Projection in Logic, CP, and Optimization

John Hooker
Carnegie Mellon University

Workshop on Logic and Search Melbourne, 2017

Projection as a Unifying Concept

- Projection is a fundamental concept in logic, constraint programming, and optimization.
- Logical inference is projection onto a subset of variables.
- Consistency maintenance in CP is a projection problem.
- Optimization is projection onto a cost variable.

Projection as a Unifying Concept

- Projection is a fundamental concept in logic, constraint programming, and optimization.
- Logical inference is projection onto a subset of variables.
- Consistency maintenance in CP is a projection problem.
- Optimization is projection onto a cost variable.
- Recognizing this unity can lead to faster search methods.
- In both logic and optimization.

Projection as a Unifying Concept

- Two fundamental projection methods occur across multiple fields.

Projection as a Unifying Concept

- Two fundamental projection methods occur across multiple fields.
- Fourier-Motzkin Elimination and generalizations.
- Polyhedral projection.
- Probability logic
- Propositional logic (resolution)
- Integer programming (cutting planes \& modular arithmetic)
- Some forms of consistency maintenance

Projection as a Unifying Concept

- Two fundamental projection methods occur across multiple fields.
- Benders decomposition and generalizations.
- Optimization.
- Probability logic (column generation)
- Propositional logic (conflict clauses)
- First-order logic (partial instantiation)

Outline

- Projection using Fourier-Motzkin elimination
- Consistency maintenance as projection
- Projection using Benders decomposition

What Is Projection?

- Projection yields a constraint set.
- We project a constraint set onto a subset of its variables to obtain another constraint set.

What Is Projection?

- Projection yields a constraint set.
- We project a constraint set onto a subset of its variables to obtain another constraint set.
- Formal definition
- Let $x=\left(x_{1}, \ldots, x_{n}\right)$
- Let $\bar{x}=\left(x_{1}, \ldots, x_{k}\right), k<n$
- Let \mathcal{C} be a constraint set.
- The projection of \mathcal{C} onto \bar{x} is a constraint set, containing only variables in \bar{x}, whose satisfaction set is $\{\bar{x} \mid x$ satisfies $\mathcal{C}\}$

Projection Using
 Fourier-Motzkin Elimination and Its Generalizations

Polyhedral Projection

- We wish to project a polyhedron onto a subspace.
- A method based on an idea of Fourier was proposed by Motzkin.
- The basic idea of Fourier-Motzkin elimination can be used to compute projections in several contexts.

Fourier (1827)

Polyhedral Projection

- Eliminate variables we want to project out.
- To project $\{x \mid A x \geq b\}$ onto x_{1}, \ldots, x_{k} project out all variables except x_{1}, \ldots, x_{k}
- To project out x_{j}, eliminate it from pairs of inequalities:

$$
\begin{aligned}
c_{0} x_{j}+c \bar{x} & \geq \gamma \quad\left(1 / c_{0}\right) \\
-d_{0} x_{j}+d \bar{x} & \geq \delta \quad\left(1 / d_{0}\right) \\
\hline\left(\frac{c}{c_{0}}+\frac{d}{d_{0}}\right) \bar{x} & \geq \frac{\gamma}{c_{0}}+\frac{\delta}{d_{0}}
\end{aligned} \quad \text { where } c_{0}, d_{0} \geq 0
$$

- Then remove all inequalities containing x_{j}

Polyhedral Projection

- Example
- Project $-2 x_{1}-x_{2} \geq-4$ onto x_{2}
$x_{1}-x_{2} \geq-1$
by projecting out x_{1}

$-2 x_{1}-x_{2}$	$\geq-4 \quad(1 / 2)$
$x_{1}-x_{2}$	$\geq-1 \quad(1)$
$-\frac{3}{2} x_{2}$	≥-3
or	
x_{2}	≤ 2

Optimization as Projection

- Optimization is projection onto a single variable.
- To solve $\min / \max \{f(x) \mid x \in S\}$
project $\left\{\left(x_{0}, x\right) \mid x_{0}=f(x), x \in S\right\}$
onto x_{0} to obtain an interval $x_{0}^{\min } \leq x_{0} \leq x_{0}^{\max }$

Optimization as Projection

- Optimization is projection onto a single variable.
- To solve $\min / \max \{f(x) \mid x \in S\}$
project $\left\{\left(x_{0}, x\right) \mid x_{0}=f(x), x \in S\right\}$
onto x_{0} to obtain an interval $x_{0}^{\min } \leq x_{0} \leq x_{0}^{\max }$
- Linear programming
- We can in principle solve min $/ \max \{c x \mid A x \geq b\}$ with Fourier-Motzkin elimination by projecting $\left\{\left(x_{0}, x\right) \mid x_{0}=c x, A x \geq b\right\}$ onto x_{0}
- But this is extremely inefficient.
- Use simplex or interior point method instead.

Probability Logic

- Inference in probability logic is a polyhedral projection problem
- Originally stated by George Boole.
- The linear programming problem can be solved, in principle, by Fourier-Motzkin elimination.
- The problem
- Given a probability interval for each of several formulas in propositional logic,
- Deduce a probability interval for a target formula.

Probability Logic

Example

Formula Probability
$x_{1} \quad 0.9$
if x_{1} then $x_{2} \quad 0.8$
if x_{2} then $x_{3} \quad 0.4$
Deduce probability
range for x_{3}

Probability Logic

Example

Formula Probability
$x_{1} \quad 0.9$
if x_{1} then $x_{2} \quad 0.8$ Interpret if-then statements
if x_{2} then $x_{3} \quad 0.4$
Deduce probability
range for x_{3}

Probability Logic

Example

$\begin{array}{lll}\text { Formula } & \text { Probability } \\ x_{1} & 0.9 & \\ \bar{x}_{1} \vee x_{2} & 0.8 & \text { Interpret if-then statements } \\ \bar{x}_{2} \vee x_{3} & 0.4 & \text { as material conditionals } \\ \text { Deduce probability } & \\ \text { range for } x_{3} & \end{array}$

Probability Logic

Example

Formula Probability

$$
\begin{array}{ll}
x_{1} & 0.9 \\
\bar{x}_{1} \vee x_{2} & 0.8 \\
\bar{x}_{2} \vee x_{3} & 0.4
\end{array}
$$

