Projection in Logic, CP, and Optimization

John Hooker Carnegie Mellon University

Workshop on Logic and Search Melbourne, 2017

- **Projection** is a fundamental concept in **logic**, **constraint programming**, and **optimization**.
 - Logical inference is projection onto a subset of variables.
 - Consistency maintenance in CP is a projection problem.
 - **Optimization** is **projection** onto a cost variable.

- **Projection** is a fundamental concept in **logic**, **constraint programming**, and **optimization**.
 - Logical inference is projection onto a subset of variables.
 - Consistency maintenance in CP is a projection problem.
 - **Optimization** is **projection** onto a cost variable.
- Recognizing this unity can lead to **faster search methods**.
 - In both logic and optimization.

• Two fundamental **projection methods** occur across multiple fields.

• Two fundamental **projection methods** occur across multiple fields.

• Fourier-Motzkin Elimination and generalizations.

- Polyhedral projection.
- Probability logic
- Propositional logic (resolution)
- Integer programming (cutting planes & modular arithmetic)
- Some forms of consistency maintenance

- Two fundamental **projection methods** occur across multiple fields.
- Benders decomposition and generalizations.
 - Optimization.
 - Probability logic (column generation)
 - Propositional logic (conflict clauses)
 - First-order logic (partial instantiation)

Outline

- Projection using Fourier-Motzkin elimination
- Consistency maintenance as projection
- Projection using **Benders decomposition**

What Is Projection?

- Projection yields a constraint set.
 - We project a **constraint set** onto a **subset of its variables** to obtain **another constraint set**.

What Is Projection?

- Projection yields a constraint set.
 - We project a **constraint set** onto a **subset of its variables** to obtain **another constraint set**.
- Formal definition
 - Let $x = (x_1, ..., x_n)$
 - Let $\bar{x} = (x_1, \dots, x_k), \ k < n$
 - Let \mathcal{C} be a constraint set.
 - The projection of C onto \overline{x} is a constraint set, containing only variables in \overline{x} , whose satisfaction set is $\{\overline{x} \mid x \text{ satisfies } C\}$

Projection Using Fourier-Motzkin Elimination and Its Generalizations

Polyhedral Projection

- We wish to project a polyhedron onto a subspace.
 - A method based on an idea of Fourier was proposed by Motzkin.
 - The basic idea of Fourier-Motzkin elimination can be used to compute projections in several contexts.

Fourier (1827)

Motzkin (1936)

Polyhedral Projection

- Eliminate variables we want to project out.
 - To project $\{x \mid Ax \ge b\}$ onto $x_1, ..., x_k$ project out all variables except $x_1, ..., x_k$
 - To project out x_i , eliminate it from pairs of inequalities:

$$\begin{aligned} & c_0 x_j + c\bar{x} \ge \gamma \quad (1/c_0) \\ & -d_0 x_j + d\bar{x} \ge \delta \quad (1/d_0) \\ & \overline{\left(\frac{c}{c_0} + \frac{d}{d_0}\right)\bar{x} \ge \frac{\gamma}{c_0} + \frac{\delta}{d_0}} \end{aligned} \qquad \text{where } \mathbf{c}_0, \, \mathbf{d}_0 \ge \mathbf{0} \end{aligned}$$

- Then remove all inequalities containing x_i

Polyhedral Projection

• Example - Project $-2x_1 - x_2 \ge -4$ onto x_2 $x_1 - x_2 \ge -1$ by projecting out x_1 **X**₂ $-2x_1 - x_2 \ge -4$ (1/2) $x_1 - x_2 \ge -1$ (1) $-\frac{3}{2}x_2 \ge -3$ 2 or $x_2 \leq 2$ **X**₁

