
Recent Developments in Logic-Based

Methods for Optimization

John Hooker

Carnegie Mellon University

Santa Fe Institute

July 2019

Logic and Optimization

2

• Boole’s probability logic and linear programming

• Decision diagrams and optimization

• Predicate logic and integer programming

• Resolution and cutting planes

• Logic and duality

• Consistency and backtracking

Logic and Optimization

3

• Boole’s probability logic and linear programming

• Decision diagrams and optimization

• Predicate logic and integer programming

• Resolution and cutting planes

• Logic and duality

• Consistency and backtracking

Focus on decision diagrams due to possible

synergy with quantum computation.

Probability Logic and Linear Programming

Probability Logic and Linear Programming

5

George Boole is best known for Boolean logic.

But he proposed a strikingly original formulation

of reasoning under uncertainty...

.
…probability logic.

It was forgotten or ignored

for over 100 years.

Boole 1854

6

In 1970s, Theodore Hailperin showed that probability logic poses a

linear programming problem.

He sees this as implicit in Boole’s own work.

The idea was re-invented by AI community

in 1980s.

Nils Nilsson

Probability Logic and Linear Programming

Hailperin 1976,

1984, 1986

Nilsson 1986

Statement Probability

A 0.9

If A then B 0.8

If B then C 0.4

We can deduce C,

but with what probability?

Boole’s insights:

• We can only specify a range of probabilities for C.

• The range depends mathematically on the probabilities

of possible states of affairs (possible worlds).

Probability Logic and Linear Programming

Statement Probability

A 0.9

If A then B 0.8

If B then C 0.4

First, interpret the if-then

statements as material

conditionalsStatement Probability

A 0.9

not-A or B 0.8

not-B or C 0.4

Probability Logic and Linear Programming

Statement Probability

A 0.9

not-A or B 0.8

not-B or C 0.4

There are 8 possible worlds:

A B C Prob.

false false false p000

false false true p001

false true false p010

false true true p011

true false false p100

true false true p101

true true false p110

true true true p111

Identify the possible outcomes

(possible worlds), each having

an unknown probability.

Probability Logic and Linear Programming

Statement Probability

A 0.9

not-A or B 0.8

not-B or C 0.4

There are 8 possible worlds:

A B C Prob.

false false false p000

false false true p001

false true false p010

false true true p011

true false false p100

true false true p101

true true false p110

true true true p111

p100 + p101 + p110 + p111 = 0.9

The worlds in which A is true must

have probabilities that sum to 0.9.

Probability Logic and Linear Programming

Statement Probability

A 0.9

not-A or B 0.8

not-B or C 0.4

There are 8 possible worlds:

A B C Prob.

false false false p000

false false true p001

false true false p010

false true true p011

true false false p100

true false true p101

true true false p110

true true true p111

p100 + p101 + p110 + p111 = 0.9

p000 + p001 + p010 + p011 + p110 + p111 = 0.8

Probability Logic and Linear Programming

Statement Probability

A 0.9

not-A or B 0.8

not-B or C 0.4

There are 8 possible worlds:

A B C Prob.

false false false p000

false false true p001

false true false p010

false true true p011

true false false p100

true false true p101

true true false p110

true true true p111

p100 + p101 + p110 + p111 = 0.9

p000 + p001 + p010 + p011 + p110 + p111 = 0.8

p000 + p001 + p011 + p100 + p101 + p111 = 0.4

Probability Logic and Linear Programming

Statement Probability

A 0.9

not-A or B 0.8

not-B or C 0.4

There are 8 possible worlds:

A B C Prob.

false false false p000

false false true p001

false true false p010

false true true p011

true false false p100

true false true p101

true true false p110

true true true p111

p100 + p101 + p110 + p111 = 0.9

p000 + p001 + p010 + p011 + p110 + p111 = 0.8

p000 + p001 + p011 + p100 + p101 + p111 = 0.4

p000 +  + p111 = 1

Probability Logic and Linear Programming

Statement Probability

A 0.9

not-A or B 0.8

not-B or C 0.4

There are 8 possible worlds:

A B C Prob.

false false false p000

false false true p001

false true false p010

false true true p011

true false false p100

true false true p101

true true false p110

true true true p111

p100 + p101 + p110 + p111 = 0.9

p000 + p001 + p010 + p011 + p110 + p111 = 0.8

p000 + p001 + p011 + p100 + p101 + p111 = 0.4

p000 +  + p111 = 1

Minimize and maximize probability of C:

p001 + p011 + p101 + p111

subject to these equations and pijk  0

Probability Logic and Linear Programming

Statement Probability

A 0.9

not-A or B 0.8

not-B or C 0.4

p100 + p101 + p110 + p111 = 0.9

p000 + p001 + p010 + p011 + p110 + p111 = 0.8

p000 + p001 + p011 + p100 + p101 + p111 = 0.4

p000 +  + p111 = 1

Minimize and maximize probability of C:

p001 + p011 + p101 + p111

subject to these equations and pijk  0

This is a linear programming problem.

