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Two distinctive and fundamental metrical properties of a network (conceived as an infinite 
point set with a metric) are: (a) it is a tree if and only if its metric is convex, ML (b) it 
decomposes into finitely many treelike segments on which the metric is convex. We show that 
(a) and (b) are intimately related by proving that equivalence (a) holds in a class of networklike 
or ‘reticular’ metric spaces that are characterized by decomposability into treelike segments and 
whose finite models exhibit many of the important metrical properties of networks. 

Let us consider a n&work (rigorously defined b&w) ~3 be the infinite 
collection of points on finitely many rectifiable urc.s, wbosc endpoints are nodes. 
Two arcs may intersect, if at all, only at nodes. The nletric of the network is the 
function that assigns to every pair of points the shortest-path distance between 
them. We therefore speak of a network, a continuous structure, in. opposition to a 
graph, the familiar discrete structure. 

Recent work on network location problems has uncovered two distinctive and 
fundamental properties of a network’s metric. One, established in [2], is that the 
metric is convex (in a natural sense to be defined shortly) if and only if the 
network is a tree. The other, which we observed in 13, 41, is that any network is 
made up of finitely many “treeiike” subsets on which the metric is convex. 

ow that these two properties are intimately related, in t 
e generalize the notion of treeiikemess to metric spaces an 

define a class of metric spaces, “reticular :Faces”, that have certain 
distinguished as “ es” and that decompose into treehke piec in much the way 
that networks do. e show that if a metric space is reticular, 
treelike if and only if it has a convex metric, whereas t 
down if the metric space is 

is result suggests that 
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A network’s metric is “piecewise convex” in that a network decomposes into 
subsets on which the metric is convex. In fact, it is convex on treelike subsets. But 

a reticular space need not be piecewise convex (i.e., have a piecewise convex 
metric), and a piecewise convex space need not be reticular. Piecewise convexity 
is a weaker property th,,& lVIz mp ~~*+~larity, in that (a) treelikeness and convexity of 
metric are not equivalent in piecewise convex spaces, as they are in reticular 
spaces, and (b) we prove that finite reticular spaces are piecewise convex, 
whereas the converse does not hold. 

2. 

I.,et (S, d) be a metric space with metric or distance function d. A natural 
definition of betweenness, introduced by Pasch f?, S], is that given distinct points 
x, y, z E S, t is be&geen x and y if d(x, y) = d(x, z) + d(z, y). Following [2], we 
say that z E L&, y) if d(x, t) = Ild(x, y), A E (G, 1), and z is between x and y. 
Also ,5,(x, y) = x and L,(x, y) = y. The line segment L(x, y) connecting x and y is 
the set containing X, y and the points between them. 

We note that possibly L(x, y) = L(x’, y’) even when {x, y} f {x’, y’}. For 
instance, if S = W2 and d is the rectilinear metric whereby d((q, x2), (yl, y2)) = 

Ix1 - ~4 + 1x2 - YZL ihen WI, ~23~ (y19 ~2)) = Uh ~~),6+, x2)). 
e definitions in [2] for convexity in networks adapt readily to metric spaces. 

Set D c S is a convex set if L(x, y) c D for all x, y E D. A function f : D+ R is 
COIEV~X on a convex set D if for all A. E [Cl, l] and all z E &(xX, y), f(z) s 

(1--4f(x)+af(Y). 

fine a network essentially as in [I]. Let r = {vi, . . . , v,} be a finite set 
Of With each pair vi, Vj (16 i < j G m) associate a bijection tii : [0, 114 SO 
for which t@) = ZJ~ and t&l) = z+, an MC [vi, vi] = [vi, vi] = Sd, and a positive arc 

e req,uke that the sets [vi, vj] \ {vi, Vi} be pairwlse disjoint for all i, ja 

= L_J {Sij}, E = (eij}, and T = (tij}, the quadruple (S, y, E, 7’) is a 
nelwo&. 

as follows. Let any sequence of 
where are dis- 
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length of P. Finally, for any X, y E S let &x, y) = d(y, X) be the length of any 

shortest path from x to y; &, y) = OQ if no path connects x and y. A connected 
network is one in which eve distance is finite. 

