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A high-level presentation.

Don’t worry about the details.
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Projection as a Unifying Concept

• Projection underlies inference, optimization, and 

consistency maintenance

• Logical inference is projection onto a subset 

of variables.

• Optimization is projection onto one or more variables.

• Consistency maintenance lies at the heart of 

constraint programming and is a form of projection.

• Let’s start with George Boole…

• …whose probability logic brings together projection, 

inference, and optimization.
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Probability Logic

• George Boole is best 

known for propositional 

logic and Boolean 

algebra.

• But he proposed a highly 

original approach to 

probability logic.
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Logical Inference

• The problem:

– Given a set S of propositions

– Each with a given probability.

– And a proposition P that can be

deduced from S…

– What probability can be assigned

to P?
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• In 1970s, Theodore 

Hailperin offered an

interpretation of 

Boole’s probability logic

– …based on modern 

concept of linear 

programming.

– LP first clearly formulated

in 1930s by Kantorovich.
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Boole’s Probability Logic

Hailperin (1976)
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Boole’s Probability Logic

• This LP model was re-invented in AI community.

• Column generation methods are now available.

• To deal with exponential number of variables.

Nilsson (1986)
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Boole’s Probability Logic

• Inference:  infer probability of a proposition.

• Projection:  project feasible set onto a variable

• To derive range of probabilities

• Optimization:  formulate as a linear programming 

problem.
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Optimization as Projection

• An LP can be solved by Fourier elimination

– The only known method in Boole’s day

– This is a projection method.

Fourier (1827)
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Optimization as Projection

• Eliminate variables we want to project out.

– To solve

project out all variables yj except y0.

  0 0min/ max | ,y y ay Ay b
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Inference as Projection

• Project onto propositional variables of interest

– Suppose we wish to infer from these clauses 

everything we can about propositions x1, x2, x3
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Inference as Projection

• Project onto propositional variables of interest

– Suppose we wish to infer from these clauses 

everything we can about propositions x1, x2, x3

We can deduce  





1 2

1 3

x x

x x

This is a projection 

onto x1, x2, x3
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Inference as Projection

• Resolution is a projection method!

– Similar to Fourier elimination

– Actually, identical to Fourier elimination + rounding!

– To project out xj, eliminate it from pairs of clauses:

 jC x  jD x

C D Quine (1952,1955)

JH (1992,2012)
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Inference as Projection

• Projection methods similar to Fourier elimination

– Resolution for logical clauses

– …for cardinality clauses        

– …for 0-1 linear inequalities

– …for general integer linear inequalities

Quine (1952,1955)

JH (1992)

JH (1988)

Williams & JH (2015)
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Inference as Projection

• Elimination-based methods tend to be slow.

• Another approach is an optimization method: 

logic-based Benders decomposition
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Inference as Projection

• Elimination-based methods tend to be slow.

• Another approach is an optimization method:

logic-based Benders decomposition

– For problems that radically simplify when certain variables 

are fixed.

– Resulting subproblem may be easy to solve.

– Solve master problem to search over ways to fix variables.

– Solution of subproblem yields a Benders cut that is added 

to master problem and helps direct search.

– Repeat until problem is solved.



30

Benders Decomposition as Projection

• Benders decomposition computes a projection!

– Benders cuts describe projection onto master problem 

variables.

1 2x x

Current 

Master problem

Benders cut 

from previous 

iteration



31

• Benders decomposition computes a projection!

– Benders cuts describe projection onto master problem 

variables.

1 2x x solution of master

(x1,x2,x3) = (0,1,0) 

Current 

Master problem
Resulting

subproblem

Benders Decomposition as ProjectionBenders Decomposition as Projection
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• Benders decomposition computes a projection!

– Benders cuts describe projection onto master problem 
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• Benders decomposition computes a projection!

– Benders cuts describe projection onto master problem 

variables.

1 2x x solution of master
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• Benders decomposition computes a projection!

– Benders cuts describe projection onto master problem 

variables.

1 2x x solution of master

(x1,x2,x3) = (0,1,1) 

Current 

Master problem
Resulting

subproblem

Enumerative

Benders cut

1 3x x

Continue until master 

is infeasible.

Black Benders cuts 

describe projection.