The result is a range of probabilities

for C:
0.1 to 0.4

Probability Logic and Linear Programming

Statement Probability

A 0.9

not-A or B 0.8

not-B or C 0.4

p100 + p101 + p110 + p111 = 0.9

p000 + p001 + p010 + p011 + p110 + p111 = 0.8

p000 + p001 + p011 + p100 + p101 + p111 = 0.4

p000 +  + p111 = 1

Minimize and maximize probability of C:

p001 + p011 + p101 + p111

subject to these equations and pijk  0

This is a linear programming problem.

The result is a range of probabilities

for C:

Probability Logic and Linear Programming

0.1 to 0.4

Large instances solved by column

generation.

There are linear programming models for logics of belief and evidence

such as Dempster-Shafer theory and related systems.

Leonid

Kantorovich

A. P. Dempster Glenn Shafer

Probability Logic and Linear Programming

Dempster 1968, Shafer 1976

Decision Diagrams and Optimization

Motivation

• Mixed integer programming is mainstream

state of the art in combinatorial optimization.

• Goal: solve NP-hard problems to proven

optimality.

Decision Diagrams and Optimization

Motivation

• Mixed integer programming is mainstream

state of the art in combinatorial optimization.

• Goal: solve NP-hard problems to proven

optimality

• Versatile modeling framework (linear

integer inequalities)

• Accommodates complex constraints.

• Solvers developed over decades, extremely well engineered

(CPLEX, Gurobi, SCIP)

• Solvers follow (algorithmic) Moore’s Law, but reaching plateau.

• Basic operation is solution of a linear programming relaxation

(complicated)

• SAT solvers also fast, but less versatile modeling

Decision Diagrams and Optimization

Motivation

• Mixed integer programming is mainstream state

of the art in combinatorial optimization

• Basic operation is solution of a linear programming

relaxation (complicated)

• Recent development: Discrete optimization with

decision diagrams

• Goal: solve to proven optimality

Decision Diagrams and Optimization

Motivation

• Mixed integer programming is mainstream state

of the art in combinatorial optimization

• Basic operation is solution of a linear programming

relaxation (complicated)

• Recent development: Discrete optimization with

decision diagrams

• Goal: solve to proven optimality

• Versatile modeling (recursive/dynamic programming)

• Accommodates complex constraints (no need for linearity/convexity)

• Basic operation is solution of shortest path problem (very simple)

• Highly parallelizable.

• Compute shortest paths with quantum machine?

• Possible killer app for quantum computing?

Decision Diagrams and Optimization

First, some background on decision diagrams.

Decision Diagrams and Optimization

Boolean logic was forgotten for decades, except in the minds of a few

logicians, including philosopher Charles Sanders Pearce.

Pearce saw that Boolean logic could be represented by switching circuits.

C. S. PearceG. Boole

Pearce 1886

Decision Diagrams

Boole 1847, 1854

Claude Shannon was required to take a philosophy course

while an undergraduate at University of Michigan, where he

was exposed to Pearce’s work.

This gave rise to his famous master’s thesis , A Symbolic

Analysis of Relay and Switching Circuits, which provided

the basis of modern computing.

C. Shannon

Shannon 1940

Decision Diagrams

C. Y. Lee proposed binary-decision programs as a

means of calculating the output of switching circuits.

S. B. Akers represented binary-decision programs with

binary decision diagrams.

R. E. Bryant showed that ordered BDDs provide a

unique minimal representation of a Boolean function.

Ordered BDD

Lee 1959

Akers1978

Bryant 1986

Decision Diagrams

There is a unique reduced DD representing any given Boolean

function, once the variable ordering is specified.

The reduced DD can be viewed

as a branching tree with

redundancy removed.

Superimpose isomorphic subtrees

and remove redundant nodes.

