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 Optimal Control of Automobiles for
 Fuel Economy

 J. N. HOOKER, A. B. ROSE and G. F. ROBERTS

 This paper describes an application of dynamic programming
 to determining optimal driver control of an automobile for fuel
 economy. The objective function is provided by a simulator that
 uses vehicle performance maps derived from statistical analysis
 of road data collected by the authors. One dynamic program
 controls acceleration as a function of time subject to constraints
 on speed, acceleration, and distance covered. Another controls
 acceleration and gearshift subject to constraints on speed,
 acceleration, and time required to shift gears. Results are
 presented for acceleration to a given cruising speed, driving
 over hills while achieving a given average speed, and driving
 from one stop sign to another.

 -ITAuch has been said about the general effect of driver behavior on
 automotive fuel economy[412'1517'23"25] and especially about the effect of
 different driving policies in urban traffic.[3,5'7'9] But relatively little has
 been accomplished toward accurately computing optimal control of an
 automobile for fuel economy.

 A principal obstacle has been presented by the following dilemma. One
 who wishes to base his conclusions directly on road tests finds it very
 difficult to test enough control strategies on the road to locate an optimal
 one. The difficulty is compounded by his inability to control the car in a
 precise and repeatable fashion. Those who take this empirical approach
 make no attempt to solve the optimal control problem with any accuracy.
 One the other hand, one who wishes to find the true optimum has
 hitherto been obliged to rely on an engineering model of the automobile
 that is simple enough to permit calculation of optimal control. Thereby
 he loses the empirical grounding of direct experimental verification and
 the nuances of performance that the model does not capture.

 Oak Ridge National Laboratory, Oak Ridge, Tennessee
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 optimal control of automobiles / 147

 This paper describes an attempt to resolve this dilemma. As part of a
 study of the effect of driver behavior on automobile fuel economy,
 computer programs were developed to simulate the performance of
 existing vehicles and determine their optimal control. Rather than appeal
 to an engineering model, the simulator statistically analyzes data obtained
 directly from road tests of the automobile in question, conducted by the
 authors, to construct an on-road performance map. This simulator pro
 vides the objective function for an optimization routine. The optimal
 path is calculated by dynamic programming rather than the calculus of
 variations, so that the objective function need not be represented as a
 single necessarily inaccurate algebraic expression, but can be supplied by
 an accurate simulator. In this way the authors believe they have to a
 large extent resolved the once-conflicting demands for empirical ground
 ing on the one hand and optimal solution on the other.
 Although this paper concentrates on the optimation technique, it

 briefly describes the simulator and some optimization results. The sim
 ulator is more thoroughly described elsewhere.[9' 19] The challenge in
 reporting optimization results is to pick a few paradigmatic situations
 that can serve as a guide for driving in general. The three types of
 situations investigated here are optimal control of speed and gearshift
 while accelerating to cruising speed, while driving over hills and achieving
 a stated average speed, and while driving a block between two stop signs.
 Since the test car has an automatic transmission, the driver has direct
 control only of speed. Tentative guidelines for efficient driving in these
 situations are suggested.

 The ensuing discussion begins with a critique of two earlier investiga
 tions that is helpful for bringing into focus the difficulties involved.
 Following this are a description of the simulator and a longer discussion
 of two dynamic programming algorithms used to determine optimal
 control. In one algorithm the control variable is acceleration; and the
 state variables are speed, gear, and distance traveled. The other algorithm
 explicitly optimizes the choice of gear and provides for a fixed time to
 shift gears. Its control variables are acceleration and gear, and its state
 variables are speed, gear, and time lapsed since the car was last in gear.
 Finding optimal control of acceleration to cruising speed requires special
 techniques, and a section is devoted to them. The discussion ends with a
 presentation of results.

 PREVIOUS WORK

 Two recent investigations illustrate the dilemma just described. One is
 based on road tests but yields only a very rough description of optimal
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 148 / j. n. hooker, a. b. rose and g. f. roberts

 control, whereas the other finds optimal control exactly but is based on
 a very simple engineering model of the automobile's performance.

 The first study, by Evans and Takasaki,[6] addresses the problem of
 optimal control during acceleration. These investigators cite variable
 advice: accelerate gently, as though there were an egg between your foot
 and the pedal[18]; avoid jackrabbit starts but "get to cruising speeds as
 soon as traffic conditions allow,,[1]; or accelerate "briskly and
 smoothly.,,[22] Evans and Takasaki define the fuel AF used for accelera
 tion from rest to a speed V\ to be the difference beween the total fuel
 used during the acceleration and the fuel that would have been used had
 the car been traveling the same distance at a constant speed v\. Rather
 than solve the optimal control problem exactly, they investigate the
 dependence of A F on the time to required to reach speed vi. No attempt
 is made to control instantaneous acceleration, but only average acceler
 ation Vi/to.

