Recent Developments in Logic-Based Methods for Optimization

John Hooker
Carnegie Mellon University

Santa Fe Institute
July 2019

Logic and Optimization

- Boole's probability logic and linear programming
- Decision diagrams and optimization
- Predicate logic and integer programming
- Resolution and cutting planes
- Logic and duality
- Consistency and backtracking

Logic and Optimization

- Boole's probability logic and linear programming
- Decision diagrams and optimization
- Predicate logic and integer programming
- Resolution and cutting planes
- Logic and duality
- Consistency and backtracking

Focus on decision diagrams due to possible synergy with quantum computation.

Probability Logic and Linear Programming

Probability Logic and Linear Programming

...probability logic.
It was forgotten or ignored for over 100 years.

Probability Logic and Linear Programming

In 1970s, Theodore Hailperin showed that probability logic poses a linear programming problem.

He sees this as implicit in Boole's own work.
The idea was re-invented by AI community in 1980s.

Nils Nilsson

Probability Logic and Linear Programming

Statement	Probability
A	0.9
If A then B	0.8
If B then C	0.4

We can deduce C , but with what probability?

Boole's insights:

- We can only specify a range of probabilities for C .
- The range depends mathematically on the probabilities of possible states of affairs (possible worlds).

Probability Logic and Linear Programming

Statement	Probability
A	0.9
If A then B	0.8
If B then C	0.4

Statement Probability

A	0.9
not-A or B	0.8
not-B or C	0.4

First, interpret the if-then statements as material conditionals

Probability Logic and Linear Programming

Statement	Probability
A	0.9
not-A or B	0.8
not-B or C	0.4

Identify the possible outcomes (possible worlds), each having an unknown probability.

There are 8 possible worlds:

A	\mathbf{B}	\mathbf{C}	Prob.
false	false	false	p_{000}
false	false	true	p_{001}
false	true	false	p_{010}
false	true	true	p_{011}
true	false	false	p_{100}
true	false	true	p_{101}
true	true	false	p_{110}
true	true	true	p_{111}

Probability Logic and Linear Programming

Statement	Probability
A	0.9
not-A or B	0.8
not-B or C	0.4

$$
p_{100}+p_{101}+p_{110}+p_{111}=0.9
$$

The worlds in which A is true must have probabilities that sum to 0.9 .

There are 8 possible worlds:

A	B	C	Prob.
false	false	false	p_{000}
false	false	true	p_{001}
false	true	false	p_{010}
false	true	true	p_{011}
true	false	false	p_{100}
true	false	true	p_{101}
true	true	false	p_{110}
true	true	true	p_{111}

Probability Logic and Linear Programming

Statement	Probability	There are 8 possible worlds:		
A	0.9	A B	C	Prob.
not-A or B	0.8			
not-B or C	0.4	false false	false	p_{000}
		false false	true	p_{001}
$p_{100}+p_{1}$	$p_{110}+p_{111}=0.9$	false true	false	p_{010}
$p_{000}+p_{001}+p_{010}+p_{0}$	$p_{110}+p_{111}=0.8$	false true	true	p_{011}
		true false	false	p_{100}
		true false	true	p_{101}
		true true	false	p_{110}
		true true	true	p_{111}

Probability Logic and Linear Programming

Statement	Probability
A	0.9
not-A or B	0.8
not-B or C	0.4
$p_{100}+p_{101}+p_{110}+p_{111}=0.9$	
$p_{000}+p_{001}+p_{010}+p_{011}+p_{110}+p_{111}=0.8$	
$p_{000}+p_{001}+p_{011}+p_{100}+p_{101}+p_{111}=0.4$	

There are 8 possible worlds:

A	B	C	Prob.
false	false	false	p_{000}
false	false	true	p_{001}
false	true	false	p_{010}
false	true	true	p_{011}
true	false	false	p_{100}
true	false	true	p_{101}
true	true	false	p_{110}
true	true	true	p_{111}

Probability Logic and Linear Programming

Statement	Probability
A	0.9
not-A or B	0.8
not-B or C	0.4
$p_{100}+p_{101}+p_{110}+p_{111}=0.9$	
$p_{000}+p_{001}+p_{010}+p_{011}+p_{110}+p_{111}=0.8$	
$p_{000}+p_{001}+p_{011}+p_{100}+p_{101}+p_{111}=0.4$	
	$p_{000}+\ldots+p_{111}=1$