Bryant (1986)

Randy Bryant

Decision Diagrams

x0

x1

x2 x2

x3 x3 x3 x3

1 1

x1

x2 x2

x3 x3 x3 x3

1 0 1 1 1 0 1 1 1 0 1 0 0 0 1

Branching tree for 0-1 inequality

1 indicates feasible solution,

0 infeasible

0 1 2 32 3 5 5 7x x x x   

0 1x  0 0x 

x0

x1

x2 x2

x3 x3 x3 x3

1 1

x1

x2 x2

x3 x3 x3 x3

1 0 1 1 1 0 1 1 1 0 1 0 0 0 1

Remove redundant nodes…

Branching tree for 0-1 inequality

0 1 2 32 3 5 5 7x x x x   

x0

x1

x2 x2

x3 x3 x3 x3

1 1

x1

x2 x2

x3 x3 x3 x3

1 0 1 1 1 0 1 1 1 0 1 0 0 0

x0

x1

x2 x2

x3

1

x1

x2 x2

0

x3

1 0

x3

1 0

x3

011 1 1 0

x0

x1

x2 x2

x3

1

x1

x2 x2

0

x3

1 0

x3

1 0

x3

01

Superimpose identical

subtrees…

1 1 1 0

x0

x2

x1

x2

x3

1 0

x3

1 0

x0

x1

x2 x2

x3

1

x1

x2 x2

0

x3

1 0

x3

1 0

x3

011 1 1 01 0

x0

x2

x1

x2

x3

1 0

x3

1 01 0

Superimpose identical

subtrees…

x0

x2

x1

x2

x3

1 0

x3

1 01 0

x0

x2

x1

x2

x3

1 0 01

x0

x2

x1

x2

x3

1 0 01

Superimpose identical leaf

nodes…

x0

x2

x1

x2

x3

1 0

x0

x2

x1

x2

x3

1 0 01

as generated by software

x0

x2

x1

x2

x3

1 0

BDDs have long been used for logic circuit design and

product configuration.

They were recently adapted to optimization and

constraint programming.

Decision Diagrams and Optimization

Hadžić and JH (2006, 2007)

Andersen, Hadžić, JH and Tiedemann (2007)
Tarik Hadžić

Henrik Reif

Andersen

39

Modeling

with recursive

formulations

Relaxation

with relaxed

diagrams

Primal

heuristics

with restricted

diagrams

Constraint

propagation

through a

relaxed diagram

Search

with a novel branch-and-

bound method

Optimization

Postoptimality

analysis

with sound diagrams

Decision Diagrams and Optimization

40

Weighted decision diagrams can represent the feasible set of an

optimization problem.

• Remove paths to 0.

• Paths to 1 are feasible solutions.

• Associate costs with arcs (= weighted)

• Reduces optimization to a shortest (longest) path problem

Given a canonical distribution of arc costs (trivial to compute),

Bryant’s uniqueness theorem generalizes to weighted DDs.

Decision Diagrams and Optimization

JH (2013)

1

2 3

5 4

Maximal Stable Set Problem

(Maximal independent set problem)

Let each vertex have weight wi

Let xi = 1 when vertex i is in stable set

Select nonadjacent vertices to maximize i wixi

x1

x2

x3

x4

x5

Exact DD for

stable set problem

1

2 3

5 4

{12345}

Build DD with

top-down

compilation

(unlike CS

literature)

Associate a state

with each node

x1

x2

x3

x4

x5

Exact DD for

stable set problem

1

2 3

5 4

{12345}

{2345} {34}

Build DD with

top-down

compilation

(unlike CS

literature)

Associate a state

with each node

x1

x2

x3

x4

x5

Exact DD for

stable set problem

1

2 3

5 4

{12345}

{2345} {34}

{345} {4} {34}

Build DD with

top-down

compilation

(unlike CS

literature)

Associate a state

with each node

x1

x2

x3

x4

x5

Exact DD for

stable set problem

1

2 3

5 4

{12345}

{2345} {34}

{345} {4} {34}

{45}
{4}

Merge nodes that

correspond to the

same state

{4}

x1

x2

x3

x4

x5

Exact DD for

stable set problem

1

2 3

5 4

{12345}

{2345} {34}

{345} {4} {34}

{45} {4}

Merge nodes that

correspond to the

same state

x1

x2

x3

x4

x5

Exact DD for

stable set problem

1

2 3

5 4

{12345}

{2345} {34}

{345} {4} {34}

{45} {4}

{5}





x1

x2

x3

x4

x5

Exact DD for

stable set problem

1

2 3

5 4

{12345}

{2345} {34}

{345} {4} {34}

{45} {4}

{5}







This DD can be

viewed as the

state transition

graph for a

dynamic

programming

formulation of the

problem.

x1

x2

x3

x4

x5

Exact DD for

stable set problem

1

2 3

5 4

{12345}

{2345} {34}

{345} {4} {34}

{45} {4}

{5}







Resulting DD is

not necessarily

reduced

(it is in this case).

