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Abstract Logic and optimization can, in combination, make valuable contributions
to rule-based AI. Logic is the obvious medium for encoding a rule base and
drawing inferences from it, while optimization provides a powerful technology
for computing inferences. Their combination has taken on new relevance amid
a growing concern for transparency in AI. Rule-based AI provides a natural
solution to transparency that is becoming increasingly practical due to today’s
highly advanced optimization methods. This article surveys several areas of logic-
optimization partnership, including probabilistic logic, Bayesian logic, belief logics
and Dempster-Shafer theory, nonmonotonic (default) logic, many-valued logics, and
inference of logical formulas from noisy data based on boolean regression. It shows
how to compute projections, the fundamental problemof both logic and optimization,
using decision diagrams and logic-based Benders decomposition. It concludes by
describing how solvers can use postoptimality analysis to explain how conclusions
are reached, further enhancing transparency.

Carnegie Mellon University, e-mail: jh38@andrew.cmu.edu

1



2 J. N. Hooker July 2025

1 Introduction

Logic and optimization have played an essential role in artificial intelligence (AI)
since its inception. The very first AI program (1956), Logic Theorist [74], proved
theorems of logic and mathematics, including several from Russell and Whitehead’s
famous treatise Principia Mathematica. The following year, the pathbreaking AI
systemGeneral Problem Solver [73] applied means-end analysis in a manner similar
to logic programming. As for optimization, the advent of machine learning and
artificial neural networks immediately posed the problem of adjusting parameters
to fit training data. This optimization problem remains a central and challenging
element of machine learning today.

Logic and optimization are not only individually useful in AI, but they have much
to offer when combined. Together, they provide an ideal approach to implementing
rule-basedAI.While connectionistmachine learning has achieved impressive results,
it increasingly poses the issue of transparency, which is important for reproducibility,
explainability, trustworthiness, and fairness [22, 44, 85, 89]. Rule-basedAI provides a
natural solution to transparency, because it allows knowledge to be explicitly encoded
in rules from which relevant information can be inferred, and allows decisions to
be deduced from a rule-based production system. While neural networks provide a
useful model of cognition, a rule-based framework has long served as an alternative
model. The well-known ACT-R framework inspired by AI pioneer Alan Newell, for
example, places the agent’s executive function in a rule-based production system
[7, 63, 72].

Logic and optimization are natural partners in a rule-based environment. Logic
provides the obvious framework for stating rules and deducing their implications, and
even for their ethical assessment [60]. Optimization comes into play as a powerful
method for computing logical inferences, as well as conceptual elucidation of the
various logics used in AI. Optimization solvers, particularly for linear and integer
programming, not only deduce inferences but can provide a traceback of how they
are derived, thus enhancing the natural transparency of rule-based AI. These solvers
have also improved enormously over the years. For example, one study documents
that integer programming solvers reduced solution times by a factor of 5 million
between 1989 and 2024, quite apart from reductions due to faster machines [84].
More fundamentally, we will see that optimization and logical inference are special
cases of the same basic problem.

This paper presents a sampling of logic-optimization partnerships that have
developed in parallel with machine learning and deserve renewed consideration,
especially in view of today’s advanced optimization technology and concern for
transparency. We begin with probabilistic logic, which has a linear programming
formulation that can be solved by modern column generation methods. We also
describe various extensions, including Bayesian logic, which combines probabilistic
logic with Bayesian networks andmakes use of nonlinear programming.We examine
belief logics as well, including Dempster-Shafer theory and variants that have easily-
solved linear programming formulations. We then take up two nonstandard logics
that have seen application in AI, default logic (a variety of nonmonotonic reasoning)
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and many-valued logics. Both benefit from integer programming models. At this
point we turn from deducing implications of logical formulas to inferring the
formulas themselves from noisy data. We describe a form of boolean regression
that can be calibrated by integer programming and measures statistical significance.
We then delve into the underlying connection between logic and optimization just
mentioned by observing that both, at root, pose a projection problem. We show
how this problem can be addressed by applying a recently developed optimization
method, logic-based Benders decomposition, to a knowledge base represented as a
binary decision diagram (BDD). We conclude by specifying three ways in which
optimizationmethods can provide tracebacks that are potentially useful for enhancing
transparency in AI. One is classical linear programming sensitivity analysis, and the
other two are inference-based and BDD-based postoptimality analysis for integer
programming.

The emphasis throughout is on conveying the basic ideas and their motivation,
rather than providing a complete technical description. Details are available in
the cited references, which cover both the methods discussed here and subsequent
developments.

2 Probabilistic Logic

AlthoughGeorge Boole is best known for his work in propositional logic, he regarded
probabilistic logic [15] as his most important contribution. It in fact displays stunning
originality. Although forgotten for more than a century, it is highly relevant to the
project of artificial intelligence today. It allows one to determinewithwhat confidence
one can draw inferences from propositions that are known only to be true with certain
probabilities.

Hailperin [45] observed in 1976 that Boole’s probabilistic logic can be given a
linear programming model. A decade after Hailperin’s work, Nilsson independently
published a similar model in the AI literature [75]. His paper gave rise to a number
of subsequent contributions, many of which are surveyed in [24, 46, 62].

We begin by describing Boole’s probabilistic logic and its linear programming
model. We show how the well-known technique of column generation can deal with
the exponentially many variables in the model. We then incorporate second-order
probabilities without sacrificing linearity. Conditional independence assumptions
introduce nonlinear constraints, but we indicate how exploiting the structure of a
Bayesian network can somewhat ameliorate the resulting computational challenge.

2.1 The Basic Model

Probabilistic logic is best explained by an example [24]. Suppose the probabilities
of three logical propositions are given as follows:
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Pr(x1) = 0.9 (1)
Pr(x1 ⊃ x2) = 0.8 (2)
Pr(x2 ⊃ x3) = 0.7 (3)

We are also given the conditional probability

Pr(x1 | x2, x3) =
Pr(x1, x2, x3)

Pr(x2, x3)
= 0.8 (4)

Note that Pr(x1 ⊃ x2) is not the conditional probability Pr(x2 | x1). It is the probability
of the material conditional x1 ⊃ x2, which is equivalent to ¬x1 ∨ x2. We wish to
determine with what probability we can infer x3. Boole observed that we cannot
deduce a precise probability for x3, but we can deduce that its probability lies in a
particular range.

