Bias in AI Systems

Module 7 of a course on *Ethical Issues in AI*

Prepared by

John Hooker

Emeritus Professor, Carnegie Mellon University

CMU Osher, February 2025

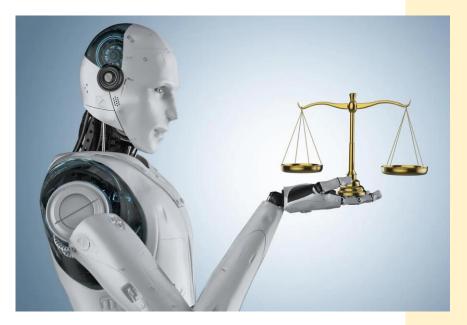
The ethical problem

- Do AI-based decisions **treat groups equally** in a morally relevant sense?
 - Groups may be based on race, ethnic background, gender, economic status, etc.



The ethical problem

- How should we **measure** group parity for purposes of ethics?
 - What kind of inequality is unethical?
 - Should we use preferential treatment, DEI hiring, affirmative action, etc.?



Example: Hiring and recruiting

- Google and Amazon AI hiring tools
 - Intended to diversify work force.
 - Had the opposite effect: Gender, race, and age bias

THE WALL STREET JOURNAL.

Google Settles Gender Discrimination Lawsuit for \$118 Million

Company doesn't admit wrongdoing in agreement to resolve classaction suit that covers some 15,500 women

- An application may be rejected, despite sound finances, because...
 - The applicant belongs to a *minority group*.
 - The *default rate* is higher for the minority group.

- An application may be rejected, despite sound finances, because...
 - The applicant belongs to a *minority group*.
 - The *default rate* is higher for the minority group.
- **Remove** race/ethnic group from data?

- An application may be rejected, despite sound finances, because...
 - The applicant belongs to a *minority group*.
 - The *default rate* is higher for the minority group.
- **Remove** race/ethnic group from data?
 - That may not work.
 - There may be **latent bias** even in sanitized data.

- Why latent bias?
 - The applicant may be rejected due to having an address in a low-income neighborhood, where people have a higher default rate (redlining)
 - Members of minority group are more likely to live in a low-income neighborhood due to historical discrimination.
 - Their address nonetheless **correlates** a higher default rate.

Other examples

- Parole (minimize recidivism risk)
- College admissions
- Fraud detection
- Credit scoring

What to do about it?

- Option 1: Get rid of Al.
 - Even though this **reduces prediction accuracy**
 - We assume Al is more biased than humans
 - Fails utilitarian principle, unless using AI is not generalizable.
 - There is arguably an **implicit agreement** with applicant to use only financial criteria.
 - Violating this agreement is not generalizable (for loans).
 - There be **no such agreement** for college admissions.

What to do about it?

- **Option 2**: Improve AI to satisfy the implicit agreement.
 - Apply statistical bias metrics.
 - Adjust AI predictions to get rid of bias. This requires explicitly considering minority status in the decision.
 - A popular approach, incentivized by equal opportunity laws.
 - Scheduled classes (India)
 - Bumiputera quotas (Malaysia)
 - Fair Housing Act (US), e.g.

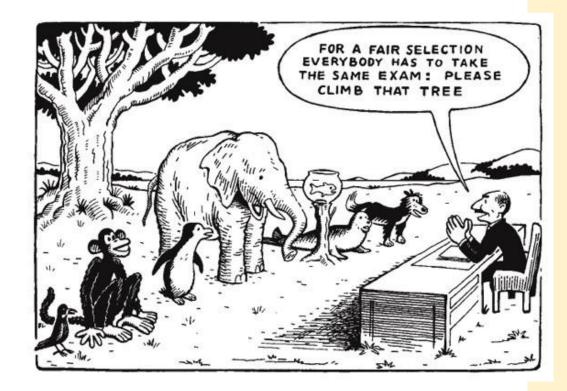
Bias metrics

- **Bias metrics** are ways of measuring whether two groups are treated "equally."
 - For short, we refer to these groups as the *majority* and *minority* (= protected group).
- Most popular metrics:
 - Demographic parity
 - Equalized odds
 - We focus on equality of opportunity
 - Predictive rate parity

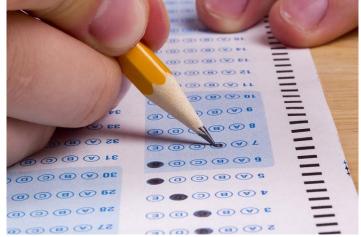
Bias metrics

- Bias metrics are ways of measuring whether two groups are treated "equally."
 - For short, we refer to these groups as the *majority* and *minority* (= protected group).
- Most popular metrics:
 - Demographic parity
 - Equalized odds
 - We focus on equality of opportunity
 - Predictive rate parity
- These are usually incompatible.
 - Must choose one or none!