Deduce probability range for x_{3}

Linear programming model
$\min / \max \pi_{0}$

$$
\left[\begin{array}{l}
01010101 \\
00001111 \\
11110011 \\
11011101 \\
11111111
\end{array}\right]\left[\begin{array}{l}
p_{000} \\
p_{001} \\
p_{010} \\
\vdots \\
p_{111}
\end{array}\right]=\left[\begin{array}{c}
\pi_{0} \\
0.9 \\
0.8 \\
0.4 \\
1
\end{array}\right]
$$

$p_{000}=$ probability that $\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)=(0,0,0)$

Probability Logic

Example

Formula Probability

$$
\begin{array}{ll}
x_{1} & 0.9 \\
\bar{x}_{1} \vee x_{2} & 0.8 \\
\bar{x}_{2} \vee x_{3} & 0.4
\end{array}
$$

Deduce probability range for x_{3}

Linear programming model
$\min / \max \pi_{0}$
$\left[\begin{array}{l}01010101 \\ 00001111 \\ 11110011 \\ 11011101 \\ 11111111\end{array}\right]\left[\begin{array}{l}p_{000} \\ p_{001} \\ p_{010} \\ \vdots \\ p_{111}\end{array}\right]=\left[\begin{array}{c}\pi_{0} \\ 0.9 \\ 0.8 \\ 0.4 \\ 1\end{array}\right]$
$p_{000}=$ probability that $\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)=(0,0,0)$

Solution: $\pi_{0} \in[0.1,0.4]$

Inference as Projection

- Projection can be viewed as the fundamental inference problem.
- Deduce information that pertains to a desired subset of propositional variables.
- In propositional logic (SAT), this can be achieved by the resolution method.
- CNF analog of Quine's consensus method for DNF.

Inference as Projection

- Project onto propositional variables of interest
- Suppose we wish to infer from these clauses everything we can about propositions x_{1}, x_{2}, x_{3}

Inference as Projection

- Project onto propositional variables of interest
- Suppose we wish to infer from these clauses everything we can about propositions x_{1}, x_{2}, x_{3}

We can deduce
$x_{1} \vee x_{2}$
$x_{1} \vee x_{3}$

This is a projection onto x_{1}, x_{2}, x_{3}

x_{1}	$\vee x_{4} \vee x_{5}$
x_{1}	$\vee x_{4} \vee \bar{x}_{5}$
x_{1}	$\vee x_{5} \vee x_{6}$
x_{1}	$\vee x_{5} \vee \bar{x}_{6}$
x_{2}	$\vee \bar{x}_{5} \vee x_{6}$
x_{2}	$\vee \bar{x}_{5} \vee \bar{x}_{6}$
	$x_{3} \vee \bar{x}_{4} \vee x_{5}$
	$x_{3} \vee \bar{x}_{4} \vee \bar{x}_{5}$

Inference as Projection

- Resolution as a projection method
- Similar to Fourier-Motzkin elimination
- Actually, identical to Fourier-Motzkin elimination + rounding
- To project out x_{j}, eliminate it from pairs of clauses:

- Then remove all clauses containing x_{j}

> | Quine $(1952,1955)$ |
| :---: |
| JH $(1992,2012)$ |

Inference as Projection

- Interpretation as Fourier-Motzkin + rounding
- Project out x_{1} using resolution:

$$
\begin{array}{r}
\begin{array}{r}
x_{1} \vee x_{2} \vee x_{3} \\
\bar{x}_{1} \\
\hline
\end{array} \quad \begin{array}{l}
\\
x_{2} \vee x_{3} \vee x_{3} \vee x_{4}
\end{array}
\end{array}
$$

Inference as Projection

- Interpretation as Fourier-Motzkin + rounding
- Project out x_{1} using resolution:

$$
\begin{array}{r}
\begin{array}{r}
x_{1} \vee x_{2} \vee x_{3} \\
\bar{x}_{1} \\
\hline
\end{array} \quad \begin{array}{l}
\\
x_{2} \vee x_{3} \vee x_{3} \vee x_{4}
\end{array}
\end{array}
$$

- Project out x_{1} using Fourier-Motzkin + rounding

$x_{1}+x_{2}+x_{3}$	≥ 1	$(1 / 2)$	
$-x_{1} \quad+x_{3}+x_{4}$	≥ 0	$(1 / 2)$	
x_{2}	≥ 0	$(1 / 2)$	
$x_{j}=1,0$			
x_{4}	≥ 0	$(1 / 2)$	
		$x_{j}=\mathrm{T}, \mathrm{F}$	
$x_{2}+x_{3}+x_{4}$	$\geq \frac{1}{2}$		Williams (1987)

rounds to $x_{2}+x_{3}+x_{4} \geq 1 \quad$ since x_{j} s are integer

Projection and Cutting Planes

- A resolvent is a special case of a rank 1 Chvátal cut.
- A general inference method for integer programming.
- All rank 1 cuts can be obtained by taking nonnegative linear combinations and rounding.
- We can deduce all valid inequalities by recursive generation of rank 1 cuts.
- ...including inequalities describing the projection onto a given subset of variables.
- The minimum number of iterations necessary is the Chvátal rank of the constraint set.
- There is no upper bound on the rank as a function of the number of variables.

Projection Methods

- Generalizations of resolution
- For cardinality clauses

JH (1988)

- For 0-1 linear inequalities JH (1992)
- For general integer linear inequalities

Williams \& JH (2015)

Projection for Integer Programming

Example: solve

$$
\begin{array}{ll}
\min x_{2} & \\
2 x_{1}+x_{2} \geq 13 & \text { C1 } \\
-5 x_{1}-2 x_{2} \geq-30 & \text { C2 } \\
-x_{1}+x_{2} \geq 5 & \text { C3 } \\
x_{1}, x_{2} \in \mathbb{Z} &
\end{array}
$$

Projection for Integer Programming

Example: solve $\min x_{2}$

$$
\begin{array}{ll}
2 x_{1}+x_{2} \geq 13 & \text { C1 } \\
-5 x_{1}-2 x_{2} \geq-30 & \text { C2 } \\
-x_{1}+x_{2} \geq 5 & \text { C3 } \\
x_{1}, x_{2} \in \mathbb{Z} &
\end{array}
$$

