
Projection in Logic, CP, and Optimization

John Hooker

Carnegie Mellon University

Workshop on Logic and Search

Melbourne, 2017

Projection as a Unifying Concept

• Projection is a fundamental concept in logic,

constraint programming, and optimization.

- Logical inference is projection onto a subset

of variables.

- Consistency maintenance in CP is a projection

problem.

- Optimization is projection onto a cost variable.

2

Projection as a Unifying Concept

• Projection is a fundamental concept in logic,

constraint programming, and optimization.

- Logical inference is projection onto a subset

of variables.

- Consistency maintenance in CP is a projection

problem.

- Optimization is projection onto a cost variable.

• Recognizing this unity can lead to faster search

methods.

- In both logic and optimization.

3

Projection as a Unifying Concept

• Two fundamental projection methods occur across

multiple fields.

4

Projection as a Unifying Concept

• Two fundamental projection methods occur across

multiple fields.

• Fourier-Motzkin Elimination and generalizations.

- Polyhedral projection.

- Probability logic

- Propositional logic (resolution)

- Integer programming (cutting planes & modular arithmetic)

- Some forms of consistency maintenance

5

Projection as a Unifying Concept

• Two fundamental projection methods occur across

multiple fields.

• Benders decomposition and generalizations.

- Optimization.

- Probability logic (column generation)

- Propositional logic (conflict clauses)

- First-order logic (partial instantiation)

6

Outline

• Projection using Fourier-Motzkin elimination

• Consistency maintenance as projection

• Projection using Benders decomposition

7

What Is Projection?

• Projection yields a constraint set.

- We project a constraint set onto a subset of its

variables to obtain another constraint set.

What Is Projection?

• Projection yields a constraint set.

- We project a constraint set onto a subset of its

variables to obtain another constraint set.

• Formal definition

- Let

- Let

- Let be a constraint set.

- The projection of onto is a constraint set,

containing only variables in ,

whose satisfaction set is

9

Projection Using

Fourier-Motzkin Elimination
and Its Generalizations

10

11

Polyhedral Projection

• We wish to project a polyhedron onto a subspace.

– A method based on an idea of Fourier was proposed by

Motzkin.

– The basic idea of Fourier-Motzkin elimination can be

used to compute projections in several contexts.

Fourier (1827)

Motzkin (1936)

12

Polyhedral Projection

• Eliminate variables we want to project out.

– To project onto x1, …, xk

project out all variables except x1, …, xk

– To project out xj , eliminate it from pairs of inequalities:

– Then remove all inequalities containing xj

where c0, d0  0

13

Polyhedral Projection

• Example

– Project onto x2

by projecting out x1

or

x1

x2

2

14

Optimization as Projection

• Optimization is projection onto a single variable.

– To solve

project

onto x0 to obtain an interval

15

Optimization as Projection

• Optimization is projection onto a single variable.

– To solve

project

onto x0 to obtain an interval

• Linear programming

– We can in principle solve

with Fourier-Motzkin elimination

by projecting onto x0

– But this is extremely inefficient.

– Use simplex or interior point method instead.

16

Probability Logic

• Inference in probability logic is a polyhedral

projection problem

– Originally stated by George Boole.

– The linear programming problem can be solved,

in principle, by Fourier-Motzkin elimination.

• The problem

– Given a probability interval for each of several formulas

in propositional logic,

– Deduce a probability interval for a target formula.

1

1 2

2 3

0.9

0if then

if then

.8

0.4

x

x x

x x

Example

Formula Probability

Deduce probability

range for x3

Probability Logic

Boole (1854)

1

1 2

2 3

0.9

0if then

if then

.8

0.4

x

x x

x x

Example

Formula Probability

Deduce probability

range for x3

Interpret if-then statements

as material conditionals

Probability Logic

Boole (1854)

Probability Logic

1

1 2

2 3

0.9

0.8

0.4

x

x x

x x





Example

Formula Probability

Deduce probability

range for x3

Interpret if-then statements

as material conditionals

Boole (1854)

20

1

1 2

2 3

0.9

0.8

0.4

x

x x

x x





Example

Formula Probability

01010101

00001111

11110011

11011101

11111111

 
 