In probabilistic logic, each possible assignment of truth values to x = (x1, x2, x3)
is regarded as a “possible world” (values 0 and 1 correspond to false and true).
Each possible world x has a probability px , initially unknown. For example, p000
is the probability of the world in which (x1, x2, x3) = (0, 0, 0), and analogously for
p001, . . . , p111. Then the probability 0.9 of proposition x1, for example, is

p100 + p101 + p110 + p111

since x1 is true in the corresponding possible worlds, and similarly for propositions
x1 ⊃ x2 and x2 ⊃ x3. The probability assignments (1)–(3) can be written as the
linear equations

p100 + p101 + p110 + p111 = 0.9 (5)
p000 + p001 + p010 + p011 + p110 + p111 = 0.8 (6)
p000 + p001 + p011 + p100 + p101 + p111 = 0.7 (7)

The conditional probability assignment (4) can be linearized as

Pr(x1, x2, x3) = 0.8Pr(x2, x3)

and therefore written
p111 − 0.8(p011 + p111) = 0 (8)

We can now deduce the range of possible values for the probability of x3, which
is equal to

p001 + p011 + p101 + p111 (9)

A sharp upper bound on this probability is the maximum of (9) subject to the
constraints (5)–(8) and the normalization and nonnegativity constraints

p000 + p001 + p010 + p011 + p100 + p101 + p110 + p111 = 1 (10)
p000, . . . , p111 ≥ 0 (11)
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This is a linear programming problemwithmaximumvalue 0.7. A sharp lower bound
on the probability of x3 is the minimum of (9) subject to these constraints, which is
0.5. The probability of x3 must therefore be confined to the interval [0.5, 0.7]. Due
to the convexity of the feasible set defined by the constraints, every probability in
this interval is consistent with the assigned probabilities (5)–(8).

In general, the probabilistic inference problem is

min/max
{
cᵀp

�� Ap = π, Bp = 0, 1ᵀp = 1, p ≥ 0
}

(12)

where constraint Ap = π specifies the categorical probabilities, Bp = 0 specifies
the conditional probabilities, and 1 = (1, 1, . . . , 1). The probability assignments are
unsatisfiable if (12) has no feasible solution. The example problem in this form is

min/max


[0 1 0 1 0 1 0 1]p

�����������


0 0 0 0 1 1 1 1
1 1 1 1 0 0 1 1
1 1 0 1 1 1 0 1

 p =


0.9
0.8
0.7


[0 0 0 −0.8 0 0 0 0.2]p = 0
[1 1 1 1 1 1 1 1]p = 1, p ≥ 0


(13)

where p = (p000, . . . , p111). If desired, probability ranges rather than point values
can be specified in (12) while preserving the linear structure of the problem.

2.2 Column Generation

Adifficultywith problem (12) is that it contains 2n variables, where n is the number of
atomic propositions xi . Onemight think that this makes the problem computationally
intractable, and Nilsson suggests as much in [76]. However, the solution technique
column generation, well known to the optimization community, is designed for just
such cases. It allows one to solve the problem by means of the simplex method while
generating only a small fraction of the columns in matrices A and B, and thereby
using only a small fraction of the variables in p.

Column generation is readily applied to probabilistic logic, as initially observed
in [20, 41, 48, 54, 59]. It begins with a restriction of (12) in which A and B contain
only a few columns. It associates dual variables u, v, and α with the constraints
Ap = π, Bp = 0, and 1ᵀp = 1, respectively. These dual variables, whose values are
calculated in the course of the simplex method, are used to compute the reduced cost
of each variable pj :

cj − uᵀAj − v
ᵀBj − α (14)

where (cj, Aj, Bj, 1) is the column of (cᵀ, A, B, 1ᵀ) corresponding to pj . Supposing
for the moment that we are solving the minimization problem, each iteration of the
simplex method selects a new column (cj, Aj, Bj, 1) with a negative reduced cost for
inclusion in the problem (when maximizing, a positive reduced cost is desired). If
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no such column remains, an optimal solution has been found, at which point it is
likely that only a small fraction of the columns in (cᵀ, A, B, 1ᵀ) have been selected.

The problem of finding a pj with a negative reduced cost, known as the pricing
problem, can be solved by minimizing (14) over all columns j. The nature of the
pricing problem is best illustrated in the example. A column of (cᵀ, A, B, 1ᵀ) can be
represented as (y0, y1, y2, y3, z1−0.8w1, 1), where the 0–1 variables yi , z1 and w1 are
defined by

y0 ≡ x3
y1 ≡ x1
y2 ≡ (x1 ⊃ x2)
y3 ≡ (x2 ⊃ x3)
z1 ≡ (x1 ∧ x2 ∧ x3)
w1 ≡ (x1 ∧ x2)

(15)

The pricing problem can now be stated as minimizing

y0 − (u1y1 + u2y2 + u3y3) − v1(z1 − 0.8w1) − α (16)

subject to (15), which is a special case of the maximum satisfiability problem.
Solution of this problem yields a column with the smallest reduced cost, given by
(16). In practice, the problem is first solved by a fast heuristic method. If this fails to
yield a negative reduced cost, the problem is solved to optimality to confirm that no
columns with a negative reduced cost remain. The simplex method terminates when
this is confirmed.