 Test track results suggest that the to that minimizes AFis considerably
 longer than some of the cited advice would suggest. For instance, Evans
 and Takasaki recommend taking 15 to 20 s to reach 48 km/h, using an
 average acceleration of about 0.08 g (0.8 m/s2), and reducing acceleration
 to less than 0.07 g to attain higher speeds.

 Although Evans and Takasaki do not defend their choice of A F as the
 objective function, it will be seen that minimization of AF is often an
 appropriate objective for computation of optimal acceleration to cruising
 speed V\. Yet if there is a speed vo less than V\ at which the car is more
 fuel-efficient than at V\, minimization of AF requires that the car accel
 erates to and cruise at vo until near the end of the trip, when it accelerates
 to Vi to meet the stated terminal speed. In such cases to is arbitrarily
 large, depending on the length of the test run. Accordingly, many of the
 tests involving higher cruising speeds failed to find a minimizing to.
 Consequently when Vi > v0 some other objective must be used (see below,
 "Solution Techniques for the Acceleration Problem").

 Evans and Takasaki argue that AF must attain its minimum at some
 finite to, whatever the cruising speed vi, on the grounds that "AF is
 always greater than the idle fuel flow rate multiplied by [to]" As to
 increases, then, A F must presumably grow without bound and therefore

 must find its minimum at a finite to. But if one cruises for a long time at
 or near speed v0 (<vi) before attaining speed V\, AF goes increasingly
 negative for sufficiently large to. Furthermore, even when test results
 indicate a finite to, it may be only because the driver does not permit the
 car to remain long at speeds near v0. In other words, Evans and Takasaki
 are implicitly imposing an unspecified constraint on the shape of the
 acceleration trajectory. The optimal to observed (if any) depends on the
 precise nature of this constraint.
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 optimal control of automobiles / 149

 The opposite approach to the problem is taken by Schwarzkopf and
 Leipnik.[21] They model the automobile's performance with quadratic
 polynomials and use the Pontryagin maximum principle to solve the
 optimal control problem. The formulation is as follows. Let v = v(t) be
 the car's speed, u = u(t) its transmission ratio and p = p(t) the fraction
 of the available power used at time t. Let Q(s) be the angle of road slope
 at a distance s from the start. Then the optimal control problem is

 subject to v = puh(uv) - c0 - bv - Civ2 ? g sin[6(s)], with v(0) = v{t')
 = 0,s=v, with s(0) = 0 and s(t) > s0, and t' < t\. Here r(p) is a quadratic
 function whose value is proportional to fuel consumption per unit of
 propulsion energy supplied, for fixed u and v. Also q(u, v) is a quadratic
 function proportional to fuel use per unit output for a fixed p. The
 quadratic function h(u, v) is the maximum available power output at
 speed v and gear ratio u. The constant c0 represents rolling resistance, b
 = b(t) breaking force, and Ci air resistance. The control variables are p(t)
 E [0, 1], b(t) G [0, B], and u(t) = uu un.

 Optimal control both for acceleration and for driving over hills was
 determined for a small passenger car (1040 kg) with moderate power (67
 kw at 4500 rpm) and a 3-speed manual transmission. When accelerating
 to a steady-state cruising speed of 66 km/h, to be maintained for a long
 trip, one should shift into second gear at 20 km/h after 1 s and into third
 gear at 30 km/h after 2 s. Cruising speed is reached asymptotically
 thereafter (it is not clearly indicated how rapidly).

 This acceleration problem would be solved most directly by setting the
 distance s0 at some very large value and requiring that a given average
 speed so/ti be achieved. Since an optimally driven car tends to approach
 and remain near a certain maximum speed over most of the trip, this
 maximum speed can be regarded as the cruising speed to which the car
 is accelerating. Yet numerical instability prevented a direct solution of
 the problem for large s0, and Schwartzkopf and Leipnik devised an
 analytical technique for approximating the solution that would obtain for
 an infinite trip.

 Schwartzkopf and Leipnik derived the following advice for driving up
 a hill. A driver on a level road who approaches a long 10% grade at a
 cruising speed of 66 km/h, with the object of returning to cruising speed
 on a plateau at the top of the hill, should accelerate to 76 km/h near the
 foot of the hill and slow to a steady-state 56 km/h while climbing. He
 should then decelerate to 47 km/h near the crest before resuming 66 km/
 h on the plateau.