 1 2 3x x x

JH (2000)

JH and Ottosson (2003)

Benders Decomposition as ProjectionBenders Decomposition as Projection



• Satisfiability solvers solve inference problems 

by a projection method.

– Using conflict clauses.

Projection in Satisfiability Solvers



• Satisfiability solvers solve inference problems 

by a projection method.

– Using conflict clauses.

• They do so by generating Benders cuts!

– Conflict clauses = Benders cuts

Projection in Satisfiability Solvers
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Projection in Satisfiability Solvers

• Benders cuts = conflict clauses in a SAT algorithm

– Branch on x1, x2, x3 first.
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Projection in Satisfiability Solvers

• Benders cuts = conflict clauses in a SAT algorithm

– Branch on x1, x2, x3 first.

Conflict 

clauses



42

Projection in Satisfiability Solvers

• Benders cuts = conflict clauses in a SAT algorithm

– Branch on x1, x2, x3 first.

Conflict 

clauses

Backtrack to x3 at 

feasible leaf nodes
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Projection in Satisfiability Solvers

• Benders cuts = conflict clauses in a SAT algorithm

– Branch on x1, x2, x3 first.

Conflict clauses containing 

x1, x2, x3 describe projection
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Consistency as Projection

• Consistency is a fundamental concept in 

constraint programming (CP).
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Consistency as Projection

• Consistency is a fundamental concept in 

constraint programming (CP).

• CP models use high-level global constraints

– Such as all-different(x1, …, xn) to require that x1, …, xn

take different values.

– …rather than writing xi ≠ xj for all i, j
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Consistency as Projection

• Filtering algorithms remove values from variable 

domains that are inconsistent with individual 

global constraints. 

– This ideally achieves domain consistency.
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Consistency as Projection

• Filtering algorithms remove values from variable 

domains that are inconsistent with individual 

global constraints. 

– This ideally achieves domain consistency.

• Reduced domains are propagated to the next 

constraint for further filtering.

– Smaller domains simplify search.
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Consistency as Projection

• Achieving domain consistency is a form of projection.

– Project onto each individual variable xj.

 
 
 
 







1 2 3

1

2

3

alldiff , ,

,

,

,

x x x

x a b

x a b

x b c

Example:
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Consistency as Projection

• Achieving domain consistency is a form of projection.

– Project onto each individual variable xj.

 
 
 
 







1 2 3

1

2

3

alldiff , ,

,

,

,

x x x

x a b

x a b

x b c

 1 2 3, ,

( , , )

( , , )

x x x

a b c

b a c

Example:

Constraint set Solutions Projection onto x1

 1 ,x a b
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 2 ,x a b

Projection onto x3

 3x c

This achieves domain consistency.

We will regard a projection as a 

constraint set.
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• Once we view domain consistency as projection, 

we see how to extend it to a stronger property.

– Project onto sets of variables rather than single variables.

– Constraint set is J-consistent if it contains its projection 

onto a set J of variables.

– Domain consistent = { j }-consistent for each j.

– Resolution and logic-based Benders achieve J-consistency 

for SAT.

Consistency as Projection
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• J-consistency and propagation.

– J-consistency can be useful if we propagate through a 

richer structure than domains.

– …such as decision diagrams

Andersen, Hadžić JH, Tiedemann (2007)

Bergman, Ciré, van Hoeve, JH (2014)

Consistency as Projection
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• Problem:  projection generally results in greater 

complexity.

– Such as projecting a polyhedron.

– Lifting into a higher space tends to reduce complexity.  

– For example, resolution vs. extended resolution.  

– Disaggregation of variables.

– Let’s see what happens for some common global 

constraints.

Consistency as Projection
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Constraint How hard to project?

among Easy and fast.

sequence More complicated but fast.

regular Easy and basically same labor as 

domain consistency.

alldiff Surprisingly complicated but practical 

for small domains.

Consistency as Projection



57

Projecting Among Constraint

• Requires that a certain number of variables in a 

set take specified values.  

– Many applications.