 
 
 
 
  

0min/ max 

000

001

010

111

p

p

p

p

 
 
 
 
 
 
  

0

0.9

0.8

0.4

1

 
 
 

  
 
 
  

Deduce probability

range for x3

Linear programming model

p000 = probability that (x1,x2,x3) = (0,0,0)

Probability Logic

Hailperin (1976)

Nilsson (1986)

21

1

1 2

2 3

0.9

0.8

0.4

x

x x

x x





Example

Formula Probability

01010101

00001111

11110011

11011101

11111111

 
 
 
 
 
 
  

0min/ max 

000

001

010

111

p

p

p

p

 
 
 
 
 
 
  

0

0.9

0.8

0.4

1

 
 
 

  
 
 
  

Deduce probability

range for x3

Linear programming model

p000 = probability that (x1,x2,x3) = (0,0,0)

Solution: 0  [0.1, 0.4]

Probability Logic

Hailperin (1976)

Nilsson (1986)

22

Inference as Projection

• Projection can be viewed as the fundamental

inference problem.

– Deduce information that pertains to a desired subset of

propositional variables.

• In propositional logic (SAT), this can be achieved

by the resolution method.

– CNF analog of Quine’s consensus method for DNF.

23

Inference as Projection

• Project onto propositional variables of interest

– Suppose we wish to infer from these clauses

everything we can about propositions x1, x2, x3

24

Inference as Projection

• Project onto propositional variables of interest

– Suppose we wish to infer from these clauses

everything we can about propositions x1, x2, x3

We can deduce





1 2

1 3

x x

x x

This is a projection

onto x1, x2, x3

25

Inference as Projection

• Resolution as a projection method

– Similar to Fourier-Motzkin elimination

– Actually, identical to Fourier-Motzkin elimination + rounding

– To project out xj, eliminate it from pairs of clauses:

– Then remove all clauses containing xj

 jC x  jD x

C D

Quine (1952,1955)

JH (1992,2012)

Inference as Projection

• Interpretation as Fourier-Motzkin + rounding

– Project out x1 using resolution:

27

Inference as Projection

• Interpretation as Fourier-Motzkin + rounding

– Project out x1 using resolution:

– Project out x1 using Fourier-Motzkin + rounding

Williams (1987)

xj = 1,0

corresponds to

xj = T, F

rounds to since xjs are integer

28

Projection and Cutting Planes

• A resolvent is a special case of a rank 1 Chvátal

cut.

– A general inference method for integer programming.

– All rank 1 cuts can be obtained by taking nonnegative

linear combinations and rounding.

– We can deduce all valid inequalities by recursive

generation of rank 1 cuts.

– …including inequalities describing the projection onto a

given subset of variables.

– The minimum number of iterations necessary is the Chvátal

rank of the constraint set.

– There is no upper bound on the rank as a function of the

number of variables.
Chvátal 1973

29

Projection Methods

• Generalizations of resolution

– For cardinality clauses

– For 0-1 linear inequalities

– For general integer linear inequalities

JH (1992)

JH (1988)

Williams & JH (2015)

Projection for Integer Programming

Example: solve

Projection for Integer Programming

Example: solve

To project out x1, first combine C1 and C2:

32

Projection for Integer Programming

Example: solve

To project out x1, first combine C1 and C2:

Since 2nd term is even, we can write this as

where . This simplifies to

Projection for Integer Programming

Example: solve

After similarly combining C1 and C3, we get the problem with

x1 projected out:

Projection for Integer Programming

Example: solve

After similarly combining C1 and C3, we get the problem with

x1 projected out:

This is equivalent to

or

So optimal value = 9.

Projection for Integer Programming

Example: solve

optimal

Number of iterations to

compute a projection is

bounded by number of

variables projected out,

unlike Chvátal cuts, for

which number of

iterations is unbounded.

Consistency Maintenance

as Projection

36

37

Consistency as Projection

• Domain consistency

– Domain of variable xj contains only values that xj assumes

in some feasible solution.