 (1)
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 150 / j. n. hooker, a. b. rose and g. f. roberts

 A difficulty with the Schwartzkopf and Leipnik approach is its inac
 curacy in reproducing the automobile's behavior. The quadratic functions
 q, r, and h can only very roughly capture performance characteristics.
 The constant c0 cannot accurately reflect road resistance, nor the term
 Civ2 air drag. The important speed-dependent tendency of engine
 compression and resistance to slow the car is omitted entirely. Schwartz
 kopf and Leipnik also remark that "some of the parameters had to be
 estimated [e.g., the coefficients of (r and g)], so the magnitude of the
 results ... is suspect.,, Indeed, the optimal gearshift times that result, for
 instance, are about one-fifth of those found in the present study to be
 optimal. It is clear that a more accurate description of the automobile is
 required even to approximate roughly the quantities involved.

 VEHICLE SIMULATION

 A realistic simulation of a given vehicle is achieved as follows. Nearly
 simultaneous observations of vehicle speed, acceleration, engine rpm, and
 manifold vacuum are taken electronically on a test track while the driver
 achieves a wide variety of speeds and acceleration. The observations are
 recorded on magnetic tape and later transferred to a computer, where
 they are prepared for statistical treatment. The preparation involves
 adjusting the values slightly to achieve simultaneity, identifying gear
 shifts, correcting for road slope if necessary, and finding the car's maxi
 mum acceleration and coasting deceleration at each speed.

 Next, a plane representing speed vs. acceleration is overlaid with a
 rectangular grid. For each gear a quadratic function q is fitted to obser
 vations of speed Vi9 acceleration a*, and fuel flow f in and surrounding
 each rectangle to obtain the regression

 fi = q(vi9 en) + i

 where the e/s are independently and normally distributed error terms.
 This results in a piecewise quadratic surface over the entire grid for each
 gear, defined by a different q for each rectangle. Whereas Vi and a, are
 observed on the road, the fuel flow observations f are given by f = h(n,
 Pi), where n and pi are on-road observations of rpm and vacuum simul
 taneous with those of Vi and a*. The function h represents a simulated
 fuel flow at a given rpm and vacuum that is based on simultaneous
 measurements of rpm, vacuum and fuel flow taken under steady-state
 conditions while the vehicle of interest is mounted on a chassis dyna
 mometer, where fuel flow can be accurately measured. The simulated
 fuel flow as a function of rpm and vacuum is developed by applying the
 same techniques to dynamometer data as are applied to on-road data to
 simulate fuel flow as a function of speed and acceleration.
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 Each fitted quadratic is used to calculate a predicted fuel flow rate at
 the center of its rectangle. If the computed confidence bands for these
 estimates are too wide or if the data are too sparse in certain rectangles,
 then more and perhaps better-controlled observations must be taken on
 the track.

 Once all statistical tests have been passed, cubic splines are run through
 the points representing the predicted fuel flow rates at the centers of the
 rectangles. These splines determine a smooth piecewise bicubic surface.
 Another statistical test is run to determine whether the interpolated
 cubic and fitted quadratic surfaces diverge too greatly at the corners of
 the rectangles. If so, the grid must be redrawn or more and better data

 must be obtained. When such difficulties have been resolved, a vehicle
 performance map is ready for simulation. A smooth boundary is drawn
 mathematically around the region occupied by observation points in the
 speed-acceleration plane to define the maximum and coasting accelera
 tion at each speed for each gear.

 The simulation itself is performed by a relatively short routine. Given
 a desired speed, acceleration and gear, it retrieves the coefficients of the
 appropriate bicubic polynomial and calculates the corresponding rate of
 fuel flow. The current implementation performs about 1600 such calcu
 lations per second of computer time on a PDP-10 computer. This is
 amply fast for dynamic programming.

 GENERAL DESIGN OF THE OPTIMIZATION TECHNIQUE

 A dynamic programming solution of the optimal control problem not
 only can make use of a realistic automotive simulator, such as the one
 described in the previous section, but has the flexibility to accommodate
 a large number of time-dependent bounds on distance, acceleration, etc.,
 with little extra effort. Added bounds can in fact ease the calculation of
 a solution.

 The technique judged best for the purposes at hand is classical forward
 dynamic programming [Ref. 2, p. 209; Ref. 13, p. 170]. Forward rather
 than the conventional backward dynamic programming is used because
 it is common for an automotive problem to fix the initial speed and ask
 for the optimal paths to numerous terminal speeds, whereas a backward
 dynamic program requires that one do just the reverse. State-increment
 dynamic programming/131 designed for problems inflicted with the "curse
 of dimensionality," is unjustifiably complex for the relatively small state
 spaces encountered here. Indeed, the difficulty has proved to be an
 excessive demand for computing time, not space. Numerous other tech
 niques^'10111416,201 accommodate large state spaces by sacrificing the
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 guarantee of a global as opposed to a local optimum. These techniques
 were rejected because the sacrifice is unnecessary here.

