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Two distinctive and fundamental metrical properties of a network (conceived as an infinite
point set with a metric) are: (a) it is a tree if and only if its metric is convex, an. {b) it
decomposes into finitely many treelike segments on which the metric is convex. We show that
(a) and (b) are intimately related by proving that equivalence (a) holds in a class of networklike
or ‘reticular’ metric spaces that are characterized by decomposability into treelike segments and
whose finite models exhibit many of the important metrical properties of networks.

1. Introductionr

Let us consider a network (rigorously defined below) to be the infinite
collection of points on finitely many rectifiable arcs, whosc endpoints are nodes.
Two arcs may intersect, if at all, only at nodes. The metric of the network is the
function that assigns to every pair of points the shortest-path distance between
them. We therefore speak of a network, a continuous structure, in opposition to a
graph, the familiar discrete structure.

Recent work on network location problems has uncovered two distinctive and
fundamental properties of a network’s metric. One, esiablished in [2], is that the
metric is convex (in a natural sense to be defined shortly) if and only if the
network is a tree. The other, which we observed in [3, 4], is that any network is
made up of finitely many “treelike” subsets on which the metric is convex.

We intend to show that these two properties are intimately related, in the
following sense. We generalize the notion of treclikeness to mctric spaces and
define a class of metric spaces, “reticular zpaces”, that bave certain points
distinguished as “nodes” and that decompose into treelike pieces in much the way
that networks do. We show that if a metric space is reticular, the entire space is
treelike if and only if it has a convex metric, whereas this equivalence breaks
down if the metric space is not reticular.

This result suggests that decomposabiiiiy into treelike pieces is the characteris-
tic of networks that in some sense explains the equivalence of treelikeness and
convexity of metric. Furtherimore, since most of the properties of reticular spaces
we discuss occur in finite spaces, we are led to believe that many of the key
metrical properties of a network can be captured in a discrete structure.
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A network’s metric is “piecewise convex” in that a network decomposes into
subsets on which the metric is convex. In fact, it is convex on treelike subsets. But
a reticular space need not be piecewise convex (i.e., have a piecewise convex
metric), and a piecewise convex space need not be reticular. Piecewise convexity
is a weaker property than reticularity, in that (a) treelikeness and convexity of
metric are not equivalent in piecewise convex spaces, as they are in reticular
spaces, and (b) we prove that finite reticular spaces are piecewise convex,
whereas the converse does not hold.

2. Convexity in metric spaces

Let (S, d) be a metric space with metric or distance function d. A natural
definition of betweenness, introduced by Pasch [7, 8], is that given distinct points
X, ¥,z €S8, z is between x and y if d(x, y) =d(x, z) + d(z, y). Following [2], we
say that z € L,(x, y) if d(x, z)=Ad(x,y), A€(0, 1), and z is between x and y.
Also Ly(x, y) =x and L,(x, y) =y. The line segment L(x, y) connecting x and y is
the set containing x, y and the points between them.

We note that possibly L(x, y)=L(x',y’) even when {x,y}#{x',y'}. For
instance, if § = R? and d is the rectilinear metric whereby d((x,, x,), (1, ¥2)) =
[x1 =yl + [x2 = yal, then L((xy, x5}, (01, ¥2)) = L((x1, ¥2), (1, X2))-

The definitions in [2] for convexity in networks adapt readily to metric spaces.
Set Dc S is a convex set if L(x,y)< D for all x, y e D. A function f:D—R is
convex on a convex set D if for all A€{0, 1] and all z e L,{x,y), f(z)<

(1= )f (x) + Af (y)-

3. Convexity in networks

We define a network essentially as in [1]. Let V = {v,, ..., v,,} be a finite set
of nodes. With each pair v;, v; (1 <i <j=<m) associate a bijection ¢;:[0, 1]—
for which ¢;(0) = v; and t;(1) = v;, an arc [v;, v;] = [v;, v;] = §;, and a positive arc
length e;. We reguire that the sets [v;, v;]\ {v;, v;} be pairwise disjoint for all i, j.
Then if $=1J{S;}, E={e;}, and T={t;}, the quadruple (S,V,E, T) is a
network.