There are 8 possible worlds:

A	B	C	Prob.
false	false	false	p_{000}
false	false	true	p_{001}
false	true	false	p_{010}
false	true	true	p_{011}
true	false	false	p_{100}
true	false	true	p_{101}
true	true	false	p_{110}
true	true	true	p_{111}

Probability Logic and Linear Programming

$$
\begin{array}{c|c}
\text { Statement } & \text { Probability } \\
\hline A & 0.9 \\
\text { not-A or B } & 0.8 \\
\text { not-B or C } & 0.4 \\
p_{100}+p_{101}+p_{110}+p_{111}=0.9 \\
p_{000}+p_{001}+p_{010}+p_{011}+p_{110}+p_{111}=0.8 \\
p_{000}+p_{001}+p_{011}+p_{100}+p_{101}+p_{111}=0.4 \\
p_{000}+\ldots+p_{111}=1
\end{array}
$$

Minimize and maximize probability of C :

$$
p_{001}+p_{011}+p_{101}+p_{111}
$$

subject to these equations and $p_{i j k} \geq 0$

There are 8 possible worlds:

A	B	C	Prob.
false	false	false	p_{000}
false	false	true	p_{001}
false	true	false	p_{010}
false	true	true	p_{011}
true	false	false	p_{100}
true	false	true	p_{101}
true	true	false	p_{110}
true	true	true	p_{111}

Probability Logic and Linear Programming

Statement	Probability
A	0.9
not-A or B	0.8
not-B or C	0.4

$$
\begin{aligned}
p_{100}+p_{101}+p_{110}+p_{111} & =0.9 \\
p_{000}+p_{001}+p_{010}+p_{011}+p_{110}+p_{111} & =0.8 \\
p_{000}+p_{001}+p_{011}+p_{100}+p_{101}+p_{111} & =0.4 \\
p_{000}+\ldots+p_{111} & =1
\end{aligned}
$$

Minimize and maximize probability of C :

$$
p_{001}+p_{011}+p_{101}+p_{111}
$$

subject to these equations and $p_{i j k} \geq 0$

This is a linear programming problem.
The result is a range of probabilities for C :

$$
0.1 \text { to } 0.4
$$

Probability Logic and Linear Programming

$$
\begin{array}{r|c|}
\hline \text { Statement } & \text { Probability } \\
\hline A & 0.9 \\
\text { not-A or B } & 0.8 \\
\text { not-B or C } & 0.4 \\
p_{100}+p_{101}+p_{110}+p_{111}=0.9 \\
p_{000}+p_{001}+p_{010}+p_{011}+p_{110}+p_{111}=0.8 \\
p_{000}+p_{001}+p_{011}+p_{100}+p_{101}+p_{111}=0.4 \\
p_{000}+\ldots+p_{111}=1
\end{array}
$$

Minimize and maximize probability of C :

$$
p_{001}+p_{011}+p_{101}+p_{111}
$$

subject to these equations and $p_{i j k} \geq 0$

This is a linear programming problem.
The result is a range of probabilities for C :

$$
0.1 \text { to } 0.4
$$

Large instances solved by column generation.

Probability Logic and Linear Programming

There are linear programming models for logics of belief and evidence such as Dempster-Shafer theory and related systems.

Dempster 1968, Shafer 1976

A. P. Dempster

Glenn Shafer

Decision Diagrams and Optimization

Decision Diagrams and Optimization

Motivation

- Mixed integer programming is mainstream state of the art in combinatorial optimization.
- Goal: solve NP-hard problems to proven optimality.