Optimization as Projection

- Optimization is projection onto a single variable.
 - To solve $\min / \max \{f(x) \mid x \in S\}$

project
$$\{(x_0, x) \mid x_0 = f(x), x \in S\}$$

onto x_0 to obtain an interval $x_0^{\min} \le x_0 \le x_0^{\max}$

Optimization as Projection

- Optimization is projection onto a single variable.
 - To solve $\min / \max \{ f(x) \mid x \in S \}$

project $\{(x_0, x) \mid x_0 = f(x), x \in S\}$

onto x_0 to obtain an interval $x_0^{\min} \le x_0 \le x_0^{\max}$

- Linear programming
 - We can in principle solve $\min / \max \{cx \mid Ax \ge b\}$ with Fourier-Motzkin elimination by projecting $\{(x_0, x) \mid x_0 = cx, Ax \ge b\}$ onto x_0
 - But this is extremely inefficient.
 - Use simplex or interior point method instead.

- Inference in **probability logic** is a polyhedral projection problem
 - Originally stated by George Boole.
 - The linear programming problem can be solved, in principle, by Fourier-Motzkin elimination.
- The problem
 - Given a probability interval for each of several formulas in propositional logic,
 - Deduce a probability interval for a target formula.

Example

Formula Probability x_1 0.9 if x_1 then x_2 0.8 if x_2 then x_3 0.4 Deduce probability

range for x_3

Example

- Formula Probability
- *x*₁ 0.9
- if x_1 then x_2 0.8
- if x_2 then x_3 0.4
- Interpret if-then statements as material conditionals

Deduce probability range for x_3

Boole (1854)

Example

FormulaProbability X_1 0.9 $\overline{X}_1 \lor X_2$ 0.8 $\overline{X}_2 \lor X_3$ 0.4Deduce probability

Deduce probability range for x_3

Boole (1854)

Example

Formula	Probability	
X ₁	0.9	
$\overline{X}_1 \vee X_2$	0.8	
$\overline{\textit{X}}_2 \lor \textit{X}_3$	0.4	
Deduce probability range for x_3		

Linear programming model

min/max π_0

 p_{000} = probability that $(x_1, x_2, x_3) = (0, 0, 0)$

20

Example

Formula	Probability	
<i>X</i> ₁	0.9	
$\overline{X}_1 \vee X_2$	0.8	
$\overline{X}_2 \lor X_3$	0.4	
Deduce probability range for x_3		

Linear programming model

min/max π_0

 p_{000} = probability that $(x_1, x_2, x_3) = (0, 0, 0)$

Solution: $\pi_0 \in [0.1, 0.4]$

21

- Projection can be viewed as the fundamental inference problem.
 - Deduce information that pertains to a desired subset of propositional variables.
- In propositional logic (SAT), this can be achieved by the **resolution** method.
 - CNF analog of Quine's **consensus** method for DNF.

- Project onto propositional variables of interest
 - Suppose we wish to infer from these clauses everything we can about propositions x_1 , x_2 , x_3

- Project onto propositional variables of interest
 - Suppose we wish to infer from these clauses everything we can about propositions x_1 , x_2 , x_3

We can deduce $X_1 \lor X_2$ $X_1 \lor X_3$

This is a projection onto x_1 , x_2 , x_3

x_1			$\lor x_4 \lor x_5$
x_1			$\lor x_4 \lor \bar{x}_5$
x_1			$\lor x_5 \lor x_6$
x_1			$\lor x_5 \lor \bar{x}_6$
	x_2		$\vee \bar{x}_5 \vee x_6$
	x_2		$\vee \bar{x}_5 \vee \bar{x}_6$
		x_3	$\vee \bar{x}_4 \vee x_5$
		x_3	$\vee \bar{x}_4 \vee \bar{x}_5$

- Resolution as a projection method
 - Similar to Fourier-Motzkin elimination
 - Actually, identical to Fourier-Motzkin elimination + rounding
 - To project out x_i , eliminate it from pairs of clauses:

- Then remove all clauses containing x_i

- Interpretation as Fourier-Motzkin + rounding
 - Project out x_1 using resolution:

 $\begin{array}{ccc} x_1 \lor x_2 \lor x_3 \\ \overline{x}_1 & \lor x_3 \lor x_4 \end{array}$