– Equivalently, domain of xj = projection of feasible set onto xj.

38

Consistency as Projection

 
 
 
 







1 2 3

1

2

3

alldiff , ,

,

,

,

x x x

x a b

x a b

x b c

Example:

Constraint set

• Domain consistency

– Domain of variable xj contains only values that xj takes

in some feasible solution.

– Equivalently, domain of xj = projection of feasible set onto xj.

39

Consistency as Projection

 
 
 
 







1 2 3

1

2

3

alldiff , ,

,

,

,

x x x

x a b

x a b

x b c

 1 2 3, ,

(, ,)

(, ,)

x x x

a b c

b a c

Example:

Constraint set Solutions

• Domain consistency

– Domain of variable xj contains only values that xj takes

in some feasible solution.

– Equivalently, domain of xj = projection of feasible set onto xj.

40

Consistency as Projection

 
 
 
 







1 2 3

1

2

3

alldiff , ,

,

,

,

x x x

x a b

x a b

x b c

 1 2 3, ,

(, ,)

(, ,)

x x x

a b c

b a c

Example:

Constraint set Solutions

Projection onto x1

 1 ,x a b

Projection onto x2

 2 ,x a b

Projection onto x3

 3x c

• Domain consistency

– Domain of variable xj contains only values that xj takes

in some feasible solution.

– Equivalently, domain of xj = projection of feasible set onto xj.

41

Consistency as Projection

 
 
 
 







1 2 3

1

2

3

alldiff , ,

,

,

,

x x x

x a b

x a b

x b c

 1 2 3, ,

(, ,)

(, ,)

x x x

a b c

b a c

Example:

Constraint set Solutions

Projection onto x1

 1 ,x a b

Projection onto x2

 2 ,x a b

Projection onto x3

 3x cThis achieves domain consistency.

• Domain consistency

– Domain of variable xj contains only values that xj takes

in some feasible solution.

– Equivalently, domain of xj = projection of feasible set onto xj.

42

Consistency as Projection

• k-consistency

– Can be defined:

– A constraint set S is k-consistent if:

• for every J  {1, …, n} with |J| = k  1,

• every assignment xJ = vJ  Dj for which (xJ,xj) does not

violate S,

• and every variable xj  xJ,

there is an assignment xj = vj  Dj for which (xJ,xj) = (vJ,vj)

does not violate S.

xJ = (xj | j  J)

43

Consistency as Projection

• k-consistency

– Can be defined:

– A constraint set S is k-consistent if:

• for every J  {1, …, n} with |J| = k  1,

• every assignment xJ = vJ  Dj for which (xJ,xj) does not

violate S,

• and every variable xj  xJ,

there is an assignment xj = vj  Dj for which (xJ,xj) = (vJ,vj)

does not violate S.

– To achieve k-consistency:

– Project the constraints containing each set of k variables

onto subsets of k  1 variables.

xJ = (xj | j  J)

44

Consistency as Projection

• Consistency and backtracking:

– Strong k-consistency for entire constraint set avoids

backtracking…

– if the primal graph has width < k with respect to branching

order.

– No point in achieving strong k-consistency for individual

constraints if we propagate through domain store.

– Domain consistency has same effect.

Freuder (1982)

45

J-Consistency

• A type of consistency more directly related to

projection.

– Constraint set S is J-consistent if it contains the

projection of S onto xJ.

– S is domain consistent if it is { j }-consistent for each j.

xJ = (xj | j  J)

46

J-Consistency

• J-consistency and backtracking:

– If we project a constraint onto x1, x2, …, xk, the constraint

will not cause backtracking as we branch on the remaining

variables.

– A natural strategy is to project out xn, xn1, … until

computational burden is excessive.

47

J-Consistency

• J-consistency and backtracking:

– If we project a constraint onto x1, x2, …, xk, the constraint

will not cause backtracking as we branch on the remaining

variables.

– A natural strategy is to project out xn, xn1, … until

computational burden is excessive.

– No point in achieving J-consistency for individual

constraints if we propagate through a domain store.

– However, J-consistency can be useful if we propagate

through a richer data structure

– …such as decision diagrams

– …which can be more effective as a propagation medium.