It will be convenient to denote ($, yS E, T) with the triple (8, v, 4). It follows 
immediately from the definition of d that if ($, y, 8) is connected, (8, (a) is a 
metric space. From here out we suppose that all networks under discussion are 
connected. 

Given points X, y in a network, L(x, y) contains the points on all shortest paths 
from x to y. We say that a network. (8, &‘, d) has a convex metric if 
B(vi, l ) : $4 R is convex for all vj E V. 

A tree is a network in which exactly one path connects any given pair of nodes. 
Dearing, Francis and Lowe prove in [2] that &, .) : $+ R is convex for all x E $ 
if and only if (8, ,V, 4) is a tree. A slight modification of their proof establishes 
that d is a convex metric if and only if it (8, r, 41) is a tree. 

We show in [3] that any network (8, K, & decomposes into finitely many 
treelike pieces on which the metric is convex, in the following sense. Let us say 
that x E 8 is a boundary point if there are at least two shortest paths from x to 
some node vui, where x is said to be generated by vi. If a connected set D c $’ 
contains no boundary points, then D and its closure (in the metric topology) are 
treelike sets. A network is clearly the union of finitely many treelike sets (a tree is 
itself a treelike set). In particular, any line segment L(.x, y) is a union of finitely 
many treelike line segments (treelike segmenti, for short). 

It is not hard to show [3] that ql(Vi, .) : D-B R is convex for each convex treelike 
set D c $. This is useful in solving network location problems, because one can 
decompose the problem into subprobiems on treelike segments, where the 
convexity of the metric makes the subproblems relatively easy to solve. 

If L(z0, . . . , Zk) denotes L(q,, zi) U . 0 l U E(z~-~~ I~), we say that 

L(%, - * *, 5) is a c&in (in particular, a K-c!zretr,) connecting ~0 and zk if 

d(Zg, &) = d(r,, Zl) 4- - * * + d(Zk_i, zk). It will be convenient to ado 

vention that C(yO, = . . , ym) denotes any chain of the form L(zO, . . . 

YO = sb, Y??l = zk, and (YIP . . . , ypn--1) c (zb . . . , zk-& 

If (S, d) is a metric space and V c S is a set of points arbitrarily disti~~g~i 
nodes, we refer to (S, V, d) as a metric space with nodes. T%e major role of nodes 
is to serve as points with respect to which treelikeness is defined. 

c S to be a co1lecticrz goi 
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. If (S, V, d) ib treelike, then d is a convex metric. 

Let x, y E S and v E V. Pick an arbitrary A E [O, 11 and z E L&, y) Since 
(S, V, d) is treelike, L(x, z, y) contains a collection point u, with res 

U, E L(z, y), then d(z, v) = d(x, v) - d(x, z) = d(x: v) - Ad(x, y) 
A[d(x, v) - d(y, v)] = (I- A)d(x, v) + Ad@, v), arly if u, E L(x, z). The 
convexity of the metric follows. q 

e note that it is not enough to ensure convexity of metric that every line 
segment be treeli . Consider the following 

x, y, z}, d(w, x) = d(x, y) = d(y, z) = d(z, w) = 1, and 
ere every line segment is treelike. For L(w, x), 

Uw=gz=wandcc,=uY =x, and similarly for L(x, y)) L(y, z) and L(z, w). Also 
L(w, y) = L(x, z) = S, so that L(w, y) and L(x, z) are trivially treelike. But 
d(a, w) is not convex on L(x, z). We can observe, however, that neither of the 
Zchains L(x, w, z) and L(x, y, z) is treelike, as required for a treelike space. 

also note that d(., ao) need not be convex for all points u in a treelike space. 
If we let V = 9) in Example 1, the space is trivialiy treelike, but d(*, w) is again 
not convex. e therefore require of a convex metrix d only that d(=, v) be 
convex for all v E V. 

Although treelikeness is sufficient for convexity of metric, the converse is not 
true. 