The metric d:S—R of (S, V, E, T) is defined as follows. Let any sequence of
ares [viy, Vi) [Viey, Vi)l - - -5 [Wi—1y Vi), where vy, ... » Uiy are dis-
tinct, be a (simple) path from v,y to vy, 1<k <m; the length of the path is the
sum of the arc lengths. For x, y €[v;, v;] we denote by [x, y]=[y, x] the path
ey (x), 67D if 65 (x) <t5%(y) or the set £;([t;'(y), t;'(x)]) otherwise, and
we assign it length d(x, y) =d(y, =) =e¢; |t;'(x) — t;'(y)|. Given x €[v;, v;] and
y €lui, v)], we say that [x, v;JU PU]u,, y] is a path from x to y if P is a path
from v; to v,; the length of the path is the sum of d(x, v;) +d(v;, y) and the
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length of P. Finally, for any x, y €S let d(x, y) =d(y, x) be the length of any
shortest path from x to y; d(x, y) =« if no path connects x and y. A connected
network is one in which every distance is finite.

It will be convenient to denote (S, V, E, T) with the triple (S, V, d). It follows
immediately from the definition of d that if (S, V, d) is connected, (S, d) is a
metric space. From here out we suppose that all networks under discussion are
connected.

Given points x, v in & network, L(x, y) contains the points on ail shortest paths
from x to y. We say that a network. (S,V,d) has a convex metric if
d(v;, -):S— R is convex for all v;e V.

A tree is a network in which exactly one path connects any given pair of nodes.
Dearing, Francis and Lowe prove in [2] that d(x, -):§— R is convex for all x € §
if and only if (S, V, d) is a tree. A slight modification of their proof establishes
that d is a convex metric if and only if it (S, V, d) is a tree.

We show in [3] that any network (S, V, d) decomposes into finitely many
treelike pieces on which the metric is convex, in the following sense. Let us say
that x € § is a boundary point if there are at least two shortest paths from x to
some node v;, where x is said to be generated by v,. If a connected set Dc §
contains no boundary points, then D and its closure (in the metric topology) are
treelike sets. A network is clearly the union of finitely many treelike sets (a tree is
itself a treelike set). In particular, any line segment L{x, y} is a union of finitely
many treelike line segments (treelike segments, for short).

It is not hard to show [3] that d(v;, -): D— R is convex for each convex treelike
set D c §. This is useful in solving network lccation problems, because one can
decompose the problem into subprobiems on treelike segments, where the
convexity of the metric makes the subproblems relatively easy to solve.

4. Convexity and treelike spaces

If L(z,...,2) denotes L(z,2z;)U-++UL(2Zk-1,2), We say that
L(z,...,2) is a chain (in particelar, a k-chain) connecting 7z, and 2 if
d(zo, zx) =d(z0, z1) + * + * + d(2i—s, 2x)- It will be convenient t¢ adopt the con-
vention that C(yo, . . . , ¥} denoies any chain of the form L(z,, . . . , 2), where
Yo = Zo, Ym =2Zx, and {yy, ... y Ym—1} €421y o o5 Zk1}

If (S, d) is a metric space and V c § is a set of points arbitrarily distinguished as
nodes, we refer to (S, V, d) as a metric space with nodes. The major role of nodes
is to serve as points with respect to which treelikeness is defined. We first define 2
point u, in a set D c § to be a collection: point of D with respect to ve V if any
z € D satisfies d(z, v) =d(z, u,) + d{u,, v). Then D is treelike ii it contains a
collection point w, with respect to each v e V. Finally (S, V, d) is a treelike space
if every 2-chain in § is treelike, a definition we will justify shortly. A tree network
is clearly a treelike space.
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Theorem 1. If (S, V, d) is treelike, then d is a convex metric.

Proof. Let x, y € § and v € V. Pick an arbitrary A €[0, 1] and z € L,(x, y). Since
(S, V, d) is treelike, L(x, z, y) contains a collection point u, with respect to v. If
u,eL(z,y), then d(z,v)=d(x, v)—-d(x, z)=d(x.v)—-Ad{x,y)<d(x,v)-
Ad(x, v) —d(y, v)] = (1— A)d(x, v) + Ad(y, v), and similarly if u, € L(x, z). The
convexity of the metric follows. O

We note that it is not enough to ensure convexity of metric that every line
segment be treelike. Consider the following

Example 1. V=S={w,x,y, 2z}, dw,x)=d(x,y)=4(y, z)=d(z, w)=1, and
d(w, y)=d(x, z)=2. Here every line segment is treelike. For L(w, x),
u, =u, =w and u, =u, =x, and similarly for L{x, y), L(y, z) and L(z, w). Also
L(w,y)=L(x,2)=3S, so that L(w,y)} and L(x, z) are trivially treelike. But
d(-, w) is not convex on L(x, z). We can observe, however, that neither of the
2-chains L(x, w, z) and L(x, y, z) is treelike, as required for a treelike space.

