
Nonserial Decision Diagrams

John Hooker
Carnegie Mellon University

ICS Conference
March 2025

• They exploit structure of problem instances whose variables
partially decouple.

• They combine nonserial dynamic programming ideas with
DD solution technology – reduction, relaxation, restriction,
flow models, etc.

• They can be dramatically smaller than serial DDs.

• Reduction in compilation time is even greater.

Why Nonserial DDs?

When exact DDs are smaller….

• Relaxed DDs of a given size provide tighter bounds.

• Restricted DDs of a given size are more likely to yield
feasible solutions.

• Flow models are more likely to be tractable.

Why Nonserial DDs?

Example: Set packing

Find a maximum subcollection of sets
in which no two sets have common elements.

{A, C }
{ C,D}
{A,B }
{ C }
{A }
{ B, D}

Example: Set packing

Find a maximum subcollection of sets
in which no two sets have common elements.

{A, C }
{ C,D}
{A,B }
{ C }
{A }
{ B, D}

}solution

{A,C}

{C,D}

{A,B}

{C}

{A}

{B,D}

Serial DD
for a set packing
problem instance

Layers
correspond
to selection
decisions
for each set.

Variables
indicate the
decisions.

{A,C}

Select set {A,C}Don’t select set {A,C}

Decide whether
to select set {A,C}

{A,C}

State consists of
elements in sets
so far selected

Decide whether
to select set {A,C}

{A,C}

{C,D}
Decide whether
to select set {C,D}

Cannot select {C,D}
because C is
already in the state

{A,C}

{C,D}

{A,B}

Serial DD
for a set packing
problem instance

Decide whether
to select set {A,B}

{A,C}

{C,D}

{A,B}

{C}

Serial DD
for a set packing
problem instance

Decide whether
to select set {C}

{A,B}

{A}

{C}

{A,C}

{C,D}

Serial DD
for a set packing
problem instance

Decide whether
to select set {A}

DD is not a tree because branches can terminate in
the same state. This normally happens quite often.

{B,D}

{A}

{C}

{A,C}

{C,D}

{A,B}

Serial DD
for a set packing
problem instance

DD has 39 nodes

Decide whether
to select set {B,D}

{B,D}

{A}

{C}

{A,C}

{C,D}

{A,B}

Serial DD
for a set packing
problem instance

0 0 0 0 0 0 0 0 0 0 0 0

Now find an
optimal solution
recursively, using
a backward pass,
as in dynamic
programming.

Value at current node = max number of sets selected below the node

{C}

{A}

{B,D}

{A,C}

{C,D}

{A,B}

Serial DD
for a set packing
problem instance

0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0

max {0, 0+1} = 1
Mark optimal
decision with
orange arc

{C}

{A}

{B,D}

{A,C}

{C,D}

{A,B}

Serial DD
for a set packing
problem instance

0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0

2 2 0 0 1 10max {1, 1+1} = 2

{C}

{A}

{B,D}

{A,C}

{C,D}

{A,B}

Serial DD
for a set packing
problem instance

0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0

2 2 0 0 1 10

3 1 1 10

{C}

{A}

{B,D}

{A,C}

{C,D}

{A,B}

Serial DD
for a set packing
problem instance

0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0

2 2 0 0 1 10

3 1 1 10

3 1 1max {3, 1+1} = 3

{C}

{A}

{B,D}

{A,C}

{C,D}

{A,B}

Serial DD
for a set packing
problem instance

0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0

2 2 0 0 1 10

3 1 1 10

3 1 1

3 1

{C}

{A}

{B,D}

{A,C}

{C,D}

{A,B}

Serial DD
for a set packing
problem instance

0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0

2 2 0 0 1 10

3 1 1 10

3 1 1

3 1

3

Trace optimal
choices top-down
to find optimal
solution
{C} + {A} + {B,D}

Original and reduced serial DDs

39 nodes 18 nodes

For a given variable ordering,
a unique reduced DD
represents a given set
of feasible solutions.

Find an optimal solution
in the reduced DD
the same way as before.

There is no need for dynamic
programming states.

How does a DD differ from a dynamic programming state transition graph?

• DD nodes need not be associated with states.

• The reduced DD can be much smaller than the state transition
graph.

• Much smaller relaxed DDs (obtained by node splitting or merger
during top-down compilation) provide bounds without solving
an LP relaxation.

• Much smaller restricted DDs (obtained by deleting arcs during
compilation) provide a primal heuristic.

• They exploit structure of problem instances with small treewidth.

• Treewidth (with respect to an ordering) = max in-degree of nodes
in the induced dependency graph.

• Complexity of a problem instance is at worst exponential in its
minimum treewidth over all orderings.

• Instances with small treewidth generate much smaller
nonserial DDs and are much easier to solve.

