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• Music is much more than mathematics and 

combinatorics.

– But almost all music relies on mathematical 

structure.

– … even when we are not aware of it.

Music and Mathematics
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• Oldest known musical instrument 

uses tones with mathematical 

relationships.

– Prehistoric flute, from ice-age cave in 

Germany, 40,000 bce.

– Based on notes of pentatonic scale: 

frequency ratios 

– Same notes are in our modern scales!

Music and Mathematics
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https://www.youtube.com/watch?v=3ZlB9KWpbJ0&t=73s


• The 7 liberal arts

– Trivium – arts of the mind

• logic

• grammar

• rhetoric

– Quadrivium – arts of matter

• mathematics

• music (viewed as applied math!)

• geometry

• astronomy (applied geometry)

Music and Mathematics
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• All elements of music are based on 

mathematical structure:

– Harmony – mathematics of overtone series.

– Rhythm – e.g., Indian ragas

– Melody – combinatorial structure of Western 

polyphonic music.

– Scales – foundation for harmony, melody, 

counterpoint, key relationships, etc.

Music and Mathematics
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• Acoustic instruments produce

multiple harmonic partials.

– Frequency of partial 

= integral multiple of

frequency of fundamental.

– Coincidence of partials

makes chords with 

simple ratios easy 

to recognize.

Harmony
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Perfect fifth

C:G = 2:3



• Acoustic instruments produce

multiple harmonic partials.

– Frequency of partial 

= integral multiple of

frequency of fundamental.

– Coincidence of partials

makes chords with 

simple ratios easy 

to recognize.

Harmony
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Octave 

C:C = 1:2



• Acoustic instruments produce

multiple harmonic partials.

– Frequency of partial 

= integral multiple of

frequency of fundamental.

– Coincidence of partials

makes chords with 

simple ratios easy 

to recognize.

Harmony
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Major triad 

C:E:G = 4:5:6



• A challenging combinatorial problem.

– Relationships among multiple voices must be 

intelligible to the ear.

• Classic example: Bach’s chorale 

harmonizations.

– AI-based harmonization: follows some 350 rules, 

result tends to be mediocre.

– Human harmonization: requires a highly skilled 

composer, result can be beautiful and inspiring. 

Polyphony
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Harmonization: Bach
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vi – D minor - - - - - - - - - - - - - - - - - - - - - - - - - - -

vi – D minor - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



Harmonization: Bach
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I – F major - - - - - - - - - - - - - IV – Bb major (G minor D major)

V – C major - - - - - - - - - - - -
I – F major - - - - - - - - - - - - -



Harmonization: Amateur
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Parallel 

octaves

No contrary

motion

Dissonant

cross-relation
Parallel

fifths
Unresolved 

2nd

inversion



• Pitch frequencies have simple ratios.

– Rich and intelligible harmonies

• Multiple keys based on underlying chromatic 

scale with tempered tuning.

– Can play all keys on instrument with fixed tuning.

– Complex musical structure.

• Can we find new scales with these same 

properties?

– Constraint programming is well suited to solve the 

problem.

Advantages of Classical Scales
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• A classical scale can start from any pitch in a 

chromatic scale with 12 semitone intervals.

– Resulting in 12 keys.

– An instrument with 12 pitches (modulo octaves) can 

play 12 different keys.

– Can move to a different key by changing only a few 

notes of the scale.

Multiple Keys
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6

distance 0

from C major

C major

Let C major be 

the tonic key
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Multiple Keys
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distance 5

from C major

D♭ major

Let C major be 

the tonic key
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Multiple Keys

i.e., 5 notes do not 

occur in C major



3

5

distance 2

from C major

D major

Let C major be 

the tonic key

17

Multiple Keys
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1

6

E♭ major

Let C major be 

the tonic key
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Multiple Keys

distance 3

from C major
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2

4
7E major
(mediant)

Let C major be 

the tonic key
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Multiple Keys

distance 4

from C major
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3

5

F major
(subdominant)

Let C major be 

the tonic key
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Multiple Keys
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1

6F♯ major

Let C major be 

the tonic key
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Multiple Keys
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from C major
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2

4

7

G major
(dominant)

Let C major be 

the tonic key
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Multiple Keys

distance 1

from C major
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3

5A♭ major

Let C major be 

the tonic key
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Multiple Keys

distance 4

from C major
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1

6

A major
(submediant)

Let C major be 

the tonic key
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Multiple Keys

distance 3
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2

4
7 B♭ major

Let C major be 

the tonic key
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Multiple Keys
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3

5

B major

Let C major be 

the tonic key
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• Chromatic pitches ae tempered so that intervals 

will have approximately correct ratios in all keys.

– Modern practice is equal temperament.

Multiple Keys
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– Resulting error is  0.9%

Multiple Keys
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• Scales must be diatonic

– Adjacent notes are 1 or 2 semitones apart.