JH & Hadžić (2006,2007)

Andersen, Hadžić, JH, Tiedemann (2007)

Bergman, Ciré, van Hoeve, JH (2014)

48

Propagating J-Consistency

 

 
 

 
 

  







1 2

1 2

1 2 3 4

1 2

3

4

among (,),{ , },1,2

() ()

alldiff , , ,

, , , ,

,

,

x x c d

x c x d

x x x x

x x a b c d

x a b

x c d

Already domain

consistent for

individual constraints.

If we branch on x1 first,

must consider all 4

branches x1= a,b,c,d

Example:

49

Propagating J-Consistency

Suppose we propagate through a

relaxed decision diagram of width 2

for these constraints
 

 
 

 
 

  







1 2

1 2

1 2 3 4

1 2

3

4

among (,),{ , },1,2

() ()

alldiff , , ,

, , , ,

,

,

x x c d

x c x d

x x x x

x x a b c d

x a b

x c d

Example:

a,b,d

a,b,c,d

c

d

a,b

c,d

52 paths from top to bottom

represent assignments to

x1, x2, x3, x4

36 of these are the feasible

assignments.

50

Propagating J-Consistency

Suppose we propagate through a

relaxed decision diagram of width 2

for these constraints
 

 
 

 
 

  







1 2

1 2

1 2 3 4

1 2

3

4

among (,),{ , },1,2

() ()

alldiff , , ,

, , , ,

,

,

x x c d

x c x d

x x x x

x x a b c d

x a b

x c d

Example:

a,b,d

a,b,c,d

c

d

a,b

c,d

52 paths from top to bottom

represent assignments to

x1, x2, x3, x4

36 of these are the feasible

assignments.

 
 
 

1 2

1 2

1 2

alldiff ,

atmost (,),{ , },1

atmost (,),{c,d},1

x x

x x a b

x x

Projection of alldiff

onto x1, x2 is

51

Propagating J-Consistency

Let’s propagate the 2nd atmost constraint in the projected alldiff

through the relaxed decision diagram.

a,b,d

a,b,c,d

c

d

a,b

c,d

Let the length of a

path be number of

arcs with labels in

{c,d}.

For each arc,

indicate length of

shortest path from

top to that arc.
 
 
 

1 2

1 2

1 2

alldiff ,

atmost (,),{ , },1

atmost (,),{c,d},1

x x

x x a b

x x

Projection of alldiff

onto x1, x2 is

52

Propagating J-Consistency

Let’s propagate the 2nd atmost constraint in the projected alldiff

through the relaxed decision diagram.

a,b,d

a,b,c,d

c

d

a,b

c,d

Let the length of a

path be number of

arcs with labels in

{c,d}.

For each arc,

indicate length of

shortest path from

top to that arc.
 
 
 

1 2

1 2

1 2

alldiff ,

atmost (,),{ , },1

atmost (,),{c,d},1

x x

x x a b

x x

Projection of alldiff

onto x1, x2 is

0,0,1

0,0,1,1
2

1

53

Propagating J-Consistency

Let’s propagate the 2nd atmost constraint in the projected alldiff

through the relaxed decision diagram.

a,b,d

a,b,c,d

c

d

a,b

c,d

Let the length of a

path be number of

arcs with labels in

{c,d}.

For each arc,

indicate length of

shortest path from

top to that arc.
 
 
 

1 2

1 2

1 2

alldiff ,

atmost (,),{ , },1

atmost (,),{c,d},1

x x

x x a b

x x

Projection of alldiff

onto x1, x2 is

0,0,1

0,0,1,1
2

1

Remove arcs

with label > 1

54

Propagating J-Consistency

Let’s propagate the 2nd atmost constraint in the projected alldiff

through the relaxed decision diagram.

a,b,d

a,b,c,d

c

a,b

c,d

Let the length of a

path be number of

arcs with labels in

{c,d}.

For each arc,

indicate length of

shortest path from

top to that arc.
 
