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3

• Boole’s probability logic and linear programming

• Decision diagrams and optimization

• Predicate logic and integer programming

• Resolution and cutting planes

• Logic and duality

• Consistency and backtracking

Focus on decision diagrams due to possible 

synergy with quantum computation.
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Probability Logic and Linear Programming
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George Boole is best known for Boolean logic.

But he proposed a strikingly original formulation 

of reasoning under uncertainty...

.
…probability logic.

It was forgotten or ignored

for over 100 years.

Boole 1854
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In 1970s, Theodore Hailperin showed that probability logic poses a 

linear programming problem.

He sees this as implicit in Boole’s own work.

The idea was re-invented by AI community

in 1980s.

Nils Nilsson

Probability Logic and Linear Programming

Hailperin 1976, 

1984, 1986

Nilsson 1986



Statement Probability

A 0.9

If A then B 0.8

If B then C 0.4

We can deduce C, 

but with what probability?

Boole’s insights:

• We can only specify a range of probabilities for C.

• The range depends mathematically on the probabilities 

of possible  states of affairs (possible worlds).

Probability Logic and Linear Programming



Statement Probability

A 0.9

If A then B 0.8

If B then C 0.4

First, interpret the if-then 

statements as material 

conditionalsStatement Probability

A 0.9

not-A or B 0.8

not-B or C 0.4

Probability Logic and Linear Programming



Statement Probability

A 0.9

not-A or B 0.8

not-B or C 0.4

There are 8 possible worlds:

A B C Prob.

false false false p000

false false true p001

false true false p010

false true true p011

true false false p100

true false true p101

true true false p110

true true true p111

Identify the possible outcomes

(possible worlds), each having

an unknown probability.

Probability Logic and Linear Programming



Statement Probability

A 0.9

not-A or B 0.8

not-B or C 0.4

There are 8 possible worlds:

A B C Prob.

false false false p000

false false true p001

false true false p010

false true true p011

true false false p100

true false true p101

true true false p110

true true true p111

p100 + p101 + p110 + p111 = 0.9

The worlds in which A is true must 

have probabilities that sum to 0.9.

Probability Logic and Linear Programming



Statement Probability

A 0.9

not-A or B 0.8

not-B or C 0.4

There are 8 possible worlds:

A B C Prob.

false false false p000

false false true p001

false true false p010

false true true p011

true false false p100

true false true p101

true true false p110

true true true p111

p100 + p101 + p110 + p111 = 0.9

p000 + p001 + p010 + p011 + p110 + p111 = 0.8

Probability Logic and Linear Programming



Statement Probability

A 0.9

not-A or B 0.8

not-B or C 0.4

There are 8 possible worlds:

A B C Prob.

false false false p000

false false true p001

false true false p010

false true true p011

true false false p100

true false true p101

true true false p110

true true true p111

p100 + p101 + p110 + p111 = 0.9

p000 + p001 + p010 + p011 + p110 + p111 = 0.8

p000 + p001 + p011 + p100 + p101 + p111 = 0.4

Probability Logic and Linear Programming



Statement Probability

A 0.9

not-A or B 0.8

not-B or C 0.4

There are 8 possible worlds:

A B C Prob.

false false false p000

false false true p001

false true false p010

false true true p011

true false false p100

true false true p101

true true false p110

true true true p111

p100 + p101 + p110 + p111 = 0.9

p000 + p001 + p010 + p011 + p110 + p111 = 0.8

p000 + p001 + p011 + p100 + p101 + p111 = 0.4

p000 +  + p111 = 1

Probability Logic and Linear Programming



Statement Probability

A 0.9

not-A or B 0.8

not-B or C 0.4

There are 8 possible worlds:

A B C Prob.

false false false p000

false false true p001

false true false p010

false true true p011

true false false p100

true false true p101

true true false p110

true true true p111

p100 + p101 + p110 + p111 = 0.9

p000 + p001 + p010 + p011 + p110 + p111 = 0.8

p000 + p001 + p011 + p100 + p101 + p111 = 0.4

p000 +  + p111 = 1

Minimize and maximize probability of C:

p001 + p011 + p101 + p111

subject to these equations and pijk  0

Probability Logic and Linear Programming



Statement Probability

A 0.9

not-A or B 0.8

not-B or C 0.4

p100 + p101 + p110 + p111 = 0.9

p000 + p001 + p010 + p011 + p110 + p111 = 0.8

p000 + p001 + p011 + p100 + p101 + p111 = 0.4

p000 +  + p111 = 1

Minimize and maximize probability of C:

p001 + p011 + p101 + p111

subject to these equations and pijk  0

This is a linear programming problem.  