_ Let S=V={w,x,y,z), dfw,x)=d(x,y)=d(y,z)= 
= 4, and d(x, z) = 1. (The arrows in Fig. 1 are merely 
e see that d(s, v) is convex for any node v, but neither 

L(w, x, y) nor L(w, z, y) nor even L(x, z) is treelike. We can observe here that 
L(w, y) fails to contain a chain C(w, y) of treelike pieces, since L(w, x), L(x, y), 
L(w, z) and L(z, y) are not treelike. Similarly, L(x, z) fails to contain such a 

since L(x, z) is not treelike. This suggests the definition of a reticular space 
next section, 

We conclude this section with a s. One might expect that a 
e sense, between any two 

.,~~L(x,y)with~==x; 
for i = 0, . . . , k - 1, the set L(zn, . _ . , ok) is a 

ems in a treelike 
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Fig. 3. 

L(v, y) is not a path because L(v, z, x, y) is not a chain. 
the following. 

cm, however, show 

. Every line segment connecting two nodes in Q treelike space is a path. 

f‘ &lppr.c 7 the contrary that L(x, y) is not a path. Then for some 

&, e . . , &_I E L(x, y), with d(x, Zi) S d(x, Zi+l) for i = 1, . . . , k - 1 and zk =y, 

L(x, z1, . D . , z&-~, y) is not a chain. Thus d(x, y) <d(.x, zI) + - l . + d(zkBI, y). 
Let j be the smallest integer such that d(x, zj) <d(x, ZJ + - - * + d(ziVI, zj). 
Clearly, j exists, j > 1, and L(x, zj-1, q) is not a chain. Let u, and u,, be collection 
points of L(z- ,_I, zi) with respect to x and y, respectively. Clearly we cannot have 

4 = zj_1, since this would imply that L(x, z~-~, zj) is a chain. AISO since 
d(zj_1, y) ad(Zj, yjI WCT observe that u,, *Zj-l- Then We have d(X, Zi-1) + 

d(zj_p, y) = .d(x, uxx) -+ d(u,, zi._:) + d(zj-1, icy) + d(uY, y) > d(x, x2) + d(gx, l+j + 
d(u,,, y) 2 d(x, y), which vira!ates the assumption that Zj-1 E I.@, Y). q 

5. 
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Fig. 2. 

. (Fig. 2). Let S = (u, x, y, zl, z2} and V = {v), where d(x, q) = 
d(z,, j) = d(z,, y) = d(z,, z2) = 2, d(v, zl) = d(v, z2) = 1, d(v, x) = 

d(v, y) = 3, and d(x, y) =4. The metric is convex, and every line segment 
contains a treclike chain. But the space is not treelike because the 2-chain 
E(x, x, y) = L(xp y) is not treelike. 

The missing condition is analogous to the r irement that intersections of 
three or more arcs in a network must be nodes. e first say that z E D is an exit 
point of D e S if z is a col!ection point u, of D with respect to some node v $ D. 
Also z E C(x, y) is interior to a chain C(x, y) if for all w E S, C(z, w) f C(x, y). If 
(S, “y’, d) is a metric space with nodes, z E S is an interior exit point of (S, V, d) if 
it is an interior exit point of some chain in S. 

ace with nodes (S, V, d) is a reticular space if it satisfies two 
every line segment L(x, y) in S contains a chain C(x, y) of finitely 

many treelike segments, and (b) V contains all the interior exit points of 
xample 4 is not a reticular space because interior exit 
nodes. If they were, the space would still fail to be 

for instance, wouid not conram a chain C(x, zIj of 

(S’, a/‘, d’) is a reticular space, 

are the treelike se 
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Fig. 3. 

us say that a reticular space (S, V, d) can be embedded in a network (S, Y, d) if 
there is a distance-preserving bijection # :S+S’, where (S’, y’, d’) is a 
subnetwork of (S, y, 8) and e(V) = v’. A large variety of infinite reticular 
spaces cannot be embedded in networks. 

e 5. Let S be the unit square [0, 11 x [0, I] in I?‘, let V = 

w (9, W), (09 11, (1, m and let d be the rectilinear metric. Then every line 
segment L(X, y) is itself treelike, because its closest corner ?o 21 E V ts a collection 
point with respect to V. Also there are no interior exit points. Thus (S, V, d) is a 
reticular space, but it is embeddable in no network. (Note that if S = [Q, I+ E] x 
[O, 11, then for all x2 E [0, I], (1, x2) is a node because it is au interior exit point of 
L((0, 0), (1 + E, x2)), from which it similarly follows that all points in S are nodes. 
Thus (S, V, d) is not reticular because L(x, y) contains no chain C(X, y) of finitely 
many treelike segments.) 