Decision Diagrams and Optimization

Motivation

- Mixed integer programming is mainstream state of the art in combinatorial optimization.
- Goal: solve NP-hard problems to proven optimality
- Versatile modeling framework (linear integer inequalities)
- Accommodates complex constraints.
- Solvers developed over decades, extremely well engineered (CPLEX, Gurobi, SCIP)
- Solvers follow (algorithmic) Moore's Law, but reaching plateau.
- Basic operation is solution of a linear programming relaxation (complicated)
- SAT solvers also fast, but less versatile modeling

Decision Diagrams and Optimization

Motivation

- Mixed integer programming is mainstream state of the art in combinatorial optimization
- Basic operation is solution of a linear programming relaxation (complicated)
- Recent development: Discrete optimization with decision diagrams

- Goal: solve to proven optimality

Decision Diagrams and Optimization

Motivation

- Mixed integer programming is mainstream state of the art in combinatorial optimization
- Basic operation is solution of a linear programming relaxation (complicated)
- Recent development: Discrete optimization with decision diagrams

- Goal: solve to proven optimality
- Versatile modeling (recursive/dynamic programming)
- Accommodates complex constraints (no need for linearity/convexity)
- Basic operation is solution of shortest path problem (very simple)
- Highly parallelizable.
- Compute shortest paths with quantum machine?
- Possible killer app for quantum computing?

Decision Diagrams and Optimization

First, some background on decision diagrams.

Decision Diagrams

Boolean logic was forgotten for decades, except in the minds of a few logicians, including philosopher Charles Sanders Pearce.

Pearce saw that Boolean logic could be represented by switching circuits.

Decision Diagrams

Claude Shannon was required to take a philosophy course while an undergraduate at University of Michigan, where he was exposed to Pearce's work.

This gave rise to his famous master's thesis, A Symbolic Analysis of Relay and Switching Circuits, which provided the basis of modern computing.

Shannon 1940

C. Shannon

Decision Diagrams

C. Y. Lee proposed binary-decision programs as a means of calculating the output of switching circuits.

S. B. Akers represented binary-decision programs with binary decision diagrams.
Akers1978
R. E. Bryant showed that ordered BDDs provide a unique minimal representation of a Boolean function.

Bryant 1986

Ordered BDD

Decision Diagrams

There is a unique reduced DD representing any given Boolean function, once the variable ordering is specified.

```
Bryant (1986)
```

The reduced DD can be viewed as a branching tree with redundancy removed.

Randy Bryant

Superimpose isomorphic subtrees and remove redundant nodes.

Branching tree for 0-1 inequality $2 x_{0}+3 x_{1}+5 x_{2}+5 x_{3} \geq 7$

1 indicates feasible solution,
0 infeasible

Branching tree for 0-1 inequality

$$
2 x_{0}+3 x_{1}+5 x_{2}+5 x_{3} \geq 7
$$

Remove redundant nodes...

Superimpose identical subtrees...

Superimpose identical subtrees...

Superimpose identical leaf nodes...

as generated by software

Decision Diagrams and Optimization

BDDs have long been used for logic circuit design and product configuration.

They were recently adapted to optimization and constraint programming.

$$
\text { Hadžić and JH }(2006,2007)
$$

Andersen, Hadžić, JH and Tiedemann (2007)

Tarik Hadžić

Henrik Reif
Andersen

Decision Diagrams and Optimization

Decision Diagrams and Optimization

Weighted decision diagrams can represent the feasible set of an optimization problem.

- Remove paths to 0.
- Paths to 1 are feasible solutions.
- Associate costs with arcs (= weighted)
- Reduces optimization to a shortest (longest) path problem

Given a canonical distribution of arc costs (trivial to compute), Bryant's uniqueness theorem generalizes to weighted DDs.

JH (2013)

Maximal Stable Set Problem

 (Maximal independent set problem)Let each vertex have weight w_{i} Let $x_{i}=1$ when vertex i is in stable set Select nonadjacent vertices to maximize $\sum_{i} w_{i} x_{i}$

Exact DD for
stable set problem

Build DD with
top-down
compilation
(unlike CS
literature)
Associate a state
with each node

Build DD with
top-down
compilation
(unlike CS
literature)
Associate a state
with each node

$$
\begin{array}{lc}
\text { Exact DD for } & x 3 \\
\text { stable set problem } &
\end{array}
$$

Build DD with top-down compilation (unlike CS literature)

Associate a state
with each node

Merge nodes that correspond to the same state

Merge nodes that correspond to the same state

Exact DD for stable set problem

Resulting DD is not necessarily reduced
(it is in this case).
DD reduction is a more powerful simplification method than DP

Decision Diagrams and Optimization

Decision diagrams, multilayer neural networks, and dynamic programming are based on the same principle:

The amount of information that can be represented by the network increases exponentially with the depth.