We also note that d(-, z) need not be convex for all points u in a treelike space.
If we let V =0 in Example 1, the space is trivialiy treelike, but d(-, w) is again
not convex. We therefore require of a convex metrix d only that d(-, v) be
convex for all v e V.

Although treelikeness is sufficient for convexity of metric, the converse is not
true.

Example 2. (Fig. 1). Let S=V={w,x,y,2z}, dw,x)=d(x,y)=4d(y, 2)=
d(z,w)=2, d(w,y)=4, and d(x,z)=1. (The arrows in Fig. 1 are merely
distance markers.) We see that d(-, v) is convex for any node v, but neither
L(w, x, y) nor L{w, z, y) nor even L(x, z) is ircelike. We can observe here that
L(w, y) fails to contain a chain C(w, y) of treelike pieces, since L(w, x), L(x, y),
L(w, z) and L(z, y) are not treelike. Similarly, L(x, z) fails to contain such a
ciiain, since L(x, z) is not treelike. This suggests the definition of a reticular space
in the next section.

V/e conclude this section with a discussion of paths. One might expect thai a
treelike space would contain only one “path”, in some sense, between any two
points. Let us say that L{x, y) is a path if for any z,, . . ., z, € L(x, y) with z;=x,
2z =y, and d(2y, z) <d(2p, 2;4y) for i=0,...,k—1, the set L(zy,...,2) is a
chain. We can observe that not all line segments in a treelike space need be
naths,

Excmple 3. Let S={v,x,y,2} and V={v}, where d(v,x)=d(x,y)=2,
d(y, z)=d(x, z)=3, d(z,v)=1, and d(v,y)=4. The space is treelike, but
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Fig. 1.

L(wv, y) is not a path because L(v, z, x, y) is not a chain. We can, however, show
the following.

Theorem 2. Every line segment connecting two nodes in a treelike space is a path.

Proof. sappo-c ~ the contrary that L(x,y) is not a path. Then for some
Zi, 0.0y 21 € L(x, y), with d(x, z)<d(x, z;,;) fori=1,...,k—1 and z, =y,
L(x, z,...,2y,y) is not a chain. Thus d(x, y)<d(x, z;) +- - - +d(z;_y, ).
Let j be the smallest integer such that d(x, z) <d(x, z)) +- - - +d(z;_y, 2;).
Clearly, j exists, j > 1, and L(x, z;_,, 2;) is not a chain. Let u, and u, be coliection
points of L(z;_,, z;) with respect io x and y, respectively. Clearly we cannot have
u, =z, since this would imply that L(x, z_,, z) is a chain. Also since
d(zj_;, y)=d{(z;, y}, we observe that u,#z_,. Then we have d{x, z;_;)+
d(z;_;1, y) = d(x, u) + d(is, 2j-1) +d(zi—y, &) + d(uy, y) > dix, 1) + d(u,, u,) +
d(u,, y) =d(x, y), which violates the assumption that z;_; € L(x,y). O

5. Reticular spaces

We noted in the previous section that convexity of metric does not imply
treelikeness when a line segmeni L{x, y) fails to contain a chain C(x, y) of
treelike pieces. But the implication can fail even when every segment contains
such a chain.
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Fig. 2.

Example 4. (Fig. 2). Let S={v,x,y, 2,2} and V = {v}, where d(x, z;)=
d(x, ) =d(z,, 7)) =d{z,y)=d(z;, )=2, d{, z))=d(v,z)=1, d(v,x)=
d(v,y)=3, and d(x,y)=4. The metric is convex, and every line segment
contains a treclike chain. But the space is not treelike because the 2-chain
L(x. x, y) = L(x, y) is not treelike.