Consider the networks (a, $$, dii) of Fig. 3, i = 0, 1, . . . , where & is 
the set of points and J$ the set of nodes between and including ?ro and IJ~+~, and 
all arcs, between 2Si and Vi+1 have length 2-‘. Let S contain all the nodes in the 
.__r- _ UFICV:: of the &>‘s, --I--= V* 2nd !eP T/ = (v% !‘a: IJ:, : r . )_ Far w, z E g define L’?U,. 
d(w, Z) Z- R(W, Z) ailed d(W, Z) = di(W, Vi+l) + d(tJi+l, V), 

(S, V, d) is reticular because the interior exit points v 
because U-xi, Vi), L(xi, Vi+l)p L(Vi, yi), L(ui+l, Yi), and L(Vi, V) are 

treelike for i, j E (0, 1, . . . ). But (S, V, d) is not ernoe 
Finite reticular spaces can likewise fail to be e 

that every distance-preserving bijection maps a non-n 



Consi+~ a shortest path LX in 8 from e(x) to @(z,), a shortest path L,, from 
e(y) to #(zI), and a shortest path L, from #(Q) to #(zJ~ Let wXY be the point in 
j?& n L,, that is nearest zz, and similarly for w,, and wYz. kfi wXj = w,, = wYz = #(zI), 
then &(zI) E K’, contrary to the condition that e(V) = Y’. us Xy , WC, or W& 
must distinct from &); we may suppose without loss of generality that 
w”, f $4~~). Then 4x:, y) = dW(~), 44~)) s &#W, w*,) + +kY, #W) < 
#(9(x), @(zI)) + #(@(z~), e(y)) = d(x, zl) + d(z,, y) = d(x, y), a contradiction. 

. co reti aces 

To prove our main result, that treelikeness and convexity of metric are 
equivalent in reticuisr spaces, we must first establish some properties of chains. 

If L(x, y) coniaim a treelike chain C(x, y), then C(x, y) contains all the 

Take any node v E L(x, y) and let u, be a coliection point of C(X, y) with 
respect to Y. Since 4, u E L(x, y), we have d(x, h)+d(u,, y)=d(x, v) + 
d(v, Y) = r u,,) + d(q,, v)] + [d(v, k) + d(b, y)]. This imphes d(h, v) = 0, 
CWUtf=v. s v E C(x, y). cl 

chain. 
If &(x, Z, y), L(x, u, z) and L(z, v, y) are chains, then L(u, z, v) is a 

nition of a chain and the triangle inequality, d(x, y) = d(x+ U) + 
d(u, z) -b d(z, V) + d(v, y) 3 d(x, U) + d(u, v j + d(v, y) 2 d(x, y), which implies 
d(u, z) + d(z, v) = d(u, v). Cl 

as 3-5 follow from the definition of a chain and the triangle inequality. 

If C(x, z) and C(z, y) are &aim and x E .I& y> f&en C(x, 2) U 

(x”, x, y) are 
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that C(x’, y ‘) = C( x’, z, y’). We may also assume that z $ {x, y} or .z $ ix’, y’}, 
since otherwise the lemma is trivial; we assume the latter without loss of 
generality. Furthe (x’; zj or x E L(z, y’). n the latter case X’ E 
L(z, y’) since X’ E L(z, x), so that L(z, x’, y’) and L(x’, t, y’) are chains. This 
implies by Lemma 5 that X’ = 2, contrary to assumption. Thus x E L(x’, z), so 
that I,@, x’, z) and I_,@‘, X, z) are chains, and x =x’ by Lemma 5. Also 
LCy, y’, .IT) and I,@‘, y, x’) = L(y’, y, X) are chains, so that y = y’ by Lemma 5. 
The claim follows. 0 

a 7. Every 2-chain L(x, z, y) in a reticular space contains a chain C(x, z, y) 
of finitely many treelike segments. 