Decision Diagrams and Optimization

Nonetheless, the width of a DD can grow exponentially with the size of the problem instance.

Decision Diagrams and Optimization

Nonetheless, the width of a DD can grow exponentially with the size of the problem instance.

Solution? Use relaxed DD of limited width.
A relaxed DD represents a superset of feasible set.

Andersen, Hadžić, JH and Tiedemann (2007)

Decision Diagrams and Optimization

Nonetheless, the width of a DD can grow exponentially with the size of the problem instance.

Solution? Use relaxed DD of limited width.
A relaxed DD represents a superset of feasible set.
Relaxed DDs yield optimization bounds.

- Shortest (longest) path length is a bound on optimal value.
- Paradoxically, a relaxed DD that represents more solutions can be smaller.
- Analogous to LP relaxation in IP, but discrete.
- Does not require linearity, convexity, or inequality constraints.

Andersen, Hadžić, JH and Tiedemann (2007)

To build relaxedx3DD, merge some additional nodes as we go along.
Use generic$x 4$ merging heuristics.

To build relaxed
DD, merge some additional nodes as we go along.

Use generic $x 4$ merging heuristics.

In this case, take union of merged
states

To build relaxed
DD, merge some additional nodes as we go along.

Use generic$x 4$ merging heuristics.

In this case, take union of merged states

To build relaxed
DD, merge some additional nodes as we go along.

Use generic
$x 4$ merging heuristics.

In this case, take union of merged $x 5$ states

$x 1$
$x 2$
$x 3$
$x 4$
merging heuristics.
In this case, take union of merged states

To build relaxed DD, merge some additional nodes as we go along.

Use generic merging heuristics.

In this case, take union of merged states

Bound from Relaxed DD

Bounds from DDs vs. state-of-the-art integer programming solver for max stable set problem

- IP solver bound relies on 50 years of experience with cutting planes
- DD max width of 1000 .
- DDs require about 5\% the time of IP solver

Bergman, Ciré, van Hoeve, JH (2013)

Bound from Relaxed DD

DDs normally provide bounds within a solver, but they can also provide bounds for problems solved heuristically.

DDs plus Lagrangian duality can provide very sharp bounds.

For example, bounds mostly within $\mathbf{0 . 1 \%}$ of best known solutions of Biskup-Feldman machine scheduling instances with time windows (never solved to optimality). Sometimes, the bounds prove optimality.

Decision Diagrams and Optimization

Propagation through a relaxed DD can substantially improve performance of constraint programming.

Example: Traveling salesman problem with time windows and other sequencing problems.

DDs allowed closure of several open problem instances.
Ciré, van Hoeve (2013)

Computation time scatter plot, lex search

TSP with time windows

Performance profile, depth-first search

TSP with time windows

Decision Diagrams and Optimization

A restricted DD represents a subset of the feasible set. Restricted DDs provide a basis for a primal heuristic.

Primal heuristic = algorithm that finds solutions that are not optimal in general Primal heuristics are an important factor in recent improvements of IP solvers.

> Bergman, Ciré, van Hoeve, Yunes (2014)

Optimality gap for set covering, n variables

Restricted DDs vs
Primal heuristic at root node of CPLEX

Computation time

Restricted DDs vs

Primal heuristic at root node of CPLEX (cuts turned off)

Decision Diagrams and Optimization

DDs provide a general purpose solver for discrete optimization.

- Bounds from relaxed DDs.
- Primal heuristic from restricted DDs.
- Recursive modeling
- Novel branching algorithm - branch inside relaxed DD

```
Bergman, Ciré, van Hoeve, JH (2016)
```


Branching Algorithm

Branching in a relaxed decision diagram

Branching Algorithm

Branching in a relaxed decision diagram

Branching Algorithm

Branching in a relaxed decision diagram

New relaxed decision diagram

Branching Algorithm

Branching in a relaxed decision diagram

Branching Algorithm

Branching in a relaxed decision diagram from solving shortest path problem in relaxed DDs

Branching Algorithm

Branching in a relaxed decision diagram

Pruning based on cost bounds obtained from solving shortest path problem in relaxed DDs

Continue recursively

5

Branching Algorithm

Finding shortest (longest) path in a relaxed DD is the fundamental calculation,
...much as solving an LP is the fundamental calculation in traditional MIP solvers.