 $x_2 \lor x_3 \lor x_4$

- Interpretation as Fourier-Motzkin + rounding
 - Project out x_1 using resolution:

 $\begin{array}{ccc} x_1 \lor x_2 \lor x_3 \\ \overline{x}_1 & \lor x_3 \lor x_4 \end{array}$

 $x_2 \lor x_3 \lor x_4$

- Project out x_1 using Fourier-Motzkin + rounding

Projection and Cutting Planes

- A resolvent is a special case of a rank 1 Chvátal cut.
 - A general inference method for **integer programming**.
 - All rank 1 cuts can be obtained by taking nonnegative linear combinations and rounding.
 - We can deduce all valid inequalities by recursive generation of rank 1 cuts.
 - including inequalities describing the projection onto a given subset of variables.
 - The minimum number of iterations necessary is the Chvátal rank of the constraint set.
 - There is **no upper bound** on the rank as a function of the number of variables.

Projection Methods

• Generalizations of resolution

- For cardinality clauses

– For 0-1 linear inequalities

JH (1988)

JH (1992)

– For general integer linear inequalities Williams & JH (2015)

Example: solve $\min x_2$

 $\begin{array}{ll} \min \ x_2 \\ 2x_1 + x_2 \ge 13 & \text{C1} \\ -5x_1 - 2x_2 \ge -30 & \text{C2} \\ -x_1 + x_2 \ge 5 & \text{C3} \\ x_1, x_2 \in \mathbb{Z} \end{array}$

To project out x_1 , first combine C1 and C2:

Example: solve $\min x$

$$\begin{array}{ll}
\min \ x_2 \\
2x_1 + x_2 \ge 13 \\
-5x_1 - 2x_2 \ge -30 \\
-x_1 + x_2 \ge 5 \\
x_1, x_2 \in \mathbb{Z}
\end{array}$$
C1
C2
C3

To project out x_1 , first combine C1 and C2:

$$\frac{2x_1 + x_2 \ge 13 \quad (5)}{-5x_1 - 2x_2 \ge -30 \quad (2)} \\
\frac{5(x_2 - 13) + 2(-2x_2 + 30) \ge 0}{-30} \\
\frac{2x_1 + x_2 \ge 13 \quad (5)}{-30} \\
\frac{2x_1 + x_2 \ge -30 \quad (2)}{-30} \\
\frac{2x_1 + x_2 \ge -30}{-30} \\
\frac{2x_1 + x_2 = -30}{$$

32

Since 2nd term is even, we can write this as

 $5(x_2 - 13 - u) + 2(-2x_2 + 30) \ge 0, x_2 - 13 - u \equiv 0 \pmod{2}$ where $u \in \{0, 1\}$. This simplifies to $x_2 \ge 5 + 5u, x_2 \equiv u + 1 \pmod{2}$

Example: solve $\min x_2$

After similarly combining C1 and C3, we get the problem with x_1 projected out: $\min x_2$

 $\begin{array}{l} \min x_2 \\ x_2 \ge 5 + 5u, \quad 3x_2 \ge 23 + u \\ x_2 \equiv u + 1 \pmod{2}, \ u \in \{0, 1\} \end{array}$

Example: solve $\min x_2$

After similarly combining C1 and C3, we get the problem with x_1 projected out:

$$\begin{array}{l}
\text{mm } x_2 \\
x_2 \ge 5 + 5u, \quad 3x_2 \ge 23 + u \\
x_2 \equiv u + 1 \pmod{2}, \quad u \in \{0, 1\}
\end{array}$$

This is equivalent to

$$\begin{array}{ll} \min \ x_2(=9) & \min \ x_2(=10) \\ x_2 \ge 5, \ 3x_2 \ge 23 & \text{or} & x_2 \ge 10, \ 3x_2 \ge 24 \\ x_2 \text{ odd} & & x_2 \text{ even} \end{array}$$

So optimal value = 9.