The missing condition is analogous to the requirement that intersections of
three or more arcs in a network must be nodes. We first say that z € D is an exit
point of D < § if z is a collection point u, of D with respect to some node v ¢ D.
Also z € C(x, y) is interior to a chain C(x, y) if for all w € §, C(z, w)# C(x, y). If
{5, V, d) is a metric space with nodes, z € S is an interior exit point of (S, V, d) if
it is an interior exit point of some chain in S.

A metric space with nodes (S, V, d) is a reticular space if it satisfies two
conditions: (2} every line segment L(x, y) ia S contains a chain C(x, y) of finitely
many treelike segments, and (b) V contains all the interior exit points of
(S, V, d). We note that Example 4 is not a reticular space because interior exit
points z; and z, ar¢ nct nodes. If they were, the space would still fail to be
reticular because L(x, z;), for instance, wouid not contain a chain C(x, z,) of
treelike segments.

The most obvious examples of reticular spaces are networks and certain subsets
of networks. Given network (S, V, d), suppose that V' = §'c S, V'=V, and d’
is the restriction of d to §' X §'. Then clearly (§’, V', d') is a reticular space,
provided V' contains all of thie interior exit points of §' with respect to nodes in
V', and §' contains all of the boundary poiits generated by the nodes ir; V'. This
is because for any Lfx,y), there is a chain C(x,y)=(U---UT)NS' of
treclike segments, where T, ..., T, are the treelike segments of § along any
shortest path connecting x and y. Since thers are finitely many treelike segment
boundarics, we have here a large class of finite reticular spaces.

A subnetwork (§', V', d') of a network (S, V, d) must satisfy V' =V N §'. Let
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us say that a reticular space (S, V, d) can be embedded in a network (S, V, d) if
there is a distance-preserving bijection ¢:S—§', where (§',V',d') is a
subnetwork of (§,V,d) and ¢(V)=V'. A large variety of infinite reticular
spaces cannot be embedded in networks.

Exampie 5. Let S be the unit square [0,i]%[0,1] in R% let V=
{{0, 0), (1,0), (0, 1), (1, 1)}, and let d be the rectilinear metric. Then every line
segment L(x, y) is itself treelike, because its closest corner *o v € V is a collection
point with respect to v. Also there are no interior exit points. Thus (S, V, d) is a
reticular space, but it is embeddable in no network. (Note that if S =[0, 1 + ¢} X
[0, 1], then for all x, € [0, 1], (1, x;) is a node because it is an interior exit point of
L((0, 0), (1 + &, x5)), from which it similarly follows that all points in S are nodes.
Thus (S, V, d) is not reticular because L(x, y) contains no chain C{x, y) of finitely
many treelike segments.)

Example 6. Consider the neiworks (¥, V, d;) of Fig. 3,i=0, 1, ..., where N, is
the set of points and V; the set of nodes between and including #, and v;,,, and
all arcs between v; and v,,, have length 27. Let S contain all the nodes in the
union of the N's, plus », and Jst V={uw v, v, ..} For w,zeV, define
d(w, z) = diw, z) and d(w, 2) =di(w, v;4,) + di s, V), where d{viy, v)=27"
(S, V, d) is reticular because the interior exit points v,, v, . .. are nodes, and
because L(x;, v;), L(x;, v;ir1), L(vy, %), L{Visr, ¥), L(vi, y;) and L(v;, v) are
treclike for i, je {0, 1, ...}. But (S, V, d) is not embeddable.

Finite reticular spaces can likewise fail to be embeddabl., since it is possible
that every distan~e-preserving bijection maps a non-node to a node.

Example 7. Consider the space of Example 4 (Fig. 2), except that V = {x, y}.
Again we have a reticular space, but it is embeddable in no network. To sse this,
suppose to the contrary that there is a distance-preserving bijection ¢ from
(S, V, d) to some subnetwork (§', V', d') of a network (S, V, d), with ¢p(V}=V".
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Consic=" a shortest path L, in § from ¢(x) to ¢(z;), a shoriest path L, from
#(y) to ¢(z;), and a shortest path L, from ¢(2,) to ¢(z,}. Let w,, be the point in
L, N L, that is nearest z,, and similarly for w,, and w,,. If w,, = w,, = w,, = ¢(2),
then ¢(z,) € V', contrary to the condition that ¢(V')=V"'. Thus w,,, w,, or w,
must be distinct from ¢(z,); we may suppose without loss of generality that
wxy # ¢(Zl)' Then d(xr y) = d'(d’(x): 4’(}’)) s d(¢(x)! wxy) + ""iwxy’ ¢(.Y)) <
d'(¢(x), 9(21)) +d'(9(21), $(»)) =d(x, z:) + d(z,, y) = d(x, y), a contradiction.