 
 

1 2

1 2

1 2

alldiff ,

atmost (,),{ , },1

atmost (,),{c,d},1

x x

x x a b

x x

Projection of alldiff

onto x1, x2 is

0,0,1

0,0,1,1

1

Remove arcs

with label > 1

55

Propagating J-Consistency

Let’s propagate the 2nd atmost constraint in the projected alldiff

through the relaxed decision diagram.

a,b,d

a,b,c,d

c

a,b

c,d

Let the length of a

path be number of

arcs with labels in

{c,d}.

For each arc,

indicate length of

shortest path from

top to that arc.
 
 
 

1 2

1 2

1 2

alldiff ,

atmost (,),{ , },1

atmost (,),{c,d},1

x x

x x a b

x x

Projection of alldiff

onto x1, x2 is

0,0,1

0,0,1,1

1

Remove arcs

with label > 1

Clean up.

56

Propagating J-Consistency

Let’s propagate the 2nd atmost constraint in the projected alldiff

through the relaxed decision diagram.

a,b,d

a,b,c,d

a,b

c,d

Let the length of a

path be number of

arcs with labels in

{c,d}.

For each arc,

indicate length of

shortest path from

top to that arc.
 
 
 

1 2

1 2

1 2

alldiff ,

atmost (,),{ , },1

atmost (,),{c,d},1

x x

x x a b

x x

Projection of alldiff

onto x1, x2 is

0,0,1

0,0,1,1

Remove arcs

with label > 1

Clean up.

57

Propagating J-Consistency

Let’s propagate the 2nd atmost constraint in the projected alldiff

through the relaxed decision diagram.

a,b,d

a,b,c,d

a,b

c,d

We need only branch

on a,b,d rather than

a,b,c,d

 
 
 

1 2

1 2

1 2

alldiff ,

atmost (,),{ , },1

atmost (,),{c,d},1

x x

x x a b

x x

Projection of alldiff

onto x1, x2 is

Remove arcs

with label > 1

Clean up.

58

Achieving J-consistency

Constraint How hard to project?

among Easy and fast.

sequence More complicated but fast. Since

polyhedron is integral, can write a

formula based on Fourier-Motzkin

regular Easy and basically same labor as

domain consistency.

alldiff Quite complicated but practical for

small domains.

Projection Using

Benders Decomposition
and Its Generalizations

59

Logic-Based Benders

• Logic-based Benders decomposition is a

generalization of classical Benders decomposition.

– Solves a problem of the form

60

min (,)

(,)

f x y

x y S

x D





JH (2000), JH & Ottosson (2003)

Logic-Based Benders

• Decompose problem into master and subproblem.

– Subproblem is obtained by fixing x to solution value in

master problem.

min

() (Benders cuts)k

z

z g x

x D





min (,)

(,)

f x y

x y S

Minimize cost z subject to

bounds given by Benders

cuts, obtained from values

of x attempted in previous

iterations k.

Obtain proof of optimality

(solution of inference dual).

Use same proof to deduce

cost bounds for other

assignments, yielding

Benders cut.

Trial value x

that solves

master

Benders cut

z  gk(x)

Master problem Subproblem

x

61

Logic-Based Benders

• Iterate until master problem value equals best

subproblem value so far.

– This yields optimal solution.

min

() (Benders cuts)k

z

z g x

x D





min (,)

(,)

f x y

x y S

Minimize cost z subject to

bounds given by Benders

cuts, obtained from values

of x attempted in previous

iterations k.

Obtain proof of optimality

(solution of inference dual).

Use same proof to deduce

cost bounds for other

assignments, yielding

Benders cut.

Trial value x

that solves

master

Benders cut

z  gk(x)

Master problem Subproblem

x

62

Logic-Based Benders

• The Benders cuts define the projection of the

feasible set onto (z,x).

– If all possible cuts are generated.

min

() (Benders cuts)k

z

z g x

x D





min (,)

(,)

f x y

x y S

Minimize cost z subject to

bounds given by Benders

cuts, obtained from values

of x attempted in previous

iterations k.

Obtain proof of optimality

(solution of inference dual).

Use same proof to deduce

cost bounds for other

assignments, yielding

Benders cut.