Number of iterations to compute a projection is bounded by number of variables projected out, unlike Chvátal cuts, for which number of iterations is unbounded. Consistency Maintenance as Projection

- Domain consistency
 - Domain of variable x_j contains only values that x_j assumes in some feasible solution.
 - Equivalently, domain of $x_i = projection$ of feasible set onto x_i .

- Domain consistency
 - Domain of variable x_j contains only values that x_j takes in some feasible solution.
 - Equivalently, domain of $x_j = projection$ of feasible set onto x_j .
 - **Example:**

Constraint set

alldiff
$$(x_1, x_2, x_3)$$

 $x_1 \in \{a, b\}$
 $x_2 \in \{a, b\}$
 $x_3 \in \{b, c\}$

- Domain consistency
 - Domain of variable x_j contains only values that x_j takes in some feasible solution.
 - Equivalently, domain of $x_j = projection$ of feasible set onto x_j .

Example:

Constraint setSolutionsalldiff (x_1, x_2, x_3) (x_1, x_2, x_3) $x_1 \in \{a, b\}$ (a, b, c) $x_2 \in \{a, b\}$ (b, a, c) $x_3 \in \{b, c\}$

• Domain consistency

Example:

- Domain of variable x_j contains only values that x_j takes in some feasible solution.
- Equivalently, domain of $x_i = projection$ of feasible set onto x_i .

Projection onto x_1

Constraint setSolutions $X_1 \in \{a, b\}$ alldiff (x_1, x_2, x_3) (x_1, x_2, x_3) Projection onto x_2 $x_1 \in \{a, b\}$ (a, b, c) $x_2 \in \{a, b\}$ $x_2 \in \{a, b\}$ (b, a, c) $x_2 \in \{a, b\}$ $x_3 \in \{b, c\}$ Projection onto x_3

$$X_3 \in \left\{ C \right\}$$

• Domain consistency

Example:

- Domain of variable x_j contains only values that x_j takes in some feasible solution.
- Equivalently, domain of $x_j = projection$ of feasible set onto x_j .

Projection onto x_1

 $X_3 \in \{C\}$

Constraint setSolutions $X_1 \in \{a, b\}$ alldiff (x_1, x_2, x_3) (x_1, x_2, x_3) Projection onto x_2 $x_1 \in \{a, b\}$ (a, b, c) $x_2 \in \{a, b\}$ $x_2 \in \{a, b\}$ (b, a, c) $X_2 \in \{a, b\}$ $x_3 \in \{b, c\}$ Projection onto x_3

This achieves domain consistency.

• *k*-consistency

$$\boldsymbol{X}_{J} = (\boldsymbol{X}_{j} \mid j \in J)$$

- Can be defined:
 - A constraint set S is *k*-consistent if:
 - for every $J \subseteq \{1, ..., n\}$ with |J| = k 1,
 - every assignment x_J = v_J ∈ D_j for which (x_J,x_j) does not violate S,
 - and every variable $x_j \notin x_J$,

there is an assignment $x_j = v_j \in D_j$ for which $(x_J, x_j) = (v_J, v_j)$ does not violate *S*.

• *k*-consistency

$$\boldsymbol{X}_{J} = (\boldsymbol{X}_{j} \mid j \in J)$$

- Can be defined:
 - A constraint set S is k-consistent if:
 - for every $J \subseteq \{1, ..., n\}$ with |J| = k 1,
 - every assignment x_J = v_J ∈ D_j for which (x_J,x_j) does not violate S,
 - and every variable $x_j \notin x_j$,

there is an assignment $x_j = v_j \in D_j$ for which $(x_J, x_j) = (v_J, v_j)$ does not violate *S*.

- To achieve k-consistency:
 - **Project** the constraints containing each set of k variables onto subsets of k 1 variables.

- Consistency and backtracking:
 - Strong k-consistency for entire constraint set avoids backtracking...
 - if the primal graph has width < k with respect to branching order.