6. Convexity and reticular spaces

To prove our main result, that treelikeness and convexity of metric are
equivalent in reticular spaces, we must first establish some properties of chains.

Lemma 1. If L(x, y) coniains a treelike chain C(x, y), then C(x, y) contains all the
nodes of L(x, y).

Proof. Take any node v € L(x, y), and let u, be a colliection point of C(x, y) with
respect to v. Since u,,veL(x,y), we have d(x, u,)+d(u,,y)=d(x, v)+

d(v, y) =[d(x, w)) + d(u,, v)] +[d(v, u,) + d(w,, y)]. This implies d(u,, v} =0,
oru,=v. ThusveC(x,y). O

Lemma 2. If L(x, z,y), L(x, u, z) and L(z, v, y) are chains, then L(u, z, v) is a
chain.

Proof. By definition of a chain and the triangle inequality, d(x, y) =d(x, u) +
d(u, z)+ d(z, v) +d(v, y) =d(x, u) + d(u, v) + d(v, y) =d(x, y), which implies
d(u, z)+d(z,v)=d(u,vj. O

Lemmas 3-3 follow from: the definition of a chain and the triangle inequality.

Lemma 3. If C(x, 2) and C(z,y) are ckains and z e L{x, v} hen C(x, z)U
C(z, y) is a chain.

Lemma 4. If L(2,...,2) is @ chain, then L(z,...,2) is a chain for
j=0,..., k.

Lemma 8. If L(x, x', y) and L(x', x, y) are chains, then x =x'.
Lemma 6. If C(x, y)=C(x’', y'), then Lix, y)=L(x', y').

Proof. Let C(x,y)=C(x, z, y). Then since any point in C(x’, y') belongs to
L(x, z) or L(z, y), we may say without loss of generality that x’ € L{x, 2) and
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that C(x', y') = C{x’, z, y'). We may also assume that z ¢ {x, y} or z ¢ {x', y'},
since otherwise the lemma is trivial; we assume the latter without loss of
generality. Furthermore, x € L(x', z) or xe L(z,y’'). In the latter case x'e
L(z, y') since x' € L(z, x), so that L(z,x',y') and L(x', z, y') are chains. This
implies by Lemma 5 that x’' =z, contrary to assumption. Thus x € L(x', z), so0
that L(x,x’',z) and L(x',x,z) are chains, and x =x' by Lemma 5. Also
L(y,y',x) and L(y', y,x')=L(y', y, x) are chains, so that y=y' by Lemma 5.
The claim follows. O

Lemma 7. Every 2-chain L(x, z, y) in a reticular space contains a chain C(x, z, y)
of finitely many treelike segments.

Proof. We know that chains C(x, z) and C(z,y) of finitely many ireelike
segments exist. Since zelL(x,y), we have by Lemma 3 that
C(x, z, y)=C(x, ) U C(z, y) is a chain of finitely many treelike segments. [

It is convenient to break the equivalence proof ¢f convexity and treclikeness
down into lemmas.

Lemma 8. If (S, V, d) has a convex metric, then any chain C(x, w, y) of two
treelike chains C(x, w) and C(w, y) is itself a treelike chair

Proof. Suppose to the contrary that C(x, w, y) is not treelike so that it lacks a
collection point with respect to some node v. Let u,, u, be collection points of
C(x, w) and C(w, y), respectively, with respect to v. We note first that if u; =w,
then for any zeC(x,w) we have d(z,v)=d(z, w)+d(w,v)=d(z,w)+
d(w, u,) +d(u,, v) = d(z, u,)+d(u,, v), so that u, serves as a collection point
of C(x, w, y) with respect to v, contrary to hypothesis. Thus u, # w, and similarly
u,#w. By Lemma 2 we L;(uy, u,) for some Ae(0,1). Also d(w,v)=(1-
Ad(w, v) + Ad(w, v) > (1 - A)d(u,, v) + Ad(u,, v), which contradicts the con-
vexity of the metric. [

Lemma 9. If all chains of two treelike chains in (S, V, d) are treelike, then any
chain C(x, y) of finitely many treelike chains is treelike.

