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• They exploit structure of problem instances whose variables 
partially decouple.  

• They combine nonserial dynamic programming ideas with 
DD solution technology – reduction, relaxation, restriction, 
flow models, etc.

• They can be dramatically smaller than serial DDs.

• Reduction in compilation time is even greater.

Why Nonserial DDs?



When exact DDs are smaller….

• Relaxed DDs of a given size provide tighter bounds.  

• Restricted DDs of a given size are more likely to yield 
feasible solutions.

• Flow models are more likely to be tractable.

Why Nonserial DDs?



Example:  Set packing

Find a maximum subcollection of sets 
in which no two sets have common elements.

{A,   C    }
{       C,D}
{A,B       }
{       C    }
{A           }
{    B,   D}



Example:  Set packing

Find a maximum subcollection of sets 
in which no two sets have common elements.

{A,   C    }
{       C,D}
{A,B       }
{       C    }
{A           }
{    B,   D}

}solution



{A,C}

{C,D}

{A,B}

{C}

{A}

{B,D}

Serial DD 
for a set packing
problem instance

Layers 
correspond 
to selection
decisions 
for each set.

Variables 
indicate the 
decisions.



{A,C}

Select set {A,C}Don’t select set {A,C}

Decide whether 
to select set {A,C}



{A,C}

State consists of 
elements in sets 
so far selected

Decide whether 
to select set {A,C}



{A,C}

{C,D}
Decide whether 
to select set {C,D}

Cannot select {C,D} 
because C is 
already in the state



{A,C}

{C,D}

{A,B}

Serial DD 
for a set packing
problem instance

Decide whether 
to select set {A,B}



{A,C}

{C,D}

{A,B}

{C}

Serial DD 
for a set packing
problem instance

Decide whether 
to select set {C}



{A,B}

{A}

{C}

{A,C}

{C,D}

Serial DD 
for a set packing
problem instance

Decide whether 
to select set {A}

DD is not a tree because branches can terminate in 
the same state.  This normally happens quite often.



{B,D}

{A}

{C}

{A,C}

{C,D}

{A,B}

Serial DD 
for a set packing
problem instance

DD has 39 nodes

Decide whether 
to select set {B,D}



{B,D}

{A}

{C}

{A,C}

{C,D}

{A,B}

Serial DD 
for a set packing
problem instance

0 0 0 0 0 0 0 0 0 0 0 0

Now find an 
optimal solution 
recursively, using 
a backward pass, 
as in dynamic 
programming.

Value at current node = max number of sets selected below the node



{C}

{A}

{B,D}

{A,C}

{C,D}

{A,B}

Serial DD 
for a set packing
problem instance

0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0

max {0, 0+1} = 1
Mark optimal
decision with
orange arc



{C}

{A}

{B,D}

{A,C}

{C,D}

{A,B}

Serial DD 
for a set packing
problem instance

0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0

2 2 0 0 1 10max {1, 1+1} = 2



{C}

{A}

{B,D}

{A,C}

{C,D}

{A,B}

Serial DD 
for a set packing
problem instance

0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0

2 2 0 0 1 10

3 1 1 10



{C}

{A}

{B,D}

{A,C}

{C,D}

{A,B}

Serial DD 
for a set packing
problem instance

0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0

2 2 0 0 1 10

3 1 1 10

3 1 1max {3, 1+1} = 3



{C}

{A}

{B,D}

{A,C}

{C,D}

{A,B}

Serial DD 
for a set packing
problem instance

0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0

2 2 0 0 1 10

3 1 1 10

3 1 1

3 1



{C}

{A}

{B,D}

{A,C}

{C,D}

{A,B}

Serial DD 
for a set packing
problem instance

0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0

2 2 0 0 1 10

3 1 1 10

3 1 1

3 1

3

Trace optimal 
choices top-down 
to find optimal 
solution
{C} + {A} + {B,D}



Original and reduced serial DDs

39 nodes 18 nodes

For a given variable ordering, 
a unique reduced DD 
represents a given set 
of feasible solutions.

Find an optimal solution 
in the reduced DD 
the same way as before.

There is no need for dynamic 
programming states.



How does a DD differ from a dynamic programming state transition graph?

• DD nodes need not be associated with states.

• The reduced DD can be much smaller than the state transition 
graph.

• Much smaller relaxed DDs (obtained by node splitting or merger 
during top-down compilation) provide bounds without solving 
an LP relaxation.

• Much smaller restricted DDs (obtained by deleting arcs during 
compilation) provide a primal heuristic.



• They exploit structure of problem instances with small treewidth.  

• Treewidth (with respect to an ordering) = max in-degree of nodes 
in the induced dependency graph.

• Complexity of a problem instance is at worst exponential in its 
minimum treewidth over all orderings.

• Instances with small treewidth generate much smaller 
nonserial DDs and are much easier to solve.

Nonserial Decision Diagrams



Example:  Set packing

{A,C}
{C,D}
{A,B}
{C}
{A}

{B,D}

First, build dependency graph that shows variable coupling.
Here, 0-1 variables indicate whether each set is included in packing.

