Self-Driving Cars

Module 5 of a course on *Ethical Issues in AI*

Prepared by

John Hooker

Emeritus Professor, Carnegie Mellon University

CMU Osher, January 2025

The Future of Cars

- Cars have
 taken over
 the world.
 - Chronic
 congestion
 everywhere.
 - Shockingly unsafe.

- 2022: in U.S. alone, **42,514 deaths** in motor vehicle crashes, including **7522 pedestrians**.
- 2.38 million injured.

The Future of Cars

- A self-driving fleet offers enticing solutions
 - Travel without stop lights or traffic jams.
 - Due to sophisticated scheduling and coordination.
 - High degree of safety.
 - Comparable to airline safety?
 - By removing human irresponsibility and misjudgments.
 - Especially in AV zones.

The Future of Cars

- A difficult challenge for AI
 - Progress has stalled.
 - Projections overoptimistic, as in much of AI history.
 - Current projection: fully AVs by 2035.
 - To make progress, at some point we must put AVs on the road...

Two Issues

- Should self-driving cars be **on the road**?
 - If so, under what conditions?
- How can we **teach ethics** to self-driving cars?
 - Using "value alignment"?

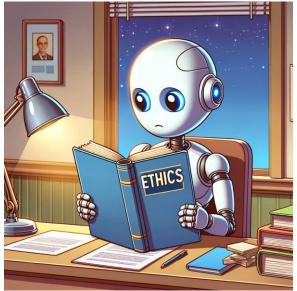
- Utilitarian principle
 - If there is any reasonable possibility of improving traffic safety...
 - There is a **strong utilitarian imperative** to develop the technology.

- Utilitarian principle
 - If there is any reasonable possibility of improving traffic safety...
 - There is a **strong utilitarian imperative** to develop the technology.
 - How about mishaps along the way?
 - AV development still passes utilitarian test if it maximizes discounted long-term benefit.
 - The utilitarian principle takes account of future generations, after suitable discounting to reflect uncertainty, etc.

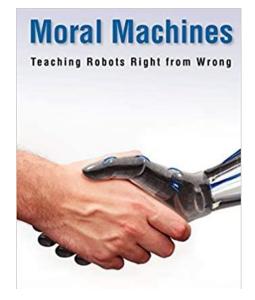
- Utilitarian principle
 - If there is any reasonable possibility of improving traffic safety...
 - There is a **strong utilitarian imperative** to develop the technology.
 - How about mishaps along the way?
 - AV development still passes utilitarian test if it maximizes discounted long-term benefit.
 - The utilitarian principle takes account of future generations, after suitable discounting to reflect uncertainty, etc.
 - But we must satisfy **other principles** in the meantime.

- Autonomy principle
 - This is the **big one**.
 - We are rationally constrained to believe that experimental AVs will cause **injury and death**.
 - They already do.
 - So, AVs on the road violate the autonomy principle...
 - Unless we can show that victims give informed consent to the risk.

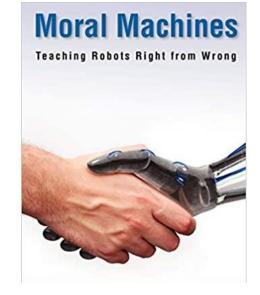
- Autonomy principle
 - We already consent to risk posed by traffic accidents
 - ...whenever we get into a car on walk on a street
 - ...assuming that drivers exercise a normal degree of caution.
 - We **know** that cars are dangerous.


- Autonomy principle
 - We already consent to risk posed by traffic accidents
 - ...whenever we get into a car on walk on a street.
 - ...assuming that drivers exercise a normal degree of caution.
 - We **know** that cars are dangerous.
 - But do we consent to risk posed by AVs?
 - We don't necessarily know there are AVs on the road.
 - So, maybe we don't consent to the risk they pose.

