
Projection, Inference, and Consistency

John Hooker

Carnegie Mellon University

IJCAI 2016, New York City

A high-level presentation.

Don’t worry about the details.

2

Projection as a Unifying Concept

• Projection underlies inference, optimization, and

consistency maintenance

3

Projection as a Unifying Concept

• Projection underlies inference, optimization, and

consistency maintenance

• Logical inference is projection onto a subset

of variables.

4

Projection as a Unifying Concept

• Projection underlies inference, optimization, and

consistency maintenance

• Logical inference is projection onto a subset

of variables.

• Optimization is projection onto one or more variables.

5

Projection as a Unifying Concept

• Projection underlies inference, optimization, and

consistency maintenance

• Logical inference is projection onto a subset

of variables.

• Optimization is projection onto one or more variables.

• Consistency maintenance lies at the heart of

constraint programming and is a form of projection.

6

Projection as a Unifying Concept

• Projection underlies inference, optimization, and

consistency maintenance

• Logical inference is projection onto a subset

of variables.

• Optimization is projection onto one or more variables.

• Consistency maintenance lies at the heart of

constraint programming and is a form of projection.

• Let’s start with George Boole…

• …whose probability logic brings together projection,

inference, and optimization.

7

Probability Logic

• George Boole is best

known for propositional

logic and Boolean

algebra.

• But he proposed a highly

original approach to

probability logic.

8

Logical Inference

• The problem:

– Given a set S of propositions

– Each with a given probability.

– And a proposition P that can be

deduced from S…

– What probability can be assigned

to P?

9

• In 1970s, Theodore

Hailperin offered an

interpretation of

Boole’s probability logic

– …based on modern

concept of linear

programming.

– LP first clearly formulated

in 1930s by Kantorovich.

10

Boole’s Probability Logic

Hailperin (1976)

1

1 2

2 3

0.9

0if then

if then

.8

0.4

x

x x

x x

Example

Clause Probability

Deduce probability

range for x3

Boole’s Probability Logic

1

1 2

2 3

0.9

0if then

if then

.8

0.4

x

x x

x x

Example

Clause Probability

Deduce probability

range for x3

Interpret if-then statements

as material conditionals

Boole’s Probability Logic

Boole’s Probability Logic

1

1 2

2 3

0.9

0.8

0.4

x

x x

x x





Example

Clause Probability

Deduce probability

range for x3

Interpret if-then statements

as material conditionals

14

1

1 2

2 3

0.9

0.8

0.4

x

x x

x x





Example

Clause Probability

01010101

00001111

11110011

11011101

11111111

 
 
 
 
 
 
  

0min/ max 

000

001

010

111

p

p

p

p

 
 
 
 
 
 
  

0

0.9

0.8

0.4

1

 
 
 

  
 
 
  

Deduce probability

range for x3

Linear programming model

p000 = probability that (x1,x2,x3) = (0,0,0)

Boole’s Probability Logic

15

1

1 2

2 3

0.9

0.8

0.4

x

x x

x x





Example

Clause Probability

01010101

00001111

11110011

11011101

11111111

 
 
 
 
 
 
  

0min/ max 

000

001

010

111

p

p

p

p

 
 
 
 
 
 
  

0

0.9

0.8

0.4

1

 
 
 

  
 
 
  

Deduce probability

range for x3

Linear programming model

p000 = probability that (x1,x2,x3) = (0,0,0)

Solution: 0  [0.1, 0.4]

Boole’s Probability Logic

16

Boole’s Probability Logic

• This LP model was re-invented in AI community.

• Column generation methods are now available.

• To deal with exponential number of variables.

Nilsson (1986)

17

Boole’s Probability Logic

• Inference: infer probability of a proposition.

• Projection: project feasible set onto a variable

• To derive range of probabilities

• Optimization: formulate as a linear programming

problem.

18

Optimization as Projection

• An LP can be solved by Fourier elimination

– The only known method in Boole’s day

– This is a projection method.

Fourier (1827)

19

Optimization as Projection

• Eliminate variables we want to project out.

– To solve

project out all variables yj except y0.

  0 0min/ max | ,y y ay Ay b

20

Optimization as Projection

• Eliminate variables we want to project out.

– To solve

project out all variables yj except y0.

– To project out yj , eliminate it from pairs of inequalities:

  0 0min/ max | ,y y ay Ay b

 0 jcy c y  0 jdy d y

0 0where , 0c d

21

Optimization as Projection

• Eliminate variables we want to project out.