Computational performance

Max cut

 on a graphAvg. solution time vs graph density 30 vertices

Computational performance

Max 2-SAT

Performance profile 30 variables

Nonlinear Optimization

Decompose problem into multiple DDs

Portfolio design

Bergman and Ciré (2018)

Nonlinear Optimization

Portfolio design

Bergman and Ciré (2018)

Nonlinear Optimization

Product assortment

Bergman and Ciré (2018)

Nonlinear Optimization

Workflow employee assignment

Bergman and Ciré (2018)

Nonlinear Optimization

Workflow employee assignment

Bergman and Ciré (2018)

Simplification of Dynamic Programming Models

Simplification of Dynamic Programming Models

Parallelization

Parallel computation with DDs achieves almost 100\% linear speedup. (Mixed integer programming achieves about 30\% speedup)

Killer App?

Can we turn over the shortest path problem to a quantum computer?

- Possibly radical speedup
- Possible application of quantum computing to a wide variety of constrained combinatorial optimization problems.
- Possible massive parallization (solve many shortest path problmems at once).

Predicate Logic and Integer Programming

Predicate Logic and Integer Programming

Fundamental compactness result in $1^{\text {st }}$-order predicate logic:
Theorem (Herbrand). A formula in Skolem normal form is unsatisfiable if and only if some finite combination of Herbrand ground instances of its clauses is unsatisfiable.

Herbrand 1930

Predicate Logic and Integer Programming

Fundamental compactness result in $1^{\text {st }}$-order predicate logic:
Theorem (Herbrand). A formula in Skolem normal form is unsatisfiable if and only if some finite combination of Herbrand ground instances of its clauses is unsatisfiable.

$$
\text { Herbrand } 1930
$$

Fundamental compactness result in infinite integer programming:

Jacques Herbrand
Theorem. An IP with infinitely many constraints is infeasible if and only if some finite subfamily of the constraints is infeasible.

Predicate Logic and Integer Programming

Fundamental compactness result in $1^{\text {st }}$-order predicate logic:
Theorem (Herbrand). A formula in Skolem normal form is unsatisfiable if and only if some finite combination of Herbrand ground instances of its clauses is unsatisfiable.

$$
\text { Herbrand } 1930
$$

Fundamental compactness result in infinite integer programming:

Jacques Herbrand

Theorem. An IP with infinitely many constraints is infeasible if and only if some finite subfamily of the constraints is infeasible.

These are the same theorem!

Resolution and Cutting Planes

Resolution and Cutting Planes

Resolution is a complete inference method for propositional logic.

Resolution: \quad| $x_{1} \vee x_{2} \vee x_{4}$ |
| :--- |
| $x_{1} \vee \neg x_{4}$ |

Quine1952,1955

W. V. Quine

An input proof is a resolution proof in which one parent of every resolvent is among the original premises.

Resolution and Cutting Planes

Cutting planes are an essential component of IP solvers.
Studied for over 50 years.
Approximate convex hull of integer solutions...
...so that LP relaxation gives tighter dual bound.

Gomory 1960, etc.

Resolution and Cutting Planes

A resolvent is a cutting plane (rank 1 Chvátal cut)

$$
\begin{align*}
x_{1}+x_{2}+x_{4} & \geq 1 \tag{1/2}\\
x_{1}-x_{4} & \geq 0 \\
x_{2} & \geq 0 \\
\hline x_{1}+x_{2} & \geq\left\lceil\frac{1}{2}\right\rceil
\end{align*}
$$

Proof of Chvátal's cutting plane theorem

V. Chvátal (fundamental result in cutting plane theory) implicitly relies on resolution!

Resolution and Cutting Planes

A resolvent is a cutting plane (rank 1 Chvátal cut)

$x_{1}+x_{2}+x_{4}$	≥ 1
$x_{1}-x_{4}$	≥ 0
x_{2}	≥ 0
$x_{1}+x_{2}$	$\geq\left\lceil\frac{1}{2}\right\rceil$

Chvátal's cutting plane proof implicitly relies

V. Chvátal on resolution! Chvátal 1973

Theorem. The logical clauses one can infer using input proofs are precisely those that are rank 1 cuts.

Theorem. Resolution can be generalized to a complete inference method for $0-1$ inequalities (a logical analog of Chvátal's theorem).

