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Outline

• Mixed integer linear (MILP) modeling

• Disjunctive modeling

• Examples: fixed charge problems, facility location, 
lot sizing with setup costs.

• Knapsack modeling

• Examples: Freight packing and transfer

• Constraint programming models

• Example: Employee scheduling

• Integrated Models

• Examples: Product configuration, machine scheduling 
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Mixed Integer/Linear Modeling

MILP Modeling Systems
MILP Models

Disjunctive Modeling
Knapsack Modeling
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MILP Modeling Systems

• Commercial modeling systems

• AMPL

• GAMS

• AIMMS
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MILP Modeling Systems

• Commercial modeling systems with dedicated solvers

• OPL Studio (runs CPLEX)

• Xpress-BCL (runs Xpress-MP)

• Xpress-Mosel (runs Xpress-MP)

• Excel and Quattro Pro, Frontline Systems (spreadsheet based)

• LINGO 

• MINOPT (also nonlinear)
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MILP Modeling Systems

• Non-commercial modeling systems

• ZIMPL 

• Gnu Mathprog (GMPL)
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An mixed integer linear programming 
(MILP) model has the form

min

, 0

 integer

cx dy

Ax by b

x y

y

+
+ ≥
≥

MILP models
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A principled approach to MILP modeling

• MILP modeling combines two distinct kinds of modeling.

• Modeling of subsets of continuous space, using 0-1 auxiliary 
variables.

• Knapsack modeling, using general integer variables.

• MILP can model subsets of continuous space that are unions of 
polyhedra.

• …that is, represented by disjunctions of linear systems.

• So a principled approach is to analyze the problem as 

disjunctions               integer        
of linear        +      knapsack     
systems               inequalities
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Disjunctive Modeling

Theorem. A subset of continuous space can be represented by an 
MILP model if and only if it is the union of finitely many polyhedra
having the same recession cone.

Polyhedron

Recession cone 
of polyhedron

Union of polyhedra with the 
same recession cone 

(in this case, the origin)
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Modeling a union of polyhedra

Start with a disjunction of linear 
systems to represent the union 
of polyhedra.

The kth polyhedron is {x | Akx ≥ b}

( )
min

k k

k

cx

A x b≥∨

Introduce a 0-1 variable  yk that is 
1 when x is in polyhedron k.

Disaggregate x to create an xk for 
each k.  

{ }

min

, all 

1

0,1

k k k
k

k
k

k

k

k

cx

A x b y k

y

x x

y

≥
=

=

∈

∑

∑
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Tight Relaxations

• Basic fact: The continuous relaxation of the disjunctive MILP 
model provides a convex hull relaxation of the disjunction.

• This is the tightest possible linear model for the 
disjunction.

Union of polyhedra Convex hull relaxation
(tightest linear relaxation)



Slide 12

Tight Relaxations

Convex hull relaxation
(tightest linear relaxation)

To derive convex hull 
relaxation of a disjunction…

{ }

min

, all 

1

0,1

k k k

k
k

k
k

k

k

cx

A x b k

y

x y x

y

≥
=

=

∈

∑

∑

Write each 
solution as a 
convex 
combination 
of points in 
the 
polyhedron

x
1x

2x
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Tight Relaxations

Convex hull relaxation
(tightest linear relaxation)

{ }

min

, all 

1

0,1

k k k
k

k
k

k

k

k

cx

A x b y k

y

x x

y

≥
=

=

∈

∑

∑

To derive convex hull 
relaxation of a disjunction…

{ }

min

, all 

1

0,1

k k k

k
k

k
k

k

k

cx

A x b k

y

x y x

y

≥
=

=

∈

∑

∑

Write each 
solution as a 
convex 
combination 
of points in 
the 
polyhedron

x
1x

2x

Change of 
variable

k
kx y x=
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Example: Fixed charge function