– To solve

project out all variables yj except y0.

– To project out yj , eliminate it from pairs of inequalities:

  0 0min/ max | ,y y ay Ay b

 0 jcy c y  0 jdy d y

 
    

0 0 0 0

j

c d
y y y

c c d d

22

Optimization as Projection

• Eliminate variables we want to project out.

– To solve

project out all variables yj except y0.

– To project out yj , eliminate it from pairs of inequalities:

  0 0min/ max | ,y y ay Ay b

 0 jcy c y  0 jdy d y

 
    

0 0 0 0

j

c d
y y y

c c d d


23

Optimization as Projection

• Eliminate variables we want to project out.

– To solve

project out all variables yj except y0.

– To project out yj , eliminate it from pairs of inequalities:

  0 0min/ max | ,y y ay Ay b

 0 jcy c y  0 jdy d y

 
    

0 0 0 0

j

c d
y y y

c c d d

  
   

 0 0 0 0

c d
y

c d c d



24

Inference as Projection

• Project onto propositional variables of interest

– Suppose we wish to infer from these clauses

everything we can about propositions x1, x2, x3

25

Inference as Projection

• Project onto propositional variables of interest

– Suppose we wish to infer from these clauses

everything we can about propositions x1, x2, x3

We can deduce





1 2

1 3

x x

x x

This is a projection

onto x1, x2, x3

26

Inference as Projection

• Resolution is a projection method!

– Similar to Fourier elimination

– Actually, identical to Fourier elimination + rounding!

– To project out xj, eliminate it from pairs of clauses:

 jC x  jD x

C D Quine (1952,1955)

JH (1992,2012)

27

Inference as Projection

• Projection methods similar to Fourier elimination

– Resolution for logical clauses

– …for cardinality clauses

– …for 0-1 linear inequalities

– …for general integer linear inequalities

Quine (1952,1955)

JH (1992)

JH (1988)

Williams & JH (2015)

28

Inference as Projection

• Elimination-based methods tend to be slow.

• Another approach is an optimization method:

logic-based Benders decomposition

29

Inference as Projection

• Elimination-based methods tend to be slow.

• Another approach is an optimization method:

logic-based Benders decomposition

– For problems that radically simplify when certain variables

are fixed.

– Resulting subproblem may be easy to solve.

– Solve master problem to search over ways to fix variables.

– Solution of subproblem yields a Benders cut that is added

to master problem and helps direct search.

– Repeat until problem is solved.

30

Benders Decomposition as Projection

• Benders decomposition computes a projection!

– Benders cuts describe projection onto master problem

variables.

1 2x x

Current

Master problem

Benders cut

from previous

iteration

31

• Benders decomposition computes a projection!

– Benders cuts describe projection onto master problem

variables.

1 2x x solution of master

(x1,x2,x3) = (0,1,0)

Current

Master problem
Resulting

subproblem

Benders Decomposition as ProjectionBenders Decomposition as Projection

32

• Benders decomposition computes a projection!

– Benders cuts describe projection onto master problem

variables.

1 2x x solution of master

(x1,x2,x3) = (0,1,0)

Current

Master problem
Resulting

subproblem

Subproblem is

infeasible.

(x1,x3)=(0,0)

creates infeasibility

Benders Decomposition as ProjectionBenders Decomposition as Projection

33

• Benders decomposition computes a projection!

– Benders cuts describe projection onto master problem

variables.

1 2x x solution of master

(x1,x2,x3) = (0,1,0)

Current

Master problem

Subproblem is

infeasible.

(x1,x3)=(0,0)

creates infeasibility

Benders cut

(nogood)

1 3x x

Resulting

subproblem

Benders Decomposition as Projection

34

• Benders decomposition computes a projection!

– Benders cuts describe projection onto master problem

variables.

1 2x x solution of master

(x1,x2,x3) = (0,1,1)

Current

Master problem
Resulting

subproblem

1 3x x

Benders Decomposition as ProjectionBenders Decomposition as Projection

35

• Benders decomposition computes a projection!

– Benders cuts describe projection onto master problem

variables.

1 2x x solution of master

(x1,x2,x3) = (0,1,1)

Current

Master problem
Resulting

subproblem

1 3x x

Subproblem is

feasible

Benders Decomposition as Projection

36

• Benders decomposition computes a projection!