To project out x_{1}, first combine C1 and C2:

$$
\begin{gathered}
2 x_{1}+x_{2} \geq \quad 13 \\
-5 x_{1}-2 x_{2} \geq-30 \quad(2) \\
\hline 5\left(x_{2}-13\right)+2\left(-2 x_{2}+30\right) \geq 0
\end{gathered}
$$

Projection for Integer Programming

Example: solve $\min x_{2}$

$$
\begin{array}{ll}
2 x_{1}+x_{2} \geq 13 & \text { C1 } \\
-5 x_{1}-2 x_{2} \geq-30 & \text { C2 } \\
-x_{1}+x_{2} \geq 5 & \text { C3 } \tag{C3}\\
x_{1}, x_{2} \in \mathbb{Z} &
\end{array}
$$

To project out x_{1}, first combine C 1 and C 2 :

$$
\begin{gathered}
2 x_{1}+x_{2} \geq \quad 13 \\
-5 x_{1}-2 x_{2} \geq-30 \quad(2) \\
\hline 5\left(x_{2}-13\right)+2\left(-2 x_{2}+30\right) \geq 0
\end{gathered}
$$

Since $2^{\text {nd }}$ term is even, we can write this as

$$
5\left(x_{2}-13-u\right)+2\left(-2 x_{2}+30\right) \geq 0, x_{2}-13-u \equiv 0(\bmod 2)
$$

where $u \in\{0,1\}$. This simplifies to

$$
x_{2} \geq 5+5 u, \quad x_{2} \equiv u+1(\bmod 2)
$$

Projection for Integer Programming

Example: solve $\min x_{2}$

$$
\begin{array}{ll}
2 x_{1}+x_{2} \geq 13 & \text { C1 } \\
-5 x_{1}-2 x_{2} \geq-30 & \text { C2 } \\
-x_{1}+x_{2} \geq 5 & \text { C3 } \\
x_{1}, x_{2} \in \mathbb{Z} &
\end{array}
$$

After similarly combining C1 and C3, we get the problem with x_{1} projected out:

$$
\begin{aligned}
& \min x_{2} \\
& x_{2} \geq 5+5 u, \quad 3 x_{2} \geq 23+u \\
& x_{2} \equiv u+1(\bmod 2), u \in\{0,1\}
\end{aligned}
$$

Projection for Integer Programming

Example: solve $\min x_{2}$

$$
\begin{array}{ll}
2 x_{1}+x_{2} \geq 13 & \text { C1 } \\
-5 x_{1}-2 x_{2} \geq-30 & \text { C2 } \\
-x_{1}+x_{2} \geq 5 & \text { C3 } \\
x_{1}, x_{2} \in \mathbb{Z} &
\end{array}
$$

After similarly combining C1 and C3, we get the problem with x_{1} projected out:

$$
\begin{aligned}
& \min x_{2} \\
& x_{2} \geq 5+5 u, \quad 3 x_{2} \geq 23+u \\
& x_{2} \equiv u+1(\bmod 2), u \in\{0,1\}
\end{aligned}
$$

This is equivalent to

$$
\begin{array}{ll}
\min x_{2}(=9) \\
x_{2} \geq 5,3 x_{2} \geq 23 \\
x_{2} \text { odd } & \text { or } \quad
\end{array} \begin{aligned}
& \min x_{2}(=10) \\
& x_{2} \geq 10,3 x_{2} \geq 24 \\
&
\end{aligned} \quad x_{2} \text { even } . ~ l
$$

So optimal value $=9$.

Projection for Integer Programming

Example: solve

$$
\begin{array}{ll}
\min x_{2} & \\
2 x_{1}+x_{2} \geq 13 & \mathrm{C} 1 \\
-5 x_{1}-2 x_{2} \geq-30 & \mathrm{C} 2 \\
-x_{1}+x_{2} \geq 5 & \mathrm{C} 3 \\
x_{1}, x_{2} \in \mathbb{Z} & \tag{C2}
\end{array}
$$

Number of iterations to compute a projection is bounded by number of variables projected out, unlike Chvátal cuts, for which number of iterations is unbounded.

Consistency Maintenance as Projection

Consistency as Projection

- Domain consistency
- Domain of variable x_{j} contains only values that x_{j} assumes in some feasible solution.
- Equivalently, domain of $x_{j}=$ projection of feasible set onto x_{j}.

Consistency as Projection

- Domain consistency
- Domain of variable x_{j} contains only values that x_{j} takes in some feasible solution.
- Equivalently, domain of $x_{j}=$ projection of feasible set onto x_{j}.

Example:
Constraint set
$\operatorname{alldiff}\left(x_{1}, x_{2}, x_{3}\right)$

$$
\begin{aligned}
& x_{1} \in\{a, b\} \\
& x_{2} \in\{a, b\} \\
& x_{3} \in\{b, c\}
\end{aligned}
$$

Consistency as Projection

- Domain consistency
- Domain of variable x_{j} contains only values that x_{j} takes in some feasible solution.
- Equivalently, domain of $x_{j}=$ projection of feasible set onto x_{j}. Example:
Constraint set Solutions
alldiff $\left(x_{1}, x_{2}, x_{3}\right) \quad\left(x_{1}, x_{2}, x_{3}\right)$

$$
\begin{array}{ll}
x_{1} \in\{a, b\} & (a, b, c) \\
x_{2} \in\{a, b\} & (b, a, c) \\
x_{3} \in\{b, c\} &
\end{array}
$$

Consistency as Projection

- Domain consistency
- Domain of variable x_{j} contains only values that x_{j} takes in some feasible solution.
- Equivalently, domain of $x_{j}=$ projection of feasible set onto x_{j}.

Example:
Constraint set
$\operatorname{alldiff}\left(x_{1}, x_{2}, x_{3}\right) \quad\left(x_{1}, x_{2}, x_{3}\right)$
$x_{1} \in\{a, b\}$
$x_{2} \in\{a, b\}$
$x_{3} \in\{b, c\}$

Projection onto x_{1}

$$
x_{1} \in\{a, b\}
$$

Projection onto x_{2}

$$
x_{2} \in\{a, b\}
$$

Projection onto x_{3}

$$
x_{3} \in\{c\}
$$

Consistency as Projection

- Domain consistency
- Domain of variable x_{j} contains only values that x_{j} takes in some feasible solution.
- Equivalently, domain of $x_{j}=$ projection of feasible set onto x_{j}.