The result is a range of probabilities 

for C:
0.1 to 0.4

Probability Logic and Linear Programming



Statement Probability

A 0.9

not-A or B 0.8

not-B or C 0.4

p100 + p101 + p110 + p111 = 0.9

p000 + p001 + p010 + p011 + p110 + p111 = 0.8

p000 + p001 + p011 + p100 + p101 + p111 = 0.4

p000 +  + p111 = 1

Minimize and maximize probability of C:

p001 + p011 + p101 + p111

subject to these equations and pijk  0

This is a linear programming problem.  

The result is a range of probabilities 

for C:

Probability Logic and Linear Programming

0.1 to 0.4

Large instances solved by column 

generation.



There are linear programming models for logics of belief and evidence

such as Dempster-Shafer theory and related systems.

Leonid

Kantorovich

A. P. Dempster Glenn Shafer

Probability Logic and Linear Programming

Dempster 1968, Shafer 1976
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Motivation

• Mixed integer programming is mainstream 

state of the art in combinatorial optimization.

• Goal: solve NP-hard problems to proven 

optimality.
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Motivation

• Mixed integer programming is mainstream 

state of the art in combinatorial optimization.

• Goal: solve NP-hard problems to proven 

optimality 

• Versatile modeling framework (linear 

integer inequalities)

• Accommodates complex constraints.

• Solvers developed over decades, extremely well engineered

(CPLEX, Gurobi, SCIP)

• Solvers follow (algorithmic) Moore’s Law, but reaching plateau.

• Basic operation is solution of a linear programming relaxation 

(complicated)

• SAT solvers also fast, but less versatile modeling

Decision Diagrams and Optimization



Motivation

• Mixed integer programming is mainstream state 

of the art in combinatorial optimization

• Basic operation is solution of a linear programming 

relaxation (complicated)

• Recent development:  Discrete optimization with 

decision diagrams

• Goal: solve to proven optimality 
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Motivation

• Mixed integer programming is mainstream state 

of the art in combinatorial optimization

• Basic operation is solution of a linear programming 

relaxation (complicated)

• Recent development:  Discrete optimization with 

decision diagrams

• Goal: solve to proven optimality 

• Versatile modeling (recursive/dynamic programming)

• Accommodates complex constraints (no need for linearity/convexity)

• Basic operation is solution of shortest path problem (very simple)

• Highly parallelizable.

• Compute shortest paths with quantum machine?

• Possible killer app for quantum computing?

Decision Diagrams and Optimization



First, some background on decision diagrams.

Decision Diagrams and Optimization



Boolean logic was forgotten for decades, except in the minds of a few 

logicians, including philosopher Charles Sanders Pearce.

Pearce saw that Boolean logic could be represented by switching circuits.

C. S. PearceG. Boole

Pearce 1886

Decision Diagrams

Boole 1847, 1854



Claude Shannon was required to take a philosophy course 

while an undergraduate at University of Michigan, where he 

was exposed to Pearce’s work.

This gave rise to his famous master’s thesis , A Symbolic 

Analysis of Relay and Switching Circuits, which provided 

the basis of modern computing.

C. Shannon

Shannon 1940

Decision Diagrams



C. Y. Lee proposed binary-decision programs as a 

means of calculating the output of switching circuits.

S. B. Akers represented binary-decision programs with 

binary decision diagrams.

R. E. Bryant showed that ordered BDDs provide a 

unique minimal representation of a Boolean function.

Ordered BDD

Lee 1959

Akers1978

Bryant 1986

Decision Diagrams



There is a unique reduced DD representing any given Boolean 

function, once the variable ordering is specified.

The reduced DD can be viewed 

as a branching tree with 

redundancy removed.

Superimpose isomorphic subtrees 

and remove redundant nodes.