– Benders cuts describe projection onto master problem

variables.

1 2x x solution of master

(x1,x2,x3) = (0,1,1)

Current

Master problem
Resulting

subproblem

Enumerative

Benders cut

1 3x x

Subproblem is

feasible

 1 2 3x x x

Benders Decomposition as Projection

37

• Benders decomposition computes a projection!

– Benders cuts describe projection onto master problem

variables.

1 2x x solution of master

(x1,x2,x3) = (0,1,1)

Current

Master problem
Resulting

subproblem

Enumerative

Benders cut

1 3x x

Continue until master

is infeasible.

Black Benders cuts

describe projection.

 1 2 3x x x

JH (2000)

JH and Ottosson (2003)

Benders Decomposition as ProjectionBenders Decomposition as Projection

• Satisfiability solvers solve inference problems

by a projection method.

– Using conflict clauses.

Projection in Satisfiability Solvers

• Satisfiability solvers solve inference problems

by a projection method.

– Using conflict clauses.

• They do so by generating Benders cuts!

– Conflict clauses = Benders cuts

Projection in Satisfiability Solvers

40

Projection in Satisfiability Solvers

• Benders cuts = conflict clauses in a SAT algorithm

– Branch on x1, x2, x3 first.

41

Projection in Satisfiability Solvers

• Benders cuts = conflict clauses in a SAT algorithm

– Branch on x1, x2, x3 first.

Conflict

clauses

42

Projection in Satisfiability Solvers

• Benders cuts = conflict clauses in a SAT algorithm

– Branch on x1, x2, x3 first.

Conflict

clauses

Backtrack to x3 at

feasible leaf nodes

43

Projection in Satisfiability Solvers

• Benders cuts = conflict clauses in a SAT algorithm

– Branch on x1, x2, x3 first.

Conflict clauses containing

x1, x2, x3 describe projection

44

Consistency as Projection

• Consistency is a fundamental concept in

constraint programming (CP).

45

Consistency as Projection

• Consistency is a fundamental concept in

constraint programming (CP).

• CP models use high-level global constraints

– Such as all-different(x1, …, xn) to require that x1, …, xn

take different values.

– …rather than writing xi ≠ xj for all i, j

46

Consistency as Projection

• Filtering algorithms remove values from variable

domains that are inconsistent with individual

global constraints.

– This ideally achieves domain consistency.

47

Consistency as Projection

• Filtering algorithms remove values from variable

domains that are inconsistent with individual

global constraints.

– This ideally achieves domain consistency.

• Reduced domains are propagated to the next

constraint for further filtering.

– Smaller domains simplify search.

48

Consistency as Projection

• Achieving domain consistency is a form of projection.

– Project onto each individual variable xj.

 
 
 
 







1 2 3

1

2

3

alldiff , ,

,

,

,

x x x

x a b

x a b

x b c

Example:

Constraint set

49

Consistency as Projection

• Achieving domain consistency is a form of projection.

– Project onto each individual variable xj.

 
 
 
 







1 2 3

1

2

3

alldiff , ,

,

,

,

x x x

x a b

x a b

x b c

 1 2 3, ,

(, ,)

(, ,)

x x x

a b c

b a c

Example:

Constraint set Solutions

50

Consistency as Projection

• Achieving domain consistency is a form of projection.

– Project onto each individual variable xj.

 
 
 
 







1 2 3

1

2

3

alldiff , ,

,

,

,

x x x

x a b

x a b

x b c

 1 2 3, ,

(, ,)

(, ,)

x x x

a b c

b a c

Example:

Constraint set Solutions Projection onto x1

 1 ,x a b

Projection onto x2

 2 ,x a b

Projection onto x3

 3x c

51

Consistency as Projection

• Achieving domain consistency is a form of projection.

– Project onto each individual variable xj.

 
 
 
 







1 2 3

1

2

3

alldiff , ,

,

,

,

x x x

x a b

x a b

x b c

 1 2 3, ,

(, ,)

(, ,)

x x x

a b c

b a c

Example:

Constraint set Solutions Projection onto x1

 1 ,x a b

Projection onto x2

 2 ,x a b

Projection onto x3

 3x c

This achieves domain consistency.

52

Consistency as Projection

• Achieving domain consistency is a form of projection.

– Project onto each individual variable xj.