One way to solve the pricing problem to optimality is to formulate it as a 0–1
programming problem as proposed in [48], which allows one to take advantage of
powerful integer programming solvers. The formulas in (15) are converted to linear
equations and inequalities, and (14) then optimized subject to these constraints.
Conversion is straightforward. For example, y0 ≡ x3 becomes simply y0 = x3, and
the remaining formulas are expressed in conjunctive normal form before conversion
to inequalities. For instance, formula y2 ≡ (x1 ⊃ x2) becomes the conjunction of
logical clauses

¬y2∨¬x1∨x2, y2∨x1, y2∨¬x2

which in turn become the three inequalities

(1 −y2) + (1−x1) + x2 ≥ 1, y2 + x1 ≥ 1, y2 + (1−x2) ≥ 1

Another approach is to formulate the pricing problem as pseudoboolean opti-
mization, as proposed in [20, 54]. In the example, this is accomplished by replacing
variables yi , z1, and w2 in the objective function (15) with possibly nonlinear
expressions in terms of the xis as follows:
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y0 ← x3
y1 ← x1
y2 ← 1 − x1x2
y3 ← 1 − x2x3
z1 ← x1x2x3
w1 ← x2x3

Then (15) is minimized without constraints, using a heuristic method, or when a
proof of optimality is required, using a pseudoboolean optimization method such as
those described in [18].

Subsequent developments in computational methods can be found in [47, 61, 62].
Some computationally easy cases of probabilistic logic are described in [4, 6].

2.3 Extensions

Problem (12) is easily modified to derive the range of a conditional probability.
The desired conditional probability can be written cᵀp/dᵀp for suitable coefficient
vectors c and d. This results in the linear-fractional programming problem

min/max
{ cᵀp
dᵀp

��� Ap = π, Bp = 0, 1ᵀp = 1, p ≥ 0
}

(17)

A simple change of variable, and the introduction of a scalar variable t, transforms
(17) to a linear programming problem [25]. By setting q = t p, it is easily seen that
(17) is equivalent to

min/max
{
cᵀq

�� Aq = tπ, Bq = 0, 1ᵀq = t, dᵀq = 1, q ≥ 0, t ≥ 0
}

(18)

When a solution (q, t) of (18) is found, the corresponding solution of (17) is p = q/t,
with optimal value cᵀp/dᵀp = cᵀq. As an illustration, suppose we wish to find a
probability range for Pr(x3 |x1, x2) in the above example. In this case,

cᵀp

dᵀp
=
[0 0 0 0 0 0 0 1]p
[0 0 0 0 0 0 1 1]p

The deduced interval for Pr(x3 |x1, x2) = cᵀq is a point value, namely 4/7.
A second extension arises when the given probabilities πi are intervals rather than

point values. Then the inference problem (12) is

min/max
{
cᵀp

�� πlo ≤ Ap ≤ πhi, Bp = 0, 1ᵀp = 1, p ≥ 0
}

(19)

A probability range for cᵀp can be derived by linear programming as before, but it
might be regarded as too conservative. Probabilities at the ends of a range [πlo

i , π
hi
i ]

assigned to a premise are generally less likely to be the true probability than those
near the middle. Probabilities at the ends of the derived range may therefore be
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extremely unlikely, because they typically occur only when a number of the given
probabilities are near the ends of their intervals. The derived range can therefore be
misleadingly wide.

One possible remedy for this problem is to derive a “most likely” probability
for cᵀp by computing a maximum entropy solution [58]. Yet this poses a difficult
nonlinear optimization problem [46], and it is equally misleading, because the
true probability of the inferred proposition may be quite far from its most likely
value. Another remedy, described in [24], is to specify a second-order probability
distribution over each probability interval [πlo

i , π
hi
i ] to indicate that probabilities

near the middle of the interval are more likely. To preserve the linearity of the
optimization problem, we can suppose the logarithm of the second-order probability
density function is piecewise linear and therefore the lower envelope of a set of lines:

log Pr(πi = ρ) = min
k=1,...,ki

{αik ρ + βik}

Let Ai be row i of A, which corresponds to proposition i. Assuming independence
of the second order probabilities, the logarithm of the joint probability that the m
propositions have probabilities A1 p, . . . , Amp is

m∑
i=1

min
k=1,...,ki

{αik Ai p + βik} (20)

To eliminate solutions that are extremely unlikely, one can impose a lower bound
L on (20). The probabilistic inference problem becomes the linear programming
problem

min/max

{
cᵀp

�����∑m
i=1 `i ≥ L, `i ≤ αik Ai p + βik, k = 1, . . . , ki, i = 1, . . . ,m

πlo ≤ Ap ≤ πhi, Bp = 0, 1ᵀp = 1, p ≥ 0

}
which can again be solved by column generation. The probability range can now be
reduced to a more realistic interval by increasing L. Second-order distributions of
the conditional probabilities can be similarly accommodated. A similar model in [5]
shows how to assign probabilities point values that are uncertain, where the degree
of uncertainty is based on information from several sources.

2.4 Bayesian Logic

One of our most valuable sources of probabilistic knowledge is the independence of
most events. It is convenient, for example, that the probability of an earthquake in
Asia is independent of the weather in North America. Ironically, the independence
relations that make things easier to understand also make a probabilistic logic model
harder to solve, because they introduce nonlinearities. Despite this, it would be
desirable to incorporate independence assumptions into Boole’s probabilistic logic.
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Baysian logic accomplishes this by identifying the nodes of a Bayesian network with
logical formulas [3], thereby taking advantage of the elegant way in which Bayesian
networks represent conditional independence.

Figure 1 represents a small Bayesian network for formulas f1, . . . , f6. We can
suppose that probabilities are specified (or bounded) for some or all of the nodes,
conditioned on the node’s immediate predecessors, as in the conditional probability
Pr( f1 | f2, f3). Marginal probabilities can be specified (or bounded) for nodes without
predecessors, such as f5 and f6. The formulas fi contain propositional variables xj as
in probabilistic logic. The formulas are therefore related logically as well as through
conditional probabilities.

f5

f6

f4

f2

f3

f1

Fig. 1 A simple Bayesian network.

The essence of a Bayesian network is a Markovian property according to which
conditional probabilities depend only on immediate parent nodes. Thus in Fig. 1,
Pr( f1 | f2, f3, f4) = Pr( f1 | f2, f3). Consequently, a set of nodes with common parents
are conditionally independent when their probabilities are conditioned on their
parents. For example, f2 and f3 are conditionally independent given f4, so that
Pr( f2 | f3, f4) = Pr( f2 | f4). Since f4 is a proposition, one may wish to suppose that f2
and f3 are independent given ¬ f4 as well as given f4. We will indicate this by writing
Pr( f2 | f3F4) = Pr( f2 |F4), where F4 varies over f4 and ¬ f4.

