \begin{array}{c} 5 \\ \overline{3} \end{array} \begin{array}{c} 9 \\ \overline{5} \end{array} \begin{array}{c} 27 \\ \overline{5} \end{array} \begin{array}{c} 3 \\ \overline{2} \end{array} \begin{array}{c} 7 \\ \overline{5} \end{array}$	$\frac{5}{3} \ \frac{3}{2} \ \frac{3}{2} \ \frac{5}{3} \ \frac{5}{2} \ \frac{3}{2} \ \frac{5}{3} \ \frac{3}{2} \ \frac{5}{3} \ \frac{5}{2} \ \frac{3}{2} \ \frac{5}{3} \ \frac{5}{2} \ \frac{5}{3} \ \frac{5}{5} \ \frac{9}{5}$

Further focus on scale 72, which has largest number of simple ratios.

Demonstration: 11-note scale

- Software
 - Hex MIDI sequencer for scales satisfying Myhill's property
 - We trick it into generating a 19-tone chromatic
 - Viking synthesizer for use with Hex
 - LoopMIDI virtual MIDI cable

Harmonic Comparison

- Classic major scale
 - Major triad C:E:G = 4:5:6, major 7 chord C:E:G:B = 8:10:12:15
 - Minor triad A:C:E = 10:12:15, minor 7 chord A:C:E:G = 10:12:15:18
 - Dominant 7 chord G:B:D:F = 36:45:54:64
 - Tensions (from jazz) C E G B D F# A
- Scale 72
 - Major triad 1-4-7 = 4:5:6
 - Minor triad 5-8-12 = 10:12:15
 - Minor 7 chord 9-12-15-18 = 10:12:15:18
 - New chord 9-12-14-18 = 5:6:7:9
 - New chord 1-3-5-9 = 6:7:8:10
 - New chord 3-5-9-12 = 7:8:10:12
 - New chord 5-9-12-15 = 4:5:6:7
 - Tensions 1-4-7-10-13-15*b*-16-19-22

11-note Scales with Adjacent Keys

- There are eleven 11-note scales on a 19-note chromatic in which keys can differ by one note.
 - As in classical 7-note scales.
 - One can therefore cycle through all keys.
 - This may be seen as a **desirable property**.
 - The key distances are the same for all these scales.