{A,C} {A,B}{C}

{C,D} {B,D} {A}

Arc indicates one or more 
elements in common



Example:  Set packing

{A,C}
{C,D}
{A,B}
{C}
{A}

{B,D}

We generally don’t know the min-treewidth ordering.  
As a heuristic, we use a min-degree ordering.

First, build dependency graph that shows variable coupling.
Here, 0-1 variables indicate whether each set is included in packing.

Arc indicates one or more 
elements in common

{A,C} {A,B}{C}

{C,D} {B,D} {A}



{B,D}

Example:  Set packing

{A,C}
{C,D}
{A,B}
{C}
{A}

{B,D}

Now, build induced dependency graph by removing nodes in order, 
adding arcs to connect all neighbors.

Remove

{A,C} {A,B}{C}

{C,D} {A}

{B,D}
Build tree of layers 
for  nonserial DD



{B,D}

Example:  Set packing

{A,C}
{C,D}
{A,B}
{C}
{A}

{B,D}

Now, build induced dependency graph by removing nodes in order, 
adding arcs to connect all neighbors.

Induced arc

{A,C} {A,B}{C}

{C,D} {A}

{B,D}
Build tree of layers 
for  nonserial DD



{B,D}

Example:  Set packing

{A,C}
{C,D}
{A,B}
{C}
{A}

{B,D}

Now, build induced dependency graph by removing nodes in order, 
adding arcs to connect all neighbors.

{A,C} {A,B}{C}

{C,D} {A}
Remove

{B,D} {A}
Build tree of levels 
for  nonserial DD



{B,D}

Example:  Set packing

{A,C}
{C,D}
{A,B}
{C}
{A}

{B,D}

Now, build induced dependency graph by removing nodes in order, 
adding arcs to connect all neighbors.

{A,C} {A,B}{C}

{C,D} {A}

Remove

{B,D} {A}

{C}

Build tree of levels 
for  nonserial DD



{B,D}

Example:  Set packing

{A,C}
{C,D}
{A,B}
{C}
{A}

{B,D}

Now, build induced dependency graph by removing nodes in order, 
adding arcs to connect all neighbors.

{A,C} {A,B}{C}

{C,D} {A}

Remove

{B,D} {A}

{C}{A,B}

Build tree of levels 
for  nonserial DD



{A,B}

{B,D}

Example:  Set packing

{A,C}
{C,D}
{A,B}
{C}
{A}

{B,D}

Now, build induced dependency graph by removing nodes in order, 
adding arcs to connect all neighbors.

{A,C}{C}

{C,D} {A}

Remove
{B,D} {A}

{C}{A,B}

{C,D}

Build tree of levels 
for  nonserial DD



{A,B}

{B,D}

Example:  Set packing

{A,C}
{C,D}
{A,B}
{C}
{A}

{B,D}

Now, build induced dependency graph by removing nodes in order, 
adding arcs to connect all neighbors.

{A,C}{C}

{C,D} {A}

{B,D} {A}

{C}{A,B}

{C,D}

{A,C}

Treewidth = 
max in-degree = 2



{A,C}

{C,D}

{A,B} {C}

{A}{B,D}

Nonserial DD 
for a set packing
problem instance

Layers form a 
tree rather than 
an ordered 
sequence

Layers in  orange

{B,D} {A}

{C}{A,B}

{C,D}

{A,C}



{A,C}
Decide whether 
to select set {A,C}

{B,D} {A}

{C}{A,B}

{C,D}

{A,C}



{A,C}

{C,D}
Decide whether 
to select set {C,D}

{B,D} {A}

{C}{A,B}

{C,D}

{A,C}



{A,C}

{C,D}
Decide whether 
to select set {C,D}

0-choice branches 
to two layers

{B,D} {A}

{C}{A,B}

{C,D}

{A,C}



{A,C}

{C,D}
Decide whether 
to select set {C,D}

0-choice branches 
to two layers

1-choice branches 
to two layers

{B,D} {A}

{C}{A,B}

{C,D}

{A,C}



{A,C}

{C,D}
Decide whether 
to select set {C,D}

Can be viewed as and-or DD

{B,D} {A}

{C}{A,B}

{C,D}

{A,C}



{A,C}

{C,D}
Decide whether 
to select set {C,D}

Duplication of states creates some overhead, 
but this will be offset by smaller width of layers.