 A general optimal control problem for an automobile allows constraints
 along both the time and distance scales:

 v < v < v, y'(s) < v <
 g, < v < a, a'(s) < v < a'(s),
 w < u < w, < w < zT(s), and

 = with s(0) = 0, 0 < t < ft,

 where /(y, a, w) is the time rate of fuel use at speed v, acceleration a, and
 gear u; v = and u = w(^) are the car's speed and gear at time t; and
 s = s{t) is the distance traveled by time t. The effective acceleration a
 = a(t) the car must deliver is the sum of the linear acceleration vf
 gravitational force g sin Qs resolved along the angle 0S of the road grade
 at a distance s from the start, and the acceleration r(v) induced by the
 rotational inertia of the drive train. Also amax(f, u) is the maximum
 acceleration the car can deliver at speed v in gear u. Note that v = v(t)
 and v = v(t) are time-dependent bounds on speed, and similarly for
 acceleration and gear. The functions v'(s), y'(s), etc., provide distance
 dependent bounds.

 In problem (2) the control variables are a(t) and u(t), and the state
 variables are v(t), u(t), and s(t). The gear variables can be removed,
 however, when gearshift is instantaneous. To see this, let a feasible gear
 at v and a be a gear u such that a < amax(v, u), and let umin(v, a) be a
 feasible gear at v and a that minimizes instantaneous fuel flow.

 Theorem. Let d(t), u(t) solve (2), where v(t) is the corresponding speed
 trajectory. If umin(v, a) observes the gear bounds in (2), then d(t) and
 umin(v, a) solve (2).

 Proof. By definition of wmin, for 0 < t < tu

 which implies that F(d, umm) < F(v, u). Since wmin(?, a) observes the
 bounds in (2), d(t) and umm(v, a) solve (2).

 (2)

 subject to a = v + g sin Qs 4- r(v), with v(o) = V0

 f[v, a, Uminiv, a)] < f(v, a, u),
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 By virtue of this result the optimal gear u(t) can always be recovered
 as a function of v(t) and a(t) and therefore need not be carried along as
 a state or control variable. However, this result applies only when
 gearshift is instantaneous. Otherwise a new value of u(t) indicating
 "clutch disengaged," let us say gear zero, must be defined, and the optimal
 path must obey the constraint

 if u(t) > 0, u(t - At) > 0, and At < Atg,  (4)
 then u(t) = u(t - At),

 where A^ is the minimum time required for gearshift. When (4) is added
 to the constraints in (2), umm(v, a) may violate (4) even though u(t)
 satisfies (4). There is no guarantee, then, that d(t) and umin(v, a) solve (2)
 as amended.

 In view of these facts two dynamic programs are appropriate. One is
 designed for the normal case in which it does no harm to assume
 instantaneous gearshift. Its control variable is acceleration, and the
 dimensions of its state space are speed, distance, and gear (the last to,
 permit one to rule out downshifting). The other is designed for the special
 case in which one wishes to investigate the importance of gearshift lag on
 fast acceleration runs. It incorporates (4), and its control variables are
 acceleration and gearshift. Its state variables are speed and a variable
 that encodes gear or time since last in gear, whichever applies. Distance
 was omitted as a state variable, since a distance constraint is unnecessary
 to a study-of gearshift lag.

 OPTIMAL CONTROL OF SPEED WITH A DISTANCE CONSTRAINT

 The first dynamic program to be considered determines optimal control
 of speed over a given period so as to attain a given final speed over a
 given distance. (The computer routine is written so that the distance
 variable may be omitted.) Speed and acceleration may be constrained at
 each stage (i.e., at each discrete time) and at each discrete distance along
 the road. The road grade may be specified at each discrete distance.
 Downshifting may also be prohibited. This last constraint is necessary
 for acceleration runs, because without it optimal control can require that
 one shift back and forth between gears at an impractical rate.

 The precise formulation is as follows. Let Vik be the tth discrete speed
 in stage k (time kAt) and sjk the y'th discrete distance traveled. Let Qjk be
 the angle of road slope at distance Sjk from the start. Let hk(v, s, u) be the
 fuel used along an optimal trajectory terminating at speed v, distance s,
 and gear u in stage k. Then optimal control is given by the recursive
 formula,
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 hk+i(Vi,k+u sj,k+i, Uk+i) = min{hk(vik, smk, uk) + f(v, a, w^+i)AO,  (5)
 (viktS^SF, A = 0, ...,n-1, i = 0, y = 0,

 where i; = + u/,*), a = i; + g sin 0/,*+i + and uk+\ = liming, a),
 with v = (i^jh-i - Vik)/M. Also = + (vik + %i;Af)Af], where I{sf)
 is the discrete distance value nearest s\ F is the set of pairs (vm, smk)
 satisfying the constraints yk < vik < vk, Qk < a < a*, i>'(s) < i;? < i/(s),
 and a'(s) < a < a'(s). Constraints are also imposed by available power,
 a < Omax(Vitk+i) and a < amax(^). There is an optional prohibition of
 downshifting, Uk+i > uk. A modified version of the program, lacking the
 gear state variable, is used when this prohibition is relaxed, to save time
 and space. Stage 1 is described by

 hi(viu sji, i/i) = f(v, a, Mi), i = 0, j = 0, q, (6)

 where v = l?(vn + Vo), a = (vn ? Vo)/kt + sin Qji + r(v), and v0 is given
 as the initial speed.