An optimization model is obtained by adding network-encoded nonlinear inde-
pendence conditions to the linear programming model for probabilistic logic. For
example, the independence assumption Pr( f2 | f3F4) = Pr( f2 |F4) is captured by the
constraints

Pr( f2, f3, F4)Pr(F4) = Pr( f2, F4)Pr( f3, F4), for F4 = f4,¬ f4 (21)

where Pr( f2, f3, F4) is the joint probability of f2, f3, and F4. Such constraints
are not only nonlinear but can grow exponentially in number. If the probabilities
are conditioned on several formulas, one must write constraints for all true-false
combinations of these formulas.

Fortunately, it is shown in [3, 24] that the number of constraints is substantially
limited in many networks. The idea is illustrated in Figs. 2 and 3. To compute bounds
on the probability of the rightmost node, the number of independence constraints
is at worst exponential in the size of the largest extended ancestral set of that node.
Figure 2 shows the ancestral sets, and Fig. 3 the extended ancestral sets. The ancestral
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sets are defined recursively in terms of parent sets. Given a set S of nodes, the parent
sets of S are obtained by identifying the set S′ of nodes outside S that are immediate
predecessors of some node in S, and then splitting S′ intomaximal dependent subsets.
The ancestral sets of a node are its parent sets, the parent sets of its parent sets and so
forth. An extended ancestral set consists of an ancestral set augmented by the nodes
in its parent sets.

Fig. 2 Ancestral sets of the rightmost node.

Fig. 3 Extended ancestral sets of the rightmost node.

A variation of Bayesian logic was recently proposed for a logical credal network
[68]. Credal networks are modified Bayesian networks in which probabilities are
specified in various imprecise ways, generalizing the intervallic specifications used
here. A logical credal network associates logical formulas with nodes as does
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Bayesian logic. In [68], the Markovian property of conventional Bayesian networks
is replaced by a modified property that permits the network to contain cycles.
Exact and heuristic solution methods for computing probability bounds in logical
credal networks are described in [31, 67, 68]. Credal networks in general, including
optimization methods for solving them, are comprehensively surveyed in [69].

3 Belief Logics

Like probabilistic logic, a logic of belief functions distributes probability mass
over subsets of possible worlds. It differs in that the probability mass indicates the
degree of evidence for, or credibility of, propositions rather than their probability
in a classical sense. It might therefore be referred to as evidence mass. A further
difference is that, whereas assigning a specific probability mass to a set of possible
worlds fixes the total probability of those worlds, assigning a specific evidence mass
adds to the total evidence for those worlds.

We begin below with a basic belief logic and its linear programming formulation.
Unlike probabilistic logic, it does not contain exponentially many variables and
therefore has no need of column generation for its solution. We then describe
how Dempster-Shafer theory augments this basic model with a rule for combining
possibly contradictory evidence sources (Dempster’s combination rule). Following
this, we drop the nonlinear independence assumption of Dempster-Shafer theory,
while retaining Dempster’s combination rule, to permit a linear programming
formulation.

3.1 Logic of Belief Functions

Belief functions can be illustrated by a small example, taken from [3]. Suppose
we have propositions x1, x2, and x1∧ x2, which correspond to possible world sets
S1 = {(1, 0), (1, 1)}, S2 = {(0, 1), (1, 1)}, and S0 = {(1, 1)}, respectively. We have
some evidence for x1 and x2 and wish to determine the implied evidential support
for x1∧x2. Let m(S1) be the fraction of available evidence that specifically supports
the proposition x1 corresponding to set S1, and similarly form(S2) andm(S0).We also
suppose that m(Θ) is the fraction of evidence that supports no particular proposition,
where Θ is the set of all possible worlds. Dempster and Shafer refer to m(Si) as a
“basic probability number,” but we will refer to it as an evidence allotment. We must
have

∑
i m(Si) = 1.

The accumulated evidence for x1 consists of the evidence that supports x1 and
any propositions that imply x1, in this case x1∧x2. Thus the total support for set S1 is
Bel(S1) = m(S0)+m(S1), where Bel is a belief function. The belief values Bel(S1) and
Bel(S0) are similarly defined. If we are given that Bel(S1) = 0.9 and Bel(S2) = 0.8,
we have
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m(S0) + m(S1) = 0.9
m(S0) + m(S2) = 0.8
m(S0) + m(S1) + m(S2) + m(Θ) = 1
m(Si) ≥ 0, all i

(22)

The evidence allotments m(Si) must satisfy these constraints. Since evidence is
allocated to no proper subset of S0, the evidential support for x1∧x2 isBel(S0) = m(S0).
This support level must fall in the range obtained by maximizing and minimizing
m(S0) subject to (22), which yields the interval [0.7, 0.8].

In general, suppose we are given belief values Bel(Si) for i = 1, . . . ,m. The linear
programming model is

min/max


∑
S⊆S0

m(S)

�����������

∑
S⊆Si

m(S) = Bel(Si), i = 1, . . . ,m

m(Θ) +
m∑
i=1

m(Si) = 1

m(Θ) ≥ 0, m(Si) ≥ 0, i = 1, . . . ,m


Note that possible worlds do not play an explicit role in this model. The model
therefore grows only linearly with the number of propositions assigned belief values
and can therefore be solved very rapidly. In practice, set inclusion S⊆ Si can be
interpreted as logical entailment between the propositions corresponding to S and Si .

3.2 Dempster-Shafer Theory

The belief logic of the previous section supposes that all available evidence has been
pooled, so that evidence allotments m(S) can bemade on that basis. It also recognizes
that the belief level of a given proposition may be underdetermined by available
evidence. Dempster-Shafer theory [33, 34, 81] addresses the issue of how to combine
different sources of evidence to obtain a single evidence allotment function m(·). It
accomplishes this in such a way as to obtain point values for the function m(·), and
therefore for any belief value Bel(S0) one wishes to deduce from the evidence base.
The method rests on rather strong independence and normalization assumptions.
However, one can drop the independence assumption and deduce intervals for m(·),
rather than point values, by means of linear-fractional programming.