 
 
 
 







1 2 3

1

2

3

alldiff , ,

,

,

,

x x x

x a b

x a b

x b c

 1 2 3, ,

(, ,)

(, ,)

x x x

a b c

b a c

Example:

Constraint set Solutions Projection onto x1

 1 ,x a b

Projection onto x2

 2 ,x a b

Projection onto x3

 3x c

This achieves domain consistency.

We will regard a projection as a

constraint set.

53

• Once we view domain consistency as projection,

we see how to extend it to a stronger property.

– Project onto sets of variables rather than single variables.

– Constraint set is J-consistent if it contains its projection

onto a set J of variables.

– Domain consistent = { j }-consistent for each j.

– Resolution and logic-based Benders achieve J-consistency

for SAT.

Consistency as Projection

54

• J-consistency and propagation.

– J-consistency can be useful if we propagate through a

richer structure than domains.

– …such as decision diagrams

Andersen, Hadžić JH, Tiedemann (2007)

Bergman, Ciré, van Hoeve, JH (2014)

Consistency as Projection

55

• Problem: projection generally results in greater

complexity.

– Such as projecting a polyhedron.

– Lifting into a higher space tends to reduce complexity.

– For example, resolution vs. extended resolution.

– Disaggregation of variables.

– Let’s see what happens for some common global

constraints.

Consistency as Projection

56

Constraint How hard to project?

among Easy and fast.

sequence More complicated but fast.

regular Easy and basically same labor as

domain consistency.

alldiff Surprisingly complicated but practical

for small domains.

Consistency as Projection

57

Projecting Among Constraint

• Requires that a certain number of variables in a

set take specified values.

– Many applications.

– requires that at least t and

at most u variables among x1, …, xn take values in V.
 1among (, ,), , ,nx x V t u

58

Projection of onto x1,…,xn1 is

where  
 

 





   
  

       
 

   

(1) , 1 if

(,) ,min{ , 1} if

(1) ,min{ , 1} otherwise

n

n

t u D V

t u t u n D V

t u n

 1among (, ,), , ,nx x V t u

 
 

1 1among (, ,), , ,nx x V t u

Projecting Among Constraint

59

Projection of onto x1,…,xn1 is

where  
 

 





   
  

       
 

   

(1) , 1 if

(,) ,min{ , 1} if

(1) ,min{ , 1} otherwise

n

n

t u D V

t u t u n D V

t u n

 1among (, ,), , ,nx x V t u

 
 
 
 
 











1

2

3

4

5

,

, ,

,d

,

D a b

D a b c

D a

D c d

D d

Example

 
 

1 1among (, ,), , ,nx x V t u

 1 2 3 4 5among (, , , ,),{ , }, ,x x x x x c d t u

Projecting Among Constraint

60

Projection of onto x1,…,xn1 is

where  
 

 





   
  

       
 

   

(1) , 1 if

(,) ,min{ , 1} if

(1) ,min{ , 1} otherwise

n

n

t u D V

t u t u n D V

t u n

 1among (, ,), , ,nx x V t u

 
 
 
 
 











1

2

3

4

5

,

, ,

,d

,

D a b

D a b c

D a

D c d

D d

Example

 
 

1 1among (, ,), , ,nx x V t u

 1 2 3 4 5among (, , , ,),{ , }, ,x x x x x c d t u

  1 2 3 4among (, , ,),{ , },(1) , 1x x x x c d t u

Projecting Among Constraint

61

Projection of onto x1,…,xn1 is

where  
 

 





   
  

       
 

   

(1) , 1 if

(,) ,min{ , 1} if

(1) ,min{ , 1} otherwise

n

n

t u D V

t u t u n D V

t u n

 1among (, ,), , ,nx x V t u

 
 
 
 
 











1

2

3

4

5

,

, ,

,d

,

D a b

D a b c

D a

D c d

D d

Example

 
 

1 1among (, ,), , ,nx x V t u

 1 2 3 4 5among (, , , ,),{ , }, ,x x x x x c d t u

  1 2 3 4among (, , ,),{ , },(1) , 1x x x x c d t u

  1 2 3among (, ,),{ , },(2) , 2x x x c d t u

Projecting Among Constraint

62

Projection of onto x1,…,xn1 is

where  
 

 





   
  

       
 

   

(1) , 1 if

(,) ,min{ , 1} if

(1) ,min{ , 1} otherwise

n

n

t u D V

t u t u n D V

t u n

 1among (, ,), , ,nx x V t u

 
 
 
 
 