 To improve accuracy (5) and (6) are solved in two iterations. The first
 iteration has n\ stages with time increment A?i. For k = 0, , n\, set Vik
 = i&Vi, i = 0, , p, and sJk = (k/ni )sni + (j - hq)ksi, j = 0, , q, where
 sni is the distance to be covered and generally h = V2. This grid should
 span all the distances and speeds through which the optimal path might
 pass. Equations 5 and 6 are solved on this grid to obtain an optimal path
 vo, , Vnx with corresponding distances 0, Si, , snr Equations 5 and 6
 are then solved again on a finer grid centered on the first iteration
 solution, using n2 (>ni) stages and a time increment A?2 (<A?i). That
 is, for k = 0, n2, set vlk = vk + (i - hp)Av2, i = 0, , p, and sjk =
 sk + (j - hq)As2, j = 0L ., q, where Af2 < Aui and As2 < Asi. Here t;*
 = [(ti2? - n\k)Vk + (nik- n2k)_yk\/(n2kvi), and similarly for s*, where A
 is (ni/n2)k rounded down and k the same quantity rounded up.

 For a sufficiently fine first iteration grid and sufficiently wide second
 iteration grid, the second iteration solution is a global optimum. If the
 solution path touches the edge of the second iteration grid (i.e., has speed
 coordinate Vk ? hphv2 or vk + (1 - h)p&v2, or has distance coordinate Sk
 ? hqAs2 or Sk + (1 - h)qks2, at stage k), the problem must be solved
 again with a wider or at least shifted second iteration grid (i.e., with larger
 Ai;2 or As2 or a different A).

 Execution time is reduced considerably by requiring that the brake
 never be applied (i.e., that a be at least as large as coasting acceleration).

 When the speed is expected to be a monotone increasing function of time,
 then imposing a monotonicity constraint on (5) and (6) can reduce
 execution time substantially.
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 OPTIMAL CONTROL OF SPEED AND GEAR WITH NO DISTANCE
 CONSTRAINT

 The second dynamic program to be considered determines optimal
 control of speed and gear over a given period so as to attain a given final
 speed. A fixed time for shifting gears may be specified. Speed, accelera
 tion, and gear may be constrained at each stage and each distance.

 Let Vik be as before and the gear state Uk be the gear Uk in stage k if Uk
 > 0, and otherwise Uk = ?min[y| Uk-j > 0, j = 0, 1, ]. The gearshift lag
 must be a multiple of the time increment A?, say ngAt. Let hk(v, u) be the
 fuel used along an optimal trajectory terminating at speed and gear state
 u in stage k (time kht). Then optimal control is given by the recursive
 formula,

 hk+i(vi,k+i, Uk+i) = mm{hk(vik, uk) + f(v, a, uk+i)&t},  (8)
 (vik,Uk) EF, k = 0, n - 1, i = 0,

 where v = V^i^+i + vut)9 a = v + r(v), and v = (Vi,k+i ? Vik)/bt. The fuel
 use function f(v, a, u) gives the rate of fuel use with clutch disengaged
 when u < 0.

 F is the set of speed-gear pairs (vm, Uk) satisfying the first three
 constraints satisfied by F in (5) as well as the following gear constraints.
 If Uk+i > 0 then either Uk = Uk+i or Uk = ? ng. If Uk+i ^ 0 then either Uk
 > 0 or uk = iik+i + 1. Finally, if Uk > 0 then Uk< Uk< Uk. State 1 is given
 by

 hi(viu ui) = f(v9 a, u0), i = 0, (9)
 where v and a are as in (6) and uo is given as the initial gear. Also set s0
 = 0.

 As before the problem is solved in two iterations. For each iteration
 is defined precisely as it is for (6) and (7). Solution is hastened by
 requiring that the car shift from one (positive) gear to an adjacent
 (positive) gear and that there be no upshift when the car is slowing.

 Optional constraints are that speed is monotone increasing and the brake
 is never applied.