Minimize a fixed charge function:

x1

x2

2

1
2

1 1

1

min

0 if 0

if 0

0

x

x
x

f cx x

x

= ≥  + > 

≥



Slide 15

Fixed charge problem

Minimize a fixed charge function: 2

1
2

1 1

1

min

0 if 0

if 0

0

x

x
x

f cx x

x

= ≥  + > 

≥

x1

x2

Feasible set
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Fixed charge problem

Minimize a fixed charge function: 2

1
2

1 1

1

min

0 if 0

if 0

0

x

x
x

f cx x

x

= ≥  + > 

≥

x1

x2

Union of two 
polyhedra
P1, P2

P1
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Fixed charge problem

Minimize a fixed charge function: 2

1
2

1 1

1

min

0 if 0

if 0

0

x

x
x

f cx x

x

= ≥  + > 

≥

x1

x2

Union of two 
polyhedra
P1, P2

P1

P2
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Fixed charge problem

Minimize a fixed charge function: 2

1
2

1 1

1

min

0 if 0

if 0

0

x

x
x

f cx x

x

= ≥  + > 

≥

x1

x2

The 
polyhedra
have 
different 
recession 
cones.

P1

P1
recession

cone

P2

P2
recession

cone
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Fixed charge problem

Minimize a fixed charge function:

Add an upper bound on x1

2

1
2

1 1

1

min

0 if 0

if

0

 0

x

x
x

f cx x

x M

=

≤

≥  + >

≤


x1

x2

The 
polyhedra
have the 
same 
recession 
cone.

P1

P1
recession

cone

P2

P2
recession

coneM
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Fixed charge problem

Start with a disjunction of 
linear systems to represent 
the union of polyhedra

2

1 1

2 2 1

min

0 0

0

x

x x M

x x f cx

= ≤ ≤   ∨   ≥ ≥ +   

x1

x2

P1

P2

M
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Fixed charge problem

Start with a disjunction of 
linear systems to represent 
the union of polyhedra

2

1 1

2 2 1

min

0 0

0

x

x x M

x x f cx

= ≤ ≤   ∨   ≥ ≥ +   

{ }

2

1 2
1 1 2
1 2 2
2 1 2 2

1 2
1 2 1 2

1 1 1 2 2 2

min

0 0
  

0

1,  0,1    

,
k

x

x x My

x cx x fy

y y y

x x x x x x

= ≤ ≤
≥ − + ≥
+ = ∈
= + = +

Introduce a 0-1 variable  yk

that is 1 when x is in 
polyhedron k.

Disaggregate x to create an 
xk for each k.  
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{ }

2

1 2
1 1 2
1 2 2
2 1 2 2

1 2
1 2 1 2

1 1 1 2 2 2

min

0 0
  

0

1,  0,1    

,
k

x

x x My

x cx x fy

y y y

x x x x x x

= ≤ ≤
≥ − + ≥
+ = ∈
= + = +

To simplify, replace        with x1 

since   

2
1x

1
1 0x =
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{ }

2

2
1 2
2 2 2

1 2
1 2

2 2

1

1

2

min

0
  

0

1,  0,1    k

x

My

x c x fy

y y y

x x x

x

x

≤ ≤
≥ − + ≥
+ = ∈
= +

To simplify, replace        with x1 

since   

2
1x

1
1 0x =
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{ }

2

1 2
1 2
2 1 2 2

1 2
1 2

2 2 2

min

0
  

0

1,  0,1    k

x

x My

x cx x fy

y y y

x x x

≤ ≤
≥ − + ≥
+ = ∈
= +

Replace        with x2

because       plays no role in the model

2
2x
1
2x
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{ }

2

1 2

1 2

1

2

2

min

0
  

1,  0,1    k

x

x My

cx fyx

y y y

≤ ≤
− + ≥

+ = ∈

Replace        with x2

Because       plays no role in the model

2
2x
1
2x
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{ }

2

1 2

1 2 2

1 2

min

0
  

1,  0,1    k

x

x My

cx x fy

y y y

≤ ≤
− + ≥

+ = ∈

Replace y2 with y

Because y1 plays no role in the model
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{ }