Nonserial Decision Diagrams

Example: Set packing

{A,C}
{C,D}
{A,B}
{C}
{A}

{B,D}

First, build dependency graph that shows variable coupling.
Here, 0-1 variables indicate whether each set is included in packing.

{A,C} {A,B}{C}

{C,D} {B,D} {A}

Arc indicates one or more
elements in common

Example: Set packing

{A,C}
{C,D}
{A,B}
{C}
{A}

{B,D}

We generally don’t know the min-treewidth ordering.
As a heuristic, we use a min-degree ordering.

First, build dependency graph that shows variable coupling.
Here, 0-1 variables indicate whether each set is included in packing.

Arc indicates one or more
elements in common

{A,C} {A,B}{C}

{C,D} {B,D} {A}

{B,D}

Example: Set packing

{A,C}
{C,D}
{A,B}
{C}
{A}

{B,D}

Now, build induced dependency graph by removing nodes in order,
adding arcs to connect all neighbors.

Remove

{A,C} {A,B}{C}

{C,D} {A}

{B,D}
Build tree of layers
for nonserial DD

{B,D}

Example: Set packing

{A,C}
{C,D}
{A,B}
{C}
{A}

{B,D}

Now, build induced dependency graph by removing nodes in order,
adding arcs to connect all neighbors.

Induced arc

{A,C} {A,B}{C}

{C,D} {A}

{B,D}
Build tree of layers
for nonserial DD

{B,D}

Example: Set packing

{A,C}
{C,D}
{A,B}
{C}
{A}

{B,D}

Now, build induced dependency graph by removing nodes in order,
adding arcs to connect all neighbors.

{A,C} {A,B}{C}

{C,D} {A}
Remove

{B,D} {A}
Build tree of levels
for nonserial DD

{B,D}

Example: Set packing

{A,C}
{C,D}
{A,B}
{C}
{A}

{B,D}

Now, build induced dependency graph by removing nodes in order,
adding arcs to connect all neighbors.

{A,C} {A,B}{C}

{C,D} {A}

Remove

{B,D} {A}

{C}

Build tree of levels
for nonserial DD

{B,D}

Example: Set packing

{A,C}
{C,D}
{A,B}
{C}
{A}

{B,D}

Now, build induced dependency graph by removing nodes in order,
adding arcs to connect all neighbors.

{A,C} {A,B}{C}

{C,D} {A}

Remove

{B,D} {A}

{C}{A,B}

Build tree of levels
for nonserial DD

{A,B}

{B,D}

Example: Set packing

{A,C}
{C,D}
{A,B}
{C}
{A}

{B,D}

Now, build induced dependency graph by removing nodes in order,
adding arcs to connect all neighbors.

{A,C}{C}

{C,D} {A}

Remove
{B,D} {A}

{C}{A,B}

{C,D}

Build tree of levels
for nonserial DD

{A,B}

{B,D}

Example: Set packing

{A,C}
{C,D}
{A,B}
{C}
{A}

{B,D}

Now, build induced dependency graph by removing nodes in order,
adding arcs to connect all neighbors.

{A,C}{C}

{C,D} {A}

{B,D} {A}

{C}{A,B}

{C,D}

{A,C}

Treewidth =
max in-degree = 2

{A,C}

{C,D}

{A,B} {C}

{A}{B,D}

Nonserial DD
for a set packing
problem instance

Layers form a
tree rather than
an ordered
sequence

Layers in orange

{B,D} {A}

{C}{A,B}

{C,D}

{A,C}

{A,C}
Decide whether
to select set {A,C}

{B,D} {A}

{C}{A,B}

{C,D}

{A,C}

{A,C}

{C,D}
Decide whether
to select set {C,D}

{B,D} {A}

{C}{A,B}

{C,D}

{A,C}

{A,C}

{C,D}
Decide whether
to select set {C,D}

0-choice branches
to two layers

{B,D} {A}

{C}{A,B}

{C,D}

{A,C}

{A,C}

{C,D}
Decide whether
to select set {C,D}

0-choice branches
to two layers

1-choice branches
to two layers

{B,D} {A}

{C}{A,B}

{C,D}

{A,C}

{A,C}

{C,D}
Decide whether
to select set {C,D}

Can be viewed as and-or DD

{B,D} {A}

{C}{A,B}

{C,D}

{A,C}

{A,C}

{C,D}
Decide whether
to select set {C,D}

Duplication of states creates some overhead,
but this will be offset by smaller width of layers.