Example:
Constraint set
alldiff $\left(x_{1}, x_{2}, x_{3}\right) \quad\left(x_{1}, x_{2}, x_{3}\right)$

$$
x_{1} \in\{a, b\}
$$

$$
x_{2} \in\{a, b\}
$$

$$
x_{3} \in\{b, c\}
$$

This achieves domain consistency.

Projection onto x_{1}

$$
x_{1} \in\{a, b\}
$$

Projection onto x_{2}

$$
x_{2} \in\{a, b\}
$$

Projection onto x_{3}

$$
x_{3} \in\{c\}
$$

Consistency as Projection

- k-consistency

$$
x_{J}=\left(x_{j} \mid j \in J\right)
$$

- Can be defined:
- A constraint set S is k-consistent if:
- for every $J \subseteq\{1, \ldots, n\}$ with $|J|=k-1$,
- every assignment $x_{J}=v_{J} \in D_{j}$ for which (x_{J}, x_{j}) does not violate S,
- and every variable $x_{j} \notin x_{J}$,
there is an assignment $x_{j}=v_{j} \in D_{j}$ for which $\left(x_{j}, x_{j}\right)=\left(v_{J}, v_{j}\right)$ does not violate S.

Consistency as Projection

- k-consistency

$$
x_{J}=\left(x_{j} \mid j \in J\right)
$$

- Can be defined:
- A constraint set S is k-consistent if:
- for every $J \subseteq\{1, \ldots, n\}$ with $|J|=k-1$,
- every assignment $x_{J}=v_{J} \in D_{j}$ for which $\left(x_{J}, x_{j}\right)$ does not violate S,
- and every variable $x_{j} \notin x_{J}$
there is an assignment $x_{j}=v_{j} \in D_{j}$ for which $\left(x_{j}, x_{j}\right)=\left(v_{J}, v_{j}\right)$ does not violate S.
- To achieve k-consistency:
- Project the constraints containing each set of k variables onto subsets of $k-1$ variables.

Consistency as Projection

- Consistency and backtracking:
- Strong k-consistency for entire constraint set avoids backtracking...
- if the primal graph has width $<k$ with respect to branching order.

Freuder (1982)

- No point in achieving strong k-consistency for individual constraints if we propagate through domain store.
- Domain consistency has same effect.

J-Consistency

- A type of consistency more directly related to projection.
- Constraint set S is J-consistent if it contains the projection of S onto x_{J}.
- S is domain consistent if it is $\{j\}$-consistent for each j.

$$
x_{J}=\left(x_{j} \mid j \in J\right)
$$

J-Consistency

- J-consistency and backtracking:
- If we project a constraint onto $x_{1}, x_{2}, \ldots, x_{k}$, the constraint will not cause backtracking as we branch on the remaining variables.
- A natural strategy is to project out x_{n}, x_{n-1}, \ldots until computational burden is excessive.

J-Consistency

- J-consistency and backtracking:
- If we project a constraint onto $x_{1}, x_{2}, \ldots, x_{k}$, the constraint will not cause backtracking as we branch on the remaining variables.
- A natural strategy is to project out x_{n}, x_{n-1}, \ldots until computational burden is excessive.
- No point in achieving J-consistency for individual constraints if we propagate through a domain store.
- However, J-consistency can be useful if we propagate through a richer data structure
- ...such as decision diagrams
- ...which can be more effective as a propagation medium.

> | JH \& Hadžić $(2006,2007)$ |
| :---: |
| Andersen, Hadžić, JH, Tiedemann (2007) |
| Bergman, Ciré, van Hoeve, JH (2014) |

Propagating J-Consistency

Example:

among $\left(\left(x_{1}, x_{2}\right),\{c, d\}, 1,2\right)$
$\left(x_{1}=c\right) \Rightarrow\left(x_{2}=d\right)$
alldiff $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$
$x_{1}, x_{2} \in\{a, b, c, d\}$
$x_{3} \in\{a, b\}$
$x_{4} \in\{c, d\}$

Already domain
consistent for
individual constraints.
If we branch on x_{1} first, must consider all 4
branches $x_{1}=a, b, c, d$

Propagating J-Consistency

Example:

$\operatorname{among}\left(\left(x_{1}, x_{2}\right),\{c, d\}, 1,2\right)$
$\left(x_{1}=c\right) \Rightarrow\left(x_{2}=d\right)$
alldiff $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$
$x_{1}, x_{2} \in\{a, b, c, d\}$
$x_{3} \in\{a, b\}$
$x_{4} \in\{c, d\}$

52 paths from top to bottom represent assignments to
$x_{1}, x_{2}, x_{3}, x_{4}$
36 of these are the feasible assignments.

Propagating J-Consistency

Example:

$\operatorname{among}\left(\left(x_{1}, x_{2}\right),\{c, d\}, 1,2\right)$
$\left(x_{1}=c\right) \Rightarrow\left(x_{2}=d\right)$
alldiff $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$
$x_{1}, x_{2} \in\{a, b, c, d\}$
$x_{3} \in\{a, b\}$
$x_{4} \in\{c, d\}$

52 paths from top to bottom represent assignments to
$x_{1}, x_{2}, x_{3}, x_{4}$
36 of these are the feasible assignments.

Projection of alldiff onto x_{1}, x_{2} is
alldiff $\left(x_{1}, x_{2}\right)$
$\operatorname{atmost}\left(\left(x_{1}, x_{2}\right),\{a, b\}, 1\right)$
$\operatorname{atmost}\left(\left(x_{1}, x_{2}\right),\{\mathrm{c}, \mathrm{d}\}, 1\right)$

Propagating J-Consistency

Let's propagate the $2^{\text {nd }}$ atmost constraint in the projected alldiff through the relaxed decision diagram.

Let the length of a path be number of arcs with labels in $\{c, d\}$.

For each arc, indicate length of shortest path from top to that arc.