2

1

2 1

min

0
  

0,1    

x

x M

x cx

y

yf

y

≤ ≤
≥ +

∈

Replace y2 with y

Because y1 plays no role in the model

{ }

min

0
  

0,1

   

cx fy

x My

y

+
≤ ≤

∈
or

“Big M”
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Example:  Uncapacitated facility location

i j

fi cij

Fixed 
cost Transport 

cost

m possible 
factory 

locations n markets Locate factories to serve 
markets so as to minimize 
total fixed cost and 
transport cost.

No limit on production 
capacity of each factory.
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Uncapacitated facility location

i j

fi cij

Fixed 
cost Transport 

cost

n markets Disjunctive model:

min

0 1, all 0,  all 
,   all 

0

1,  all 

i ij ij
i ij

ij ij

i i i

ij
i

z c x

x j x j
i

z f z

x j

+

≤ ≤ =   ∨   ≥ =   

=

∑ ∑

∑

Factory at 
location i

No factory
at location i

Fraction of 
market j’s demand 
satisfied from 
location im possible 

factory 
locations
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Uncapacitated facility location

MILP formulation:

Disjunctive model:

{ }

1 2

1 2

1 2 1 2

min

0 , all , 0, all ,

, all 0, all 

,   ,   0,1

1, all 

i ij ij
i ij

ij i ij

i i i i

ij ij ij i i i i

ij
i

z c x

x y i j x i j

z f y i z i

x x x z z z y

x j

+

≤ ≤ =
≥ =

= + = + ∈
=

∑ ∑

∑

min

0 1, all 0,  all 
,   all 

0

1,  all 

i ij ij
i ij

ij ij

i i i

ij
i

z c x

x j x j
i

z f z

x j

+

≤ ≤ =   ∨   ≥ =   

=

∑ ∑

∑
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Uncapacitated facility location

Let                 since 1
ij ijx x= 2 0ijx =

Let                 since 1
i iz z= 2 0iz =

MILP formulation:

{ }

1 2

1 2

1 2 1 2

min

0 , all , 0, all ,

, all 0, all 

,   ,   0,1

1, all 

i ij ij
i ij

ij i ij

i i i i

ij ij ij i i i i

ij
i

z c x

x y i j x i j

z f y i z i

x x x z z z y

x j

+

≤ ≤ =
≥ =

= + = + ∈
=

∑ ∑

∑
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Uncapacitated facility location

Let                 since 

{ }

min

0 , all ,

, all 

0,1

1, all 

i ij ij
i ij

i

i i

i

ij

ij

i

i

x

z

z c x

y i j

f y i

y

x j

+

≤ ≤
≥
∈

=

∑ ∑

∑

1
ij ijx x= 2 0ijx =

Let                 since 1
i iz z= 2 0iz =

MILP formulation:
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Uncapacitated facility location

Let                 since 

{ }

min

0 , all ,

, all 

0,1

1, all 

i ij ij
i ij

i

i i

i

ij

ij

i

i

x

z

z c x

y i j

f y i

y

x j

+

≤ ≤
≥
∈

=

∑ ∑

∑

1
ij ijx x= 2 0ijx =

Let                 since 1
i iz z= 2 0iz =

{ }

min

0 , all ,

0,1

1, all 

i i ij ij
i ij

ij i

i

ij
i

c x

x y i

f

j

y

x

y

j

+

≤ ≤
∈

=

∑ ∑

∑

or

MILP formulation:
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Uncapacitated facility location

MILP formulation: Beginner’s model:

{ }

min

,  all 

0,1

1, all 

i i ij ij
i ij

ij i
j

i

ij
i

f y c x

x ny i

y

x j

+

≤

∈
=

∑ ∑

∑

∑

Based on capacitated location model.