DD reduction is a

more powerful

simplification

method than DP

Decision diagrams, multilayer neural networks, and

dynamic programming are based on the same principle:

The amount of information that can be represented

by the network increases exponentially with the depth.

Decision Diagrams and Optimization

Nonetheless, the width of a DD can grow exponentially with the

size of the problem instance.

Decision Diagrams and Optimization

Nonetheless, the width of a DD can grow exponentially with the

size of the problem instance.

Solution? Use relaxed DD of limited width.

A relaxed DD represents a superset of feasible set.

Decision Diagrams and Optimization

Andersen, Hadžić, JH and Tiedemann (2007)

Nonetheless, the width of a DD can grow exponentially with the

size of the problem instance.

Solution? Use relaxed DD of limited width.

A relaxed DD represents a superset of feasible set.

Relaxed DDs yield optimization bounds.

• Shortest (longest) path length is a bound on optimal value.

• Paradoxically, a relaxed DD that represents more solutions

can be smaller.
– Analogous to LP relaxation in IP, but discrete.

– Does not require linearity, convexity, or inequality constraints.

Decision Diagrams and Optimization

Andersen, Hadžić, JH and Tiedemann (2007)

x1

x2

x3

x4

x5

1

2 3

5 4

{12345}

To build relaxed

DD, merge some

additional nodes

as we go along.

Use generic

merging heuristics.

x1

x2

x3

x4

x5

1

2 3

5 4

{12345}

{2345} {34}

To build relaxed

DD, merge some

additional nodes

as we go along.

Use generic

merging heuristics.

In this case, take

union of merged

states

x1

x2

x3

x4

x5

1

2 3

5 4

{12345}

{2345} {34}

{345} {4} {34}

To build relaxed

DD, merge some

additional nodes

as we go along.

Use generic

merging heuristics.

In this case, take

union of merged

states

x1

x2

x3

x4

x5

1

2 3

5 4

{12345}

{2345} {34}

{345} {34}

To build relaxed

DD, merge some

additional nodes

as we go along.

Use generic

merging heuristics.

In this case, take

union of merged

states

x1

x2

x3

x4

x5

1

2 3

5 4

{12345}

{2345} {34}

{345} {34}

{45}  {4}

To build relaxed

DD, merge some

additional nodes

as we go along.

Use generic

merging heuristics.

In this case, take

union of merged

states

x1

x2

x3

x4

x5

1

2 3

5 4

{12345}

{2345} {34}

{345} {34}

{45} 

{5} 

To build relaxed

DD, merge some

additional nodes

as we go along.

Use generic

merging heuristics.

In this case, take

union of merged

states

x1

x2

x3

x4

x5

1

2 3

5 4

{12345}

{2345} {34}

{345} {34}

{45} 

{5} 



Represents 11

solutions,

including 9

feasible solutions

Width = 2

x1

x2

x3

x4

x5

{12345}

{2345} {34}

{345} {34}

{45} 

{5} 



Represents

11 solutions,

including

9 feasible

solutions

Width = 2

Longest path (90)

gives bound on

optimal value (70)

20

40

0

0

050

10

0

0

0

1

2 3

5 4

20

40 50

30 10

50

30

0

0

Bound from Relaxed DD

Bounds from DDs

vs. state-of-the-art

integer programming

solver for max stable

set problem

• IP solver bound

relies on 50 years

of experience

with cutting planes

• DD max width

of 1000.

• DDs require

about 5% the

time of IP solver

62

Bergman, Ciré,

van Hoeve, JH (2013)

IP solver bound

is better

DD bound

is better

DDs normally provide bounds within a solver, but they can also

provide bounds for problems solved heuristically.

DDs plus Lagrangian duality can provide very sharp bounds.

For example, bounds mostly within 0.1% of best known solutions

of Biskup-Feldman machine scheduling instances with time

windows (never solved to optimality). Sometimes, the bounds

prove optimality.

JH (2019)

Bound from Relaxed DD

Propagation through a relaxed DD can substantially improve

performance of constraint programming.

Example: Traveling salesman problem with time windows

and other sequencing problems.

DDs allowed closure of several open problem instances.

Decision Diagrams and Optimization

Ciré, van Hoeve (2013)

TSP with

time windows

Pure CP better

CP + DD

better

Computation time scatter plot, lex search

Performance profile, depth-first search

CP solver alone

CP solver + DD

TSP with

time windows

A restricted DD represents a subset of the feasible set.