 SOLUTION TECHNIQUES FOR THE ACCELERATION PROBLEM

 The problem of determining optimal acceleration to a given cruising
 speed vi is of unclear definition. The more straightforward case is that in
 which the car is more fuel-efficient at Vi than at all lesser speeds. In this
 "easy" case optimal control constrained only to cover a given distance Si
 and achieve terminal speed V\ instructs the car to accelerate to and cruise
 at Vi until Si is covered (except for small Si). Here, optimal acceleration
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 to vi is naturally defined to be the solution of this control problem.
 The "hard" case obtains when there is a speed v0 < V\ at which the car

 is more efficient than at V\. In this case it is not obvious how each cruising
 speed vi can be associated with a characteristic optimal acceleration time
 t0. Optimal control constrained only to cover Si and achieve terminal
 speed ui prescribes cruising at or near v0 until near the end of the trip, as
 noted earlier. Here to may be arbitrarily large, depending on si. To force
 the car to cruise faster one can impose a maximum time t\ and thereby
 require that an average speed Si/h be achieved. But for a fixed V\ one can
 make to large or small by requiring a larger or smaller average speed.
 That is, there still is no characteristic to for a given V\.

 If So grows arbitrarily large, however, then vi converges to si/t, so that
 fixing Vi is tantamount to fixing S\/t\. This is essentially the approach
 taken by Schwartzkopf and Leipnik.[21] The difficulty lies in obtaining a
 solution for large Si. Solving a dynamic program with enough states to
 cover a large si would be prohibitively expensive.

 The routine implementing the dynamic program (5) and (6), however,
 can be straightforwardly modified to solve a problem with large Si using
 relatively few stages. Choose a terminal time t\ so that one is reasonably
 sure that at optimality v(ti) is very close to cruising speed. Then let the
 last stage cover not only the time A? since the previous stage, but also a
 long period T during which the car cruises at some yet unknown speed.
 Then for stage n the recursive formula (5) becomes

 hn(v in y Sin, Un ) ,_v

 = min{/*n_i(L7,n-l, Sm,n-\, Un-l) + f(V, d, Un)kt + Tf{vin, 0, Un)},

 where vin, i = 0, , p are speed grid values with the close spacing Atf =
 Au(Af/T), and sin = I[sm,n-i + (vi,n-i + %i;Af)Af + vinT)\ The final speed
 is then selected by eye to be the speed Cm for which hn(Vin, Sin, un) is a

 minimum for a desired sin and un. This final speed, always near the
 average speed, is taken to be the cruising speed to which the car is
 optimally accelerating. The grid of speeds Vin must be located by trial
 and error so that the minimizing final speed falls within its range.

 This algorithm is well suited to floating-point arithmetic because nearly
 all the computational work (through stage n ? 1) is done before the large
 fuel flow of the last stage is added in. This permits T to be as large as
 105A?, depending on the word size of the computer.
 The solution of the easy case calls for a dynamic program with distance

 stages rather than time stages and unconstrained in time. Yet the time
 staged dynamic programs described earlier are easily adapted to such a
 problem, as follows. The trip can be viewed as an optimal acceleration to
 speed Vi while covering distance s0, followed by a cruise at vi for the rest
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 of the distance si. The minimal fuel consumption is

 \ (l/v(s)) f[v(s), a(s), u(s)] ds

 + (1/Vi) f(VU0, Ui)(Si-8o)  (11)

 subject to v(so) = vi. Here f(v, a, g) is defined as in (2), and ui = wmin(i;,
 0). Equation 11 can be written

 subject to v(s0) = vi. Writing ds = v(t) dt, this is equivalent to

 subject to v(t') = vi. The function to be minimized in (12) is identical to
 Evans and Takasaki's AF. Since at optimality v(t) = vi for t > t\ the
 integrand in (12) can be assumed to vanish when t > t'. This means the
 upper limit of integration can be set at h and minimization with respect
 to tf eliminated. Thus the solution values of a(t), u(t) can be found by
 solving a time-staged dynamic program with terminal speed v\ and
 duration t\ and unconstrained in distance, using the integrand in (12) in
 place of the normal fuel flow function f[v(t), a(t), u(t)]. The problem is
 "easy" because the state space does not have a distance dimension.

 Optimal control was computed for a 1979 Ford Fairmont station wagon
 with automatic transmission, a reasonably typical midsized car. The
 results can probably not be generalized to small cars and luxury cars nor
 to cars with standard transmission.

 Figure 1 shows an optimal trajectory for acceleration from rest to a
 cruising speed of 55 km/h. This is an "easy" case, since the car is less
 efficient at lower speeds, and it is solved using the objective function in
 (12). Figure 2 shows optimal acceleration to 90 km/h, a "hard" case
 requiring formula (10). Here T = 1000 s, and the car achieves an average
 speed of 89.1 km/h over a total distance of 25.74 km.