Bryant (1986)

Randy Bryant

Decision Diagrams
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x1

x2 x2 

x3 x3 x3 x3 

1 1

x1

x2 x2 

x3 x3 x3 x3 

1 0 1 1 1 0 1 1 1 0 1 0 0 0 1

Branching tree for 0-1 inequality

1 indicates feasible solution, 

0 infeasible

0 1 2 32 3 5 5 7x x x x   

0 1x  0 0x 



x0

x1

x2 x2 

x3 x3 x3 x3 

1 1

x1

x2 x2 

x3 x3 x3 x3 

1 0 1 1 1 0 1 1 1 0 1 0 0 0 1

Remove redundant nodes…

Branching tree for 0-1 inequality

0 1 2 32 3 5 5 7x x x x   



x0

x1

x2 x2 

x3 x3 x3 x3 

1 1

x1

x2 x2 

x3 x3 x3 x3 

1 0 1 1 1 0 1 1 1 0 1 0 0 0

x0

x1

x2 x2 

x3 

1

x1

x2 x2 

0

x3 

1 0

x3 

1 0

x3 

011 1 1 0



x0

x1

x2 x2 

x3 

1

x1

x2 x2 

0

x3 

1 0

x3 

1 0

x3 

01

Superimpose identical 

subtrees…

1 1 1 0



x0

x2 

x1

x2 

x3 

1 0

x3 

1 0

x0

x1

x2 x2 

x3 

1

x1

x2 x2 

0

x3 

1 0

x3 

1 0

x3 

011 1 1 01 0



x0

x2 

x1

x2 

x3 

1 0

x3 

1 01 0

Superimpose identical 

subtrees…



x0

x2 

x1

x2 

x3 

1 0

x3 

1 01 0

x0

x2 

x1

x2 

x3 

1 0 01



x0

x2 

x1

x2 

x3 

1 0 01

Superimpose identical leaf 

nodes…



x0

x2 

x1

x2 

x3 

1 0

x0

x2 

x1

x2 

x3 

1 0 01



as generated by software

x0

x2 

x1

x2 

x3 

1 0



BDDs have long been used for logic circuit design and 

product configuration.

They were recently adapted to optimization and 

constraint programming.

Decision Diagrams and Optimization

Hadžić and JH (2006, 2007)

Andersen, Hadžić, JH and Tiedemann (2007)
Tarik Hadžić

Henrik Reif

Andersen
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Modeling

with recursive 

formulations

Relaxation

with relaxed 

diagrams

Primal

heuristics

with restricted 

diagrams

Constraint

propagation

through a 

relaxed diagram

Search

with a novel branch-and-

bound method

Optimization

Postoptimality

analysis

with sound diagrams

Decision Diagrams and Optimization
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Weighted decision diagrams can represent the feasible set of an 

optimization problem.

• Remove paths to 0.

• Paths to 1 are feasible solutions.

• Associate costs with arcs (= weighted)

• Reduces optimization to a shortest (longest) path problem

Given a canonical distribution of arc costs (trivial to compute),

Bryant’s uniqueness theorem generalizes to weighted DDs.

Decision Diagrams and Optimization

JH (2013)



1

2 3

5 4

Maximal Stable Set Problem

(Maximal independent set problem)

Let each vertex have weight wi

Let xi = 1 when vertex i is in stable set

Select nonadjacent vertices to maximize i wixi



x1

x2

x3

x4

x5

Exact DD for 

stable set problem

1

2 3

5 4

{12345}

Build DD with 

top-down 

compilation 

(unlike CS 

literature)

Associate a state

with each node
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with each node
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Exact DD for 

stable set problem

1
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5 4

{12345}

{2345} {34}

{345} {4} {34}

{45}
{4}

Merge nodes that 

correspond to the 

same state

{4}
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x1

x2

x3

x4

x5

Exact DD for 

stable set problem

1

2 3

5 4

{12345}

{2345} {34}

{345} {4} {34}

{45} {4}
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





x1

x2

x3

x4

x5

Exact DD for 

stable set problem

1

2 3

5 4

{12345}

{2345} {34}

{345} {4} {34}

{45} {4}

{5}







This DD can be 

viewed as the 

state transition 

graph for a 

dynamic 

programming 

formulation of the 

problem.



x1

x2

x3

x4

x5

Exact DD for 

stable set problem

1

2 3

5 4

{12345}

{2345} {34}

{345} {4} {34}

{45} {4}

{5}







Resulting DD is 

not necessarily 

reduced

(it is in this case).