– requires that at least t and 

at most u variables among x1, …, xn take values in V.
 1among ( , , ), , ,nx x V t u
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Projection of   onto x1,…,xn1 is

where  
 
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Projecting Among Constraint
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Projecting Among Constraint
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Projection of   onto x1,…,xn1 is

where  
 

 





   
  

       
 

   

( 1) , 1 if 

( , ) ,min{ , 1} if 

( 1) ,min{ , 1} otherwise

n

n

t u D V

t u t u n D V

t u n

 1among ( , , ), , ,nx x V t u

 
 
 
 
 











1

2

3

4

5

,

, ,

,d

,

D a b

D a b c

D a

D c d

D d

Example

 
 

1 1among ( , , ), , ,nx x V t u

 1 2 3 4 5among ( , , , , ),{ , }, ,x x x x x c d t u

  1 2 3 4among ( , , , ),{ , },( 1) , 1x x x x c d t u

  1 2 3among ( , , ),{ , },( 2) , 2x x x c d t u

  1 2among ( , ),{ , },( 3) ,min{ 2,2}x x c d t u

  1among ( ),{ , },( 4) ,min{ 2,1}x c d t u

Projecting Among Constraint
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Projection of   onto x1,…,xn1 is

where  
 

 





   
  

       
 

   

( 1) , 1 if 

( , ) ,min{ , 1} if 

( 1) ,min{ , 1} otherwise

n

n

t u D V

t u t u n D V

t u n

 1among ( , , ), , ,nx x V t u

 
 
 
 
 











1

2

3

4

5

,

, ,

,d

,

D a b

D a b c

D a

D c d

D d

Example

 
 

1 1among ( , , ), , ,nx x V t u

 1 2 3 4 5among ( , , , , ),{ , }, ,x x x x x c d t u

  1 2 3 4among ( , , , ),{ , },( 1) , 1x x x x c d t u

  1 2 3among ( , , ),{ , },( 2) , 2x x x c d t u

  1 2among ( , ),{ , },( 3) ,min{ 2,2}x x c d t u

  1among ( ),{ , },( 4) ,min{ 2,1}x c d t u

  among (),{ , },( 4) ,min{ 2,0}c d t u

Projecting Among Constraint
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Projection of   onto x1,…,xn1 is

where  
 

 





   
  

       
 

   

( 1) , 1 if 

( , ) ,min{ , 1} if 

( 1) ,min{ , 1} otherwise

n

n

t u D V

t u t u n D V

t u n

 1among ( , , ), , ,nx x V t u

 
 
 
 
 











1

2

3

4

5

,

, ,

,d

,

D a b

D a b c

D a

D c d

D d

Example

 
 

1 1among ( , , ), , ,nx x V t u

 1 2 3 4 5among ( , , , , ),{ , }, ,x x x x x c d t u

  1 2 3 4among ( , , , ),{ , },( 1) , 1x x x x c d t u

  1 2 3among ( , , ),{ , },( 2) , 2x x x c d t u

  1 2among ( , ),{ , },( 3) ,min{ 2,2}x x c d t u

  1among ( ),{ , },( 4) ,min{ 2,1}x c d t u

  among (),{ , },( 4) ,min{ 2,0}c d t u

Feasible if and only if     ( 4) min 2,0t u

Projecting Among Constraint
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Projecting Sequence Constraint

• Sequence constraint used for assembly line load 

balancing and the like.

– For example, at most 3 of every 10 cars on the line 

require an air conditioner.

– Equivalent to overlapping among constraints.
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• Projection is based on an integrality property.

– The coefficient matrix of the inequality formulation has 

consecutive ones property.

– So projection of the convex hull of the feasible set is an 

integral polyhedron.

– Polyhedral projection therefore suffices.

– Straightforward (but tedious) application of Fourier 

elimination yields the projection.

Projecting Sequence Constraint



68

• Projection is based on an integrality property.

– The coefficient matrix of the inequality formulation has 

consecutive ones property.

– So projection of the convex hull of the feasible set is an 

integral polyhedron.

– Polyhedral projection therefore suffices.

– Straightforward (but tedious) application of Fourier 

elimination yields the projection.

• Projection onto any subset of variables is a 

generalized sequence constraint.

– Complexity of projecting out xk is O(kq), where 

q = length of the overlapping sequences.