Trial value x

that solves

master

Benders cut

z  gk(x)

Master problem Subproblem

x

63

Logic-Based Benders

• Fundamental concept: inference duality

min ()f x

x S

max

()
P

v

x S f x v

P

  

P
Find best feasible

solution by

searching over

values of x.
Find a proof of optimal value v*

by searching over proofs P.

Primal problem:

optimization

Dual problem:

Inference

64

Logic-Based Benders

• Popular optimization duals are special cases of

the inference dual.

– Result from different choices of inference method.

– For example....

– Linear programming dual (gives classical Benders cuts)

– Lagrangean dual

– Surrogate dual

– Subadditive dual

65

Classical Benders

• Linear programming dual results in classical

Benders method.

– The problem is

min

(Benders cuts)

z 

 

min cx dy

By b Ax

Minimize cost z subject to

bounds given by Benders

cuts, obtained from values

of x attempted in previous

iterations k.

Obtain proof of optimality

by solving LP dual:

Trial value x

that solves

master

Benders cut

z  cx + u(b  Ax)

Master problem Subproblem

x

66Benders (1962)



 

min cx dy

Ax By b



 

max ()

, 0

u b Ax

uB d u

• Assign tasks in master, schedule in subproblem.

– Combine mixed integer programming and constraint

programming

Assign tasks to resources

to minimize cost.

Solve by mixed integer

programming.

Schedule jobs on each

machine, subject to time

windows.

Constraint programming

obtains proof of optimality

(dual solution).

Use same proof to deduce

cost for some other

assignments, yielding

Benders cut.

Trial

assignment

Benders cut

z  gk(x)

Master problem Subproblem

x

67

Application to Planning & Scheduling

Application to Planning & Scheduling

• Objective function

– Cost is based on task assignment only.

– So cost appears only in the master problem.

– Scheduling subproblem is a feasibility problem.

68

cost , 1 if task assigned to resource ij ij ij

ij

c x x j i 

Application to Planning & Scheduling

• Objective function

– Cost is based on task assignment only.

– So cost appears only in the master problem.

– Scheduling subproblem is a feasibility problem.

• Benders cuts

– They have the form

– where Ji is a set of tasks that create infeasibility when

assigned to resource i.

69

cost , 1 if task assigned to resource ij ij ij

ij

c x x j i 

(1) 1, all
i

ij

j J

x i


 

• Resulting Benders decomposition:

Schedule jobs on each

resource.

Constraint programming

may obtain proof of

infeasibility on some resources

(dual solution).

Use same proof to deduce

infeasibility for some other

assignments, yielding

Benders cut.

Trial

assignment

Benders cuts

for infeasible

resources i

Master problem Subproblem

x

70

min

Benders cuts

ij ij

ij

z

z c x

(1) 1,
i

ij

j J

x


 

Application to Planning & Scheduling

0

5

10

15

20

25

30

35

40

45

50

0.01 0.1 1 10 100 1000 10000

N
u

m
b

e
r

o
f

n
s

ta
n

c
e

s
 s

o
lv

e
d

Computation time (sec)

Relax + strong cuts

Relax + weak cuts

MIP (CPLEX)

Performance

profile

50 instances

71

72

1

1 2

2 3

0.9

0.8

0.4

x

x x

x x





Formula Probability

01010101

00001111

11110011

11011101

11111111

 
 
 
 
 
 
  

0min/ max 

000

001

010

111

p

p

p

p

 
 
 
 
 
 
  

0

0.9

0.8

0.4

1

 
 
 

  
 
 
  

Deduce probability

range for x3

Linear programming model

p000 = probability that (x1,x2,x3) = (0,0,0)

Application to Probability Logic

Exponentially many variables in LP model. What to do?

73

1

1 2

2 3

0.9

0.8

0.4

x

x x

x x





Formula Probability

01010101

00001111

11110011

11011101

11111111

 
 
 
 
 
 
  

0min/ max 

000

001

010

111

p

p

p

p

 
 
 
 
 
 
  

0

0.9

0.8

0.4

1

 
 
 

  
 
 
  

Deduce probability

range for x3

Linear programming model

p000 = probability that (x1,x2,x3) = (0,0,0)

Application to Probability Logic

Exponentially many variables in LP model. What to do?