• We consider m-note scales on an n-tone chromatic

– In binary representation, let m0 = number of 0s

m1 = number of 1s

– Then m0 = 2m − n,  m1 = n − m

• In a major scale 1101110, there are m = 7 notes on an

n = 12-tone chromatic

• There are m0 = 27 − 12 = 2 zeros

• There are m1 = 12 − 7 = 5 ones

Combinatorial Requirements
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0 = semitone interval

1 = whole tone interval (2 semitones)



• Semitones should not be bunched together.

– One criterion: Myhill’s property

– All intervals of a given size should contain k or k + 1 

semitones for some k.

• For example, in a major scale:

• All fifths are 6 or 7 semitones

• All thirds are 3 or 4 semitones

• All seconds are 1 or 2 semitones, etc.

– Few scales satisfy Myhill’s property

Combinatorial Requirements
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• Semitones should not be bunched together.

– We minimize the number of pairs of adjacent 0s and 

pairs of adjacent 1s.

– If m0  m1,

– If m1  m0,

• In a major scale 1101110,

number of pairs of adjacent 0s = 0

number of pairs of adjacent 1s = 5 – min{2,5} = 3

Combinatorial Requirements
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• Semitones should not be bunched together.

– The number of scales satisfying this property is

• The number of 7-note scales on a 12-tone chromatic 

satisfying this property is

Combinatorial Requirements

32



• Can have fewer than n keys.

– A “mode of limited transposition”

– Whole tone scale 111111 (Debussy) has 2 keys

– Scale 110110110 has 5 keys

• Count number of semitones in repeating sequence

Combinatorial Requirements
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• Tolerance for inaccurate tuning

– At most 0.9%

– Don’t exceed tolerance of classical equal 

temperament

Temperament Requirements
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• Scales on a tempered chromatic

– Bohlen-Pierce scale (1978, Mathews et al. 1988)  

• 9 notes on 13-note chromatic spanning a 12th

– Music for Bohlen-Pierce scale

• R.Boulanger, A. Radunskaya, J. Appleton

– Scales of limited transposition

• O. Messiaen

• Microtonal scales

– Quarter-tone scale (24-tone equally tempered 

chromatic)

• Bartok, Berg, Bloch, Boulez, Copeland, Enescu, Ives, 

Mancini.

– 15- or 19-tone equally tempered chromatic

• E. Blackwood

Previous Work
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• “Super just” scales (perfect intervals, 1 key)

– H. Partch (43 tones)

– W. Carlos (12 tones)

– L. Harrison (16 tones)

– W. Perret (19 tones)

– J. Chalmers (19 tones)

– M. Harison (24 tones)

• Combinatorial properties

– G. J. Balzano (1980)

– T. Noll (2005, 2007, 2014)

– E. Chew (2014), M. Pearce (2002), Zweifel (1996)

Previous Work
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• Frequency of each note should have a simple 

ratio (between 1 and 2) with some other note

– Equating notes an octave apart.

– Let fi = freq ratio of note i to tonic (note 1), f1 = 1.

– For major scale CDEFGAB,

– For example, B (15/8) has a simple ratio 3/2 with E (5/4)

– D octave higher (9/4) has ratio 3/2 with G (3/2)

Simple Ratios

37



• However, this allows two or more subsets of 

unrelated pitches.

– Simple ratios with respect to pitches in same subset, 

but not in other subsets.

– So we use a recursive condition.

– For some permutation of notes, each note should have 

simple ratio with previous note.

– First note in the permutation is the tonic.

Simple Ratios
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• Let the simple ratios be generators r1, …, rp.

– Let (1, …, m) be a permutation of 1, …, m with 1 = 1.

– For each i  {2, …, m}, we require

and 

for some j  {1, …, i − 1} and some q  {1, …, p}.

Simple Ratios
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• Ratio with previous note in the permutation 

must be a generator.

– Ratios with previous 2 or 3 notes in the permutation will 

be simple (product of generators)

– Ratio with tonic need not be simple.

Simple Ratios
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• Observation:  No need to consider both rq and 2/rq

as generators.

– So we consider only reduced fractions with odd

numerators (in order of simplicity):

Simple Ratios
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• CP model readily accommodates variable indices

• Replace fi with fraction ai /bi in lowest terms.

Simple Ratios
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CP Model
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CP Model
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CP Model
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CP Model
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CP Model
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CP Model
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CP Model
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CP Model
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CP Model
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• Use the generators mentioned earlier.

– There are multiple solutions for each scale.

– For each note, compute the minimal generator, or the 

simplest ratio with another note.

– Select the solution with the simplest ratios with the 

tonic and/or simplest minimal generators.

– The 7-note scales with a single generator 3/2 are 

precisely the classical modes!