Projecting Sequence Constraint
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Example  
3among ( , , ),{1},2,2 , 4,5,6t tx x t

To project out x6, add constraint

 3 4 5among ( , , ),{1},1,1x x x

    1 3 4 6 2 5, , , 0,1 , , 1x x x x x x

Projecting Sequence Constraint
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Example  
3among ( , , ),{1},2,2 , 4,5,6t tx x t

To project out x6, add constraint

 3 4 5among ( , , ),{1},1,1x x x

To project out x5, add constraints

   2 3 4 3 4among ( , , ),{1},1,1 among ( , ),{1},0,0x x x x x

    1 3 4 6 2 5, , , 0,1 , , 1x x x x x x

Projecting Sequence Constraint
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Example  
3among ( , , ),{1},2,2 , 4,5,6t tx x t

To project out x6, add constraint

 3 4 5among ( , , ),{1},1,1x x x

To project out x5, add constraints

   2 3 4 3 4among ( , , ),{1},1,1 among ( , ),{1},0,0x x x x x

To project out x4, add constraints

   
   

1 1 2 3

2 3 3

among ( ),{1},1,1 among (x , , ),{1},1,2

among ( ,x ),{1},0,1 among ( ),{1},0,0

x x x

x x

    1 3 4 6 2 5, , , 0,1 , , 1x x x x x x

Projecting Sequence Constraint
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Example  
3among ( , , ),{1},2,2 , 4,5,6t tx x t

To project out x6, add constraint

 3 4 5among ( , , ),{1},1,1x x x

To project out x5, add constraints

   2 3 4 3 4among ( , , ),{1},1,1 among ( , ),{1},0,0x x x x x

To project out x4, add constraints

   
   

1 1 2 3

2 3 3

among ( ),{1},1,1 among (x , , ),{1},1,2

among ( ,x ),{1},0,1 among ( ),{1},0,0

x x x

x x

To project out x3, fix  (x1,x2) = (1,1)

    1 3 4 6 2 5, , , 0,1 , , 1x x x x x x

Projecting Sequence Constraint
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Projecting Regular Constraint

• Versatile constraint used for employee shift 

scheduling, etc.

– For example, a worker can change shifts only after 

a day off.

– Formulates constraint as deterministic finite 

automaton.

– Or as regular language expression.
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• Projection can be read from state transition graph.

– Complexity of projecting onto x1, …, xk for all k is O(nm2), 

where n = number of variables, m = max number of 

states per stage.

Projecting Regular Constraint
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• Projection can be read from state transition graph.

– Complexity of projecting onto x1, …, xk for all k is O(nm2), 

where n = number of variables, m = max number of 

states per stage.

• Shift scheduling example

– Assign each worker to shift xi  {a,b,c} on each day 

i = 1,…,7.

– Must work any given shift 2 or 3 days in a row.

– No direct transition between shifts a and c.

– Variable domains: D1 = D5 = {a,c},  D2 = {a,b,c}, 

D3 = D6 = D7 = {a,b},  D4 = {b,c}

Projecting Regular Constraint
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Deterministic 

finite automaton 

for this problem 

instance:

= absorbing

state

Regular language expression:

(((aa|aaa)(bb|bbb))*|((cc|ccc)(bb|bbb))*)*(c|(aa|aaa)|(cc|ccc))

Projecting Regular Constraint
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State transition graph for 7 stages

Dashed lines lead to unreachable states.

Projecting Regular Constraint
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State transition graph for 7 stages

Dashed lines lead to unreachable states.

Filtered domains

Projecting Regular Constraint
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To project onto x1, x2, x3,  truncate the graph at stage 4.

Projecting Regular Constraint
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To project onto x1, x2, x3,  truncate the graph at stage 4.

Projecting Regular Constraint



82

To project onto x1, x2, x3,  truncate the graph at stage 4.

Resulting graph can be 

viewed as a constraint that 

describes the projection.

Constraint is easily 

propagated through a 

relaxed decision diagram.

Projecting Regular Constraint
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Projecting Alldiff Constraint

• Used for sequencing and much else.

– Domain consistency easily achieved by matching 

algorithm and duality theory.
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• Projection is inherently complicated.

– But it can simplify for small domains.

• The result is a disjunction of constraint sets,

– …each of which contains an alldiff constraint and some 

atmost constraints.