- "Fairness" seems an intuitively compelling idea.
 - But it is a notoriously vague concept.
 - What seems fair to me seems unfair to you.
 - "Group parity" has **dozens** of mathematical definitions.



- Shouldn't decisions be based on merit?
 - *"Merit"* is in the eye of the beholder.
- Consider college admissions.
 - Minority applicants with lower test scores:
 - "We had to over come greater obstacles."
 - Majority applicants with higher test scores:
 - "Merit is based on competence, not how one acquired competence."



- Shouldn't a positive decision be based on whether one has earned it?
 - If so, why do we reward people with innate talent?
 - Talent is a **gift**, not something earned.
 - We even refer to such people as "gifted."

- We can argue all day about this.
 - ...and accomplish nothing.
- So, let's assess parity metrics directly with ethical principles.
 - Rather than trying to guess which one measures "fairness" or "merit".

- Demographic parity.
 - Definition:

% of majority group **accepted**

% of minority group **accepted**

- Probability of **accepting** a given person (e.g., for loan) is the same for the two groups.
- Characteristics:
 - May give preference to less qualified minority individuals.
 - Compensates for historical discrimination.
 - May discriminate against **more qualified** minority groups (as in Malaysia).

- Demographic parity.
 - Definition:

% of majority group **accepted**

% of minority group **accepted**

- Probability of **accepting** a given person (e.g., for loan) is the same for the two groups.
- Ethical assessment:
 - May violate **generalizability** by overriding evident qualifications (applies to loans, perhaps not college?)
 - May maximize long-term **utility** by providing equal opportunity to marginalized groups.
 - May reduce long-term **utility** if there is backlash from the majority.

• Equalized odds.

• Definition:

% of **qualified** majority accepted

% of **qualified** minority accepted

• Probability of accepting a **qualified** person (e.g., for loan) is the same for the two groups.

- Characteristics:
 - Can allow few minority persons to be accepted if relatively few are qualified due to social and historical factors.
 - But allows selecting a greater fraction of minority persons when they are **more qualified** than average.

• Equalized odds.

• Definition:

% of **qualified** majority accepted

% of **qualified** minority accepted

• Probability of accepting a **qualified** person (e.g., for loan) is the same for the two groups.

- Ethical assessment:
 - Consistent with any implied **agreement** to consider only evident qualifications.
 - May maximize long-term **utility** by avoiding backlash.
 - May reduce long-term **utility** by failing to address chronic discrimination.

• Predictive rate parity.

• Definition:

% of **accepted** majority persons who are **qualified**

% of **accepted** minority persons who are **qualified**

- Probability that an **accepted** person is **qualified** (e.g., for loan) is the same for the two groups.
- Characteristics:
 - Avoids appearance that **acceptance standards** are different for the two groups.
 - Can allow few minority persons to be selected, by ensuring they are as qualified as accepted majority persons.

• Predictive rate parity.

• Definition:

% of **accepted** majority persons who are **qualified**

% of **accepted** minority persons who are **qualified**

- Probability that an **accepted** person is **qualified** (e.g., for loan) is the same for the two groups.
- Ethical assessment:
 - May violate **generalizability** by overriding evident qualifications.
 - May maximize long-term **utility** by avoiding backlash.
 - May reduce long-term **utility** by failing to address chronic discrimination.

- Highly publicized example: Parole
 - COMPAS predictions achieve predictive rate parity.
 - Minority parolees have **same recidivism rate** as majority parolees.
 - But they do not equalize odds.
 - Apparently qualified minority candidates are about 40% less likely to be paroled than qualified majority candidates.

From: *Pro Publica*, 23 May 2016

Machine Bias

There's software used across the country to predict future criminals. And it's

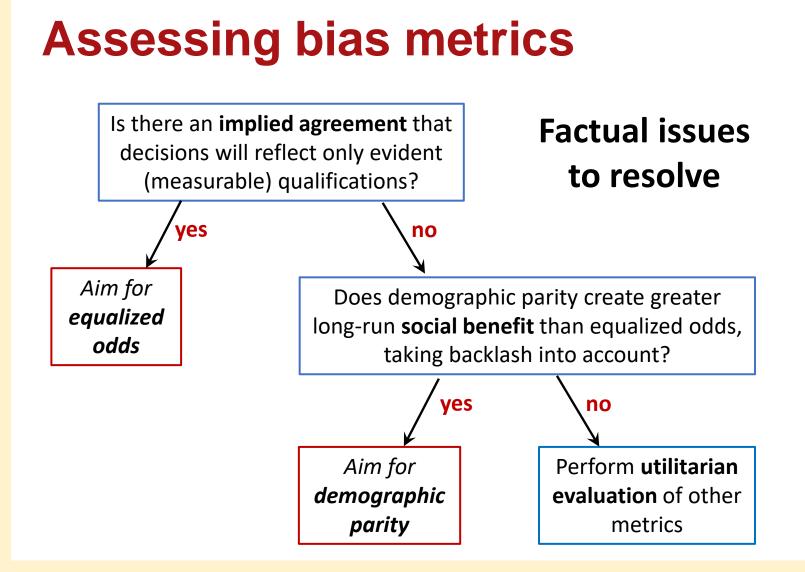
biased against blacks. by Julia Angwin, Jeff Larson, Surya Mattu and Lauren Kirchner, ProPublica