DD reduction is a 

more powerful 

simplification 

method than DP



Decision diagrams, multilayer neural networks, and 

dynamic programming are based on the same principle:

The amount of information that can be represented 

by the network increases exponentially with the depth.

Decision Diagrams and Optimization



Nonetheless, the width of a DD can grow exponentially with the 

size of the problem instance.

Decision Diagrams and Optimization



Nonetheless, the width of a DD can grow exponentially with the 

size of the problem instance.

Solution?  Use relaxed DD of limited width.

A relaxed DD represents a superset of feasible set.

Decision Diagrams and Optimization

Andersen, Hadžić, JH and Tiedemann (2007)



Nonetheless, the width of a DD can grow exponentially with the 

size of the problem instance.

Solution?  Use relaxed DD of limited width.

A relaxed DD represents a superset of feasible set.

Relaxed DDs yield optimization bounds.

• Shortest (longest) path length is a bound on optimal value.

• Paradoxically, a relaxed DD that represents more solutions 

can be smaller.
– Analogous to LP relaxation in IP, but discrete.

– Does not require linearity, convexity, or inequality constraints.

Decision Diagrams and Optimization

Andersen, Hadžić, JH and Tiedemann (2007)
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x2

x3

x4

x5

1

2 3

5 4

{12345}

To build relaxed

DD, merge some 

additional nodes 

as we go along.

Use generic 

merging heuristics.
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union of merged 

states
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x3
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{2345} {34}

{345} {34}

{45}  {4}

To build relaxed

DD, merge some 

additional nodes 

as we go along.

Use generic 

merging heuristics.

In this case, take 

union of merged 

states
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x3

x4

x5

1

2 3

5 4

{12345}

{2345} {34}

{345} {34}

{45} 

{5} 

To build relaxed

DD, merge some 

additional nodes 

as we go along.

Use generic 

merging heuristics.

In this case, take 

union of merged 

states



x1

x2

x3

x4

x5

1

2 3

5 4

{12345}

{2345} {34}

{345} {34}

{45} 

{5} 



Represents 11 

solutions, 

including 9 

feasible solutions

Width = 2



x1

x2

x3

x4

x5

{12345}

{2345} {34}

{345} {34}

{45} 

{5} 



Represents 

11 solutions, 

including 

9 feasible 

solutions

Width = 2

Longest path (90) 

gives bound on 

optimal value (70)
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Bound from Relaxed DD

Bounds from DDs 

vs. state-of-the-art

integer programming 

solver for max stable 

set problem

• IP solver bound

relies on 50 years 

of experience

with cutting planes

• DD max width

of 1000.

• DDs require

about 5% the

time of IP solver

62

Bergman, Ciré, 

van Hoeve, JH (2013) 

IP solver bound 

is better

DD bound

is better



DDs normally provide bounds within a solver, but they can also 

provide bounds for problems solved heuristically.

DDs plus Lagrangian duality can provide very sharp bounds. 

For example, bounds mostly within 0.1% of best known solutions 

of Biskup-Feldman machine scheduling instances with time 

windows (never solved to optimality).  Sometimes, the bounds 

prove optimality.

JH (2019) 

Bound from Relaxed DD



Propagation through a relaxed DD can substantially improve 

performance of constraint programming.

Example:  Traveling salesman problem with time windows 

and other sequencing problems.

DDs allowed closure of several open problem instances.

Decision Diagrams and Optimization

Ciré, van Hoeve (2013) 



TSP with

time windows

Pure CP better

CP + DD 

better

Computation time scatter plot, lex search



Performance profile, depth-first search

CP solver alone

CP solver + DD

TSP with

time windows



A restricted DD represents a subset of the feasible set.

Restricted DDs provide a basis for a primal heuristic.

Primal heuristic = algorithm that finds solutions that are not optimal in general

Primal heuristics are an important factor in recent improvements of IP solvers.