Restricted DDs provide a basis for a primal heuristic.

Primal heuristic = algorithm that finds solutions that are not optimal in general

Primal heuristics are an important factor in recent improvements of IP solvers.

Bergman, Ciré, van Hoeve, Yunes (2014)

Decision Diagrams and Optimization

Optimality gap for set covering, n variables

Restricted DDs vs

Primal heuristic at root node of CPLEX

Primal heuristic in IP solver

Restricted DD

Computation time

Restricted DDs vs

Primal heuristic at root node of CPLEX (cuts turned off)

Restricted DD

Primal heuristic

in IP solver

DDs provide a general purpose solver for discrete

optimization.

• Bounds from relaxed DDs.

• Primal heuristic from restricted DDs.

• Recursive modeling

• Novel branching algorithm – branch inside relaxed DD

70

Bergman, Ciré, van Hoeve, JH (2016)

Decision Diagrams and Optimization

1

2

3

4

5

6

Diagram is exact

down to here

Branching in a relaxed

decision diagram

71

Branching Algorithm

Branch on nodes in

this layer

Branching in a relaxed

decision diagram

72

1

2

3

4

5

6

Branching Algorithm

First branch

New relaxed decision diagram

Branching in a relaxed

decision diagram

73

1

2

3

4

5

6

Branching Algorithm

First branch

New relaxed decision diagram

Branching in a relaxed

decision diagram

74

1

2

3

4

5

6

Branching Algorithm

Pruning based on cost bounds obtained

from solving shortest path problem

in relaxed DDs

Second branch

Branching in a relaxed

decision diagram

75

1

2

3

4

5

6

Branching Algorithm

Pruning based on cost bounds obtained

from solving shortest path problem

in relaxed DDs

Third branch

Continue recursively

Branching in a relaxed

decision diagram

76

1

2

3

4

5

6

Branching Algorithm

Pruning based on cost bounds obtained

from solving shortest path problem

in relaxed DDs

Branching Algorithm

Finding shortest (longest) path in a relaxed DD is the

fundamental calculation,

…much as solving an LP is the fundamental calculation in

traditional MIP solvers.

Max cut

on a graph

Avg. solution

time vs

graph density

30 vertices

0

10

20

30

40

50

60

70

80

0 0.2 0.4 0.6 0.8 1

A
v
e

ra
g

e
 s

o
lu

ti
o

n
 t
im

e
 (

s
e

c
)

Density of graph

Computational performance

General purpose

DD-based solver

State-of-the-art

IP solver

Max 2-SAT

Performance

profile

30 variables

0

10

20

30

40

50

60

70

80

90

100

0.1 1 10 100 1000

N
u

m
b

e
r

o
f
in

s
ta

n
c
e

s
 s

o
lv

e
d

Computation time (sec)

Computational performance

IP solver

DD-based

solver

Bergman and Ciré (2018)

Portfolio design

Nonlinear Optimization

Decompose problem into multiple DDs

Portfolio design

Bergman and Ciré (2018)

Nonlinear Optimization

Product assortment

Bergman and Ciré (2018)

Nonlinear Optimization

Workflow employee assignment

Bergman and Ciré (2018)

Nonlinear Optimization

Workflow employee assignment

Bergman and Ciré (2018)

Nonlinear Optimization

2+5

1+15

4+3

2+9

0+6

0 21

0 21

0 21

0

0

0+8

0+6
0+4

0+12

0+9

0+10

0+20

0+15

4+6

4+0

2+10

2+0

4+0

0+12

2+3

2+6

1+5

1+10

2+6

State transition graph for

inventory problem

Simplification of Dynamic Programming Models

JH (2013)

We can reformulate the recursion to yield

the unique reduced weighted DD.

Radical simplification of the problem –

only 1 state per stage.

12

0

13 14

10 9 8

6 7 8

4

JH (2013)

Simplification of Dynamic Programming Models

Parallelization

Parallel computation with DDs achieves almost 100% linear speedup.

(Mixed integer programming achieves about 30% speedup)

Bergman, Cire,

Sabharwal,

Samulowitz,

Saraswat, van

Hoeve (2014)

Stable set

problem

Can we turn over the shortest path problem to a quantum

computer?

• Possibly radical speedup

• Possible application of quantum computing to a

wide variety of constrained combinatorial optimization

problems.

• Possible massive parallization (solve many shortest

path problmems at once).