Projecting Alldiff Constraint
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Example  1 2 3 4 5alldiff , , , ,x x x x x

             1 2 3 4 5, , , , , , , , , , , , , ,D a b c D c d e D d e f D e f g D a f g

Projecting Alldiff Constraint



Example  1 2 3 4 5alldiff , , , ,x x x x x

Projecting out x5, we get

   1 2 3 4 1 2 3 4alldiff , , , , atmost ( , , , ),{ , , },2x x x x x x x x a f g

because x5 must take one of the values in {a,f,g}, …
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             1 2 3 4 5, , , , , , , , , , , , , ,D a b c D c d e D d e f D e f g D a f g

Projecting Alldiff Constraint



Example  1 2 3 4 5alldiff , , , ,x x x x x

Projecting out x5, we get

   1 2 3 4 1 2 3 4alldiff , , , , atmost ( , , , ),{ , , },2x x x x x x x x a f g

because x5 must take one of the values in {a,f,g}, leaving 2 for other xi s.
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             1 2 3 4 5, , , , , , , , , , , , , ,D a b c D c d e D d e f D e f g D a f g

Projecting Alldiff Constraint
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Example  1 2 3 4 5alldiff , , , ,x x x x x

Projecting out x5, we get

   1 2 3 4 1 2 3 4alldiff , , , , atmost ( , , , ),{ , , },2x x x x x x x x a f g

because x5 must take one of the values in {a,f,g}, leaving 2 for other xi s.

Projecting out x4, we note that x4  {a,f,g} or x4  {a,f,g}.

             1 2 3 4 5, , , , , , , , , , , , , ,D a b c D c d e D d e f D e f g D a f g

Projecting Alldiff Constraint
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Example  1 2 3 4 5alldiff , , , ,x x x x x

Projecting out x5, we get

   1 2 3 4 1 2 3 4alldiff , , , , atmost ( , , , ),{ , , },2x x x x x x x x a f g

because x5 must take one of the values in {a,f,g}, leaving 2 for other xi s.

Projecting out x4, we note that x4  {a,f,g} or x4  {a,f,g}.

If x4  {a,f,g}, we get 

   1 2 3 1 2 3alldiff , , , atmost ( , , ),{ , , },1x x x x x x a f g

             1 2 3 4 5, , , , , , , , , , , , , ,D a b c D c d e D d e f D e f g D a f g

Projecting Alldiff Constraint
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Example  1 2 3 4 5alldiff , , , ,x x x x x

Projecting out x5, we get

   1 2 3 4 1 2 3 4alldiff , , , , atmost ( , , , ),{ , , },2x x x x x x x x a f g

because x5 must take one of the values in {a,f,g}, leaving 2 for other xi s.

Projecting out x4, we note that x4  {a,f,g} or x4  {a,f,g}.

If x4  {a,f,g}, we get 

   1 2 3 1 2 3alldiff , , , atmost ( , , ),{ , , },1x x x x x x a f g

If x4  {a,f,g}, we get  x4 = e, and we remove e from other domains.  

             1 2 3 4 5, , , , , , , , , , , , , ,D a b c D c d e D d e f D e f g D a f g

Projecting Alldiff Constraint
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Example  1 2 3 4 5alldiff , , , ,x x x x x

Projecting out x5, we get

   1 2 3 4 1 2 3 4alldiff , , , , atmost ( , , , ),{ , , },2x x x x x x x x a f g

because x5 must take one of the values in {a,f,g}, leaving 2 for other xi s.

Projecting out x4, we note that x4  {a,f,g} or x4  {a,f,g}.

If x4  {a,f,g}, we get 

   1 2 3 1 2 3alldiff , , , atmost ( , , ),{ , , },1x x x x x x a f g

If x4  {a,f,g}, we get  x4 = e, and we remove e from other domains.  

So the projection is

 
 

 
 
 

 
   

    
    

1

1 2 3

2

1 2 3

3

, ,
alldiff , ,

,
atmost ( , , ),{ , , },1

,

D a b c
x x x

D c d
x x x a f g

D d f

             1 2 3 4 5, , , , , , , , , , , , , ,D a b c D c d e D d e f D e f g D a f g

Projecting Alldiff Constraint
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Example  1 2 3 4 5alldiff , , , ,x x x x x

Projecting out x3, we get simply

 1 2alldiff ,x x

Projecting out x2, we get the original domain for x1

 1 , ,D a b c

             1 2 3 4 5, , , , , , , , , , , , , ,D a b c D c d e D d e f D e f g D a f g

Projecting Alldiff Constraint
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That’s it.