Freuder (1982)

- No point in achieving strong *k*-consistency for individual constraints if we propagate through domain store.
 - Domain consistency has same effect.

J-Consistency

- A type of consistency more directly related to projection.
 - Constraint set S is **J-consistent** if it contains the **projection** of S onto x_J .
 - S is domain consistent if it is { *j* }-consistent for each *j*.

$$\boldsymbol{x}_{J} = (\boldsymbol{x}_{j} \mid j \in J)$$

J-Consistency

- *J*-consistency and backtracking:
 - If we project a constraint onto $x_1, x_2, ..., x_k$, the constraint will not cause backtracking as we branch on the remaining variables.
 - A natural strategy is to project out $x_n, x_{n-1}, ...$ until computational burden is excessive.

J-Consistency

- *J*-consistency and backtracking:
 - If we project a constraint onto $x_1, x_2, ..., x_k$, the constraint will not cause backtracking as we branch on the remaining variables.
 - A natural strategy is to project out $x_n, x_{n-1}, ...$ until computational burden is excessive.
 - No point in achieving *J*-consistency for individual constraints if we propagate through a domain store.
 - However, J-consistency can be useful if we propagate through a richer data structure
 - ...such as decision diagrams
 - ...which can be more effective as a propagation medium.

JH & Hadžić (2006,2007) Andersen, Hadžić, JH, Tiedemann (2007) Bergman, Ciré, van Hoeve, JH (2014)

Example:

$$\operatorname{among}((x_1, x_2), \{c, d\}, 1, 2)$$
$$(x_1 = c) \Longrightarrow (x_2 = d)$$
$$\operatorname{alldiff}(x_1, x_2, x_3, x_4)$$
$$x_1, x_2 \in \{a, b, c, d\}$$
$$x_3 \in \{a, b\}$$
$$x_4 \in \{c, d\}$$

Already domain consistent for individual constraints.

If we branch on x_1 first, must consider all 4 branches $x_1 = a, b, c, d$

Example:

 $\operatorname{among}((x_1, x_2), \{c, d\}, 1, 2)$ $(x_1 = c) \Rightarrow (x_2 = d)$ $\operatorname{alldiff}(x_1, x_2, x_3, x_4)$ $x_1, x_2 \in \{a, b, c, d\}$ $x_3 \in \{a, b\}$ $x_4 \in \{c, d\}$ a.b

Suppose we propagate through a relaxed decision diagram of width 2 for these constraints

52 paths from top to bottom represent assignments to x_1, x_2, x_3, x_4 36 of these are the feasible assignments.

Example:

Suppose we propagate through a relaxed decision diagram of width 2 among $((x_1, x_2), \{c, d\}, 1, 2)$ for these constraints $(x_1 = c) \Longrightarrow (x_2 = d)$ alldiff (x_1, x_2, x_3, x_4) a,b,d С $X_1, X_2 \in \{a, b, c, d\}$ $X_3 \in \left\{ a, b \right\}$ $X_4 \in \left\{ c, d \right\}$ d a,b,c,d **Projection of alldiff** onto x_1, x_2 is a,b alldiff (x_1, x_2) 52 paths from top to bottom represent assignments to $atmost((x_1, x_2), \{a, b\}, 1)$ X_1, X_2, X_3, X_4 $atmost((x_1, x_2), \{c, d\}, 1)$ 36 of these are the feasible c,d assignments.

Let's propagate the 2nd atmost constraint in the projected alldiff through the relaxed decision diagram.

Let the length of a path be number of arcs with labels in $\{c, d\}$.

For each arc, indicate length of shortest path from top to that arc.

Let's propagate the 2nd atmost constraint in the projected alldiff through the relaxed decision diagram.

Let the length of a path be number of arcs with labels in $\{c, d\}$.

For each arc, indicate length of shortest path from top to that arc.

Let's propagate the 2nd atmost constraint in the projected alldiff through the relaxed decision diagram.