It has a weaker continuous relaxation

This beginner’s mistake can be avoided by 
starting with disjunctive formulation.

Maximum output 
from location i

{ }

min

0 , all ,

0,1

1, all 

i i ij ij
i ij

ij i

i

ij
i

f y c x

x y i j

y

x j

+

≤ ≤
∈

=

∑ ∑

∑
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Example:  Lot sizing with setup costs

Determine lot size in each period to minimize total 
production, inventory, and setup costs.

t = 0 1 2 3 4 5 6

Demand = D0 D1 D2 D3 D4 D5 D6

Max 
production 
level

Setup cost incurred



Slide 36

0 0

0 0 0
t t t t t

t t t t t

v f v v

x C x C x

≥ ≥ ≥     
∨ ∨     ≤ ≤ ≤ ≤ =     

(1)

Start 
production

(incurs setup 
cost)

(2)

Continue 
production
(no setup 

cost)

(3)

Produce 
nothing

(no production 
cost)

Fixed-cost 
variable

Fixed 
cost

Production 
level

Production 
capacity

Logical conditions:

(2) In period t ⇒ (1) or (2) in period t − 1

(1) In period t ⇒ neither (1) nor (2) in period t − 1
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0 0

0 0 0
t t t t t

t t t t t

v f v v

x C x C x

≥ ≥ ≥     
∨ ∨     ≤ ≤ ≤ ≤ =     

(1)

Start 
production

(2)

Continue 
production

(3)

Produce 
nothing

1
1

1
10

t t t

t t t

v f y

x C y

≥
≤ ≤

2

2
2

0

0
t

t t t

v

x C y

≥
≤ ≤

3

3

0

0
t

t

v

x

≥
=

3 3 3

1 1 1

, ,

{0,1},   1,2,3

k k
t t t t t tk

k k k

tk

v v x x y y

y k
= = =

= = =

∈ =

∑ ∑ ∑

Convex hull MILP model of disjunction:
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1
1

1
10

t t t

t t t

v f y

x C y

≥
≤ ≤

2

2
2

0

0
t

t t t

v

x C y

≥
≤ ≤

3

3

0

0
t

t

v

x

≥
=

3 3 3

1 1 1

, ,

{0,1},   1,2,3

k k
t t t t t tk

k k k

tk

v v x x y y

y k
= = =

= = =

∈ =

∑ ∑ ∑

Convex hull MILP model of disjunction:

To simplify, define

zt = yt1

yt = yt2
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1

10
t

t t

t

t

tv f

x

z

zC

≥
≤ ≤

2

2

0

0 t

t

t t

v

x yC

≥
≤ ≤

3

3

0

0
t

t

v

x

≥
=

3 3

1 1

, ,

{0,1},   1,

1

2,3,

k k
t t t t t t

t t

k k

v v x x

k

z y

z y
= =

+

∈ =

≤= =∑ ∑

Convex hull MILP model of disjunction:

To simplify, define

zt = yt1

yt = yt2

= 1 for startup = 1 for continued 
production
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1

10
t t t

t t t

v f z

x C z

≥
≤ ≤

2

2

0

0
t

t t t

v

x C y

≥
≤ ≤

3

3

0

0
t

t

v

x

≥
=

3 3

1 1

, , 1

, {0,1},   1,2,3

k k
t t t t t t

k k

t t

v v x x z y

z y k
= =

= = + ≤

∈ =

∑ ∑

Convex hull MILP model of disjunction:

Since
set  

3 0tx =
1 2

t t tx x x= +
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1

0 ( )t

t t t

t t tx C y

v z

z

f

≤ ≤ +
≥ 2 0tv ≥ 3 0tv ≥

3

1

, 1

, {0,1},   1,2,3

k
t t t t

k

t t

v v z y

z y k
=

= + ≤

∈ =

∑

Convex hull MILP model of disjunction:

Since
set  

3 0tx =
1 2

1 1 2x x x= +
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1

0 ( )
t t t

t t t t

v f z

x C z y

≥
≤ ≤ +

2 0tv ≥ 3 0tv ≥

3

1

, 1

, {0,1},   1,2,3

k
t t t t

k

t t

v v z y

z y k
=

= + ≤

∈ =

∑

Convex hull MILP model of disjunction:

Since vt occurs positively in the objective function, 
and            do not play a role, let 2 3,t tv v 1

t tv v=
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0 ( )
t t t

t t t t

v f z

x C z y

≥
≤ ≤ +

1

, {0,1},   1,2,3
t t

t t

z y

z y k

+ ≤
∈ =

Convex hull MILP model of disjunction:

Since vt occurs positively in the objective function, 
and            do not play a role, let 2 3,t tv v 1

t tv v=



Slide 44

0 ( )
t t t

t t t t

v f z

x C z y

≥
≤ ≤ +

1 1

1 1

1

, {0,1},   1,2,3

1
t t t

t

t

t

t

t

t t

y z y

z y

z

z z

y

y

k

− −

− −

+

≤
∈

≤ −

≤
=

+
−

Formulate logical conditions:

(2) In period t ⇒ (1) or (2) in period t − 1

(1) In period t ⇒ neither (1) nor (2) in period t − 1
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1

m

0 ( )

in ( )
n

t t t t

t t

t
t

t

t t t t

v f z

x

p x h s

z

v

C y

=

≥
≤ ≤ +

+ +∑

1 1

1 1

1

, {0,1},   1,2,3

1

t t

t t

t t t

t t t

z y

z y k

y z y

z z y
− −

− −

+ ≤
∈ =

≤ +
≤ − −

Add objective function

Unit production cost Unit holding cost
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Knapsack Models

Integer variables can also be used to express counting ideas.

This is totally different from the use of 0-1 variables to express 
unions of polyhedra.
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Example: Freight Transfer

• Transport 42 tons of freight using 8 trucks, which come in 
4 sizes…

40334

50433

60532

90731

Cost 
per 

truck

Capacity

(tons)

Number 
available

Truck 
size
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50433

60532

90731

Cost 
per 

truck

Capacity

(tons)

Number 
available

Truck 
type

1 2 3 4

1 2 3 4

1 2 3 4

min 90 60 50 40

7 5 4 3 42

8

{0,1,2,3}i

x x x x

x x x x

x x x x

x

+ + +
+ + + ≥

+ + + ≤
∈

Number of trucks of type 1

Knapsack 
covering 
constraint

Knapsack 
packing 
constraint
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Example: Freight Packing and Transfer

• Transport packages using n trucks

• Each package j has size aj.
• Each truck i has capacity Qi.
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Knapsack component

The trucks selected must have enough capacity to carry the load.

1

n

i i j
i j

Q y a
=

≥∑ ∑

= 1 if truck i is selected
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Disjunctive component (with embedded knapsack 
constraint)

0

0

0 1, all 

i i
i

j ij i
j ij

ij

z c
z

a x Q
x

x j

 
≥ 

≥  ≤ ∨    =  
 ≤ ≤ 

∑

Truck i
selected

Truck i not
selected

= 1 if package j is 
loaded on truck i

Cost of operating 
truck i

Cost variable

Use continuous 
relaxation 

because we want 
a disjunction of 
linear systems
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0

0

0 1, all 

i i
i

j ij i
j ij

ij

z c
z

a x Q
x

x j

 
≥ 

≥  ≤ ∨    =  
 ≤ ≤ 

∑

Truck i
selected

Truck i not
selected

0

i i i

j ij i i
j

ij i

z c y

a x Q y

x y

≥
≤

≤ ≤

∑

Convex hull 
MILP 

formulation

Disjunctive component (with embedded knapsack 
constraint)
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The resulting model

Disjunctive 
component

Logical condition 
(each package must be shipped)