1

2

3

4

5

,

, ,

,d

,

D a b

D a b c

D a

D c d

D d

Example

 
 

1 1among (, ,), , ,nx x V t u

 1 2 3 4 5among (, , , ,),{ , }, ,x x x x x c d t u

  1 2 3 4among (, , ,),{ , },(1) , 1x x x x c d t u

  1 2 3among (, ,),{ , },(2) , 2x x x c d t u

  1 2among (,),{ , },(3) ,min{ 2,2}x x c d t u

Projecting Among Constraint

63

Projection of onto x1,…,xn1 is

where  
 

 





   
  

       
 

   

(1) , 1 if

(,) ,min{ , 1} if

(1) ,min{ , 1} otherwise

n

n

t u D V

t u t u n D V

t u n

 1among (, ,), , ,nx x V t u

 
 
 
 
 











1

2

3

4

5

,

, ,

,d

,

D a b

D a b c

D a

D c d

D d

Example

 
 

1 1among (, ,), , ,nx x V t u

 1 2 3 4 5among (, , , ,),{ , }, ,x x x x x c d t u

  1 2 3 4among (, , ,),{ , },(1) , 1x x x x c d t u

  1 2 3among (, ,),{ , },(2) , 2x x x c d t u

  1 2among (,),{ , },(3) ,min{ 2,2}x x c d t u

  1among (),{ , },(4) ,min{ 2,1}x c d t u

Projecting Among Constraint

64

Projection of onto x1,…,xn1 is

where  
 

 





   
  

       
 

   

(1) , 1 if

(,) ,min{ , 1} if

(1) ,min{ , 1} otherwise

n

n

t u D V

t u t u n D V

t u n

 1among (, ,), , ,nx x V t u

 
 
 
 
 











1

2

3

4

5

,

, ,

,d

,

D a b

D a b c

D a

D c d

D d

Example

 
 

1 1among (, ,), , ,nx x V t u

 1 2 3 4 5among (, , , ,),{ , }, ,x x x x x c d t u

  1 2 3 4among (, , ,),{ , },(1) , 1x x x x c d t u

  1 2 3among (, ,),{ , },(2) , 2x x x c d t u

  1 2among (,),{ , },(3) ,min{ 2,2}x x c d t u

  1among (),{ , },(4) ,min{ 2,1}x c d t u

  among (),{ , },(4) ,min{ 2,0}c d t u

Projecting Among Constraint

65

Projection of onto x1,…,xn1 is

where  
 

 





   
  

       
 

   

(1) , 1 if

(,) ,min{ , 1} if

(1) ,min{ , 1} otherwise

n

n

t u D V

t u t u n D V

t u n

 1among (, ,), , ,nx x V t u

 
 
 
 
 











1

2

3

4

5

,

, ,

,d

,

D a b

D a b c

D a

D c d

D d

Example

 
 

1 1among (, ,), , ,nx x V t u

 1 2 3 4 5among (, , , ,),{ , }, ,x x x x x c d t u

  1 2 3 4among (, , ,),{ , },(1) , 1x x x x c d t u

  1 2 3among (, ,),{ , },(2) , 2x x x c d t u

  1 2among (,),{ , },(3) ,min{ 2,2}x x c d t u

  1among (),{ , },(4) ,min{ 2,1}x c d t u

  among (),{ , },(4) ,min{ 2,0}c d t u

Feasible if and only if    (4) min 2,0t u

Projecting Among Constraint

66

Projecting Sequence Constraint

• Sequence constraint used for assembly line load

balancing and the like.

– For example, at most 3 of every 10 cars on the line

require an air conditioner.

– Equivalent to overlapping among constraints.

67

• Projection is based on an integrality property.

– The coefficient matrix of the inequality formulation has

consecutive ones property.

– So projection of the convex hull of the feasible set is an

integral polyhedron.

– Polyhedral projection therefore suffices.

– Straightforward (but tedious) application of Fourier

elimination yields the projection.

Projecting Sequence Constraint

68

• Projection is based on an integrality property.

– The coefficient matrix of the inequality formulation has

consecutive ones property.

– So projection of the convex hull of the feasible set is an

integral polyhedron.

– Polyhedral projection therefore suffices.

– Straightforward (but tedious) application of Fourier

elimination yields the projection.

• Projection onto any subset of variables is a

generalized sequence constraint.

– Complexity of projecting out xk is O(kq), where

q = length of the overlapping sequences.