We again illustrate with an example. As before, the propositions of interest are x1,
x2, and x1∧ x2, corresponding to sets S1, S2 and S0, and we wish to deduce the level of
evidence for x1∧x2. Suppose that evidence source 1 determines an evidence allotment
function m1(·) by specifying m1(S1) = 0.9 and m1(Θ) = 0.1. Evidence source 2
specifies m2(S2) = 0.8 and m2(Θ) = 0.2. Then Dempter’s combination rule derives
a combined allotment function m̂(·) = m1(·) ⊗ m2(·) by taking cross-products of
evidence allotments to intersecting sets as shown in Table 1. This operation assumes
that evidence sources are independent in some sense. Since none of the intersections
are empty, we can set m(·) = m̂(·); empty intersections require renormalization, as
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Table 1 Example of Dempster’s combination rule that does not require normalization.
m2(S2) = 0.8 m2(Θ) = 0.2

m1(S1) = 0.9 m̂(S1 ∩ S2) =
m̂(S0) = 0.72

m̂(S1 ∩ Θ) =
m̂(S1) = 0.18

m1(Θ) = 0.1 m̂(Θ ∩ S2) =
m̂(S2) = 0.08

m̂(Θ ∩ Θ) =
m̂(Θ) = 0.02

Table 2 Example of Dempster’s combination rule that requires normalization.
m2(S1) = 0.25 m2(Θ) = 0.75

m1(S1) = 0.4 m̂(S1 ∩ S1) =
m̂(�) = 0.1

m̂(S1 ∩ Θ) =
m̂(S1) = 0.3

m1(Θ) = 0.6 m̂(Θ ∩ S1) =

m̂(S1) = 0.15
m̂(Θ ∩ Θ) =
m̂(Θ) = 0.45

explained below. Because S0 contains neither of the other sets, its belief value is
simply Bel(S0) = m(S0) = 0.72. Note that this point value lies within the interval
[0.7, 0.8] that was derived for Bel(S0) in the previous section.

In general, we have

m̂(S) = m1(S) ⊗ m2(S) =
∑
A,B

S=A∩B

m1(A)m2(B)

If there are three evidence sources, one can compute m̂(S) recursively as m̂(S) =
m1(S) ⊗ (m2(S) ⊗ m3(S)), and similarly for more numerous sources. If one or more
intersections A ∩ B are empty, we must renormalize the evidence allotments. For
example, the allotment functions shown in Table 2 assign positive evidence to
contradictory propositions, since S1 is the complement of S1. Since there can be
no evidence for a logical contradiction, we assign m(S1∩ S1) = m(�) = 0. We now
renormalize the remaining evidence allotments, yielding m(S1) =

1
3 , m(S1) =

1
6 , and

m(Θ) = 1
2 . More generally,

m(S) =


m̂(S)
1 − m̂(�)

, if S , �

0, if S = �

In this manner, Dempster’s combination rule can reconcile conflicting evidence
sources, although onemight question whether renormalization is a justifiable method
for doing so. Finally, the belief value of S0 is simply

Bel(S0) =
∑
S⊆S0

m(S)
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3.3 Belief Logic with Dempster’s Combination Rule

The independence assumption in Dempster-Shafer theory can be dropped if we are
content with inferred intervals rather than point values for the evidence allotment
function m(·). This yields a belief logic similar to that described in Section 3.1,
but with a mechanism for combining evidence sources. It also permits a linear
programming model.

In the example of Table 1, we observe that

m̂(S1∩S2) + m̂(S1) = 0.9
m̂(S2) + m̂(Θ) = 0.1
m̂(S1∩S2) + m̂(S2) = 0.8
m̂(S1) + m̂(Θ) = 0.2
m̂(S1), m̂(S2), m̂(S1∩S2), m̂(Θ) ≥ 0

(23)

where any one of the four equations is redundant of the others. By minimizing and
maximizing m̂(S1∩S2) subject to (23), we obtain the range [0.7, 0.8] for m̂(S1∩S2),
which contains the point value 0.72 obtained under an independence assumption. A
similar approach works when renormalization is necessary. From Table 2, we have

m̂(�) + m̂(S1) = 0.4
m̂(S1) + m̂(Θ) = 0.6
m̂(�) + m̂(S1) = 0.25
m̂(S1) + m̂(Θ) = 0.75
m̂(S1), m̂(S1), m̂(�), m̂(Θ) ≥ 0

(24)

Since m(S1) = m̂(S1)/(1− m̂(�)), we can obtain a range for m(S1) by minimizing and
maximizing this fraction subject to (24). This can be accomplished by fractional-
linear programming, yielding the interval [0.2, 0.4], which contains the point value
m(S1) =

1
3 derived above.

In general, a range for m(S0), given nonempty S0, is found as follows. Suppose that
evidence source 1 provides positive evidence mass for sets S1, . . . , Sm, and evidence
source 2 provides positive mass for T1, . . . ,Tn. Then we wish to solve

min/max


m̂(S0)

1 − m̂(�)

�������
∑n

j=1 m̂(Si∩Tj) = m1(Si), i = 1, . . . ,m∑m
i=1 m̂(Si∩Tj) = m2(Tj), j = 1, . . . ,m

m̂(·) ≥ 0


This becomes a linear programming problem after the variable change µ(·) = m̂(·)t:

min/max

µ(S0)

�������
∑n

j=1 µ(Si∩Tj) = m1(Si)t, i = 1, . . . ,m∑m
i=1 µ(Si∩Tj) = m2(Tj)t, j = 1, . . . ,m

t − µ(�) = 1; µ(·), t ≥ 0


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When there are a large number of evidence sources, recursive computation of
m(S0) can become difficult. The number of set intersections, and thus the number
of sets with positive mass, can increase exponentially with the number of sources.
Methods for simplifying the computations, using a set covering optimization model,
are discussed in [24, 37]. In any event, it is likely that only a handful of evidence
sources are relevant to a given conclusion in a given application.

A survey of algorithms for Dempster-Shafer theory can be found in [88], and
a general discussion of semantics for belief logics in [42]. Other mathematical
programming embeddings of logic, including predicate logic, are presented in [16,
24].