Knapsack 
component

1

1

1

min

,  all 

0 ,  all ,

1 ,   all 

, {0,1}

n

i i
i

j ij i i
j

ij i

n

ij
i

n

i i j
i j

ij i

c y

a x Q y i

x y i j

x j

Q y a

x y

=

=

=

≤

≤ ≤

=

≥

∈

∑

∑

∑

∑ ∑
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The resulting model

1

1

1

min

,  all 

0 ,  all ,

1 ,   all 

, {0,1}

n

i i
i

j ij i i
j

ij i

n

ij
i

n

i i j
i j

ij i

c y

a x Q y i

x y i j

x j

Q y a

x y

=

=

=

≤

≤ ≤

=

≥

∈

∑

∑

∑

∑ ∑

The yi is redundant but makes 
the continuous relaxation 

tighter.

This is a modeling “trick,” part of 
the folklore of modeling.
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The resulting model

1

1

1

min

,  all 

0 ,  all ,

1 ,   all 

, {0,1}

n

i i
i

j ij i i
j

ij i

n

ij
i

n

i i j
i j

ij i

c y

a x Q y i

x y i j

x j

Q y a

x y

=

=

=

≤

≤ ≤

=

≥

∈

∑

∑

∑

∑ ∑

The yi is redundant but makes 
the continuous relaxation 

tighter.

This is a modeling “trick,” part of 
the folklore of modeling.

Conventional modeling wisdom 
would not use this constraint, 

because it is the sum of the first 
constraint over i.

But it radically reduces solution 
time, because it generates 

knapsack cuts.

This argues for a principled 
approach to modeling.
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Constraint Programming Models

CP Modeling Systems
Global Constraints

Employee Scheduling
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CP Modeling Systems 

• Commercial modeling systems with dedicated solvers

• OPL Studio (runs ILOG Solver, ILOG Scheduler)

• CHIP (runs CHIP solver)

• Mosel (runs Xpress-Kalis)

• Mozart (uses Oz language)

• Non-commercial modeling system with dedicated solvers

• ECLiPSe (runs ECLiPSe CP solver)
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Global constraints 

• A global constraint represents a set of constraints with 
special structure.

• The structure is exploited by filtering algorithms in the CP 
solver.
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Some general-purpose global constraints 

Alldiff - Requires that all the listed variables take different 
values.

Among - Bounds the number of listed variables that take one of 
the values in a list.

Cardinality - Bounds the number of listed variables that take 
each of the values in a list.

Element - Requires that a given variable take the yth value in a 
list, where y is an integer variable.

Path - Requires that a given graph contain a path of at most a 
given length.
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Some global constraints for scheduling

Disjunctive - Requires that no two jobs overlap in time.

Cumulative - Limits the resources consumed by jobs running at 
any one time.  In particular, it can limit the number of jobs 
running at any one time.

Stretch - Bounds the length of a stretch of contiguous periods 
assigned the same job.

Sequence – A set of overlapping among constraints.

Regular – Generalizes stretch and sequence.

Diffn - Requires that no two boxes in a set of multidimensional 
boxes overlap.  Used for space or space-time packing.
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Example: Employee Scheduling 

• Schedule four nurses in 8-hour shifts.

• A nurse works at most one shift a day, at least 5 days a week.

• Same schedule every week.

• No shift staffed by more than two different nurses in a week.

• A nurse cannot work different shifts on two consecutive days.

• A nurse who works shift 2 or 3 must do so at least two days in 
a row.
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Two ways to view the problem

DCCDDDDShift 3

BBBBCCCShift 2

AAAAABAShift 1

SatFriThuWedTueMonSun

Assign nurses to shifts

3003333Nurse D

0330222Nurse C

2222010Nurse B

1111101Nurse A

SatFriThuWedTueMonSun

Assign shifts to nurses

0 = day off
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Use both formulations in the same model!

First, assign nurses to shifts.