Bergman, Ciré, van Hoeve, Yunes (2014) 

Decision Diagrams and Optimization



Optimality gap for set covering, n variables

Restricted DDs vs

Primal heuristic at root node of CPLEX

Primal heuristic in IP solver

Restricted DD



Computation time

Restricted DDs vs

Primal heuristic at root node of CPLEX (cuts turned off)

Restricted DD

Primal heuristic 

in IP solver



DDs provide a general purpose solver for discrete 

optimization.

• Bounds from relaxed DDs.

• Primal heuristic from restricted DDs.

• Recursive modeling

• Novel branching algorithm – branch inside relaxed DD

70

Bergman, Ciré, van Hoeve, JH (2016) 

Decision Diagrams and Optimization



1 

2 

3 

4 

5 

6 

Diagram is exact 

down to here

Branching in a relaxed

decision diagram

71

Branching Algorithm



Branch on nodes in 

this layer

Branching in a relaxed

decision diagram

72

1 

2 

3 

4 

5 

6 

Branching Algorithm



First branch

New relaxed decision diagram

Branching in a relaxed

decision diagram
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1 

2 

3 

4 

5 

6 

Branching Algorithm



First branch

New relaxed decision diagram

Branching in a relaxed

decision diagram

74

1 

2 

3 

4 

5 

6 

Branching Algorithm

Pruning based on cost bounds obtained 

from solving shortest path problem 

in relaxed DDs



Second branch

Branching in a relaxed

decision diagram

75

1 

2 

3 

4 

5 

6 

Branching Algorithm

Pruning based on cost bounds obtained 

from solving shortest path problem 

in relaxed DDs



Third branch

Continue recursively

Branching in a relaxed

decision diagram

76

1 

2 

3 

4 

5 

6 

Branching Algorithm

Pruning based on cost bounds obtained 

from solving shortest path problem 

in relaxed DDs



Branching Algorithm

Finding shortest (longest) path in a relaxed DD is the 

fundamental calculation, 

…much as solving an LP is the fundamental calculation in 

traditional MIP solvers.
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Bergman and Ciré (2018)

Portfolio design

Nonlinear Optimization

Decompose problem into multiple DDs



Portfolio design

Bergman and Ciré (2018)

Nonlinear Optimization



Product assortment

Bergman and Ciré (2018)

Nonlinear Optimization



Workflow employee assignment

Bergman and Ciré (2018)

Nonlinear Optimization



Workflow employee assignment

Bergman and Ciré (2018)

Nonlinear Optimization
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Simplification of Dynamic Programming Models

JH (2013)



We can reformulate the recursion to yield 

the unique reduced weighted DD.

Radical simplification of the problem –

only 1 state per stage.

12

0

13 14

10 9 8

6 7 8

4

JH (2013)

Simplification of Dynamic Programming Models



Parallelization

Parallel computation with DDs achieves almost 100% linear speedup.

(Mixed integer programming achieves about 30% speedup)

Bergman, Cire, 

Sabharwal, 

Samulowitz, 

Saraswat, van 

Hoeve (2014)

Stable set

problem



Can we turn over the shortest path problem to a quantum 

computer?

• Possibly radical speedup

• Possible application of quantum computing to a 

wide variety of constrained combinatorial optimization 

problems.

• Possible massive parallization (solve many shortest 

path problmems at once).

88

Killer App?



Predicate Logic and Integer Programming



Fundamental compactness result in 1st-order predicate logic:

Theorem (Herbrand).  A formula in Skolem

normal form is unsatisfiable if and only if some 

finite combination of Herbrand ground instances 

of its clauses is unsatisfiable.

Predicate Logic and Integer Programming

Jacques 

Herbrand

Herbrand 1930



Fundamental compactness result in 1st-order predicate logic:

Theorem (Herbrand).  A formula in Skolem

normal form is unsatisfiable if and only if some 

finite combination of Herbrand ground instances 

of its clauses is unsatisfiable.

Fundamental compactness result in infinite 

integer programming:

Theorem.  An IP with infinitely many constraints 

is infeasible if and only if some finite subfamily 

of the constraints is infeasible.

Predicate Logic and Integer Programming

Jacques 

Herbrand

Herbrand 1930



Fundamental compactness result in 1st-order predicate logic:

Theorem (Herbrand).  A formula in Skolem

normal form is unsatisfiable if and only if some 

finite combination of Herbrand ground instances 

of its clauses is unsatisfiable.