Apply classical Benders to linear programming dual!

74

1

1 2

2 3

0.9

0.8

0.4

x

x x

x x





Formula Probability

01010101

00001111

11110011

11011101

11111111

 
 
 
 
 
 
  

0min/ max 

000

001

010

111

p

p

p

p

 
 
 
 
 
 
  

0

0.9

0.8

0.4

1

 
 
 

  
 
 
  

Deduce probability

range for x3

Linear programming model

p000 = probability that (x1,x2,x3) = (0,0,0)

Application to Probability Logic

Exponentially many variables in LP model. What to do?

Apply classical Benders to linear programming dual!
This results in a column generation method that introduces

variables into LP only as needed to find optimum.

75

Inference as Projection

• Recall that logical inference is a projection problem.

– We wish to infer from these clauses

everything we can about propositions x1, x2, x3

We can deduce





1 2

1 3

x x

x x

This is a projection

onto x1, x2, x3

76

Inference as Projection

• Benders decomposition computes the projection!

– Benders cuts describe projection onto x1, x2, x3

1 2x x

Current

Master problem

Benders cut

from previous

iteration

77

Inference as Projection

• Benders decomposition computes the projection!

– Benders cuts describe projection onto x1, x2, x3

1 2x x solution of master

(x1,x2,x3) = (0,1,0)

Current

Master problem
Resulting

subproblem

78

Inference as Projection

• Benders decomposition computes the projection!

– Benders cuts describe projection onto x1, x2, x3

1 2x x solution of master

(x1,x2,x3) = (0,1,0)

Current

Master problem
Resulting

subproblem

Subproblem is

infeasible.

(x1,x3)=(0,0)

creates infeasibility

79

Inference as Projection

• Benders decomposition computes the projection!

– Benders cuts describe projection onto x1, x2, x3

1 2x x solution of master

(x1,x2,x3) = (0,1,0)

Current

Master problem

Subproblem is

infeasible.

(x1,x3)=(0,0)

creates infeasibility

Benders cut

(nogood)

1 3x x

Resulting

subproblem

80

Inference as Projection

• Benders decomposition computes the projection!

– Benders cuts describe projection onto x1, x2, x3

1 2x x solution of master

(x1,x2,x3) = (0,1,1)

Current

Master problem
Resulting

subproblem

1 3x x

81

Inference as Projection

• Benders decomposition computes the projection!

– Benders cuts describe projection onto x1, x2, x3

1 2x x solution of master

(x1,x2,x3) = (0,1,1)

Current

Master problem
Resulting

subproblem

1 3x x

Subproblem is

feasible

82

Inference as Projection

• Benders decomposition computes the projection!

– Benders cuts describe projection onto x1, x2, x3

1 2x x solution of master

(x1,x2,x3) = (0,1,1)

Current

Master problem
Resulting

subproblem

Enumerative

Benders cut

1 3x x

Subproblem is

feasible

 1 2 3x x x

83

Inference as Projection

• Benders decomposition computes the projection!

– Benders cuts describe projection onto x1, x2, x3

1 2x x solution of master

(x1,x2,x3) = (0,1,1)

Current

Master problem
Resulting

subproblem

Enumerative

Benders cut

1 3x x

Continue until master

is infeasible.

Black Benders cuts

describe projection.

 1 2 3x x x

JH (2000, 2012)

84

Inference as Projection

• Benders cuts = conflict clauses in a SAT algorithm!

– Branch on x1, x2, x3 first.

JH (2012, 2016)

85

Inference as Projection

• Benders cuts = conflict clauses in a SAT algorithm!

– Branch on x1, x2, x3 first.

Conflict

clauses

86

Inference as Projection

• Benders cuts = conflict clauses in a SAT algorithm!

– Branch on x1, x2, x3 first.

Conflict

clauses

Backtrack to x3 at

feasible leaf nodes

87

Inference as Projection

• Benders cuts = conflict clauses in a SAT algorithm!

– Branch on x1, x2, x3 first.