 The line indicating the percentage of available power used corresponds

 - (1/vi) f(vi, 0, Ui) ) ds \ + constant,

 - (v(t)/vi) f(vu 0,ui))dt\ + constant (12)

 RESULTS: ACCELERATION TO CRUISING SPEED
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 ORNL-DWG-82-8754

 O
 -r O

 TIME(S) BRflKE ( 5
 Fig. 1. Optimal acceleration from rest to a cruising speed of 55 km/h for a

 1979 Ford Fairmont station wagon with automatic transmission. The solid line
 shows the optimal speed trajectory. The finely dashed line at the bottom indicates
 the terrain, which in this case is a level road. Since the terrain is depicted as a
 function of time, the road grade is not in general equal to the slope of the line.
 The third line shows the percent of available power used, where 0% refers to
 coasting and 100% to wide-open throttle. The numbers on the speed line indicate
 points at which the transmission shifts into the gear indicated.

 roughly to throttle position. Its unevenness does not imply that an
 efficient driver must jiggle the gas pedal. The unevenness results from
 the discrete nature of dynamic programming and minor details in the
 shape of the surface describing fuel vs. speed and acceleration. One can
 smooth out any rapid fluctuation without detectably altering fuel con
 sumption.
 Note that optimal acceleration is moderate in both cases, slightly

 brisker in the 90 km/h case, until third gear is reached, when speed
 begins to level off. The 48 km/h rate is reached in 10 and 8 s respectively
 in the two cases, as opposed to the 15-20 s recommended by Evans and
 Takasaki.

 RESULTS: DRIVING BETWEEN STOP SIGNS

 Optimal acceleration when one intends to stop a short way down the
 road is quite different from optimal acceleration to crusing speed. Figure
 3 shows optimal control over a 300-m block with a stop sign at either end,
 with the constraint that the car cover the distance in 24 s, a figure
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 ORNl-DWG-82-8755

 TIME(S) BRflKE ( ]

 Fig. 2. Optimal acceleration from rest to a cruising speed of 90 km/h.

 0RNL-DWG-82-8756

 TIME(S) BRRKE ( ]

 Fig. 3. Optimal control between stop signs on a 300-m block. The car is
 required to cover the distance in 24 s, and the maximum braking deceleration is
 0.3 g.
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 Fig. 4. Trade-off between time and fuel consumption for a 300-m block
 between stop signs.

 approaching the minimum. The block length is typical of suburban
 neighborhoods. No speed limit was imposed because the car achieves
 only 60 km/h in the fastest case. If no constraint is placed on braking
 deceleration, optimal control requires that the driver slam on the brakes
 2 s short of the end. To prevent this a maximum deceleration of 0.3 g was
 enforced. Any harder braking would be uncomfortable and could cause
 skidding on wet pavement. This braking constraint raises optimal fuel
 consumption 6.5% on the 24 s trip.
 Note that full throttle is used until the shift into second, when accel

 eration falls off rapidly, resulting in a quick transition to third gear. A
 similar pattern is followed in a 28-s trip, except that full throttle lasts 3
 s and a top speed of 50 km/h is attained, with little or no throttle after 9
 s.

 The same problem was solved for 32 s, 36 s, and 42 s. Figure 4 depicts
 the fuel-time trade-off, with minimum fuel consumption at 32-36 s. The
 32-s trajectory in Figure 5 still requires fairly brisk acceleration in first
 gear, but coasting or near-coasting begins shortly after the shift into
 third. Slower trips (Figure 6) require a slight throttle opening to maintain
 coasting speed. In all cases braking is called for at the end of the block.
 Coasting completely to a stop is never optimal because of the excessive

 idle fuel used during the long coast.
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 Fig. 5. Optimal control for a 32-s trip between stop signs on a 300-m block.

 ORNL-DWG-82-8758
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 Fig. 6. Optimal control for a 42-s trip between stop signs on a 300-m block.
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 results: driving over hills

 Optimal control at highway speeds was computed for two types of
 terrain, a series of rolling hills and an isolated hill with level road on
 either side. The car is required to achieve a stated average speed, and the
 optimal fuel consumption is compared with the fuel consumption that
 results from cruising over the same terrain at a constant speed equal to
 the given average speed.
 The problem was first solved for a single 0.6-km hill cycle (Figure 7)

 with 6% grade (i.e., the tangent of the angle of slope is 0.06) and for an
 average speed of 80 km/h. The speed halfway up the incline was set at 80
 km/h; if the speed halfway down is set at 80 km/h instead, the optimal
 trajectory is only slightly different. When a similar problem was solved
 for two cycles (1.2 km total), the optimal speed at the midpoint, which
 corresponds to the endpoint of Figure 7, was 82 km/h, nearly the same as
 the 80-km/h terminal speed in Figure 7. This indicates that an approxi
 mate solution for a series of cycles can be obtained by solving each cycle
 separately, with initial and terminal speeds set at the required average
 speed.