88

Killer App?

Predicate Logic and Integer Programming

Fundamental compactness result in 1st-order predicate logic:

Theorem (Herbrand). A formula in Skolem

normal form is unsatisfiable if and only if some

finite combination of Herbrand ground instances

of its clauses is unsatisfiable.

Predicate Logic and Integer Programming

Jacques

Herbrand

Herbrand 1930

Fundamental compactness result in 1st-order predicate logic:

Theorem (Herbrand). A formula in Skolem

normal form is unsatisfiable if and only if some

finite combination of Herbrand ground instances

of its clauses is unsatisfiable.

Fundamental compactness result in infinite

integer programming:

Theorem. An IP with infinitely many constraints

is infeasible if and only if some finite subfamily

of the constraints is infeasible.

Predicate Logic and Integer Programming

Jacques

Herbrand

Herbrand 1930

Fundamental compactness result in 1st-order predicate logic:

Theorem (Herbrand). A formula in Skolem

normal form is unsatisfiable if and only if some

finite combination of Herbrand ground instances

of its clauses is unsatisfiable.

Fundamental compactness result in infinite

integer programming:

Theorem. An IP with infinitely many constraints

is infeasible if and only if some finite subfamily

of the constraints is infeasible.

These are the same theorem!

Predicate Logic and Integer Programming

Jacques

Herbrand

Herbrand 1930

Resolution and Cutting Planes

An input proof is a resolution proof in which one parent of every

resolvent is among the original premises.

Resolution is a complete inference method

for propositional logic.

Resolution and Cutting Planes

Quine1952,1955

Resolution:

W. V. Quine

Cutting planes are an essential component of IP solvers.

Studied for over 50 years.

Approximate convex hull

of integer solutions…

…so that LP relaxation

gives tighter dual bound.

Resolution and Cutting Planes

Gomory 1960, etc.

Original inequality

constraints

Cutting plane

Convex hull

of integer solutionsRalph Gomory

A resolvent is a cutting plane (rank 1 Chvátal cut)

Resolution and Cutting Planes

Proof of Chvátal’s cutting plane theorem

(fundamental result in cutting plane theory)

implicitly relies on resolution!

V. Chvátal

Chvátal 1973

A resolvent is a cutting plane (rank 1 Chvátal cut)

Resolution and Cutting Planes

Chvátal’s cutting plane proof implicitly relies

on resolution!

Theorem. The logical clauses one can infer using input proofs are

precisely those that are rank 1 cuts.

Theorem. Resolution can be generalized to a complete inference

method for 0-1 inequalities (a logical analog of Chvátal’s theorem).

V. Chvátal

Chvátal 1973

JH 1989

JH 1992

Logic and Duality

An optimization problem can be viewed from two perspectives:

99

Logic and Duality

Search for minimum

cost solution that

satisfies constraints.

Deduce from constraints

the tightest possible

lower bound on cost.

Primal problem:

Search

Dual problem:

Logical inference

When the dual inference method is complete,

the primal and dual have the same optimal value

(strong duality)

Duality first described for linear programming & game theory

100

Logic and Duality

LP minimization

Also an LP, solution

provides multipliers for
optimality proof.

Primal problem Dual problem

Player 1 in 2-person

noncooperative game
Player 2 in game

John von

Neumann

Primal problem Dual problem

George

Dantzig

Optimization problems are typically solved by primal-dual algorithms.

Search for primal and dual solution simultaneously.

All optimization duals are logical inference problems.

This implies a tight connection between logic and optimization.

Logic and Duality

min ()f x

x S

max

()
P

v

x S f x v

P

  

PFind best feasible

solution by

searching over

values of x.

Find a proof of optimal

value by searching over

proofs P.

Primal problem:

Optimization
Inference dual

In classical LP, the proof is a tuple of dual multipliers

102

Logic and Duality

Logic and Duality

Type of Dual Inference Method Strong?

Linear programming Nonnegative linear combination

+ material implication

Yes*

Lagrangian Nonnegative linear combination

+ domination

No

Surrogate Nonnegative linear combination

+ material implication

No

Subadditive Cutting planes Yes**

*Due to Farkas Lemma

**Due to Chvátal’s theorem

LP Duality



  
0

max

x

v

Ax b cx v







min

0

cx

Ax b

x
implies

Dual problem: Find the tightest lower bound on the objective

function that is implied by the constraints.