Logic and Duality

Logic and Duality

An optimization problem can be viewed from two perspectives:

Dual problem:
Logical inference

Deduce from constraints the tightest possible lower bound on cost.

When the dual inference method is complete, the primal and dual have the same optimal value (strong duality)

Logic and Duality

Duality first described for linear programming \& game theory

John von Neumann

Primal problem
Player 1 in 2-person
noncooperative game
Player 1 in 2-person
noncooperative game

Dual problem
Also an LP, solution
provides multipliers for optimality proof.

Dual problem

Logic and Duality

Optimization problems are typically solved by primal-dual algorithms. Search for primal and dual solution simultaneously.

All optimization duals are logical inference problems.
This implies a tight connection between logic and optimization.

Logic and Duality

Primal problem:
Optimization
$\min f(x)$
$x \in S$
Find best feasible solution by searching over values of x.

Inference dual

$$
\max v
$$

$$
x \in S \stackrel{P}{\Rightarrow} f(x) \geq v
$$

$P \in \mathcal{P}$
Find a proof of optimal value by searching over proofs P.

In classical LP, the proof is a tuple of dual multipliers

Logic and Duality

Type of Dual	Inference Method	Strong?
Linear programming	Nonnegative linear combination + material implication	Yes*
Lagrangian	Nonnegative linear combination + domination	No
Surrogate	Nonnegative linear combination + material implication	No
Subadditive	Cutting planes	Yes** $^{\text {*Due to Farkas Lemma }}$**Due to Chvátal's theorem

Logic and Duality

LP Duality

$\min c x=$

$A x \geq b$
$x \geq 0$
:---
$A x \geq b \underset{\text { implies }}{\stackrel{x \geq 0}{\Rightarrow}} c x \geq v$

Dual problem: Find the tightest lower bound on the objective function that is implied by the constraints.

Logic and Duality

LP Duality

$$
\begin{array}{ll}
\min c x= & \max v \\
A x \geq b \\
x \geq 0 & A x \geq b \neq 0
\end{array} \quad c x \geq v .
$$

From Farkas Lemma: If $A x \geq b, x \geq 0$ is feasible,

$$
\begin{array}{r}
A x \geq b \Rightarrow c x \geq v \text { iff } \begin{array}{c}
\lambda A x \geq \lambda b \text { implies } c x \geq v \\
\text { for some } \uparrow \lambda \geq 0
\end{array} \\
\lambda A \leq c \text { and } \lambda b \geq v
\end{array}
$$

Logic and Duality

LP Duality

$\min c x=$	$\max v$	$\max \lambda b$	This is the
$A x \geq b$	$A x \geq b \stackrel{x}{x \geq 0} c x \geq v$	$\lambda A \leq c$	classical
$x \geq 0$	$\Rightarrow C X \geq v$	$\lambda \geq 0$	LP dual

From Farkas Lemma: If $A x \geq b, x \geq 0$ is feasible,

$$
\begin{gathered}
A x \geq b \stackrel{x \geq 0}{\Rightarrow} c x \geq v \text { iff } \begin{array}{c}
\lambda A x \geq \lambda b \text { implies } c x \geq v \\
\text { for some } \uparrow \lambda \geq 0
\end{array} \\
\lambda A \leq c \text { and } \lambda b \geq v
\end{gathered}
$$

Lagrangian Duality

Primal

$\min f(x)$
$g(x) \geq 0$
$x \in S$

Dual

$\max v$

$$
g(x) \geq b \Rightarrow f(x) \geq v
$$

Let us say that

$$
\begin{array}{r}
g(x) \geq 0 \stackrel{x \in S}{\Rightarrow} f(x) \geq v \quad \text { iff } \begin{array}{r}
\lambda g(x) \geq 0 \text { dominates } f(x)-v \geq 0 \\
\text { for some } \lambda \geq 0 \\
\lambda g(x) \leq f(x)-v \text { for all } x \in S
\end{array} ~
\end{array}
$$

That is, $v \leq f(x)-\lambda g(x)$ for all $x \in S$

Lagrangian Duality

$$
\begin{aligned}
& \text { Primal } \\
& \min f(x) \\
& g(x) \geq 0 \\
& x \in S \\
& \text { Dual } \\
& \max v \\
& g(x) \geq b \stackrel{s \in S}{\Rightarrow} f(x) \geq v \\
& \text { Let us say that } \\
& g(x) \geq 0 \stackrel{x \in S}{\Rightarrow} f(x) \geq v \\
& \text { Dual } \\
& \max v \\
& \lambda g(x) \leq f(x)-v \text { for all } x \in S \\
& \text { That is, } v \leq f(x)-\lambda g(x) \text { for all } x \in S
\end{aligned}
$$

If we replace domination with material implication, we get the surrogate dual, which gives better bounds but lacks the nice properties of the Lagrangean dual.