Preof. Let C(x, y)=C(zZ, . . . , z:), where z=x, z, =y, and each C(2;, zi+1) is
treelike, i=1,...,k —1. By hypothesis C(z, z;) is treelike. If we assume
C(zo, 2)) is a treelike chain, then by Lemma 4 C{2o, 2;+1) = C(2, 7))V C(z;, i)
is a chain, which by hypothesis is treelike. The lemma follows by induction. O

Theorem 3. If (S, V, d) is reticular, then it is sreelikc if and only if d is a convex
metric.
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Proof. If (S, V, d) is treelike, then by Theorem 1 d is a convex metric. Suppose,
then, that d is convex, and show that any 2-chain L(x, z, y) is treelike. By
Lemma 7, L(x, z,y) contains a chain C(x, z,y) of finitely many treelike
segments, which by Lemmas 8 and 9 is treelike and therefore contains a collection
point «, with respect to any given v € V. We will show that u, is also a collection
point for L(x, z, y), so that L(x, z, y) is treelike.

Case 1. u, is no! interior to C(x, z, y), so that C(x, z, y) = C(u,, y') for some y’.
Lemma 6 implies L{x,y)= L(u,,y'). So, given any teLl(x, z,y), we have
teL(u,y') and d@', v)=d(y’, u,) +d(w,, v)=d(y’", £) +d{t, u,) + d(t,, v) >
d(y’, t)+d(t, v)=d(y’', v). Thus d(¢, v) =d(¢, u,) + d(u,, v), which implies that
u, is a collection pnint for L(x, z, y).

Case 2. u, is interivr to C(x, z,y), so that u, ¥x,y. We may suppose that
v ¢ C(x, z, y), since otherwise v is a collection point of L(x, z, y) with respect to
itself. Thus u, is an interior exit point and thercforc a node. Take anv
teL(x,z,y) and supposc without loss of generality that te L(x, z). Then
L(x, t, z) contains a chain C(x,t, z) of finitely many treelike segments, and
L(z,y) contains a chain C(z,y) of finitely many treelike segments; let
C(x, t,y)=C(x, ¢, 2)UC(z, y). By Lemmas 8 and 9, C(x, ¢, y) is treelike and
contains a collection point u,, with respect to v. If u,, is not interior to C(x, ¢, y),
then by the argument of Case 1 u, is a collection point for L(x, z, y) and the
theorem is proved. Thus we assume that u,, is interior to C(x, t, y). As before we
may suppose that v ¢ C(x, ¢, y), so that u, is an interior exit point and therefore a
node. Now by Lemma 1 u, e C(x, 2, y) and u, € C(x, t, y), so that d(u,, v)=
d(uy, u,) +d(u,, v) and d(w,, v) = d(x,, uy) + d(u,, v). These imply by Lemma
5 that u,=u,. Thus wu, is a collection point for C(x,t,y), and d(t, v)=
d(t, u,) + d(u,, v). Since ¢ is an arbitrary element of L(x, z, y), i, is a collection
point of L(x, z,y). O

7. Piecewise conmvex metrics

Given set D c S in a metric space with nodes (S, V, d), let us say that d is
convex on D if d(v, -): D— R is convex for all v € V. Let d be piecewise conver if
every line segment L(x, y) contains a chain C(x, y) of finitely many line segments
on which d is convex. For brevity we will say that (S, ¥/, d) is piecewise convex if
its metric is.

A network is piecewise convex as well as reticular, because its metric is convex
on trcelize segments But treelikeness and convexity of metric are not equivalent
on piecewise convex spaces, even those in which every interior exit point is a
node, as they are on reticular spaces. We have already seen this in Example 2.
Thus a piecewise convex space need not be reticular.
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One might conjecture that all reticular spaces are piecewise convex, and we
prove this below for finite spaces. In Example 1, for instance, we see that
although there is one decomposition of L{w, y) into treclike segments, namely
into the single segment L(w, y), on whlch d is not convex, there is another
decomposition, into L{w, x) and L(x, y), on which d is convex. We see in Example

6, however, that an infinite reticular space need not be piecewise convex, since

Il'n..’ n\ contains no chain f'(n n\ of ﬁnufplu manv seements on which 4 is
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convex. The results to follow can be extended to mﬁmte spaces that satisfy certain
additional properties, but these greatly compiicate the proofs {5, 6].
To show that finite reticular spaces are piccewise convex we show that the

P a1 07-34 ¢etmanlilra cnherinra? and thot ane 9w) namtaing l-n awn
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C(x, y) of line segments that are treelixe subspaces.