Fundamental compactness result in infinite 

integer programming:

Theorem.  An IP with infinitely many constraints 

is infeasible if and only if some finite subfamily 

of the constraints is infeasible.

These are the same theorem!  

Predicate Logic and Integer Programming

Jacques 

Herbrand

Herbrand 1930



Resolution and Cutting Planes



An input proof is a resolution proof in which one parent of every 

resolvent is among the original premises.

Resolution is a complete inference method 

for propositional logic.

Resolution and Cutting Planes

Quine1952,1955

Resolution:

W. V. Quine



Cutting planes are an essential component of IP solvers.

Studied for over 50 years.

Approximate convex hull

of integer solutions…

…so that LP relaxation

gives tighter dual bound.

Resolution and Cutting Planes

Gomory 1960, etc.

Original inequality 

constraints

Cutting plane

Convex hull 

of integer solutionsRalph Gomory



A resolvent is a cutting plane (rank 1 Chvátal cut)

Resolution and Cutting Planes

Proof of Chvátal’s cutting plane theorem 

(fundamental result in cutting plane theory) 

implicitly relies on resolution!

V. Chvátal

Chvátal 1973



A resolvent is a cutting plane (rank 1 Chvátal cut)

Resolution and Cutting Planes

Chvátal’s cutting plane proof implicitly relies 

on resolution!

Theorem.  The logical clauses one can infer using input proofs are 

precisely those that are rank 1 cuts.

Theorem.  Resolution can be generalized to a complete inference 

method for 0-1 inequalities (a logical analog of Chvátal’s theorem).

V. Chvátal

Chvátal 1973

JH 1989

JH 1992



Logic and Duality



An optimization problem can be viewed from two perspectives:
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Logic and Duality

Search for minimum 

cost solution that 

satisfies constraints. 

Deduce from constraints 

the tightest possible 

lower bound on cost.

Primal problem:

Search

Dual problem:

Logical inference

When the dual inference method is complete, 

the primal and dual have the same optimal value

(strong duality)



Duality first described for linear programming & game theory
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Logic and Duality

LP minimization

Also an LP, solution 

provides multipliers for
optimality proof.

Primal problem Dual problem

Player 1 in 2-person 

noncooperative game
Player 2 in game

John von 

Neumann

Primal problem Dual problem

George

Dantzig



Optimization problems are typically solved by primal-dual algorithms.

Search for primal and dual solution simultaneously.

All optimization duals are logical inference problems.

This implies a tight connection between logic and optimization.

Logic and Duality



min ( )f x

x S

max

( )
P

v

x S f x v

P

  

PFind best feasible 

solution by 

searching over 

values of x.

Find a proof of optimal 

value by searching over 

proofs P.

Primal problem:

Optimization
Inference dual

In classical LP, the proof is a tuple of dual multipliers
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Logic and Duality



Logic and Duality

Type of Dual Inference Method Strong?

Linear programming Nonnegative linear combination 

+ material implication

Yes*

Lagrangian Nonnegative linear combination 

+ domination

No

Surrogate Nonnegative linear combination 

+ material implication

No

Subadditive Cutting planes Yes**

*Due to Farkas Lemma

**Due to Chvátal’s theorem



LP Duality



  
0

max

x

v

Ax b cx v







min

0

cx

Ax b

x
implies

Dual problem: Find the tightest lower bound on the objective 

function that is implied by the constraints.
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Logic and Duality



From Farkas Lemma:  If Ax  b, x  0 is feasible,

 



  
  



0   implies 
iff   

for some  0 

x Ax b cx v
Ax b cx v

A  c  and  b  v
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LP Duality

Logic and Duality



  
0

max

x

v

Ax b cx v







min

0

cx

Ax b

x



From Farkas Lemma:  If Ax  b, x  0 is feasible,











max

0

b

A c

 This is the 

classical 

LP dual
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LP Duality

Logic and Duality

A  c  and  b  v



  
0

max

x

v

Ax b cx v







min

0

cx

Ax b

x

 



  
  



0   implies 
iff   

for some  0 

x Ax b cx v
Ax b cx v



( ) 0  dominates ( ) 0
( ) 0 ( ) iff   

for some  0 

x S g x f x v
g x f x v





   
  



max

( ) ( )
s S

v

g x b f x v


  

min ( )

( ) 0

f x

g x

x S





Let us say that

Primal Dual

Surrogate

g(x)  f(x)  v  for all x  S

That is, v  f(x)  g(x) for all x  S

Lagrangian Duality



Primal Dual

g(x)  f(x)  v  for all x  S

That is, v  f(x)  g(x) for all x  S

If we replace domination with material implication,

we get the surrogate dual, which gives better bounds

but lacks the nice properties of the Lagrangean dual. 