- Highly publicized example: Parole
 - COMPAS predictions achieve predictive rate parity.
 - Minority parolees have **same recidivism rate** as majority parolees.
 - But they do not equalize odds.
 - Apparently qualified minority candidates are about 40% less likely to be paroled than qualified majority candidates.
 - Debate still unresolved.

Machine Bias

There's software used across the country to predict future criminals. And it's

biased against blacks. by Julia Angwin, Jeff Larson, Surya Mattu and Lauren Kirchner, ProPublica May 23, 2016



Counterfactual fairness.

• Definition:

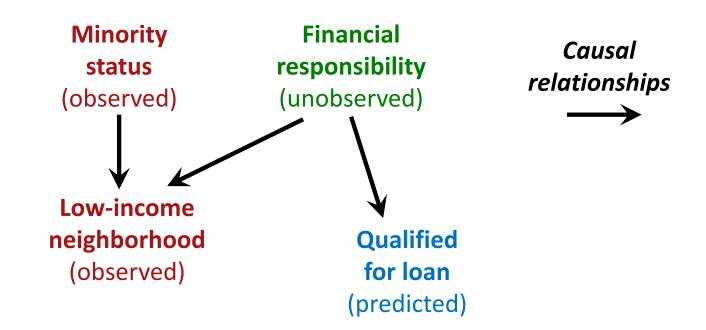
% of minority persons accepted in the **actual world** % of minority persons accepted in an **alternate** world where they belong to the majority

- Acceptance probability of a given minority person would have been the same if that person belonged to the majority.
- Characteristics:
 - Sounds great.
 - But how to **assess** this?

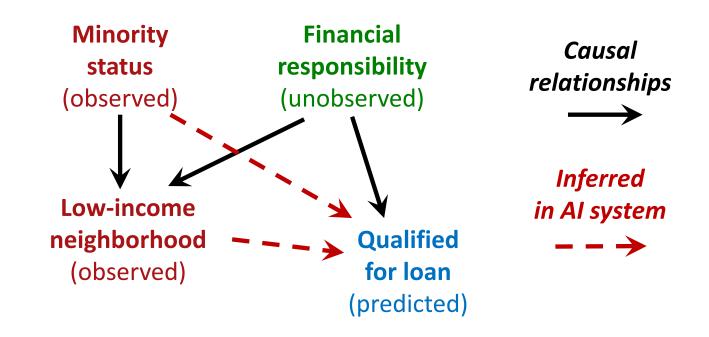
Counterfactual fairness.

- In the case of mortgage loans:
 - Relevant factor is *financial responsibility*, but only minority status and address can be **observed**.
 - Acceptance decision must be the same if it were based **only on financial responsibility**.
- Represent this situation with a **causal network**:

Counterfactual fairness



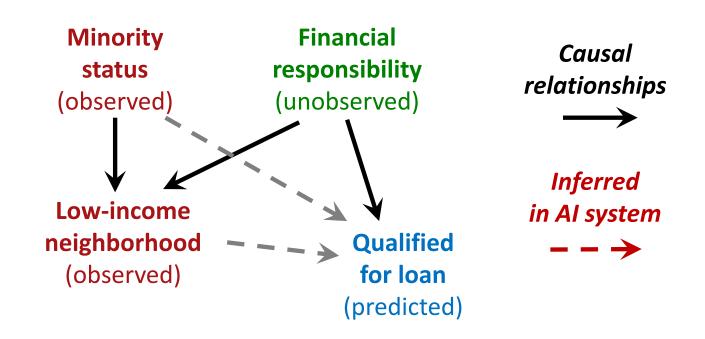
Counterfactual fairness



Bias metrics

Counterfactual fairness

Must use **Bayesian inference** to deduce financial responsibility



Counterfactual fairness.

- Technical problems:
 - There may be **many** confounding factors in the network.
 - Bayesian inference requires a **rich data set**, usually unavailable.
 - The desired Bayesian calculations are possible only in networks with a **certain kind of structure**.
 - Still a research area.

• Counterfactual fairness.

- Possible ethical problem:
 - It is counterfactual decisions are not based on actual qualifications.
 - Ethical arguments are similar to those surrounding demographic parity.