Projecting Sequence Constraint

69

70

Example  
3among (, ,),{1},2,2 , 4,5,6t tx x t

To project out x6, add constraint

 3 4 5among (, ,),{1},1,1x x x

    1 3 4 6 2 5, , , 0,1 , , 1x x x x x x

Projecting Sequence Constraint

71

Example  
3among (, ,),{1},2,2 , 4,5,6t tx x t

To project out x6, add constraint

 3 4 5among (, ,),{1},1,1x x x

To project out x5, add constraints

   2 3 4 3 4among (, ,),{1},1,1 among (,),{1},0,0x x x x x

    1 3 4 6 2 5, , , 0,1 , , 1x x x x x x

Projecting Sequence Constraint

72

Example  
3among (, ,),{1},2,2 , 4,5,6t tx x t

To project out x6, add constraint

 3 4 5among (, ,),{1},1,1x x x

To project out x5, add constraints

   2 3 4 3 4among (, ,),{1},1,1 among (,),{1},0,0x x x x x

To project out x4, add constraints

   
   

1 1 2 3

2 3 3

among (),{1},1,1 among (x , ,),{1},1,2

among (,x),{1},0,1 among (),{1},0,0

x x x

x x

    1 3 4 6 2 5, , , 0,1 , , 1x x x x x x

Projecting Sequence Constraint

73

Example  
3among (, ,),{1},2,2 , 4,5,6t tx x t

To project out x6, add constraint

 3 4 5among (, ,),{1},1,1x x x

To project out x5, add constraints

   2 3 4 3 4among (, ,),{1},1,1 among (,),{1},0,0x x x x x

To project out x4, add constraints

   
   

1 1 2 3

2 3 3

among (),{1},1,1 among (x , ,),{1},1,2

among (,x),{1},0,1 among (),{1},0,0

x x x

x x

To project out x3, fix (x1,x2) = (1,1)

    1 3 4 6 2 5, , , 0,1 , , 1x x x x x x

Projecting Sequence Constraint

74

Projecting Regular Constraint

• Versatile constraint used for employee shift

scheduling, etc.

– For example, a worker can change shifts only after

a day off.

– Formulates constraint as deterministic finite

automaton.

– Or as regular language expression.

75

• Projection can be read from state transition graph.

– Complexity of projecting onto x1, …, xk for all k is O(nm2),

where n = number of variables, m = max number of

states per stage.

Projecting Regular Constraint

76

• Projection can be read from state transition graph.

– Complexity of projecting onto x1, …, xk for all k is O(nm2),

where n = number of variables, m = max number of

states per stage.

• Shift scheduling example

– Assign each worker to shift xi  {a,b,c} on each day

i = 1,…,7.

– Must work any given shift 2 or 3 days in a row.

– No direct transition between shifts a and c.

– Variable domains: D1 = D5 = {a,c}, D2 = {a,b,c},

D3 = D6 = D7 = {a,b}, D4 = {b,c}

Projecting Regular Constraint

77

Deterministic

finite automaton

for this problem

instance:

= absorbing

state

Regular language expression:

(((aa|aaa)(bb|bbb))*|((cc|ccc)(bb|bbb))*)*(c|(aa|aaa)|(cc|ccc))

Projecting Regular Constraint

78

State transition graph for 7 stages

Dashed lines lead to unreachable states.

Projecting Regular Constraint

79

State transition graph for 7 stages

Dashed lines lead to unreachable states.

Filtered domains

Projecting Regular Constraint

80

To project onto x1, x2, x3, truncate the graph at stage 4.

Projecting Regular Constraint

81

To project onto x1, x2, x3, truncate the graph at stage 4.

Projecting Regular Constraint

82

To project onto x1, x2, x3, truncate the graph at stage 4.

Resulting graph can be

viewed as a constraint that

describes the projection.

Constraint is easily

propagated through a

relaxed decision diagram.

Projecting Regular Constraint

83

Projecting Alldiff Constraint

• Used for sequencing and much else.

– Domain consistency easily achieved by matching

algorithm and duality theory.

84

• Projection is inherently complicated.

– But it can simplify for small domains.

• The result is a disjunction of constraint sets,

– …each of which contains an alldiff constraint and some

atmost constraints.