104

Logic and Duality

From Farkas Lemma: If Ax  b, x  0 is feasible,

 



  
  



0 implies
iff

for some 0

x Ax b cx v
Ax b cx v

A  c and b  v

105

LP Duality

Logic and Duality



  
0

max

x

v

Ax b cx v







min

0

cx

Ax b

x

From Farkas Lemma: If Ax  b, x  0 is feasible,











max

0

b

A c

 This is the

classical

LP dual

106

LP Duality

Logic and Duality

A  c and b  v



  
0

max

x

v

Ax b cx v







min

0

cx

Ax b

x

 



  
  



0 implies
iff

for some 0

x Ax b cx v
Ax b cx v

() 0 dominates () 0
() 0 () iff

for some 0

x S g x f x v
g x f x v





   
  



max

() ()
s S

v

g x b f x v


  

min ()

() 0

f x

g x

x S





Let us say that

Primal Dual

Surrogate

g(x)  f(x)  v for all x  S

That is, v  f(x)  g(x) for all x  S

Lagrangian Duality

Primal Dual

g(x)  f(x)  v for all x  S

That is, v  f(x)  g(x) for all x  S

If we replace domination with material implication,

we get the surrogate dual, which gives better bounds

but lacks the nice properties of the Lagrangean dual.

Lagrangian Duality

max

() ()
s S

v

g x b f x v


  

min ()

() 0

f x

g x

x S





() 0 dominates () 0
() 0 () iff

for some 0

x S g x f x v
g x f x v





   
  



Let us say that

Surrogate

Primal Dual

g(x)  f(x)  v for all x  S

That is, v  f(x)  g(x) for all x  S

Or  min () ()
x S

v f x g x


 

Lagrangian Duality

max

() ()
s S

v

g x b f x v


  

min ()

() 0

f x

g x

x S





() 0 dominates () 0
() 0 () iff

for some 0

x S g x f x v
g x f x v





   
  



Let us say that

Surrogate

If we replace domination with material implication,

we get the surrogate dual, which gives better bounds

but lacks the nice properties of the Lagrangean dual.

So the dual becomes

 

max

min () () for some 0
x S

v

v f x g x 


  

Lagrangian Duality

Primal Dual

g(x)  f(x)  v for all x  S

That is, v  f(x)  g(x) for all x  S

Or

max

() ()
s S

v

g x b f x v


  

min ()

() 0

f x

g x

x S





() 0 dominates () 0
() 0 () iff

for some 0

x S g x f x v
g x f x v





   
  



Let us say that

Surrogate

 min () ()
x S

v f x g x


 

Often, decomposition is the key to solving large optimization problems.

• Break the problem into smaller components.

• Solution time increases superlinearly

with component size.

• Faster to solve many small problems

than one large one.

Components must communicate somehow

to reach globally optimal solution.

• Decomposition can nonetheless make

problem tractable,

• Given the right problem structure.

Logic, Duality and Decomposition

Benders decomposition is a well-known and often successful

decomposition method.

Classical Benders decomposition requires an LP subproblem.

• The Benders cuts are obtained from the LP dual of the subproblem.

112

Benders Decomposition

Benders 1962

Benders decomposition is a well-known and often successful

decomposition method.

Classical Benders decomposition requires an LP subproblem.

• The Benders cuts are obtained from the LP dual of the subproblem.

Logic-based Benders decomposition accepts any optimization problem

as the subproblem.

• Benders cuts are obtained from an inference dual of the subproblem.

Speedup over state of the art can be several orders of magnitude.

• Benders cuts must be designed specifically for every class of problems.

113

Benders Decomposition

JH 2000

JH, Ottosson 2003

Benders 1962

114

Number of Articles that Mention Benders Decomposition

Logic and Duality

Logic-based Benders decomposition solves a problem of the form

where the problem simplifies when x is fixed to a specific value,

…usually by decoupling into small components

115

min (,)

(,)

,x y

f x y

x y S

x D y D



 

Logic-based Benders

Decompose problem into master and subproblem.

Subproblem is obtained by fixing x to solution value in master problem.

min

() (Benders cuts)k

x

z

z g x

x D





min (,)

(,)

f x y

x y S

Minimize cost z subject to

bounds given by Benders

cuts, obtained from previous

iterations k.

Obtain proof of optimality

(solution of inference dual).

Use same proof to deduce

cost bounds for other

assignments, yielding

Benders cut.

Trial value x

that solves

master

Benders cut

z  gk(x)

Master problem Subproblem

x

116

Logic-based Benders

Iterate until master problem value equals best subproblem value so far.