Projection of alldiff onto x_{1}, x_{2} is
alldiff $\left(x_{1}, x_{2}\right)$
$\operatorname{atmost}\left(\left(x_{1}, x_{2}\right),\{a, b\}, 1\right)$
$\operatorname{atmost}\left(\left(x_{1}, x_{2}\right),\{\mathrm{c}, \mathrm{d}\}, 1\right)$

Propagating J-Consistency

Let's propagate the $2^{\text {nd }}$ atmost constraint in the projected alldiff through the relaxed decision diagram.

Let the length of a path be number of arcs with labels in $\{c, d\}$.

For each arc, indicate length of shortest path from top to that arc.

Projection of alldiff onto x_{1}, x_{2} is
alldiff $\left(x_{1}, x_{2}\right)$
$\operatorname{atmost}\left(\left(x_{1}, x_{2}\right),\{a, b\}, 1\right)$
$\operatorname{atmost}\left(\left(x_{1}, x_{2}\right),\{\mathrm{c}, \mathrm{d}\}, 1\right)$

Propagating J-Consistency

Let's propagate the $2^{\text {nd }}$ atmost constraint in the projected alldiff through the relaxed decision diagram.

Let the length of a path be number of arcs with labels in $\{c, d\}$.

For each arc, indicate length of shortest path from top to that arc.

Remove arcs with label > 1

Projection of alldiff onto x_{1}, x_{2} is
alldiff $\left(x_{1}, x_{2}\right)$ $\operatorname{atmost}\left(\left(x_{1}, x_{2}\right),\{a, b\}, 1\right)$ $\operatorname{atmost}\left(\left(x_{1}, x_{2}\right),\{\mathrm{c}, \mathrm{d}\}, 1\right)$

Propagating J-Consistency

Let's propagate the $2^{\text {nd }}$ atmost constraint in the projected alldiff through the relaxed decision diagram.

Let the length of a path be number of arcs with labels in $\{c, 0\}$.

For each arc, indicate length of shortest path from top to that arc.

Remove arcs with label > 1

Propagating J-Consistency

Let's propagate the $2^{\text {nd }}$ atmost constraint in the projected alldiff through the relaxed decision diagram.

Let the length of a path be number of arcs with labels in $\{c, d\}$.

For each arc, indicate length of shortest path from top to that arc.

Remove arcs with label > 1

Clean up.
Projection of alldiff onto x_{1}, x_{2} is
alldiff $\left(x_{1}, x_{2}\right)$
$\frac{\operatorname{armost}\left(\left(x_{1}, x_{2}\right),\{a, b\}, 1\right)}{\operatorname{atmost}\left(\left(x_{1}, x_{2}\right),\{c, d\}, 1\right)}$

Propagating J-Consistency

Let's propagate the $2^{\text {nd }}$ atmost constraint in the projected alldiff through the relaxed decision diagram.

Let the length of a path be number of arcs with labels in $\{c, d\}$.

For each arc, indicate length of shortest path from top to that arc.

Remove arcs with label > 1

Clean up.
Projection of alldiff onto x_{1}, x_{2} is
alldiff $\left(x_{1}, x_{2}\right)$
$\operatorname{atmost}\left(\left(x_{1}, x_{2}\right),\{a, b\}, 1\right)$
$\operatorname{atmost}\left(\left(x_{1}, x_{2}\right),\{\mathrm{c}, \mathrm{d}\}, 1\right)$

Propagating J-Consistency

Let's propagate the $2^{\text {nd }}$ atmost constraint in the projected alldiff through the relaxed decision diagram.

We need only branch on a, b, d rather than a, b, c, d

Remove arcs with label > 1

Clean up.
Projection of alldiff onto x_{1}, x_{2} is
alldiff $\left(x_{1}, x_{2}\right)$
$\operatorname{atmost}\left(\left(x_{1}, x_{2}\right),\{a, b\}, 1\right)$ $\operatorname{atmost}\left(\left(x_{1}, x_{2}\right),\{\mathrm{c}, \mathrm{d}\}, 1\right)$

Achieving J-consistency

Constraint	How hard to project?
among	Easy and fast.
sequence	More complicated but fast. Since polyhedron is integral, can write a formula based on Fourier-Motzkin
regular	Easy and basically same labor as domain consistency.
alldiff	Quite complicated but practical for small domains.

Projection Using
 Benders Decomposition and Its Generalizations

Logic-Based Benders

- Logic-based Benders decomposition is a generalization of classical Benders decomposition.
- Solves a problem of the form

$$
\begin{aligned}
& \min f(x, y) \\
& (x, y) \in S \\
& x \in D
\end{aligned}
$$

JH (2000), JH \& Ottosson (2003)

Logic-Based Benders

- Decompose problem into master and subproblem.
- Subproblem is obtained by fixing x to solution value in master problem.

Master problem

$\min z$
$z \geq g_{k}(x) \quad$ (Benders cuts)
$x \in D$
Minimize cost z subject to
bounds given by Benders
cuts, obtained from values
of x attempted in previous
iterations k.

Subproblem
$\min f(\bar{x}, y)$
$(\bar{x}, y) \in S$

Obtain proof of optimality (solution of inference dual). Use same proof to deduce cost bounds for other assignments, yielding Benders cut.

Logic-Based Benders

- Iterate until master problem value equals best subproblem value so far.
- This yields optimal solution.

Master problem
$\min z$
$z \geq g_{k}(x) \quad$ (Benders cuts)
$x \in D$
Minimize cost z subject to
bounds given by Benders
cuts, obtained from values
of x attempted in previous
iterations k.

Subproblem
$\left.\xrightarrow[\begin{array}{c}\text { Trial value } \bar{x} \\
\text { that solves } \\
\text { master }\end{array}]$$$
\begin{array}{l}\text { Benders cut } \\
z \geq g_{k}(x)\end{array}
$$\(\begin{array}{l}min f(\bar{x}, y)

(\bar{x}, y) \in S\end{array}\right]\)\begin{tabular}{l}
Obtain proof of optimality

(solution of inference dual).

Use same proof to deduce
cost bounds for other
assignments, yielding
Benders cut.

\hline
\end{tabular}

Logic-Based Benders

- The Benders cuts define the projection of the feasible set onto (z, x).
- If all possible cuts are generated.