Conflict clauses containing

x1, x2, x3 describe projection

• Logic-based Benders can speed up search in

several domains.

− Several orders of magnitude relative to state of the art.

• Some applications:

– Circuit verification

– Chemical batch processing (BASF, etc.)

– Steel production scheduling

– Auto assembly line management (Peugeot-Citroën)

– Automated guided vehicles in flexible manufacturing

– Allocation and scheduling of multicore processors

(IBM, Toshiba, Sony)

– Facility location-allocation

– Stochastic facility location and fleet management

– Capacity and distance-constrained plant location

Accelerating Search

88

• Some applications…

– Transportation network design

– Traffic diversion around blocked routes

– Worker assignment in a queuing environment

– Single- and multiple-machine allocation and scheduling

– Permutation flow shop scheduling with time lags

– Resource-constrained scheduling

– Wireless local area network design

– Service restoration in a network

– Optimal control of dynamical systems

– Sports scheduling

Logic-Based Benders

89

• Partial instantiation methods for first-order

logic can be viewed as Benders methods

– The master problem is a SAT problem for the current

formula F,

– The solution of the master finds a satisfier mapping that

makes one literal of each clause of F (the satisfier of the

clause) true.

First-Order Logic

90JH, Rago, Chandru, Shrivastava (2002)

• Partial instantiation methods for first-order

logic can be viewed as Benders methods

– The master problem is a SAT problem for the current

formula F,

– The solution of the master finds a satisfier mapping that

makes one literal of each clause of F (the satisfier of the

clause) true.

– The subproblem checks whether a satisfier mapping is

blocked.

– This means atoms assigned true and false can be

unified.

First-Order Logic

91JH, Rago, Chandru, Shrivastava (2002)

• Partial instantiation methods for first-order

logic can be viewed as Benders methods

– The master problem is a SAT problem for the current

formula F,

– The solution of the master finds a satisfier mapping that

makes one literal of each clause of F (the satisfier of the

clause) true.

– The subproblem checks whether a satisfier mapping is

blocked.

– This means atoms assigned true and false can be

unified.

– In case of blockage, more complete instantiations of the

blocked clauses are added to F as Benders cuts.

First-Order Logic

92JH, Rago, Chandru, Shrivastava (2002)

• Resulting Benders decomposition:

Check if the satisfier mapping

is blocked by unifying atoms

that receive different truth

values.

The dual solution is the most

general unifier.

Use same unifier to create

Benders cuts: fuller

instantiations of the relevant

clauses.

Satisfier

mapping

More fully

instantiated

clauses to

append to F

Master problem Subproblem

93

First-Order Logic

Current partially

instantiated formula F.

Solve SAT problem for

a satisfier mapping.

First-Order Logic

94

Consider the formula

where

First-Order Logic

Consider the formula

where

Solution of master problem yields satisfiers shown.

True False

First-Order Logic

Consider the formula

where

Solution of master problem yields satisfiers shown.

True False

The satisfier mapping is blocked because the atoms and

can be unified.

First-Order Logic

97

Consider the formula

where

Solution of master problem yields satisfiers shown.

True False

The satisfier mapping is blocked because the atoms and

can be unified.

Generate Benders cuts by applying the most general unifier of the

atoms to the clauses containing them, and adding the result to F.

Now,

where

First-Order Logic

98

Consider the formula

where

Solution of master problem yields satisfiers shown.

True False

The satisfier mapping is blocked because the atoms and

can be unified.

Generate Benders cuts by applying the most general unifier of the

atoms to the clauses containing them, and adding the result to F.

Now,

where

Solution of the new master problem yields a satisfier mapping that

is not blocked in the subproblem, and the procedure terminates

with satisfiability.

• We can accommodate full first-order logic with

functions

– If we replace blocked with M-blocked

– Meaning that the satisfier mapping is blocked within a

nesting depth of M.

– The procedure always terminates if F is unsatisfiable.

– It may not terminate if F is satisfiable, since first-order

logic is semidecidable.

– The master problem has infinitely many variables,

because the Herbrand base is infinite.

First-Order Logic

99

100