Let's propagate the 2nd atmost constraint in the projected alldiff through the relaxed decision diagram.

Let's propagate the 2nd atmost constraint in the projected alldiff through the relaxed decision diagram.

Let the length of a path be number of arcs with labels in $\{c, d\}$.

For each arc, indicate length of shortest path from top to that arc.

Let's propagate the 2nd atmost constraint in the projected alldiff through the relaxed decision diagram.

Let the length of a path be number of arcs with labels in $\{c, d\}$.

For each arc, indicate length of shortest path from top to that arc.

Remove arcs with label > 1 Clean up. Projection of alldiff onto x_1, x_2 is alldiff (x_1, x_2) atmost $((x_1, x_2), \{a, b\}, 1)$ atmost $((x_1, x_2), \{c, d\}, 1)$

Let's propagate the 2nd atmost constraint in the projected alldiff through the relaxed decision diagram.

We need only branch on *a,b,d* rather than *a,b,c,d*

Remove arcs with label > 1 Clean up. Projection of alldiff onto x_1, x_2 is alldiff (x_1, x_2) atmost $((x_1, x_2), \{a, b\}, 1)$ atmost $((x_1, x_2), \{c, d\}, 1)$

Achieving J-consistency

Constraint	How hard to project?
among	Easy and fast.
sequence	More complicated but fast. Since polyhedron is integral, can write a formula based on Fourier-Motzkin
regular	Easy and basically same labor as domain consistency.
alldiff	Quite complicated but practical for small domains.

Projection Using Benders Decomposition and Its Generalizations

• Logic-based Benders decomposition is a generalization of classical Benders decomposition.

- Solves a problem of the form $\min f(x, y)$ $(x, y) \in S$ $x \in D$

JH (2000), JH & Ottosson (2003)

- Decompose problem into master and subproblem.
 - Subproblem is obtained by fixing x to solution value in master problem.

- Iterate until master problem value equals best subproblem value so far.
 - This yields optimal solution.

- The Benders cuts define the **projection** of the feasible set onto (*z*,*x*).
 - If all possible cuts are generated.

• Fundamental concept: inference duality

Primal problem: optimization

 $\min f(x)$ $x \in S$

Find **best** feasible solution by searching over **values of x**. Dual problem: Inference

max v

$$x \in S \stackrel{P}{\Rightarrow} f(x) \geq v$$

 $P \in \mathcal{P}$

Find a proof of optimal value v^* by searching over **proofs** *P*.

- Popular optimization duals are **special cases** of the inference dual.
 - Result from different choices of inference method.
 - For example....
 - Linear programming dual (gives classical Benders cuts)
 - Lagrangean dual
 - Surrogate dual
 - Subadditive dual

Classical Benders

- Linear programming dual results in classical Benders method.
 - The problem is min cx + dy

$$Ax + By \ge b$$

Master problem

Subproblem

min *z* (Benders cuts)

Minimize cost *z* subject to bounds given by Benders cuts, obtained from values of *x* attempted in previous iterations *k*.

 $\min c\overline{x} + dy$ $By \ge b - A\overline{x}$

Obtain proof of optimality by solving **LP dual**:

 $\max u(b - A\overline{x})$ $uB \le d, u \ge 0$

- Assign tasks in master, schedule in subproblem.
 - Combine mixed integer programming and constraint programming

- Objective function
 - Cost is based on task assignment only.

cost = $\sum_{ij} c_{ij} x_{ij}$, $x_{ij} = 1$ if task *j* assigned to resource *i*

- So cost appears only in the **master problem**.
- Scheduling subproblem is a feasibility problem.

- Objective function
 - Cost is based on task assignment only.

cost = $\sum_{ij} c_{ij} x_{ij}$, $x_{ij} = 1$ if task *j* assigned to resource *i*

- So cost appears only in the **master problem**.
- Scheduling subproblem is a feasibility problem.
- Benders cuts

- They have the form
$$\sum_{j \in J_i} (1 - x_{ij}) \ge 1$$
, all *i*

- where J_i is a set of tasks that create infeasibility when assigned to resource *i*.