4 Nonmonotonic and Many-Valued Logics

This section deals with two nonstandard logics that have played a role in artificial
intelligence, nonmonotonic logic and many-valued logic. It shows how optimization
can make substantial contributions to their implementation, and even lend insight
into the underlying ideas.

In nonmonotonic logic, the addition of new facts to a knowledge base may
require the withdrawal of previously inferred conclusions. We show how integer
programming can capture the semantics of default logic (a popular variety of
nonmonotonic logic) and compute satisfying solutions.

Many-valued logic can assign truth values between true and false, values that
may either be discrete or lie on a continuous scale. This permits a knowledge
base to indicate the degree of confidence with which propositions can be asserted.
Mixed integer/linear programming (MILP) is well suited to determine truth values
of propositions deduced from the knowledge base.

4.1 Default Logic

In default logic, propositions with an “unless” clause are enforced only if the unless
clause is not known to be true. This type of logic is closely related to answer set
programming and negation-as-failure in logic programming. A key concept in the
semantics of default logic is that of a stable model [40, 66]. Optimization can be
helpful in this context because all stable models can be identified with the assistance
of integer programming [9, 24].

Default logic is normally applied to a set of guarded rules having the form on the
left:

P→ xi unless G, or ¬P ∨xi ∨ G

where P is a conjunction of zero or more atoms (atomic propositions) and logical
formula G is the guard. The rule is semantically equivalent to the formula on the
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right. One is permitted to use the rule P→ xi in a deduction as long as G is not
known to be true.

In this context, a model for a set of guarded rules is a collection of atoms that,
when set to true, satisfy the rules when the remaining atoms are presumed false. The
concept of stable model can be explained with the following example. Consider the
guarded rules on the left below, which are semantically equivalent to the formulas
on the right.

x1→ x2 unless x5
x1→ x3 unless (x2∨x4)
(x1∧x4)→ x5
→ x1 unless (x4 ∧ x5)

¬x1∨x2∨x5
¬x1∨x3∨x2∨x4
¬x1∨¬x4∨x5
x1∨(x4∧x5)

(25)

Note that a guard can be empty, in which case the rule is always enforced. A given
model allows rules to be used when it fails to activate their guards. For example, the
model {x1.x2} admits the rules

x1→ x2
(x1∧x4)→ x5
→ x1

(26)

where (26) is known as the Gelfond-Lifschitz transform of (25) with respect to the
givenmodel [40]. A stablemodel is one that minimally satisfies its Gelfond-Lifschitz
transform; that is, flipping any atom from true to false would no longer satisfy the
transform. It is easily checked that {x1, x2} is a stable model.

Integer programming can identify all stable models by systematically finding all
minimal models of the original rule base and checking which ones are minimal
for the corresponding Gelfond-Lifschitz transform. A minimal model for (25), for
example, is found by minimizing

∑
i xi subject to linear inequalities that encode the

logical formulas in (25):

min


∑
i

xi

����������
(1−x1) + x2 + x3 ≥ 1
(1−x1) + x2 + x3 + x4 ≥ 1
(1−x1) + (1−x4) + x5 ≥ 1
x1 + x4 ≥ 1, x1 + x5 ≥ 1
xi ∈ {0, 1}, all i


(27)

Rules must be converted to conjunctive normal form before encoding, as illustrated
by the last rule in (25), which is converted to (x1∨ x4) ∧ (x1∨ x5). One optimal
solution of (27) is (x1, . . . , x5) = (1, 1, 0, 0, 0), which corresponds to the model
{x1, x2}, already found to be stable. Another minimal model can be found by adding
the constraint x1 + x2 ≤ 1 to exclude the model {x1, x2}, whereupon solution of (27)
yields (x1, . . . , x5) = (0, 0, 0, 1, 1). This is not minimal in the G–L transform, which
consists of the single rule (x1∧x4)→ x5. In fact, this rule is satisfied by flipping
both ones to zero. Adding the further constraint x4+x5 ≤ 1 yields a minimal model
{x1, x3, x5}, which is not minimal in the corresponding G–L transform. Finally,
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adding x1 + x3 + x5 ≤ 2 makes (27) infeasible. Thus (25) has no more minimal
models, and {x1, x2} is its only stable model.

Because the G–L transform is always a Horn system, unit propagation can check
for minimality, with no need for integer programming at this stage. A Horn system
consists of rules of the form P→ xi , where P is a conjunction of zero or more
atoms, and xi may be absent (in which case ¬P is asserted). There is exactly one
minimal model (possibly empty) for a Horn system, which is found by applying unit
propagation and noting which atoms are fixed to true. These atoms comprise the
minimal model. Unit propagation proceeds by finding a rule in which P is empty,
fixing its consequent xi to true, and removing xi from all other antecedents P in
the rule base. This is repeated until no empty antecedents remain. For example,
unit propagation applied to (26) first fixes x1 to true, and then x2, whereupon the
rule x4 → x5 remains. Thus {x1, x2} is the unique minimal model of (26). Horn
systems can also be solved by linear programming and have a number of interesting
polyhedral properties [23, 55].

Subsequent research on integer programming methods for answer set program-
ming and stable semantics includes [10, 64, 65, 77].

4.2 Many-valued Logic

Truth values in many-valued logic are frequently taken to be equally spaced numbers
in the interval [0, 1], with larger values corresponding to greater degree of confidence.
If desired, all real values in the interval [0, 1] can be regarded as truth values. Logical
operators and connectives are semantically defined as functions of these truth values.
For example, the truth value of ¬P is v(¬P) = 1− v(P), where v(P) is the truth value
of P. The truth value of the conditional P ⊃ Q is frequently defined to be

v(P ⊃ Q) = min{1, 1 − v(P) + v(Q)} (28)

Mixed integer/linear programming (MILP) provides a natural mechanism for
determining what truth values can inferred for a given formula, given premises with
specified truth values [43]. MILP presupposes that the operators and connectives
areMILP-representable, but a necessary and sufficient condition for representability
is known, easily checked, and rather weak. In particular, Jeroslow [56] showed that
an optimization problem is (finitely) MILP representable if and only if its feasible
set1 is the union of finitely many polyhedra that have the same recession directions.
These are directions in which one can go forever without leaving the set. Thus d is
a recession direction for set S if for some v ∈ S, v + αd ∈ S for all α ≥ 0.