‘We know that chains C(x, z) and C(z, y) of finitely many treelike 
segments exist. Since z E L(.x, y), we have by Lemma 3 that 
C(X, z, y) = C(x, z) U C(r, yj is a chain of finitely many treelike segments. 0 

It is convenient to break the equivalence proof s:f convexity and treelikeness 
down into lemmas. 

If (S, V, d) has a convex metric, then any chain C(x, w, y) of two 
treelike chhins C(x, w) and C(w, y) is itself a treelike chair 

. Suppose to the contrary that C(x, w, y) is not trcelike so that it lacks a 
collection point with respect to some node v. Let ckl, u2 be collection points of 
C(x, w) and C(w, y), respectively, with respect to v. We note first that if u1 = w, 
then for any z E C(x, w) we have d(z, v) = d(r, w) + d(w, v) = d(z, w) + 
d(w, up) + d(uZ, v) = d(z, ua) + d(uZ, v), SO that u2 serves as a collection point 
of C(x, w, y) with respect to v, contrary to hypothesis. Thus u1 # w, and similarly 
u2# w. By Lemma 2 w E Ln(uI, u2j for some A E (0,l). Also d(w, v) = (I- 
A)d(w, v) + Ad(w, v) > (1 - A)d( ul, v) + Ad(u2, v), which contradicts the con- 
vexity of the metric. Cl 

. If all chipins of two treelike chains in (S, V, d) are tree&e, 
chein C(x, y) of finitely many treelike chains is treelike. 

Let C(x, y) = C(zO, . . . , zt), where zO =x, z& = y, and each C(Z~, zi+lj is 
zo, zl) is treelike. 
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If (S, V, d) is treelike, then by Theorem 1 d is a convex metric. Suppose, 
that d is convex, and show that any 2-chain L(x, z, y) is treelike. By 

ha 7, L(x, zP y) contains a chain C(X, z, y) of finitely many treelike 
segments, which by Lemmas 8 and 9 is treehke and therefore contains a collection 
point u,, with respect to any given r~ E V. We will show that u,, is also a collection 
point for L(x, z, y), so that L(x, z, y) is treelike. 

Case 1. u, is nm interior to C(X, z, y), so that C(X, z, y) = C(%,, y’) for some y’. 
Lemma 6 implies L(x, y) = L(k, y’). So, given any t E L(x, z, y), we have 
t~L(k,y’) and d(y’, v)=d(y’, u,,)+d(u,, v)=d(y’, t)+d(t, u,,)+d(u,, v)a 
d(y’, t) + d(t, v) 2 d(y’, v). Thus d(t, v) = d(t, 4) + d(b, v), which implies that 
u, is a collection pnint for L(X, 2, y). 

Case 2. u, is interit r ts C(X, z, y), so that ec, #tx, y. We may suppose that 
v $ C(X, z, y), since otherwise t.~ is a collection point of L(x, z, y) with respect to 
itself. Thus u, is an interior exit point and therefore a node. Take any 
t E L(x, z, y) and suppose without loss of generality that t E L(x, z). Then 
I_@, t9 z) contains a chain C(x, t, t) of finitely many treelike segments, and 
L(z, y) contains a chain C(t, y) of finitely many treelike segments; let 
C(X, t, y) = C(x, f, z) U C(z, y). By Lemmas 8 and 9, C(X, t, y) is treelike and 
contains a collection point u: with respect to v. If uh is not interior to C(X, t, y), 

en by the argument of Case 1 uh is a collection point for L(x, z, y) and the 
theorem is proved. Thus we assume that u: is interior to C(X, t, y). As before we 
may suppose that v $ C(x, t, y), 30 that u: is an interior exit point and therefore a 
node. Now by Lemma 1 U: E C(x, z, y) and u, E C(X, t, y), so that d(u:, v) = 
d(u:, k) + d(k, v) and d(h,, v) = d(h, IC:) + d(u:, v). These imply by Lemma 
5 that I&) =u;. us u,, is a collection point for C(.r, t, y), and d(t, v) = 
d(t, k) + d(h, v). Since t is an arbitrary element of t(x, z, y), ;r, is a collection 
point of L(x, z, y). El 