Lagrangian Duality

max

( ) ( )
s S

v

g x b f x v


  

min ( )

( ) 0

f x

g x

x S





( ) 0  dominates ( ) 0
( ) 0 ( ) iff   

for some  0 

x S g x f x v
g x f x v





   
  



Let us say that

Surrogate



Primal Dual

g(x)  f(x)  v  for all x  S

That is, v  f(x)  g(x) for all x  S

Or   min ( ) ( )
x S

v f x g x


 

Lagrangian Duality

max

( ) ( )
s S

v

g x b f x v


  

min ( )

( ) 0

f x

g x

x S





( ) 0  dominates ( ) 0
( ) 0 ( ) iff   

for some  0 

x S g x f x v
g x f x v





   
  



Let us say that

Surrogate

If we replace domination with material implication,

we get the surrogate dual, which gives better bounds

but lacks the nice properties of the Lagrangean dual. 



So the dual becomes

 

max
 

min ( ) ( )  for some 0
x S

v

v f x g x 


  

Lagrangian Duality

Primal Dual

g(x)  f(x)  v  for all x  S

That is, v  f(x)  g(x) for all x  S

Or  

max

( ) ( )
s S

v

g x b f x v


  

min ( )

( ) 0

f x

g x

x S





( ) 0  dominates ( ) 0
( ) 0 ( ) iff   

for some  0 

x S g x f x v
g x f x v





   
  



Let us say that

Surrogate

 min ( ) ( )
x S

v f x g x


 



Often, decomposition is the key to solving large optimization problems.

• Break the problem into smaller components.

• Solution time increases superlinearly

with component size.

• Faster to solve many small problems 

than one large one.

Components must communicate somehow 

to reach globally optimal solution.

• Decomposition can nonetheless make 

problem tractable,

• Given the right problem structure.

Logic, Duality and Decomposition



Benders decomposition is a well-known and often successful 

decomposition method.

Classical Benders decomposition requires an LP subproblem.  

• The Benders cuts are obtained from the LP dual of the subproblem.

112

Benders Decomposition

Benders 1962



Benders decomposition is a well-known and often successful 

decomposition method.

Classical Benders decomposition requires an LP subproblem.  

• The Benders cuts are obtained from the LP dual of the subproblem.

Logic-based Benders decomposition accepts any optimization problem 

as the subproblem.

• Benders cuts are obtained from an inference dual of the subproblem.

Speedup over state of the art can be several orders of magnitude.

• Benders cuts must be designed specifically for every class of problems.
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Benders Decomposition

JH 2000

JH, Ottosson 2003

Benders 1962
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Number of Articles that Mention Benders Decomposition

Logic and Duality



Logic-based Benders decomposition solves a problem of the form

where the problem simplifies when x is fixed to a specific value,

…usually by decoupling into small components

115

min ( , )

( , )

,x y

f x y

x y S

x D y D



 

Logic-based Benders



Decompose problem into master and subproblem.

Subproblem is obtained by fixing x to solution value in master problem.

min

( )   (Benders cuts)k

x

z

z g x

x D





min ( , )

( , )

f x y

x y S

Minimize cost z subject to 

bounds given by Benders 

cuts, obtained from previous 

iterations k.

Obtain proof of optimality 

(solution of inference dual).

Use same proof to deduce 

cost bounds for other 

assignments, yielding 

Benders cut.

Trial value x

that solves 

master

Benders cut

z  gk(x)

Master problem Subproblem

x
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Logic-based Benders



Iterate until master problem value equals best subproblem value so far.

Classical Benders uses LP dual of subproblem to obtain a proof.

min

( )   (Benders cuts)k

x

z

z g x

x D





min ( , )

( , )

f x y

x y S

Minimize cost z subject to 

bounds given by Benders 

cuts, obtained from previous 

iterations k.