• Resulting Benders decomposition:

Application to Probability Logic

Exponentially many variables in LP model. What to do?

Formula	Probability
X ₁	0.9
$\overline{X}_1 \lor X_2$	0.8
$\overline{X}_2 \lor X_3$	0.4
Deduce provide the provided pr	

Linear programming model

min/max π_0

 p_{000} = probability that $(x_1, x_2, x_3) = (0, 0, 0)$

Application to Probability Logic

Exponentially many variables in LP model. What to do? Apply classical Benders to **linear programming dual**!

Formula	Probability
<i>X</i> ₁	0.9
$\overline{X}_1 \vee X_2$	0.8
$\overline{\textit{X}}_2 \lor \textit{X}_3$	0.4
Deduce provide the provided pr	•

Linear programming model

min/max π_0

 p_{000} = probability that $(x_1, x_2, x_3) = (0, 0, 0)$ 73

Application to Probability Logic

Exponentially many variables in LP model. What to do? Apply classical Benders to **linear programming dual**! This results in a **column generation** method that introduces variables into LP only as needed to find optimum.

Linear programming model

FormulaProbability x_1 0.9 $\overline{x}_1 \lor x_2$ 0.8 $\overline{x}_2 \lor x_3$ 0.4Deduce probability
range for x_3

min/max π_0

[01010101]	$\lceil p_{000} \rceil$		π_0	
00001111	<i>p</i> ₀₀₁		0.9	
11110011	<i>p</i> ₀₁₀	=	8.0	
11011101	:		0.4	
[11111111]	p_{111}		1	

 p_{000} = probability that $(x_1, x_2, x_3) = (0, 0, 0)$

- Recall that logical inference is a projection problem.
 - We wish to infer from these clauses everything we can about propositions x_1 , x_2 , x_3

We can deduce

$$m{X}_1 \lor m{X}_2$$

 $m{X}_1 \lor m{X}_3$

This is a **projection** onto x_1 , x_2 , x_3

	_
x_1	$\lor x_4 \lor x_5$
x_1	$\lor x_4 \lor \bar{x}_5$
x_1	$\lor x_5 \lor x_6$
x_1	$\lor x_5 \lor \bar{x}_6$
x_2	$\vee \bar{x}_5 \vee x_6$
x_2	$\vee \bar{x}_5 \vee \bar{x}_6$
x_3	$\lor \bar{x}_4 \lor x_5$
x_3	$\vee \bar{x}_4 \vee \bar{x}_5$

- Benders decomposition computes the projection!
 - Benders cuts describe projection onto x_1 , x_2 , x_3

- Benders decomposition computes the projection!
 - Benders cuts describe projection onto x_1 , x_2 , x_3

- Benders decomposition computes the projection!
 - Benders cuts describe projection onto x_1 , x_2 , x_3

- Benders decomposition computes the projection!
 - Benders cuts describe projection onto x_1 , x_2 , x_3

- Benders decomposition computes the projection!
 - Benders cuts describe projection onto x_1 , x_2 , x_3

- Benders decomposition computes the projection!
 - Benders cuts describe projection onto x_1 , x_2 , x_3

- Benders decomposition computes the projection!
 - Benders cuts describe projection onto x_1 , x_2 , x_3

- Benders decomposition computes the projection!
 - Benders cuts describe projection onto x_1 , x_2 , x_3

- Benders cuts = conflict clauses in a SAT algorithm!
 - Branch on x_1 , x_2 , x_3 first.

- Benders cuts = conflict clauses in a SAT algorithm!
 - Branch on x_1 , x_2 , x_3 first.

- Benders cuts = conflict clauses in a SAT algorithm!
 - Branch on x_1 , x_2 , x_3 first.

- Benders cuts = conflict clauses in a SAT algorithm!
 - Branch on x_1 , x_2 , x_3 first.