In classical logic, the truth value of a formula P is indicated by asserting P or ¬P.
In multi-valued logic, one can specify (or bound) the truth value of P by means of a

1 Technically, this condition applies to the epigraph rather than the feasible set, but the distinction
is unnecessary here.
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more general signed formula.2 For example, the signed formula = 0.6 P indicates
that P has truth value 0.6, and ≤ 0.6 P indicates that P has some truth value in the
interval [0, 0.6].

To illustrate the role of MILP, assume for the moment that truth values are
continuous in the interval [0, 1]. The resulting model is easily modified to allow
only a finite number of discrete truth values. Suppose first that we wish to infer
possible truth values of P ⊃ Q from the premises ≤ p P and ≤ q Q. For example,
we may wish to know how false P ⊃ Q can be, given the premises. We determine
this by minimizing t subject to the condition that ≤ t (P ⊃ Q) can be inferred
from the premises. If t∗ is the minimizing t, then ≤ t (P ⊃ Q) can be inferred for
all t ∈ [t∗, 1], meaning that P ⊃ Q cannot be more false than t∗. Using (28), the
minimization problem is

min
t,v(P),v(Q)

{
t
�� t ≥ min{1, 1 − v(P) + v(Q)}, 0 ≤ v(P) ≤ p, 0 ≤ v(Q) ≤ q

}
(29)

To obtain an MILP model of problem (29), we observe first that any feasible solution
(t, v(P), v(Q)) must satisfy the following (inclusive) disjunction:

t ≥ 1
0 ≤ v(P) ≤ v(Q)
0 ≤ v(Q) ≤ q

or
t ≥ 1 − v(P) + v(Q)
0 ≤ v(Q) ≤ q
0 ≤ v(P) ≤ p

(30)

The feasible set is therefore the union of the two polyhedra described respectively
by the two systems in (30), and illustrated respectively by Fig. 4(a) and 4(b). Each
polyhedron has the single recession direction (t, v(P), v(Q)) = (1, 0, 0), and the
necessary and sufficient condition for MILP representability is therefore satisfied.

An MILP model is now obtained as follows. In general, it is shown in [57] that if
the feasible set is a union of polyhedra described by Aix ≤ bi for i ∈ I, the MILP
constraint set consists of

Aixi ≤ biδi, i ∈ I

x =
∑

i∈I x
i,

∑
i∈I δi = 1

δi ∈ {0, 1}, i ∈ I

where xi and δi are new continuous and binary variables, respectively, for all i ∈ I.
An MILP model of (29) therefore has the form

min


t1 + t2

������������

t1 ≥ δ1
0 ≤ v1(P) ≤ v1(Q)
0 ≤ v1(Q) ≤ qδ1

t2 ≥ δ2 − v2(P) + v2(Q)
0 ≤ v2(Q) ≤ qδ2
0 ≤ v2(P) ≤ pδ2

v(P) = v1(P) + v2(P)
v(Q) = v1(Q) + v2(Q)

δ1 + δ2 = 1, δ1, δ2 ∈ {0, 1}


(31)

2 We slightly modify the notation in [43]
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Fig. 4 Two polyhedra with the same unique recession direction (v(P), v(Q), t) = (0, 0, 1). Heavy
lines indicate the edges of the polyhedra.

It is straightforward (if somewhat tedious) to show that (31) simplifies to the MILP
model

min
t

������ t ≥ δ
0 ≤ v(P) ≤ v(Q) + 1 − δ
0 ≤ v(Q) ≤ q

t ≥ 1 − δ − v(P) + v(Q)
0 ≤ v(P) ≤ p
δ ∈ {0, 1}

 (32)

If we wish to recognize m+1 equally spaced discrete truth values in [0, 1] rather than
continuous truth values, we can replace v(P) and v(Q) with vI (P)/m and vI (Q)/m,
respectively in (32), and require that vI (P) and vI (Q) be integers. Then if t∗ is the
optimal solution of the resulting MILP problem, we can infer ≤ t (P ⊃ Q) for all
t ∈ {t∗/m, (t∗+1)/m, . . . , 1}.

The MILP model for more complex formulas can be constructed recursively. For
example, the formula (P⊃Q) ⊃ ¬P has the truth function.

v
(
(P⊃Q) ⊃ ¬P

)
= min

{
1, 1 −min{1, 1−v(P)+v(Q)} + 1−v(P)

}
An MILP model can be written by allowing the constraints in (32) to represent the
possible truth values t of the inner implication P ⊃ Q, and observing that the truth
value of ¬P is 1 − v(P). Then we can write additional constraints to represent the
possible truth values t ′ of the outer implication. Using δ′ as the binary variable in
the latter, this yields the model
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min
t ′

������ t ′ ≥ δ′

0 ≤ t ≤ (1−v(P)) + 1−δ′
t ′ ≥ 1−δ′ − t + (1−v(P))
0 ≤ t ≤ 1, δ′ ∈ {0, 1}

constraints in (32)

 (33)

The valid bound t ≤ 1 ensures that the polyhedra whose union (33) represents have
the same recession direction (t ′, t, v(P), v(Q)) = (1, 0, 0, 0).

As an example, suppose the upper bounds on v(P) and v(Q) are (p, q) = (0.3, 0.7).
The minimum value of t ′ is 0.7, indicating that (P ⊃ Q) ⊃ ¬P cannot be more
false than 0.7. This solution is achieved when (t, v(P), v(Q)) = (1, 0.3, 0.3) and
(δ, δ′) = (0, 0). A branch-and-bound solution of this problem instance appears in
Section 7.2.

Additional discussion of MILP models for multivalued logic can be found in
[24, 43].