Classical Benders uses LP dual of subproblem to obtain a proof.

min

() (Benders cuts)k

x

z

z g x

x D





min (,)

(,)

f x y

x y S

Minimize cost z subject to

bounds given by Benders

cuts, obtained from previous

iterations k.

Obtain proof of optimality

(solution of inference dual).

Use same proof to deduce

cost bounds for other

assignments, yielding

Benders cut.

Trial value x

that solves

master

Benders cut

z  gk(x)

Master problem Subproblem

x

117

Logic-based Benders

0

5

10

15

20

25

30

35

40

45

50

0.01 0.1 1 10 100 1000 10000

N
u

m
b

e
r

o
f

n
s

ta
n

c
e

s
 s

o
lv

e
d

Computation time (sec)

Performance profile

118

Machine Assignment and Scheduling

Ciré, Çoban, JH 2016

Logic-based Benders with strong cuts

Logic-based Benders with weak cuts

State-of-the-art IP solver

119

Home Healthcare Routing and Scheduling

*Cuts are generated during a single branch-and-bound solution of master problem

Heching, JH, Kimura 2018

IP solver

Logic-based Benders

Logic-based Benders

with branch and check*

LBBD in planning and scheduling:

• Chemical batch processing (BASF, etc.)

• Auto assembly line management (Peugeot-Citroën)

• Allocation and scheduling of multicore processors (IBM, Toshiba, Sony)

• Steel production scheduling

• Worker assignment in a queuing environment

120

Logic-based Benders Applications

Other scheduling applications:

• Lock scheduling

• Shift scheduling

• Permutation flow

shop scheduling

• Resource-constrained

scheduling

• Hospital scheduling

• Optimal control of

dynamical systems

• Sports scheduling

121

Logic-based Benders Applications

LBBD in routing and scheduling:

• Vehicle routing

• Home health care

• Food distribution

• Automated guided

vehicles in flexible

manufacturing

• Traffic diversion

• Concrete delivery

122

Logic-based Benders Applications

LBBD in location and design:

• Allocation of frequency

spectrum (U.S. FCC)

• Wireless local area

network design

• Facility location-allocation

• Stochastic facility location

and fleet management

• Capacity and distance-

constrained plant location

• Queuing design and control

123
123

Logic-based Benders Applications

Other LBBD applications:

• Logical inference (SAT solvers essentially use Benders!)

• Logic circuit verification

• Bicycle sharing

• Service restoration

in a network

• Inventory

management

• Supply chain

management

• Space packing

124

Logic-based Benders Applications

Consistency and Backtracking

Consistency is a core concept of constraint programming.

A consistent partial assignment is one that occurs in some

feasible solution.

A constraint set is consistent if all partial assignments that

violate no constraint are consistent with the constraint set.

126

Consistency and Backtracking

Consistency is a core concept of constraint programming.

A consistent partial assignment is one that occurs in some

feasible solution.

A constraint set is consistent if all partial assignments that

violate no constraint are consistent with the constraint set.

Various forms of consistency: full consistency, k-consistency,

domain consistency.

Consistency implies less backtracking

127

Consistency and Backtracking

The concept of consistency never developed in the

optimization literature.

Yet valid inequalities (cutting planes) reduce backtracking

by achieving a greater degree of consistency, as well as

by tightening a relaxation.

128

Consistency and Backtracking

The concept of consistency never developed in the

optimization literature.

Yet valid inequalities (cutting planes) reduce backtracking

by achieving a greater degree of consistency, as well as

by tightening a relaxation.

Consistency can be adapted to MILP.

Cuts that achieve consistency cut off inconsistent 0-1

partial assignments and so reduce backtracking.

129

Consistency and Backtracking

130

This inequality is the sum

of the 2 nontrivial facet-defining

inequalities for S and so is

“weaker.”

Yet it cuts off more infeasible

0-1 points than either

facet-defining inequality.

x2

x1

x3

Consistency and Backtracking

x1 + 2x2 + x3  2

x1 + x2  1

x1 + x2  1

131

The constraint set S is

LP-consistent.

It explicitly excludes infeasible

0-1 partial assignments.

A weak form of LP-consistency

can reduce backtracking

by excluding inconsistent

partial assignments that

facet-defining inequalities

may not exclude.

x2

x1

x3

Consistency and Backtracking

x1 + 2x2 + x3  2

x1 + x2  1

x1 + x2  1

132

We obtain a theory of consistency

parallel to the one in CP.

x2

x1

x3

Consistency and Backtracking

x1 + 2x2 + x3  2

x1 + x2  1

x1 + x2  1

Questions? Comments?