Let wsd = nurse assigned to shift s on day d

1 2 3alldiff( , , ),   all d d dw w w d The variables w1d, w2d, 
w3d take different values

That is, schedule 3 
different nurses on each 
day
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( )
1 2 3alldiff( , , ),   all 

cardinality | ( , , , ),(5,5,5,5),(6,6,6,6)
d d dw w w

w A B C

d

D

A occurs at least 5 and at most 6 
times in the array w, and similarly 
for B, C, D.

That is, each nurse works at least 
5 and at most 6 days a week

Use both formulations in the same model!

First, assign nurses to shifts.

Let wsd = nurse assigned to shift s on day d
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( )
( )

( )

1 2 3

,Sun ,Sat

alldiff , , ,   all 

cardinality | ( , , , ),(5,5,5,5),(6,6,6,6)

nvalues ,..., |1,2 ,  all 

d d d

s s

w w w

w

d

A B C D

w w s

The variables ws,Sun, …, ws,Sat take 
at least 1 and at most 2 different 
values.

That is, at least 1 and at most 2 
nurses work any given shift.

Use both formulations in the same model!

First, assign nurses to shifts.

Let wsd = nurse assigned to shift s on day d
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Remaining constraints are not easily expressed in this 
notation.  

So, assign shifts to nurses.

Let yid = shift assigned to nurse i on day d

( )1 2 3,alldiff ,  all ,d d dy y y d

Assign a different nurse to each 
shift on each day.

This constraint is redundant of 
previous constraints, but 
redundant constraints speed 
solution.
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( )
( )

1 2 3

,Sun ,Sat

alldiff ,  all 

stretch , , | (2,3),(2,2),(6,6), ,  all 

, ,d d d

i i

y

P i

y

y y

dy

…

Every stretch of 2’s has length between 2 and 6.
Every stretch of 3’s has length between 2 and 6.

So a nurse who works shift 2 or 3 must do so at least 
two days in a row.  

Remaining constraints are not easily expressed in this 
notation.  

So, assign shifts to nurses.

Let yid = shift assigned to nurse i on day d
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( )
( )

1 2 3

,Sun ,Sat

alldiff ,  all 

stretch , , | (2,3),(2,2),(6,6), ,  all 

, ,d d d

i i

y

P i

y

y y

dy

…

Here P = {(s,0),(0,s) | s = 1,2,3}

Whenever a stretch of a’s immediately precedes a stretch of b’s, 
(a,b) must be one of the pairs in P.

So a nurse cannot switch shifts without taking at least one day off.

Remaining constraints are not easily expressed in this 
notation.  

So, assign shifts to nurses.

Let yid = shift assigned to nurse i on day d
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Now we must connect the wsd variables to the yid variables.

Use channeling constraints:

,   all ,

,   all ,
i

d

d

s

d

w

y

dy

i iw d

s s d

=

=

Channeling constraints increase propagation and make the 
problem easier to solve.
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The complete model is:

,   all ,

,   all ,
i

d

d

s

d

w

y

dy

i iw d

s s d

=

=

( )
( )

( )

1 2 3

,Sun ,Sat

alldiff , , ,   all 

cardinality | ( , , , ),(5,5,5,5),(6,6,6,6)

nvalues ,..., |1,2 ,  all 

d d d

s s

w w w

w

d

A B C D

w w s

( )
( )

1 2 3

,Sun ,Sat

alldiff ,  all 

stretch , , | (2,3),(2,2),(6,6), ,  all 

, ,d d d

i i

y

P i

y

y y

dy

…
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Integrated Models

Modeling Systems
Product Configuration

Machine Assignment and Scheduling



Slide 72

Integrated Modeling Systems

• Commercial modeling systems with dedicated solvers

• OPL Studio (runs CPLEX, ILOG Solver/Scheduler)

• Mosel (runs Xpress-MP, Xpress-Kalis)

• Non-commercial modeling systems with dedicated solvers

• ECLiPSe (runs ECLiPSe CP solver, Xpress-MP)

• SIMPL (just released, open source)
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This example combines MILP modeling with variable indices, 
used in constraint programming.