Scale 9 (class b)																		
Note	1	2	$2\sharp$	3	$3 \sharp$	4	5	$5 \sharp$	6	6#	7	$7 \sharp$	8	9	9#	10	$10 \sharp$	11	11 #	
Interval				2^{nd}		$m3^{rd}$	3^{rd}				$\frac{10}{7}$		$\frac{14}{9}$	$m6^{th}$	1	$\frac{12}{7}$		7^{th}		
Distance	0	8	3	5	6	2	8	1	7	4	4	7	1	8	2	6	5	3	8	_
Scale 13	(class	e)																		_
Note	1	2	$2\sharp$	3	3‡	4	4#	5	6	6#	$\overline{7}$	$7 \sharp$	8	9	9#	10	$10 \sharp$	11	11 #	
Interval				2^{nd}		$m3^{rd}$		$\frac{9}{7}$	4^{th}				$\frac{14}{9}$		$m6^{th}$	$\frac{12}{7}$		$\frac{13}{7}$		
Scale 14	(class	a)																		-
Note	1	2	$2\sharp$	3	3♯	4	$4 \sharp$	5	6	6#	7	7#	8	8‡	9	10	$10 \sharp$	11	11 #	
Interval				2^{nd}		$m3^{rd}$		$\frac{9}{7}$	4^{th}		$\frac{10}{7}$		$\frac{14}{9}$		6^{th}	$\frac{12}{7}$		7^{th}		
Scale 30	(class	a)																		-
Note	1	1#	2	3	3‡	4	4#	5	6	6#	7	7#	8	8‡	9	10	$10 \sharp$	11	11 #	
Interval				2^{nd}		$m3^{rd}$		$\frac{9}{7}$	4^{th}		$\frac{10}{7}$			$\frac{14}{9}$	6^{th}	$\frac{12}{7}$		$\frac{13}{7}$		
Scale 34	(class	i)																		-
Note	1	ĺ1	2	3	3‡	4	4#	5	5#	6	7	7 #	8	8‡	9	10	$10 \sharp$	11	11#	
Interval				2^{nd}		$m3^{rd}$		$\frac{9}{7}$	4^{th}		$\frac{10}{7}$			$\frac{14}{9}$	6^{th}	$\frac{9}{5}$		$\frac{13}{7}$		
Scale 35	(class	h)																		-
Note	1	1#	2	3	3‡	4	4#	5	5#	6	7	7#	8	8‡	9	9#	10	11	11#	
Interval				2^{nd}		$m3^{rd}$		$\frac{9}{7}$	4^{th}		$\frac{10}{7}$			$\frac{14}{9}$	6^{th}	$\frac{9}{5}$		$\frac{13}{7}$		
Scale 50	(class	h)																		-
Note	1	1#	2	$2\sharp$	3	4	4#	5	5#	6	$\overline{7}$	$7 \sharp$	8	8‡	9	9#	10	11	11#	
Interval				2^{nd}	$\frac{7}{6}$	$m3^{rd}$		$\frac{9}{7}$		$\frac{7}{5}$	$\frac{10}{7}$		$\frac{14}{9}$		6^{th}		$\frac{9}{5}$	$\frac{13}{7}$		
Scale 53	(class	Q)			-					-			-				-			-
Note	1	رچ 1±	2	$2\sharp$	3	4	4₫	5	5₫	6	6世	7	8	8#	9	9₿	10	11	11#	
Interval		11		2^{nd}	$\frac{7}{6}$	$\mathrm{m3^{rd}}$		$\frac{9}{7}$		$\frac{7}{5}$	$\frac{1\ddot{0}}{7}$	5^{th}			6^{th}		$\frac{9}{5}$	$\frac{13}{7}$		
Scale 54	(class	h)			0					0							0			
Note	1	14	2	2t	3	4	4t	5	5ť	6	6t	7	8	8t	9	9t	10	10#	11	
Interval		t,		2^{nd}	$\frac{7}{6}$	$m3^{rd}$	r,	$\frac{9}{7}$	F1	75	$\frac{10}{7}$	5^{th}	$\frac{14}{9}$	ħ	6^{th}	ħ	$\frac{9}{5}$	fr.		
Scale 6!	(class	N)			0			(0	1		Э				5			_
Note	1	14	2	2t	3	3t	4	5	5t	6	6t	7	8	8t	9	9世	10	10#	11	
Interval				2^{nd}	$\frac{7}{6}$	Ţ	3^{rd}	$\frac{9}{7}$	1	7		5^{th}	$\frac{14}{9}$	Ŧ.	6^{th}	T1	$\frac{9}{5}$	ţ,		
Scale 66	(class	M)			0			1		0			Э				0			-
Note	1	1#	2	2#	3	3ť	4	5	5ť	6	6t	7	7±	8	9	9t	10	10#	11	00
Interval	-	- 4	_	2^{nd}	$\frac{7}{6}$	- 1	3rd	97	- 1	7	- 1	5^{th}	1	8	6^{th}	- 11	$\frac{9}{5}$	4		90
					0					0				0			0			