Lagrangian Duality

Primal
$\min f(x)$
$g(x) \geq 0$
$x \in S$

Let us say that

$$
g(x) \geq 0 \stackrel{x \in S}{\Rightarrow} f(x) \geq v \quad \text { iff } \frac{\lambda g(x) \geq 0 \text { dominates } f(x)-v \geq 0}{\text { for some } \uparrow \lambda \geq 0}
$$

$$
\lambda g(x) \leq f(x)-v \text { for all } x \in S
$$

That is, $v \leq f(x)-\lambda g(x)$ for all $x \in S$
Or $v \leq \min _{x \in S}\{f(x)-\lambda g(x)\}$

If we replace domination with material implication, we get the surrogate dual, which gives better bounds but lacks the nice properties of the Lagrangean dual.

Lagrangian Duality

Primal

$\min f(x)$
$g(x) \geq 0$
$x \in S$
Dual
$\max v$

$$
g(x) \geq b \Rightarrow f(x) \geq v
$$

Let us say that
$g(x) \geq 0 \stackrel{x \in S}{\Rightarrow} f(x) \geq v \quad$ iff $\begin{aligned} \lambda g(x) \geq 0 \text { dominates } f(x)-v \geq 0 \\ \text { for some } \uparrow \lambda \geq 0\end{aligned}$

$$
\lambda g(x) \leq f(x)-v \text { for all } x \in S
$$

That is, $v \leq f(x)-\lambda g(x)$ for all $x \in S$
Or $v \leq \min _{x \in S}\{f(x)-\lambda g(x)\}$

So the dual becomes

```
max v
v\leqmincS
```


Logic, Duality and Decomposition

Often, decomposition is the key to solving large optimization problems.

- Break the problem into smaller components.
- Solution time increases superlinearly with component size.
- Faster to solve many small problems than one large one.

Components must communicate somehow to reach globally optimal solution.

- Decomposition can nonetheless make problem tractable,
- Given the right problem structure.

Benders Decomposition

Benders decomposition is a well-known and often successful decomposition method.

$$
\text { Benders } 1962
$$

Classical Benders decomposition requires an LP subproblem.

- The Benders cuts are obtained from the LP dual of the subproblem.

Benders Decomposition

Benders decomposition is a well-known and often successful decomposition method.

$$
\text { Benders } 1962
$$

Classical Benders decomposition requires an LP subproblem.

- The Benders cuts are obtained from the LP dual of the subproblem.

Logic-based Benders decomposition accepts any optimization problem as the subproblem.

- Benders cuts are obtained from an inference dual of the subproblem.

Speedup over state of the art can be several orders of magnitude.

- Benders cuts must be designed specifically for every class of problems.

$$
\text { JH } 2000
$$

JH, Ottosson 2003

Logic and Duality

Logic-based Benders

Logic-based Benders decomposition solves a problem of the form

$$
\begin{aligned}
& \min f(x, y) \\
& (x, y) \in S \\
& x \in D_{x}, y \in D_{y}
\end{aligned}
$$

where the problem simplifies when x is fixed to a specific value,
...usually by decoupling into small components

Logic-based Benders

Decompose problem into master and subproblem.
Subproblem is obtained by fixing x to solution value in master problem.

Master problem
$\min z$
$z \geq g_{k}(x) \quad$ (Benders cuts)
$x \in D_{x}$
Minimize cost z subject to
bounds given by Benders
cuts, obtained from previous
iterations k.

Subproblem

$$
\begin{aligned}
& \min f(\bar{x}, y) \\
& (\bar{x}, y) \in S
\end{aligned}
$$

Obtain proof of optimality (solution of inference dual). Use same proof to deduce cost bounds for other assignments, yielding Benders cut.