{B,D} {A}

{C}{A,B}

{C,D}

{A,C}



{A,C}

{C,D}

{A,B} {C}

Nonserial DD 
for a set packing
problem instance

Decide whether 
to select set {A,B}

Decide whether 
to select set {C}

{B,D} {A}

{C}{A,B}

{C,D}

{A,C}



{A,C}

{C,D}

{A,B} {C}

{A}

Nonserial DD 
for a set packing
problem instance

{B,D}

DD has 36 nodes

Decide whether 
to select set {B,D}

Decide whether 
to select set {A}

{B,D} {A}

{C}{A,B}

{C,D}

{A,C}



{A,C}

{C,D}

{A,B} {C}

{A}

Nonserial DD 
for a set packing
problem instance

{B,D}

0 0 0 0 0 0 0 0 0 0 0 0 0

Evaluate the DD 
bottom-up  as  before



{A,C}

{C,D}

{A,B} {C}

{A}

Nonserial DD 
for a set packing
problem instance

{B,D}

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 1 0 0 01

0 0 0 0



{A,C}

{C,D}

{A,B} {C}

{A}

Nonserial DD 
for a set packing
problem instance

{B,D}

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 1 0 0 01

0 0 0 0

2 1 1 1 0 0

max {1+1, 0+0+1} = 2
Outgoing 1-arcs
counted as one arc
(as in and-or DD)



{A,C}

{C,D}

{A,B} {C}

{A}

Nonserial DD 
for a set packing
problem instance

{B,D}

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 1 0 0 01

0 0 0 0

2 1 1 1 0 0

3 1



{A,C}

{C,D}

{A,B} {C}

{A}

Nonserial DD 
for a set packing
problem instance

{B,D}

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 1 0 0 01

0 0 0 0

2 1 1 1 0 0

3 1

3

Trace tree of 
optimal choices 
to find optimal 
solution
{C} + {A} + {B,D}



Original and reduced 
nonserial DDs

36 nodes 15 nodes



• Compare size of non-reduced serial and nonserial DDs for 
randomly generated set packing instances of various treewidths.

• Use min-degree ordering for serial and nonserial DDs, as it 
benefits both.

• Let each element occur in a given set with probability p.

• Discard random instances with a disconnected dependency graph.

• Use smaller values of p to get smaller treewidths.

Computational Experiments



100

1000

10000

0 5 10 15

D
D

 s
iz

e

Treewidth

20 sets, 30 elements

Serial DDs

Nonserial DDs

Serial and nonserial
DD size vs treewidth

Average 2.4-6 elements/set

Each instance is 
represented by two 
data points.

Instances with many 
elements per set are 
easier to solve 
due to fewer feasible 
solutions.



100

1000

10000

0 5 10 15

D
D

 s
iz

e

Treewidth

20 sets, 30 elements

Serial DDs

Nonserial DDs

Serial and nonserial
DD size vs treewidth

Average 2.4-6 elements/set

Smaller bandwidths 
result in much larger 
serial DDs (instances 
are harder).

Nonserial DD size is 
fairly constant.

Nonserial DD’s 
exploitation of small 
bandwidth offsets 
greater difficulty of 
the instance.



100

1000

10000

100000

0 5 10 15 20 25 30

D
D

 s
iz

e

Treewidth

30 sets, 20 elements

Serial DDs

Nonserial DDs

Serial and nonserial
DD size vs treewidth

Average 1.6-6 elements/set

Similar pattern, 
except for inverted-U 
shape of nonserial 
data points



Serial and nonserial
DD size vs treewidth

1000

10000

100000

1000000

0 5 10 15 20 25

D
D

 s
iz

e

Treewidth

30 sets, 40 elements

Serial DDs

Nonserial DDs

Average 2.4-6 elements/set

Larger DDs, but 
otherwise similar 
pattern



Serial and nonserial
DD size vs treewidth

1000

10000

100000

1000000

0 5 10 15 20 25

D
D

 s
iz

e

Treewidth

30 sets, 40 elements

Serial DDs

Nonserial DDs

Average 2.4-6 elements/set

4.3 hours

1.3 seconds

Difference in compile 
time is even more 
dramatic than DD size.

Compile time is 
roughly quadratic in 
max layer size.

Serial DD layers are 
much larger.



1000

10000

100000

1000000

10 15 20 25 30 35 40

D
D

 s
iz

e

Treewidth

40 sets, 30 elements

Serial DDs

Nonserial DDs

Serial and nonserial
DD size vs treewidth

Average 2.4-9 elements/set

Computation terminated

Some serial DDs are
too large to build.

Nonserial DD size 
again levels off with 
smaller treewidths



1000

10000

100000

1000000

10 15 20 25 30 35 40

D
D

 s
iz

e

Treewidth

40 sets, 30 elements

Serial DDs

Nonserial DDs

Serial and nonserial
DD size vs treewidth

Average 2.4-9 elements/set

Computation terminated

16.5 hours

2.1 seconds
Compile time advantage 
of nonserial DD is again 
even greater than size 
advantage.



Conclusion…

For set packing problems, nonserial DDs are very helpful when you need them, 
and are not helpful when you don’t need them.

Future research…

Examine other problem classes.

 



• We should always use nonserial DDs in DD applications.  

• There is no computational penalty for doing so.

• There are enormous computational benefits when treewidth 
is limited.

• All DD technologies easily generalize to the nonserial case 
(reduction, relaxation, restriction, flow models)

Conjectures
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