d), let us say that d is 
d be piecewise convex if 
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One might conjecture that all reticular aces are piecewise convex, and we 

prove this below for finite spaces. In Example 1, for instance, we see that 
although there is one decomposition of L(w, y) into treeiike se,gments, namely 
into the single segment L(w, y), on which d is not convex, there is another 
decomposition, into Ljw, X) and L(x, y) on which d is convex. see in Example 
4, however, that an infinite reticular space need not be p e convex, since 
L(q-,, V) contains no chain C(V,, V) of finitely many segments on which d is 
convex. The results to follow can be extended to infinite spaces that satisfy certain 
additional properties, but these greatly complicate the proofs [S, 41. 

To show that finite reticular spaces are piccewise convex, we show that the 
metric is convex on any “treelike subspace” and that any E(x, y) contains a chain 
C(X, y) of line segments that are treei&e subspaces. 

Let a treelike subspace T of a metric -?ace with nodes (S, V, d) be a subset of 
(S, V, d) that, in isolation, is a treelike space. ie precisely, T c S must be a 
convex treelike set, and (T, VT, d’) must be a treelike space, where VT consists of 
V n T plus all exit points of Tin (S, V, d), and where d’ is d restricted to T x T. 
In Example I, L(w, y) contains a chain L(w, x, y ) of two treelike subspaces. 

The metric d is convex on any treilike subspace of a reticular space 

To show that d(v, -) is convex on treelike subspace (T, V,, d’) for any 
v E V, iet 4 be a collection point on T with respect to v. Since u,, is either a node 
of (S, V, d) or an exit point of T, it is a node of (T, V,, d’), so that by Theorem 1 
d’(K, -) is convex on T. Thus ii(v, -) = d(v, u.,,) + d’(k, -) is convex on T. Cl 

Every line segment E(x, y) of a finite reticular space (S, ‘Y, d) contains 
a chain C(x, y) of convex treelike segments. 

We construct C(n, y) using a recursive procedure P, e argument is a 

me segment to be rc?laced with a chain o begin by taking 

C(X, y) = C(X,, ycr) to be a chain of tree1 know to exist, 
(L(x,, y,)) for each nonconvex seg t Ur,, Yl) of C(.%, Yd. 



It is clear that since S is fir&e, n is bounded, and the procedure terminates with 
a chain C(X, y) of convex treelike segments. 0 

If a reticular space (S, V, d) is finite, then every he segment L(x, y) 
contains a chain C(x, y) of treelike subspaces. 

We construct C(X, y) with a recursive procedure Q. We be@n with a 
chain 6=(x, y) = C(Q, y,) of convex treelike segments, which we know by Lemma 
12 to exist, and by calling Q(L(xl, yI)) for each segment I&,, yJ of C&, y,,) 
that is not a treelike space. The Procedure Q is as follows. 

ince E(x,, y,J is a convex treelike segment but not a 
treelike subspace, there is a node or exit point w of L(x,, yJ with respect to 
which some 2-chain I&, z:, y:) in &(x,, yis) has no collection point. We can 
suppose that (xi, z,:, yi} # (x,,, y,}, since otherwise _L(xA, z:, y;) := L(x,, y,) and 
w would be a coiiection point of Lf&, r:, yi) with respect to itself. Thus by 
Lemmas 3 and PI, L(x,, XL, y”), L(xn, zi, y,J or I.&,, , y:, yn) contains a chain 
C(x,, y,J of at least two distinct convex treelike segments. Let C(X,, y,& xq+ce 
L(x,, Y,J in C(GY). Call Q(Ux,+l, y,+d) for each sepent W,+I, Y,+I) of 
C(X,, yn) that is not a treelike subspace. This completes Procedure Q. 

Since S is finite, the procedure __; mzt terminate with a chain C(X, y) of treelike 

rom Le a 10 and Theorem 4 we have, 

ny finite reticular space has a piecewise convex metric. 
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