 Note that the optimal speed varies from 70 km/h at the crest to 90
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 ORNL-DWG-82-8760
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 Fig. 8. Optimal control on a 0.6-km hill cycle with 6% grade. The initial,

 terminal, and average speeds are set at 90 km/h.

 km/h in the valley. For an average speed of 90 km/h the range widens
 (75-105 km/h) but narrows again for an average speed of 100 km/h (88
 108 km/h), as shown in Figures 8 and 9. The throttle action is also quite
 different for the three speeds. If the hill cycle is lengthened to 1.2 km,
 still with 6% grade, the speed range for an average 80 km/h widens (65
 95 km/h), as in Figure 10.
 The ideal result of optimal control on hills would be to reduce fuel

 consumption to that required to cruise the same horizontal distance over
 level road at the same average speed. This ideal can be nearly achieved
 on rolling grades of 6% or less. Fuel consumption over level road is 0.110,
 0.111, and 0.114 L/km at 80, 90, and 100 km/h, respectively, whereas the
 optimal fuel consumption achieved on the 0.6-km cycle at these speeds is
 0.110, 0.113, and 0.114 L/km, respectively, and it is 0.111 for 80 km/h on
 the 1.2-km cycle. The fuel savings of driving optimally over driving at
 constant speed, then, can on moderate grades be estimated to be the
 savings that would result from leveling the hills. For a 6% grade it is
 consistently 10-11%. On a 3% grade fuel consumption at a constant 80
 km/h is only 1% more than on level road, so that here optimal control is
 of negligible benefit. The advantage of optimal over constant speed
 driving could be on the order of 20-25% on grades steeper than 6%, but
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 Fig. 9. Optimal control on a 0.6-km hill cycle with 6% grade. The initial,
 terminal, and average speeds are set at 100 km/h.
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 Fig. 10. Optimal control on a 1.2-km hill cycle with 6% grade. The initial,

 terminal, and average speeds are set at 80 km/h.

This content downloaded from 
��������������128.2.27.86 on Sun, 19 Jul 2020 18:26:14 UTC�������������� 

All use subject to https://about.jstor.org/terms



 OPTIMAL CONTROL OF AUTOMOBILES / 165

 o
 o

 0RNL-DWG-82-8763

 J
 r-j"

 OL

 FUEL USED - 0.112 L DISTANCE - 1.019 KM

 cd

 LJ
 .0 3
 If) o

 Q_

 ? QJ
 DQ

 en
 o >
 cm ^

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46
 TIME(S) BRAKE ( )

 Fig. 11. Optimal control for driving over a 0.6-km isolated hill with 6% grade
 and 200 m of level road on either side.

 it is unlikely one would be inclined to maintain constant speed on such
 grades.

 An isolated hill of 6% grade and 0.6 km long is depicted in Figure 11.
 The average speed is stipulated to be 80 km/h, and optimal control begins
 200 m in advance of the hill and ends 200 m beyond the hill. In Figure 11
 the constant-speed fuel consumption of 0.118 L/km is reduced 6.8% to
 the 0.110 L/km appropriate to a level road. Note that the throttle setting
 while gaining speed in advance of the hill is essentially the same as that
 used while climbing the hill. On an 8% grade the optimal speed range is
 65 km/h (55 mph) at the foot of the hill on either side. Constant speed
 fuel consumption is reduced 13% to 0.112 L/km.

 If the driver does not begin increasing speed until 50 m or less in
 advance of the hill, optimal control is different. In the case of 50 m
 advance action, speed should rise only to about 83 km/h at the foot of
 the hill, fall to 71 km/h at the crest, rise considerably to 88 km/h at the
 other side, and return to 80 km/h 200 m beyond the hill, all assuming a
 6% grade. If there is no advance action, the speed range is the same, but
 slightly more throttle is used on the downslope and less when level
 ground is regained. Constant-speed fuel consumption is reduced 5.6% to
 0.112 L/km over the original 1.0-km stretch in either case.

 Although no systematic study was made of the sensitivity of fuel
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 consumption to perturbations in the optimal path, it is clearly low. As an
 illustration, the path in Figure 7 was altered to consist of three line
 segments connecting the initial and terminal points with the two extreme
 points (70 km/h at 8 s, 90.05 km/h at 21 s) so as to cover 0.6 km in 27 s.
 The fuel economy for both the optional and the perturbed path rounds
 to 0.110 L/km, which suggests that one can achieve significant fuel
 savings by only approximating optimal control.
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