Master problem

$\min z$
$z \geq g_{k}(x) \quad$ (Benders cuts)
$x \in D$
Minimize cost z subject to
bounds given by Benders
cuts, obtained from values
of x attempted in previous
iterations k.

Subproblem
$\min f(\bar{x}, y)$
$(\bar{x}, y) \in S$

Obtain proof of optimality (solution of inference dual). Use same proof to deduce cost bounds for other assignments, yielding Benders cut.

Logic-Based Benders

- Fundamental concept: inference duality

Primal problem:
optimization

$\min f(x)$
$x \in S$
Find best feasible
solution by
searching over
values of x.

Dual problem: Inference
$\max v$
$x \in S \stackrel{P}{\Rightarrow} f(x) \geq v$
$P \in P$
Find a proof of optimal value v^{*} by searching over proofs P.

Logic-Based Benders

- Popular optimization duals are special cases of the inference dual.
- Result from different choices of inference method.
- For example....
- Linear programming dual (gives classical Benders cuts)
- Lagrangean dual
- Surrogate dual
- Subadditive dual

Classical Benders

- Linear programming dual results in classical Benders method.
- The problem is min $c x+d y$

$$
A x+B y \geq b
$$

Master problem
Subproblem

min z (Benders cuts)	Trial value \bar{x} that solves master	$\min c \bar{x}+d y$ $B y \geq b-A \bar{x}$
Minimize cost z subject to bounds given by Benders cuts, obtained from values of x attempted in previous iterations k.	Benders cut $z \geq c x+u(b-A x)$	Obtain proof of optimality by solving LP dual: max $u(b-A \bar{x})$ $u B \leq d, u \geq 0$
	Benders (1962)	

Application to Planning \& Scheduling

- Assign tasks in master, schedule in subproblem.
- Combine mixed integer programming and constraint programming

Master problem

Assign tasks to resources
to minimize cost.
Solve by mixed integer
programming.

Subproblem

```
Schedule jobs on each machine, subject to time windows.
Constraint programming obtains proof of optimality (dual solution).
Use same proof to deduce cost for some other
assignments, yielding Benders cut.
```


Application to Planning \& Scheduling

- Objective function
- Cost is based on task assignment only.

$$
\operatorname{cost}=\sum_{i j} c_{i j} x_{i j}, \quad x_{i j}=1 \text { if task } j \text { assigned to resource } i
$$

- So cost appears only in the master problem.
- Scheduling subproblem is a feasibility problem.

Application to Planning \& Scheduling

- Objective function
- Cost is based on task assignment only.

$$
\text { cost }=\sum_{i j} c_{i j} x_{i j}, \quad x_{i j}=1 \text { if task } j \text { assigned to resource } i
$$

- So cost appears only in the master problem.
- Scheduling subproblem is a feasibility problem.
- Benders cuts
- They have the form $\sum_{j \in J_{i}}\left(1-x_{i j}\right) \geq 1$, all i
- where J_{i} is a set of tasks that create infeasibility when assigned to resource i.

Application to Planning \& Scheduling

- Resulting Benders decomposition:

Master problem
Subproblem

Schedule jobs on each resource.

Constraint programming may obtain proof of infeasibility on some resources (dual solution).

Use same proof to deduce infeasibility for some other assignments, yielding Benders cut.

Application to Probability Logic

Exponentially many variables in LP model. What to do?

Linear programming model

Formula Probability

$$
\begin{array}{ll}
x_{1} & 0.9 \\
\bar{x}_{1} \vee x_{2} & 0.8 \\
\bar{x}_{2} \vee x_{3} & 0.4
\end{array}
$$

Deduce probability range for x_{3}
$\min / \max \pi_{0}$
$\left[\begin{array}{l}01010101 \\ 00001111 \\ 11110011 \\ 11011101 \\ 11111111\end{array}\right]\left[\begin{array}{l}p_{000} \\ p_{001} \\ p_{010} \\ \vdots \\ p_{111}\end{array}\right]=\left[\begin{array}{c}\pi_{0} \\ 0.9 \\ 0.8 \\ 0.4 \\ 1\end{array}\right]$
$p_{000}=$ probability that $\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)=(0,0,0)$

Application to Probability Logic

Exponentially many variables in LP model. What to do? Apply classical Benders to linear programming dual!

Linear programming model

Formula Probability

$$
\begin{array}{ll}
x_{1} & 0.9 \\
\bar{x}_{1} \vee x_{2} & 0.8 \\
\bar{x}_{2} \vee x_{3} & 0.4
\end{array}
$$

Deduce probability range for x_{3}
$\min / \max \pi_{0}$
$\left[\begin{array}{l}01010101 \\ 00001111 \\ 11110011 \\ 11011101 \\ 11111111\end{array}\right]\left[\begin{array}{l}p_{000} \\ p_{001} \\ p_{010} \\ \vdots \\ p_{111}\end{array}\right]=\left[\begin{array}{c}\pi_{0} \\ 0.9 \\ 0.8 \\ 0.4 \\ 1\end{array}\right]$
$p_{000}=$ probability that $\left(x_{1}, x_{2}, x_{3}\right)=(0,0,0)$

Application to Probability Logic

Exponentially many variables in LP model. What to do? Apply classical Benders to linear programming dual! This results in a column generation method that introduces variables into LP only as needed to find optimum.

Linear programming model
$\begin{array}{cc}\text { Formula } & \text { Proba } \\ x_{1} & 0.9 \\ \bar{x}_{1} \vee x_{2} & 0.8 \\ \bar{x}_{2} \vee x_{3} & 0.4\end{array}$
Deduce probability range for x_{3}
$\min / \max \pi_{0}$
$\left[\begin{array}{l}01010101 \\ 00001111 \\ 11110011 \\ 11011101 \\ 11111111\end{array}\right]\left[\begin{array}{l}p_{000} \\ p_{001} \\ p_{010} \\ \vdots \\ p_{111}\end{array}\right]=\left[\begin{array}{c}\pi_{0} \\ 0.9 \\ 0.8 \\ 0.4 \\ 1\end{array}\right]$
$p_{000}=$ probability that $\left(x_{1}, x_{2}, x_{3}\right)=(0,0,0)$

Inference as Projection

- Recall that logical inference is a projection problem.
- We wish to infer from these clauses everything we can about propositions x_{1}, x_{2}, x_{3}