Let a treelike subspace T of a metric ~pace with nodes (S, V, d) be a subset of
(S, V, d) that, in isolation, is a treelike space. Mo.e precisely, T = § must be a
convex treelike set, and (7, Vr, d') must be a treelike space, where Vi consists of
V N T plus all exit points of T in (S, V, d), and where d' is d restricted to 7 X T.
In Example 1, L(w, y) contains a chain L(w, x, y) of two treclike subspaces.

Lemma 10. The metric d is convex on any treclike subspace of a reticular space
(S, V, d).

Proof. To show that d(v, -) is convex on treelike subspace (T, Vr, d') for any
v e V, let u, be a collection point on T with respect to v. Since u, is either a node
of (S, V, d) or an exit point of 7, it is a node of (T, V7, d'), sc that by Theorem 1
d’'(u,, -) is convex on T. Thus d(v, J=d(v, u,)+d'(u,, -)isconvexon 7. O

Lemma 13. Every line segment L(x, y) of a finite reticular space (S, ', d) contains
a chain C(x, y) of convex treelike segments.

Proof. We construct C(x, y) using a recursive procedure P, whose argument is a
line segment to be replaced with a chain of treeiike segments. We begin by taking
C(x, y) = C(xo, yo) to be a chain of treelike segments, which we know to exist,
and by calling P{L(x,, y,)) for each nonconvex segment L(x,, y;} of C{xo, Yo).
The Procedure P is as follows.

Procedure P(L(x,.y,)). Since L(x,.y,) is nonconvex, for some pair X, y,€
L(xn, ¥,), L(x,, y.) contains a point z, ¢ L(x,, y,). Thus {x, y.} # {xn, y»), and
by Lemma 3 either L(x,, x,, ¥,) 0t L(x,, yn, y,) contains a chain C(x,, y.) of at
least two distinct treelike segments. Let C(x,, y,) replace L(x,, y.) in C(x, y).
For each nonconvex treelike segment L(X,+1, Yusi) Of C(xn, y,) call
P(L{%n+1> Yn+1})- This completes Procedure P.
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It is clear that since § is finite, n is bounded, and the procedure terminates with
a chain C(x, y) of convex treelike segments. [l

Theorem 4. If a reticular space (S, V, d) is finite, then every line segment L(x, y)
contains a chain C{x, y) of treelike subspaces.

Proof. We construct C(x, y) with a recursive procedure Q. We begin with a
chain C(x, y) = C(x, yo) of convex treelike segments, which we know by Lemma
12 to exist, and by calling Q(L(x,, y,)) for each segment L(x,, y,) of C(xo, y,)
that is not a treelike space. The Procedure Q is as follows.

Procedure Q(L(x,, y,)). Since L(x,,y,) is a convex treelike segment but not a
treelike subspace, there is a node or exit point w of L(x,, y,) with respect to
which some 2-chain L(x,, z,, y») in L(x,, y,) has no collection point. We can
suppose that {x,, z., Y.} # {X,, Y.}, since otherwise L(x,, z,, ¥,} = L(x,, y,) and
w would be a coiiection point of Lfx,, z,, y,) with respect to itself. Thus by
Lemmas 3 and 11, L(x,, x,, y,), L{x,, z., ¥,) or L(x,, y,, y,) coniains a chain
C(x,, y,) of at least two distinct convex treelike segments. Let C(x,, y,) replace
L(x,, y.) in C(x,y). Call Q(L(X,+1, Yn+1)) for each segment L(x,+1, Yp+1) Of
C(x,, y,) that is not a treelike subspace. This completes Procedure Q.

subspaces. U
From Lemma 10 and Theorem 4 we have,

Corollary. Any finite reticular space has a piecewise convex metric.
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