Obtain proof of optimality 

(solution of inference dual).

Use same proof to deduce 

cost bounds for other 

assignments, yielding 

Benders cut.

Trial value x

that solves 

master

Benders cut

z  gk(x)

Master problem Subproblem

x

117

Logic-based Benders
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Machine Assignment and Scheduling

Ciré, Çoban, JH 2016

Logic-based Benders with strong cuts

Logic-based Benders with weak cuts

State-of-the-art IP solver
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Home Healthcare Routing and Scheduling

*Cuts are generated during a single branch-and-bound solution of master problem

Heching, JH, Kimura 2018

IP solver

Logic-based Benders

Logic-based Benders 

with branch and check*



LBBD in planning and scheduling:

• Chemical batch processing (BASF, etc.)

• Auto assembly line management (Peugeot-Citroën)

• Allocation and scheduling of multicore processors (IBM, Toshiba, Sony)

• Steel production scheduling

• Worker assignment in a queuing environment
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Logic-based Benders Applications



Other scheduling applications:

• Lock scheduling

• Shift scheduling

• Permutation flow 

shop scheduling 

• Resource-constrained 

scheduling

• Hospital scheduling

• Optimal control of 

dynamical systems

• Sports scheduling
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Logic-based Benders Applications



LBBD in routing and scheduling:

• Vehicle routing

• Home health care

• Food distribution

• Automated guided 

vehicles in flexible 

manufacturing

• Traffic diversion 

• Concrete delivery
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Logic-based Benders Applications



LBBD in location and design:

• Allocation of frequency

spectrum (U.S. FCC)

• Wireless local area 

network design

• Facility location-allocation

• Stochastic facility location 

and fleet management

• Capacity and distance-

constrained plant location

• Queuing design and control

123
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Logic-based Benders Applications



Other LBBD applications:

• Logical inference (SAT solvers essentially use Benders!)

• Logic circuit verification

• Bicycle sharing

• Service restoration 

in a network

• Inventory 

management

• Supply chain 

management

• Space packing
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Logic-based Benders Applications



Consistency and Backtracking



Consistency is a core concept of constraint programming.

A consistent partial assignment is one that occurs in some 

feasible solution.

A constraint set is consistent if all partial assignments that 

violate no constraint are consistent with the constraint set.
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Consistency and Backtracking



Consistency is a core concept of constraint programming.

A consistent partial assignment is one that occurs in some 

feasible solution.

A constraint set is consistent if all partial assignments that 

violate no constraint are consistent with the constraint set.

Various forms of consistency: full consistency, k-consistency, 

domain consistency.

Consistency implies less backtracking
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Consistency and Backtracking



The concept of consistency never developed in the 

optimization literature.

Yet valid inequalities (cutting planes) reduce backtracking 

by achieving a greater degree of consistency, as well as 

by tightening a relaxation.
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Consistency and Backtracking



The concept of consistency never developed in the 

optimization literature.

Yet valid inequalities (cutting planes) reduce backtracking 

by achieving a greater degree of consistency, as well as 

by tightening a relaxation.

Consistency can be adapted to MILP.  

Cuts that achieve consistency cut off inconsistent 0-1 

partial assignments and so reduce backtracking.

129

Consistency and Backtracking
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This inequality is the sum 

of the 2 nontrivial facet-defining

inequalities for S and so is 

“weaker.”

Yet it cuts off more infeasible 

0-1 points than either 

facet-defining inequality.

x2

x1

x3

Consistency and Backtracking

x1 + 2x2 + x3  2

x1 + x2  1

x1 + x2  1
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The constraint set S is 

LP-consistent.

It explicitly excludes infeasible

0-1 partial assignments.

A weak form of LP-consistency

can reduce backtracking 

by excluding inconsistent

partial assignments that

facet-defining inequalities

may not exclude.

x2

x1

x3

Consistency and Backtracking

x1 + 2x2 + x3  2

x1 + x2  1

x1 + x2  1
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We obtain a theory of consistency 

parallel to the one in CP.

x2

x1

x3

Consistency and Backtracking

x1 + 2x2 + x3  2

x1 + x2  1

x1 + x2  1



Questions?  Comments?