We can deduce
$x_{1} \vee X_{2}$
$x_{1} \vee X_{3}$

This is a projection onto x_{1}, x_{2}, x_{3}

x_{1}	$\vee x_{4} \vee x_{5}$
x_{1}	$\vee x_{4} \vee \bar{x}_{5}$
x_{1}	$\vee x_{5} \vee x_{6}$
x_{1}	$\vee x_{5} \vee \bar{x}_{6}$
x_{2}	$\vee \bar{x}_{5} \vee x_{6}$
x_{2}	$\vee \bar{x}_{5} \vee \bar{x}_{6}$
	$x_{3} \vee \bar{x}_{4} \vee x_{5}$
	$x_{3} \vee \bar{x}_{4} \vee \bar{x}_{5}$

Inference as Projection

- Benders decomposition computes the projection!
- Benders cuts describe projection onto x_{1}, x_{2}, x_{3}

Current
Master problem

Benders cut

from previous
iteration

Inference as Projection

- Benders decomposition computes the projection!
- Benders cuts describe projection onto x_{1}, x_{2}, x_{3}

Current
Master problem

\rightarrow| $x_{1} \vee x_{2}$ |
| :---: |
| solution of master |
| $\left(x_{1}, x_{2}, x_{3}\right)=(0,1,0)$ |\rightarrow| $x_{4} \vee x_{5}$ |
| :---: |
| $x_{4} \vee \bar{x}_{5}$ |
| $x_{5} \vee x_{6}$ |
| $x_{5} \vee \bar{x}_{6}$ |
| $\bar{x}_{4} \vee x_{5}$ |
| $\bar{x}_{4} \vee \bar{x}_{5}$ |

Inference as Projection

- Benders decomposition computes the projection!
- Benders cuts describe projection onto x_{1}, x_{2}, x_{3}

Current
Master problem

$x_{1} \vee x_{2} \rightarrow$| solution of master |
| :---: |
| $\left(x_{1}, x_{2}, x_{3}\right)=(0,1,0)$ |\rightarrow

Subproblem is infeasible.
$\left(x_{1}, x_{3}\right)=(0,0)$
creates infeasibility

Resulting
subproblem

$x_{4} \vee x_{5}$
$x_{4} \vee \bar{x}_{5}$
$x_{5} \vee x_{6}$
$x_{5} \vee \bar{x}_{6}$
$\bar{x}_{4} \vee x_{5}$
$\bar{x}_{4} \vee \bar{x}_{5}$

$\bar{x}_{4} \vee \bar{x}_{5}$

Inference as Projection

- Benders decomposition computes the projection!
- Benders cuts describe projection onto x_{1}, x_{2}, x_{3}

Current
Master problem
\(\left.\begin{array}{|c|c|}\hline x_{1} \vee x_{2}

x_{1} \vee x_{3}\end{array}\right] \longrightarrow\)| solution of master |
| :---: |
| $\left(x_{1}, x_{2}, x_{3}\right)=(0,1,0)$ |
| Benders cut |
| (nogood) |\(\longleftarrow\left[\begin{array}{c}x_{4} \vee x_{5}

x_{4} \vee \bar{x}_{5}

x_{5} \vee x_{6}

x_{5} \vee \bar{x}_{6}

$$
\begin{array}{c}\text { Subproblem is } \\
\text { infeasible. } \\
\left(x_{1}, x_{3}\right)=(0,0)\end{array}
$$

\bar{x}_{4} \vee x_{5}

\bar{x}_{4} \vee \bar{x}_{5}

\hline\end{array}\right.\)

Inference as Projection

- Benders decomposition computes the projection!
- Benders cuts describe projection onto x_{1}, x_{2}, x_{3}

Current
Master problem
$x_{1} \vee x_{2}$
$x_{1} \vee x_{3}$$\rightarrow$

Resulting
subproblem

$$
\begin{aligned}
& x_{4} \vee x_{5} \\
& x_{4} \vee \bar{x}_{5} \\
& \quad x_{5} \vee x_{6} \\
& \quad x_{5} \vee \bar{x}_{6}
\end{aligned}
$$

Inference as Projection

- Benders decomposition computes the projection!
- Benders cuts describe projection onto x_{1}, x_{2}, x_{3}

Current
Master problem
$x_{1} \vee x_{2}$
$x_{1} \vee x_{3}$$\rightarrow$

Subproblem is
feasible

Resulting
subproblem

$$
\begin{aligned}
& x_{4} \vee x_{5} \\
& x_{4} \vee \bar{x}_{5} \\
& \quad x_{5} \vee x_{6} \\
& \quad x_{5} \vee \bar{x}_{6}
\end{aligned}
$$

Inference as Projection

- Benders decomposition computes the projection!
- Benders cuts describe projection onto x_{1}, x_{2}, x_{3}

Current
Master problem
$\left.\begin{array}{|c|}\hline x_{1} \vee x_{2} \\ x_{1} \vee x_{3} \\ x_{1} \vee \bar{x}_{2} \vee \bar{x}_{3}\end{array} \longrightarrow \begin{array}{c}\text { solution of master } \\ \left(x_{1}, x_{2}, x_{3}\right)=(0,1,1) \\ \text { Enumerative } \\ \text { Benders cut }\end{array} \longrightarrow \begin{array}{|c|}\substack{\text { Subproblem is } \\ \text { feasible }}\end{array} \longrightarrow \begin{array}{|c}x_{4} \vee x_{5} \\ x_{4} \vee \bar{x}_{5} \\ x_{5} \vee x_{6} \\ x_{5} \vee \bar{x}_{6}\end{array}\right]$

Inference as Projection

- Benders decomposition computes the projection!
- Benders cuts describe projection onto x_{1}, x_{2}, x_{3}

Current
Master problem
$x_{1} \vee x_{2}$
$x_{1} \vee x_{3}$

$x_{1} \vee \bar{x}_{2} \vee \bar{x}_{3}$$\longrightarrow$| solution of master |
| :--- |
| $\left(x_{1}, x_{2}, x_{3}\right)=(0,1,1)$ |
| Enumerative |
| Benders cut |\longrightarrow

Continue until master is infeasible.