Accelerating Search

- Logic-based Benders can speed up search in several domains.
 - Several orders of magnitude relative to state of the art.
- Some applications:
 - Circuit verification
 - Chemical batch processing (BASF, etc.)
 - Steel production scheduling
 - Auto assembly line management (Peugeot-Citroën)
 - Automated guided vehicles in flexible manufacturing
 - Allocation and scheduling of multicore processors (IBM, Toshiba, Sony)
 - Facility location-allocation
 - Stochastic facility location and fleet management
 - Capacity and distance-constrained plant location

Logic-Based Benders

- Some applications...
 - Transportation network design
 - Traffic diversion around blocked routes
 - Worker assignment in a queuing environment
 - Single- and multiple-machine allocation and scheduling
 - Permutation flow shop scheduling with time lags
 - Resource-constrained scheduling
 - Wireless local area network design
 - Service restoration in a network
 - Optimal control of dynamical systems
 - Sports scheduling

- Partial instantiation methods for first-order logic can be viewed as Benders methods
 - The master problem is a SAT problem for the current formula *F*,
 - The solution of the master finds a satisfier mapping that makes one literal of each clause of *F* (the satisfier of the clause) true.

- Partial instantiation methods for first-order logic can be viewed as Benders methods
 - The master problem is a SAT problem for the current formula *F*,
 - The solution of the master finds a satisfier mapping that makes one literal of each clause of *F* (the satisfier of the clause) true.
 - The subproblem checks whether a satisfier mapping is blocked.
 - This means atoms assigned true and false can be unified.

- Partial instantiation methods for first-order logic can be viewed as Benders methods
 - The master problem is a SAT problem for the current formula *F*,
 - The solution of the master finds a satisfier mapping that makes one literal of each clause of *F* (the satisfier of the clause) true.
 - The subproblem checks whether a satisfier mapping is blocked.
 - This means atoms assigned true and false can be unified.
 - In case of blockage, more complete instantiations of the blocked clauses are added to *F* as **Benders cuts**.

• Resulting Benders decomposition:

Consider the formula $F = \forall x C_1 \land \forall y C_2$

where $C_1 = P(a, x) \lor Q(a) \lor \neg R(x)$ $C_2 = \neg Q(y) \lor \neg P(y, b)$

Solution of master problem yields satisfiers shown.

Solution of master problem yields satisfiers shown.

The satisfier mapping is **blocked** because the atoms P(a, x) and P(y, b) can be unified.

Solution of master problem yields satisfiers shown.

The satisfier mapping is **blocked** because the atoms P(a, x) and P(y, b) can be unified.

Generate **Benders cuts** by applying the most general unifier of the atoms to the clauses containing them, and adding the result to *F*. Now, $F = \forall x C_1 \land \forall y C_2 \land C_3 \land C_4$

where $C_3 = P(a, b) \lor Q(a) \lor \neg R(b)$ $C_4 = \neg Q(y) \lor \neg P(y, b)$

Solution of master problem yields satisfiers shown.

The satisfier mapping is **blocked** because the atoms P(a, x) and P(y, b) can be unified.

Generate **Benders cuts** by applying the most general unifier of the atoms to the clauses containing them, and adding the result to *F*. Now, $F = \forall x C_1 \land \forall y C_2 \land C_3 \land C_4$

where $C_3 = P(a, b) \lor Q(a) \lor \neg R(b)$ $C_4 = \neg Q(y) \lor \neg P(y, b)$

Solution of the new master problem yields a satisfier mapping that is **not blocked** in the subproblem, and the procedure terminates with satisfiability.

- We can accommodate full first-order logic with functions
 - If we replace **blocked** with *M*-blocked
 - Meaning that the satisfier mapping is blocked within a nesting depth of *M*.
 - The procedure always **terminates** if *F* is unsatisfiable.
 - It may not terminate if *F* is satisfiable, since first-order logic is semidecidable.
 - The master problem has infinitely many variables, because the Herbrand base is infinite.