Scales on a 12-note chromatic
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7-note scales on a 12-note chromatic
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7-note scales on a 12-note chromatic
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Other scales on a 12-note chromatic
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Other scales on a 12-note chromatic
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Other scales on a 12-note chromatic
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Other scales on a 12-note chromatic
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Other scales on a 12-note chromatic
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Other scales on a 12-note chromatic
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• Chorale and Fugue for organ

• Chorale
– In A, cycles through 2 most closely related keys: A, C♯, F, A

– Modulate to C♯ at bar 27

– Final sections starts at bar 72 (5:56)

• Fugue

– Double fugue

– First subject enters at pitches A, C♯, F

– Second subject enters at bar 96.

– Final episode at bar 164 (13:36)

– Recapitulation at bar 170

Demonstration: 9-note scale
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Demonstration: 9-note scale
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64

Begin in key of A
Cadence



65

Resolve from lowered 

submediant (F)



66

Pivot on tonic
0:16
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68



69

It occurs here
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72



73
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75
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• Which chromatics have the most simple ratios 

with the tonic, within tuning tolerance?

Other Chromatic Scales
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• Which chromatics have the most simple ratios 

with the tonic, within tuning tolerance?

Other Chromatic Scales

78Classical 12-tone chromatic is 2nd best



• Which chromatics have the most simple ratios 

with the tonic, within tuning tolerance?

Other Chromatic Scales

79Quarter-tone scale adds nothing



• Which chromatics have the most simple ratios 

with the tonic, within tuning tolerance?

Other Chromatic Scales

8019-tone chromatic dominates all others



• Advantage of 19-tone chromatic was discovered 

during Renaissance.

– Spanish organist and music

theorist Franciso de Salinas

(1530-1590) recommended

19-tone chromatic due to 

desirable tuning properties 

for traditional intervals.

– He used meantone

temperament rather than

equal temperament.

Historical Sidelight
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• 19-tone chromatic has received some additional 

attention over the years

– W. S. B. Woolhouse (1835)

– M. J. Mandelbaum (1961)

– E. Blackwood (1992)

– W. A. Sethares (2005)

Historical Sidelight
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• “Etude” by Easley Blackwood, 1980 (41:59)

– Uses entire 19-note scale

– Emphasis on traditional intervals

– Renaissance/Baroque sound

– Musical syntax is basically tonal

– We wish to introduce new intervals and a new syntax 

by using 11-note or other scales on the 19-note chromatic

Demonstration: 19-note chromatic
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https://www.youtube.com/watch?v=HbuFPpiJL1o&t=2519s


• But what are the best scales on this chromatic?

– 10-note scales have only 1 semitone, not enough 

for musical interest.

– 12-note scales have 5 semitones, but this makes scale

notes very closely spaced.

– 11-note scales have 3 semitones, which seems a good 

compromise (1 more semitone than classical scales).

Scales on 19-note chromatic
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• There are 77 scales satisfying our requirements

– Solve CP problem for all 77.

– For each scale, determine largest set of simple ratios

that occur in at least one solution.

– 37 different sets of ratios appear in the 77 scales.

11-note scales on 19-note chromatic
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Simple ratios in 11-note scales
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Simple ratios in 11-note scales
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These 9 scales dominate all the others.



Simple ratios in 11-note scales
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We will focus on 1 scale from each class.



4 attractive 11-note scales
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Showing 2 simplest solutions for each scale.

One with simplest generators, one with simplest ratios to tonic. 



Key structure of scales
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Key structure of scales
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No key with 

distance 1.

Good or bad?

A limited cycle 

in scale 72 that 

skips 2.



4 attractive 9-note scales
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Further focus on scale 72, which has largest number of simple ratios.

A limited cycle 

in scale 72 that 

skips 2.



• Software

– Hex MIDI sequencer for scales satisfying Myhill’s property

– We trick it into generating a 19-tone chromatic

– Viking synthesizer for use with Hex

– LoopMIDI virtual MIDI cable

Demonstration: 11-note scale
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• Classic major scale

– Major triad C:E:G = 4:5:6, major 7 chord C:E:G:B = 8:10:12:15

– Minor triad A:C:E = 10:12:15, minor 7 chord A:C:E:G = 10:12:15:18

– Dominant 7 chord G:B:D:F = 36:45:54:64

– Tensions (from jazz) C E G B D F# A

• Scale 72

– Major triad 1-4-7 = 4:5:6

– Minor triad 5-8-12 = 10:12:15

– Minor 7 chord 9-12-15-18 = 10:12:15:18

– New chord 9-12-14-18 = 5:6:7:9

– New chord 1-3-5-9 = 6:7:8:10

– New chord 3-5-9-12 = 7:8:10:12

– New chord 5-9-12-15 = 4:5:6:7

– Tensions 1-4-7-10-13-15b-16-19-22

Harmonic Comparison
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• There are eleven 11-note scales on a 19-note 

chromatic in which keys can differ by one note.

– As in classical 7-note scales.

– One can therefore cycle through all keys.

– This may be seen as a desirable property.

– The key distances are the same for all these scales.

11-note Scales with Adjacent Keys
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Scales with 

most 

attractive 

intervals
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