• It can be solved by combining MILP and CP techniques.

Example: Product Configuration
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Memory

Memory

Memory

Memory

Memory

Memory

Power
supply

Power
supply

Power
supply

Power
supply

Disk 
drive

Disk 
drive

Disk 
drive

Disk 
drive

Disk 
drive

Choose what type of each component, and how many

Personal computer

The problem
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min

, all 

,  all 

i

j j
j

j i ijt
ik

j j j

c v

v q A j

L v U j

=

≤ ≤

∑

∑

Amount of attribute j
produced 

(< 0 if consumed): 
memory, heat, power, 

weight, etc.

Quantity of 
component i

installed

Integrated model

Amount of attribute j
produced by type ti

of component i

Unit cost of producing 
attribute j
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min

, all 

,  all 

i

j j
j

j i ijt
ik

j j j

c v

v q A j

L v U j

=

≤ ≤

∑

∑

Integrated model

ti is a variable 
index

( )1

,  all 

element ,( , , ), ,  all ,

j i
i

i i ij i ijn i

v z j

t q A q A z i j

=∑

…

This 
is reformulated
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min

, all 

,  all 

i

j j
j

j i ijt
ik

j j j

c v

v q A j

L v U j

=

≤ ≤

∑

∑

Integrated model

ti is a variable 
index

( )1

,  all 

element ,( ), ,  all ,, ,i

j i
i

i ij i i n ij

v z j

t zq A q A i j

=∑

…

This 
is reformulated

Set zi equal to the tith item in the red list.
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Machine Assignment and Scheduling

• Assign jobs to machines and schedule the machines assigned 
to each machine within time windows.

• The objective is to minimize makespan.

• Combine MILP and CP modeling 

Time lapse between 
start of first job and 
end of last job.
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Machine Scheduling

( )

min

, all 

,  all 

disjunctive ( ),( ) ,  all 

j

j

j x j

j j j x j

j j ij j

M

M s p j

r s d p j

s x i p x i i

≥ +

≤ ≤ −

= =

Start time 
variable for 
job j

Makespan

The model is Processing time of job j
on machine xj Machine 

assigned to job j
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Machine Scheduling

( )

min

, all 

,  all 

disjunctive ( ),( ) ,  all 

j

j

j x j

j j j x j

j j ij j

M

M s p j

r s d p j

s x i p x i i

≥ +

≤ ≤ −

= =

Release time 
for job j Time windows

The model is

Deadline 
for job j
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Machine Scheduling

( )

min

, all 

,  all 

disjunctive ( ),( ) ,  all 

j

j

j x j

j j j x j

j j ij j

M

M s p j

r s d p j

s x i p x i i

≥ +

≤ ≤ −

= =

Start times of 
jobs assigned 
to machine i

Disjunctive global 
constraint requires that 
Jobs do not overlap

The model is
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Machine Scheduling

( )

min

, all 

,  all 

disjunctive ( ),( ) ,  all 

j

j

j x j

j j j x j

j j ij j

M

M s p j

r s d p j

s x i p x i i

≥ +

≤ ≤ −

= =

The problem can be solved by logic-based Benders decomposition.

Master problem is 
this plus Benders 
cuts, solved as an 
MILP
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Machine Scheduling

( )

min

, all 

,  all 

disjunctive ( ),( ) ,  all 

j

j

j x j

j j j x j

j j ij j

M

M s p j

r s d p j

s x i p x i i

≥ +

≤ ≤ −

= =

The problem can be solved by logic-based Benders decomposition.

Master problem is 
this plus Benders 
cuts, solved as an 
MILP

Subproblem is this, solved by CP
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Proposal

• Replace atomistic modeling with modeling based on global 
constraints.

• Including specially-structured families of inequalities.

• Build solvers with constraint-based control.

• Each global constraint invokes specialized filters, 
relaxations, cutting planes.