Scales with
most
attractive
intervals

	Scale 9 (c	lass b)																		
	Note Interval	1	2	$2\sharp$	$\frac{3}{2^{nd}}$	3‡	4 m3 rd	$\frac{5}{3^{rd}}$	5#	6	6‡	$\frac{7}{10}$	7‡	$\frac{8}{14}$	$9 \\ m6^{tl}$	9# 1	$\frac{10}{12}$	10#	$\frac{11}{7^{\mathrm{th}}}$	11#	
	Distance	0	8	3	5	6	2	8	1	7	4	$\frac{7}{4}$	7	$\frac{9}{1}$	8	2	$\frac{7}{6}$	5	3	8	
	Scale 13 (class	e)	0.1	0	0.1		4.1	2	0	0.1	_		0	0	0.1	10	1.01			-
	Note Interval	1	2	2‡	$\frac{3}{2^{nd}}$	3₫	4 m3 rd	4♯	$\frac{5}{\frac{9}{7}}$	4^{th}	6#	7	7	$\frac{14}{9}$	9	$9 \sharp$ m6 th	$\frac{10}{\frac{12}{7}}$	10#	$\frac{11}{13}$	11#	
	Scale 14 (class	<i>a)</i>											0							-
	Note Interval	1	2	2 #	$\frac{3}{2^{nd}}$	3‡	$4 m 3^{rd}$	4 	$\frac{5}{\frac{9}{7}}$	$\frac{6}{4^{\text{th}}}$	6#	$\frac{7}{\frac{10}{7}}$	7 ‡	$\frac{8}{14}$	8#	$9 \\ 6^{th}$	$\frac{10}{\frac{12}{7}}$	10#	$\frac{11}{7^{\mathrm{th}}}$	11#	
	<i>Scale 30 (</i> Note Interval	class 1	$a)$ 1 \sharp	2	32^{nd}	3#	$4 m 3^{rd}$	4#	$\frac{5}{9}$ 7	${}^{6}_{4^{\mathrm{th}}}$	6#	$\frac{7}{\frac{10}{7}}$	7♯	8	$\frac{8\sharp}{\frac{14}{9}}$	$_{6^{\mathrm{th}}}^{9}$	$\frac{10}{\frac{12}{7}}$	10#	$\frac{11}{\frac{13}{7}}$	11#	_
	<i>Scale 34 (</i> Note Interval	class 1	<i>i)</i> 1♯	2	$\frac{3}{2^{\mathrm{nd}}}$	3#	$4 m 3^{rd}$	4#	$\frac{5}{9}$ 7	$5\sharp$ 4^{th}	6	$\frac{7}{\frac{10}{7}}$	7 #	8	$\frac{8\sharp}{\frac{14}{9}}$	$9 6^{\mathrm{th}}$	$\frac{10}{\frac{9}{5}}$	10#	$\frac{11}{\frac{13}{7}}$	11#	_
	Scale 35 (Note Interval	class 1	h) 1♯	2	$\frac{3}{2^{nd}}$	3#	4 m3 rd	4#	$\frac{5}{\frac{9}{7}}$	$5 \sharp 4^{\mathrm{th}}$	6	$\frac{7}{\frac{10}{7}}$	7⋕	8	$\frac{8\sharp}{\frac{14}{9}}$	96^{th}	9♯ <u>9</u> 5	10	$\frac{11}{\frac{13}{7}}$	11#	_
	<i>Scale 50 (</i> Note Interval	class 1	h) 1♯	2	$2 \sharp 2^{\mathrm{nd}}$	3 <u>7</u> 6	$4 m 3^{rd}$	4#	$\frac{5}{9}{7}$	5#	$\frac{6}{\frac{7}{5}}$	$\frac{7}{\frac{10}{7}}$	7♯	$\frac{8}{\frac{14}{9}}$	8#	$9 6^{\mathrm{th}}$	9#	$ \frac{10}{\frac{9}{5}} $	$\frac{11}{\frac{13}{7}}$	11#	
th	<i>Scale 53 (</i> Note Interval	class 1	Q) 1♯	2	$2 \sharp 2^{\mathrm{nd}}$	3 <u>7</u> 6	$4 m 3^{rd}$	4#	5 9 7	5#	6 <u>7</u> 5	$\frac{6\sharp}{\frac{10}{7}}$	$\frac{7}{5^{\mathrm{th}}}$	8	8#	96^{th}	9#	$ \frac{10}{\frac{9}{5}} $	$\frac{11}{\frac{13}{7}}$	11#	
	Scale 54 (Note Interval	class 1	$h)$ 1 \sharp	2	$2 \sharp 2^{\mathrm{nd}}$	3 <u>7</u> 6	$4 m 3^{rd}$	4♯	$\frac{5}{9}{7}$	5#	$\frac{6}{\frac{7}{5}}$	$\frac{6\sharp}{\frac{10}{7}}$	$75{5}^{\mathrm{th}}$	$\frac{8}{\frac{14}{9}}$	8#	96^{th}	9#	$\frac{10}{\frac{9}{5}}$	10♯	11	
	Scale 64 (Note Interval	class 1	N) 1‡	2	2♯ 2 nd	$\frac{3}{\frac{7}{6}}$	3#	$4 3^{\mathrm{rd}}$	$\frac{5}{\frac{9}{7}}$	5#	$\frac{6}{\frac{7}{5}}$	6#	$\frac{7}{5^{\mathrm{th}}}$	$\frac{8}{\frac{14}{9}}$	8#	96^{th}	9#	$ \frac{10}{\frac{9}{5}} $	10♯	11	
	Scale 66 (Note Interval	class 1	M) 1♯	2	$2 \sharp$ 2^{nd}	$\frac{3}{\frac{7}{6}}$	3#	$\frac{4}{3^{\mathrm{rd}}}$	5 9 7	5#	$\frac{6}{\frac{7}{5}}$	6#	$\frac{7}{5^{\mathrm{th}}}$	7♯	8 8 5	96^{th}	9#	$ \frac{10}{\frac{9}{5}} $	10♯	11	97

That's it.