{B,D} {A}

{C}{A,B}

{C,D}

{A,C}

{A,C}

{C,D}

{A,B} {C}

Nonserial DD
for a set packing
problem instance

Decide whether
to select set {A,B}

Decide whether
to select set {C}

{B,D} {A}

{C}{A,B}

{C,D}

{A,C}

{A,C}

{C,D}

{A,B} {C}

{A}

Nonserial DD
for a set packing
problem instance

{B,D}

DD has 36 nodes

Decide whether
to select set {B,D}

Decide whether
to select set {A}

{B,D} {A}

{C}{A,B}

{C,D}

{A,C}

{A,C}

{C,D}

{A,B} {C}

{A}

Nonserial DD
for a set packing
problem instance

{B,D}

0 0 0 0 0 0 0 0 0 0 0 0 0

Evaluate the DD
bottom-up as before

{A,C}

{C,D}

{A,B} {C}

{A}

Nonserial DD
for a set packing
problem instance

{B,D}

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 1 0 0 01

0 0 0 0

{A,C}

{C,D}

{A,B} {C}

{A}

Nonserial DD
for a set packing
problem instance

{B,D}

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 1 0 0 01

0 0 0 0

2 1 1 1 0 0

max {1+1, 0+0+1} = 2
Outgoing 1-arcs
counted as one arc
(as in and-or DD)

{A,C}

{C,D}

{A,B} {C}

{A}

Nonserial DD
for a set packing
problem instance

{B,D}

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 1 0 0 01

0 0 0 0

2 1 1 1 0 0

3 1

{A,C}

{C,D}

{A,B} {C}

{A}

Nonserial DD
for a set packing
problem instance

{B,D}

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 1 0 0 01

0 0 0 0

2 1 1 1 0 0

3 1

3

Trace tree of
optimal choices
to find optimal
solution
{C} + {A} + {B,D}

Original and reduced
nonserial DDs

36 nodes 15 nodes

• Compare size of non-reduced serial and nonserial DDs for
randomly generated set packing instances of various treewidths.

• Use min-degree ordering for serial and nonserial DDs, as it
benefits both.

• Let each element occur in a given set with probability p.

• Discard random instances with a disconnected dependency graph.

• Use smaller values of p to get smaller treewidths.

Computational Experiments

100

1000

10000

0 5 10 15

D
D

 s
iz

e

Treewidth

20 sets, 30 elements

Serial DDs

Nonserial DDs

Serial and nonserial
DD size vs treewidth

Average 2.4-6 elements/set

Each instance is
represented by two
data points.

Instances with many
elements per set are
easier to solve
due to fewer feasible
solutions.

100

1000

10000

0 5 10 15

D
D

 s
iz

e

Treewidth

20 sets, 30 elements

Serial DDs

Nonserial DDs

Serial and nonserial
DD size vs treewidth

Average 2.4-6 elements/set

Smaller bandwidths
result in much larger
serial DDs (instances
are harder).

Nonserial DD size is
fairly constant.

Nonserial DD’s
exploitation of small
bandwidth offsets
greater difficulty of
the instance.

100

1000

10000

100000

0 5 10 15 20 25 30

D
D

 s
iz

e

Treewidth

30 sets, 20 elements

Serial DDs

Nonserial DDs

Serial and nonserial
DD size vs treewidth

Average 1.6-6 elements/set

Similar pattern,
except for inverted-U
shape of nonserial
data points

Serial and nonserial
DD size vs treewidth

1000

10000

100000

1000000

0 5 10 15 20 25

D
D

 s
iz

e

Treewidth

30 sets, 40 elements

Serial DDs

Nonserial DDs

Average 2.4-6 elements/set

Larger DDs, but
otherwise similar
pattern

Serial and nonserial
DD size vs treewidth

1000

10000

100000

1000000

0 5 10 15 20 25

D
D

 s
iz

e

Treewidth

30 sets, 40 elements

Serial DDs

Nonserial DDs

Average 2.4-6 elements/set

4.3 hours

1.3 seconds

Difference in compile
time is even more
dramatic than DD size.

Compile time is
roughly quadratic in
max layer size.

Serial DD layers are
much larger.

1000

10000

100000

1000000

10 15 20 25 30 35 40

D
D

 s
iz

e

Treewidth

40 sets, 30 elements

Serial DDs

Nonserial DDs

Serial and nonserial
DD size vs treewidth

Average 2.4-9 elements/set

Computation terminated

Some serial DDs are
too large to build.

Nonserial DD size
again levels off with
smaller treewidths

1000

10000

100000

1000000

10 15 20 25 30 35 40

D
D

 s
iz

e

Treewidth

40 sets, 30 elements

Serial DDs

Nonserial DDs

Serial and nonserial
DD size vs treewidth

Average 2.4-9 elements/set

Computation terminated

16.5 hours

2.1 seconds
Compile time advantage
of nonserial DD is again
even greater than size
advantage.

Conclusion…

For set packing problems, nonserial DDs are very helpful when you need them,
and are not helpful when you don’t need them.

Future research…

Examine other problem classes.

• We should always use nonserial DDs in DD applications.

• There is no computational penalty for doing so.

• There are enormous computational benefits when treewidth
is limited.

• All DD technologies easily generalize to the nonserial case
(reduction, relaxation, restriction, flow models)

Conjectures

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