Resulting
subproblem

$$
\begin{aligned}
& x_{4} \vee x_{5} \\
& x_{4} \vee \bar{x}_{5} \\
& \quad x_{5} \vee x_{6} \\
& \quad x_{5} \vee \bar{x}_{6}
\end{aligned}
$$

Black Benders cuts describe projection.

Inference as Projection

- Benders cuts = conflict clauses in a SAT algorithm!
- Branch on x_{1}, x_{2}, x_{3} first.

Inference as Projection

- Benders cuts = conflict clauses in a SAT algorithm!
- Branch on x_{1}, x_{2}, x_{3} first.

Inference as Projection

- Benders cuts = conflict clauses in a SAT algorithm!
- Branch on x_{1}, x_{2}, x_{3} first.

Inference as Projection

- Benders cuts = conflict clauses in a SAT algorithm!
- Branch on x_{1}, x_{2}, x_{3} first.

Accelerating Search

- Logic-based Benders can speed up search in several domains.
- Several orders of magnitude relative to state of the art.
- Some applications:
- Circuit verification
- Chemical batch processing (BASF, etc.)
- Steel production scheduling
- Auto assembly line management (Peugeot-Citroën)
- Automated guided vehicles in flexible manufacturing
- Allocation and scheduling of multicore processors (IBM, Toshiba, Sony)
- Facility location-allocation
- Stochastic facility location and fleet management
- Capacity and distance-constrained plant location

Logic-Based Benders

- Some applications...
- Transportation network design
- Traffic diversion around blocked routes
- Worker assignment in a queuing environment
- Single- and multiple-machine allocation and scheduling
- Permutation flow shop scheduling with time lags
- Resource-constrained scheduling
- Wireless local area network design
- Service restoration in a network
- Optimal control of dynamical systems
- Sports scheduling

First-Order Logic

- Partial instantiation methods for first-order logic can be viewed as Benders methods
- The master problem is a SAT problem for the current formula F,
- The solution of the master finds a satisfier mapping that makes one literal of each clause of F (the satisfier of the clause) true.

First-Order Logic

- Partial instantiation methods for first-order logic can be viewed as Benders methods
- The master problem is a SAT problem for the current formula F,
- The solution of the master finds a satisfier mapping that makes one literal of each clause of F (the satisfier of the clause) true.
- The subproblem checks whether a satisfier mapping is blocked.
- This means atoms assigned true and false can be unified.

First-Order Logic

- Partial instantiation methods for first-order logic can be viewed as Benders methods
- The master problem is a SAT problem for the current formula F,
- The solution of the master finds a satisfier mapping that makes one literal of each clause of F (the satisfier of the clause) true.
- The subproblem checks whether a satisfier mapping is blocked.
- This means atoms assigned true and false can be unified.
- In case of blockage, more complete instantiations of the blocked clauses are added to F as Benders cuts.

First-Order Logic

- Resulting Benders decomposition:

Master problem
Subproblem

Current partially instantiated formula F. Solve SAT problem for a satisfier mapping.

Check if the satisfier mapping is blocked by unifying atoms that receive different truth values.

The dual solution is the most general unifier.

Use same unifier to create Benders cuts: fuller instantiations of the relevant clauses.

First-Order Logic

Consider the formula $\quad F=\forall x C_{1} \wedge \forall y C_{2}$
where $C_{1}=P(a, x) \vee Q(a) \vee \neg R(x) \quad C_{2}=\neg Q(y) \vee \neg P(y, b)$

First-Order Logic

Consider the formula $\quad F=\forall x C_{1} \wedge \forall y C_{2}$
True
False
where $C_{1}=P(a, x) \vee Q(a) \vee \neg R(x) \quad C_{2}=\neg Q(y) \vee \neg P(y, b)$
Solution of master problem yields satisfiers shown.

First-Order Logic

Consider the formula $\quad F=\forall x C_{1} \wedge \forall y C_{2}$

True

False
where $C_{1}=P(a, x) \vee Q(a) \vee \neg R(x)$

Solution of master problem yields satisfiers shown.
The satisfier mapping is blocked because the atoms $P(a, x)$ and $P(y, b)$ can be unified.

First-Order Logic

Consider the formula $\quad F=\forall x C_{1} \wedge \forall y C_{2}$

True

False
where $C_{1}=P(a, x) \vee Q(a) \vee \neg R(x) \quad C_{2}=\neg Q(y) \vee \neg P(y, b)$
Solution of master problem yields satisfiers shown.
The satisfier mapping is blocked because the atoms $P(a, x)$ and $P(y, b)$ can be unified.

Generate Benders cuts by applying the most general unifier of the atoms to the clauses containing them, and adding the result to F. Now,

$$
F=\forall x C_{1} \wedge \forall y C_{2} \wedge C_{3} \wedge C_{4}
$$

where $C_{3}=P(a, b) \vee Q(a) \vee \neg R(b)$

$$
C_{4}=\neg Q(y) \vee \neg P(y, b)
$$

First-Order Logic

Consider the formula $\quad F=\forall x C_{1} \wedge \forall y C_{2}$

True

False
where $C_{1}=P(a, x) \vee Q(a) \vee \neg R(x) \quad C_{2}=\neg Q(y) \vee \neg P(y, b)$
Solution of master problem yields satisfiers shown.
The satisfier mapping is blocked because the atoms $P(a, x)$ and $P(y, b)$ can be unified.

Generate Benders cuts by applying the most general unifier of the atoms to the clauses containing them, and adding the result to F. Now,

$$
F=\forall x C_{1} \wedge \forall y C_{2} \wedge C_{3} \wedge C_{4}
$$

where $C_{3}=P(a, b) \vee Q(a) \vee \neg R(b) \quad C_{4}=\neg Q(y) \vee \neg P(y, b)$
Solution of the new master problem yields a satisfier mapping that is not blocked in the subproblem, and the procedure terminates with satisfiability.

First-Order Logic

- We can accommodate full first-order logic with functions
- If we replace blocked with M-blocked
- Meaning that the satisfier mapping is blocked within a nesting depth of M.
- The procedure always terminates if F is unsatisfiable.
- It may not terminate if F is satisfiable, since first-order logic is semidecidable.
- The master problem has infinitely many variables, because the Herbrand base is infinite.