Projecting Alldiff Constraint

85

Example  1 2 3 4 5alldiff , , , ,x x x x x

             1 2 3 4 5, , , , , , , , , , , , , ,D a b c D c d e D d e f D e f g D a f g

Projecting Alldiff Constraint

Example  1 2 3 4 5alldiff , , , ,x x x x x

Projecting out x5, we get

   1 2 3 4 1 2 3 4alldiff , , , , atmost (, , ,),{ , , },2x x x x x x x x a f g

because x5 must take one of the values in {a,f,g}, …

86

             1 2 3 4 5, , , , , , , , , , , , , ,D a b c D c d e D d e f D e f g D a f g

Projecting Alldiff Constraint

Example  1 2 3 4 5alldiff , , , ,x x x x x

Projecting out x5, we get

   1 2 3 4 1 2 3 4alldiff , , , , atmost (, , ,),{ , , },2x x x x x x x x a f g

because x5 must take one of the values in {a,f,g}, leaving 2 for other xi s.

87

             1 2 3 4 5, , , , , , , , , , , , , ,D a b c D c d e D d e f D e f g D a f g

Projecting Alldiff Constraint

88

Example  1 2 3 4 5alldiff , , , ,x x x x x

Projecting out x5, we get

   1 2 3 4 1 2 3 4alldiff , , , , atmost (, , ,),{ , , },2x x x x x x x x a f g

because x5 must take one of the values in {a,f,g}, leaving 2 for other xi s.

Projecting out x4, we note that x4  {a,f,g} or x4  {a,f,g}.

             1 2 3 4 5, , , , , , , , , , , , , ,D a b c D c d e D d e f D e f g D a f g

Projecting Alldiff Constraint

89

Example  1 2 3 4 5alldiff , , , ,x x x x x

Projecting out x5, we get

   1 2 3 4 1 2 3 4alldiff , , , , atmost (, , ,),{ , , },2x x x x x x x x a f g

because x5 must take one of the values in {a,f,g}, leaving 2 for other xi s.

Projecting out x4, we note that x4  {a,f,g} or x4  {a,f,g}.

If x4  {a,f,g}, we get

   1 2 3 1 2 3alldiff , , , atmost (, ,),{ , , },1x x x x x x a f g

             1 2 3 4 5, , , , , , , , , , , , , ,D a b c D c d e D d e f D e f g D a f g

Projecting Alldiff Constraint

90

Example  1 2 3 4 5alldiff , , , ,x x x x x

Projecting out x5, we get

   1 2 3 4 1 2 3 4alldiff , , , , atmost (, , ,),{ , , },2x x x x x x x x a f g

because x5 must take one of the values in {a,f,g}, leaving 2 for other xi s.

Projecting out x4, we note that x4  {a,f,g} or x4  {a,f,g}.

If x4  {a,f,g}, we get

   1 2 3 1 2 3alldiff , , , atmost (, ,),{ , , },1x x x x x x a f g

If x4  {a,f,g}, we get x4 = e, and we remove e from other domains.

             1 2 3 4 5, , , , , , , , , , , , , ,D a b c D c d e D d e f D e f g D a f g

Projecting Alldiff Constraint

91

Example  1 2 3 4 5alldiff , , , ,x x x x x

Projecting out x5, we get

   1 2 3 4 1 2 3 4alldiff , , , , atmost (, , ,),{ , , },2x x x x x x x x a f g

because x5 must take one of the values in {a,f,g}, leaving 2 for other xi s.

Projecting out x4, we note that x4  {a,f,g} or x4  {a,f,g}.

If x4  {a,f,g}, we get

   1 2 3 1 2 3alldiff , , , atmost (, ,),{ , , },1x x x x x x a f g

If x4  {a,f,g}, we get x4 = e, and we remove e from other domains.

So the projection is

 
 

 
 
 

 
   

    
    

1

1 2 3

2

1 2 3

3

, ,
alldiff , ,

,
atmost (, ,),{ , , },1

,

D a b c
x x x

D c d
x x x a f g

D d f

             1 2 3 4 5, , , , , , , , , , , , , ,D a b c D c d e D d e f D e f g D a f g

Projecting Alldiff Constraint

92

Example  1 2 3 4 5alldiff , , , ,x x x x x

Projecting out x3, we get simply

 1 2alldiff ,x x

Projecting out x2, we get the original domain for x1

 1 , ,D a b c

             1 2 3 4 5, , , , , , , , , , , , , ,D a b c D c d e D d e f D e f g D a f g

Projecting Alldiff Constraint

93

94

That’s it.