Logic-based Benders

Iterate until master problem value equals best subproblem value so far. Classical Benders uses LP dual of subproblem to obtain a proof.

Master problem
$\min z$
$z \geq g_{k}(x) \quad$ (Benders cuts)
$x \in D_{x}$
Minimize cost z subject to
bounds given by Benders
cuts, obtained from previous
iterations k.

Subproblem

$$
\begin{aligned}
& \min f(\bar{x}, y) \\
& (\bar{x}, y) \in S
\end{aligned}
$$

Obtain proof of optimality (solution of inference dual). Use same proof to deduce cost bounds for other assignments, yielding Benders cut.

Machine Assignment and Scheduling

Performance profile

Home Healthcare Routing and Scheduling

Heching, JH, Kimura 2018
*Cuts are generated during a single branch-and-bound solution of master problem

Logic-based Benders Applications

LBBD in planning and scheduling:

- Chemical batch processing (BASF, etc.)
- Auto assembly line management (Peugeot-Citroën)
- Allocation and scheduling of multicore processors (IBM, Toshiba, Sony)
- Steel production scheduling
- Worker assignment in a queuing environment

Logic-based Benders Applications

Other scheduling applications:

- Lock scheduling
- Shift scheduling
- Permutation flow shop scheduling
- Resource-constrained scheduling
- Hospital scheduling
- Optimal control of dynamical systems
- Sports scheduling

Logic-based Benders Applications

LBBD in routing and scheduling:

- Vehicle routing
- Home health care
- Food distribution
- Automated guided vehicles in flexible manufacturing
- Traffic diversion
- Concrete delivery

Logic-based Benders Applications

LBBD in location and design:

- Allocation of frequency spectrum (U.S. FCC)
- Wireless local area network design
- Facility location-allocation
- Stochastic facility location and fleet management
- Capacity and distanceconstrained plant location
- Queuing design and control

Logic-based Benders Applications

Other LBBD applications:

- Logical inference (SAT solvers essentially use Benders!)
- Logic circuit verification
- Bicycle sharing
- Service restoration in a network
- Inventory management
- Supply chain management
- Space packing

Consistency and Backtracking

Consistency and Backtracking

Consistency is a core concept of constraint programming.

A consistent partial assignment is one that occurs in some feasible solution.

A constraint set is consistent if all partial assignments that violate no constraint are consistent with the constraint set.

Consistency and Backtracking

Consistency is a core concept of constraint programming.

A consistent partial assignment is one that occurs in some feasible solution.

A constraint set is consistent if all partial assignments that violate no constraint are consistent with the constraint set.

Various forms of consistency: full consistency, k-consistency, domain consistency.

Consistency implies less backtracking

Consistency and Backtracking

The concept of consistency never developed in the optimization literature.

Yet valid inequalities (cutting planes) reduce backtracking by achieving a greater degree of consistency, as well as by tightening a relaxation.

Consistency and Backtracking

The concept of consistency never developed in the optimization literature.

Yet valid inequalities (cutting planes) reduce backtracking by achieving a greater degree of consistency, as well as by tightening a relaxation.

Consistency can be adapted to MILP.

Cuts that achieve consistency cut off inconsistent 0-1 partial assignments and so reduce backtracking.

Consistency and Backtracking

$$
S=\left\{x_{1}+2 x_{2}+x_{3} \leq 2, x_{j} \in\{0,1\}\right\}
$$

This inequality is the sum of the 2 nontrivial facet-defining inequalities for S and so is "weaker."

Yet it cuts off more infeasible $0-1$ points than either facet-defining inequality.

Consistency and Backtracking

$$
S=\left\{x_{1}+2 x_{2}+x_{3} \leq 2, x_{j} \in\{0,1\}\right\}
$$

The constraint set S is LP-consistent.

It explicitly excludes infeasible $0-1$ partial assignments.

A weak form of LP-consistency can reduce backtracking by excluding inconsistent partial assignments that facet-defining inequalities may not exclude.

Consistency and Backtracking

$$
S=\left\{x_{1}+2 x_{2}+x_{3} \leq 2, x_{j} \in\{0,1\}\right\}
$$

We obtain a theory of consistency parallel to the one in CP.

Questions? Comments?