- Autonomy principle
 - We already consent to risk posed by traffic accidents
 - ...whenever we get into a car on walk on a street.
 - ...assuming that drivers exercise a normal degree of caution.
 - We **know** that cars are dangerous.
 - But do we consent to risk posed by AVs?
 - We don't necessarily know there are AVs on the road.
 - So, maybe we don't consent to the risk they pose.
 - However, if AVs pose no greater risk than other cars...
 - ...then we consent to the level of risk posed by their presence.
 - This enough to **pass the autonomy test**.


- Conclusions
 - Utilitarian principle There is a strong imperative to develop AVs
 - ...and test them **on the road** when necessary
 - ... if there is a **reasonable chance** of future success.
 - But we must satisfy **other principles** in the meantime.
 - **Autonomy** principle Experimental AVs must be **no more dangerous** than other traffic.
 - More precisely, we must not be rationally constrained to believe otherwise.
 - This guideline that can apply to **technology development in general**.

Teaching ethics to machines

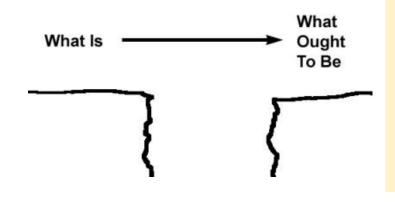

- How do we teach AVs to drive ethically?
- Al community immediately saw it as a problem of **value alignment**.

- Value alignment tries to teach **ethics** to **machines**.
 - "Align" machine values with human values.
 - Based on crowd sourcing.

- Value alignment tries to teach ethics to machines.
 - "Align" machine values with human values.
 - Based on crowd sourcing.
- Problem:
 - "Values" is ambiguous.
 - What humans value (fact)
 - What is valuable (ethics)
 - Value alignment trades on this ambiguity.

The Moral Machine

- Developed by MIT's Media Lab
 - Crowd-source 1000s of responses to trolley-car type driving dilemmas
 - Derive ethical rules for self-driving car.



The Moral Machine

- Two problems:
 - This type of dilemma rarely if ever occurs in practice.
 - People don't have meaningful "values" for such cases.

The Moral Machine

- Two problems:
 - This type of dilemma rarely if ever occurs in practice.
 - People don't have meaningful "values" for such cases.
 - This commits **naturalistic fallacy**.
 - We can't infer values from "values."
 - We can't infer ethical driving rules from driving opinions and behavior.

- To avoid naturalistic fallacy:
 - We need an ethical premise.
 - Such as, "We should drive the way most people think we should drive."
- No such premise seems reasonable.

- To avoid naturalistic fallacy:
 - We need an ethical premise.
 - Such as, "We should drive the way most people think we should drive."
- No such premise seems reasonable.
 - Designers of Moral Machine had 2nd thoughts.

"A word of warning: the preferences we found are not meant to instruct car programmers as to how they *should* regulate AVs.... The public can be ill-informed and biased, and some of the preferences we report are troubling."

Edmond Awad, "Your (future) car's moral compass," *Behavioral Scientist*, Feb 11, 2019.

• There is no substitute for ethical principles.

- Driving practices and norms are relevant, of course.
- But they alone don't determine what is ethical.

The Pittsburgh left

Driver 1 and Driver 2 are waiting for the traffic signal to turn green.

Driver 1 wants to make a left turn. Driver 2 wants to go straight.

When the light turns green, driver 2 has right of way, but yields when driver 1 quickly turns left through the intersection, in front of driver 2.

- Ethical principles can be **incorporated** into AI technology.
 - Action plans can be encoded as *if-then* statements in computer programs.
 - These statements can be assessed in advance by ethical principles.

- Ethical principles can be **incorporated** into AI technology.
 - Action plans can be encoded as *if-then* statements in computer programs.
 - These statements can be assessed in advance by ethical principles.
 - What if a car is controlled by machine learning (e.g. neural networks) rather than computer code?

- Ethical principles can be **incorporated** into AI technology.
 - Combining rule-based AI (if-then statements) with ML is already a trend.
 - We know how to build huge, complicated rule bases.
 - Non-self-driving cars are already regulated by >100,000 lines of code.