5 Statistical Inference of Logical Formulas

As noted in the introduction, the estimation of weights in a neural network
poses an optimization problem. The same is true for the calibration of a vector
support machine, which is a hyperplane that classifies by separating two (possibly
overlapping) clusters of data points. There is a third data fitting possibility that is often
overlooked. One can fit a logical formula to data in a manner analogous to classical
regression, which likewise gives rise to an optimization problem. This represents yet
another instance in which logic and optimization combine to serve the purposes of
AI. Like logic-based methods in general, it has the advantage of transparency, since
one can examine precisely what rules are inferred from training data. It also offers
the possibility of computing the statistical significance of an inferred formula, as is
routinely done in regression analysis. A similar approach can be used to reduce a
trained neural network to a logical formula that approximates its predictions, for the
sake of transparency, by fitting the formula to the output of the network for various
inputs.

5.1 Boolean Regression

Boolean regression [19] infers a logical formula from boolean data points of the
form (x, y), where the independent variables x = (x1, . . . , xm) represent observed
attributes and the dependent variable y represents the observed outcome. Following
classical regression analysis, it supposes there is noise in the observations and
therefore writes

y = f (x) ⊕ ε

where f (x) is the true outcome, and ε is the observation error. Here, ⊕ is a binary
sum, so that a ⊕ b = (a + b) mod 2. The boolean error term ε is a simple Bernoulli
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variable that takes the value 1 with probability p and 0 with probability 1 − p.
The value of p is estimated along with the regression formula, much as the error
variance is estimated along with the regression coefficients in classical statistics. An
independent variable xi that is nonboolean and takes discrete values 0, 1, 2, . . . , k
can be accommodated by replacing it with boolean variables xi0, . . . , xi` , where
xi = xi0 + 2xi1 + · · · + 2` xi` .

The dataset may contain multiple observations of y for a given value of x, and no
observation of y at all for other values of x. This is illustrated by an example taken
from [19], whose dataset (Table 3) is designed to contain a great deal of noise. We
wish to identify a boolean function f (x) that best fits the data, where f belongs to a
specified class F of boolean functions, such as the class of functions expressed by a
boolean formula of a certain form.

Table 3 Small dataset for boolean regression.

Observations Number of
of x observations with

x1 x2 x3 x4 x5 y = 0 y = 1
0 1 0 1 1 7 15
1 1 0 0 1 9 3
1 0 0 1 1 8 2
1 0 0 0 1 3 7
1 1 0 1 0 5 17
0 1 1 1 1 9 2

A classical least-squares fit is based on maximum likelihood estimation, and
a similar approach can be used here. We seek a function f that maximizes the
likelihood of the errors displayed in Table 3. Thus if y = (y1, . . . , yn) represents
the set of observations, we wish to identify a function f ∈ F and probability p that
maximize the likelihood function

Pr(y | f , p) = (1 − p)n−e( f )pe( f ) (34)

where n is the number of observations, and e( f ) is the number of errors made by
function f on the observed values of x. For example, if (x1, . . . , x6) are the observed
values of x in Table 3, and ( f (x1), . . . , f (x6)) = (0, . . . , 0), then Pr(y | f , p) =
(1 − p)41p46. If ( f (x1), . . . , f (x6)) = (0, 0, 0, 0, 0, 1), then Pr(y | f , p) = (1 − p)34p53,
and so forth.

We can note right away that (34) is maximized with respect to p when p = e( f )/n.
It therefore suffices to maximize the following over f ∈ F:

Pr
(
y
�� f , e( f )/n) = (

1 −
e( f )

n

)n−e( f ) ( e( f )
n

)e( f )
(35)

Interestingly, since (35) is convex in e( f ), it is maximized either by a function f
that minimizes e( f ) or by a function that maximizes e( f ). Most applications call
for a fit that minimizes errors, but there are cases in which it may be appropriate to
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maximize errors [19]. For present purposes, we assume that the data are such that a
maximum likelihood fit is error minimizing. If f̂ is the error minimizing function,
then p̂ = e( f̂ )/n is a (biased) estimator of p.

Suppose now that we wish to fit to the data of Table 3 a regression formula that
is a logical clause with positive literals:

β0 ∨ β1x1 ∨ · · · ∨ β5x5 (36)

The binary coefficient βi = 1 (for i ≥ 1) indicates that xi is present in the clause,
and βi = 0 indicates that xi is absent. The clause is a tautology if β0 = 1, and β0
disappears from the clause if β0 = 0. The task is to find a maximum likelihood
estimate of β0, . . . , β5, which is accomplished by maximizing (35) over all functions
f that result from some setting of β0, . . . , β5 ∈ {0, 1}.

The maximization problem can be solved by formulating it as a pseudoboolean
optimization problem, mentioned earlier in the context of probabilistic logic. Let fβ
be the boolean function that results from a given tuple β = (β0, . . . , β5) of parameters
in (36). We first note that if

β0 = β2 = β4 = β5 = 0 (37)

then fβ(x1) = 0, and line 1 of Table 3 generates 15 errors. If (37) does not hold,
then fβ(x1) = 1, and there are 7 errors. So, line 1 generates

15β̄0 β̄2 β̄4 β̄5 + 7(1 − β̄0 β̄2 β̄4 β̄5)

errors, where β̄i = 1 − βi . Summing expressions of this sort for x1, . . . , x6 and
collecting terms, we obtain the pseudoboolean function e( fβ) equal to

41 + 8β̄0 β̄2 β̄4 β̄5 − 6β̄0 β̄1 β̄2 β̄5 − 6β̄0 β̄1 β̄4 β̄5 + 4β̄0 β̄1 β̄5 + 12β̄0 β̄1 β̄2 β̄4 − 7β̄0 β̄3 β̄4 β̄5

The minimum error solution is β = (0, 0, 1, 0, 0, 0), with e( fβ) = 32 errors, which
means the estimated error probability is p̂ = e( fβ)/n = 32/87 ≈ 0.368. This
solution corresponds to the simple logical formula x2, which ignores all but one of
the independent variables. To obtain a more satisfactory formula, one might allow
negative as well as positive literals:

β0 ∨ β1x1 ∨ · · · ∨ β5x5 ∨ γ1(¬x1) ∨ · · · ∨ γ5(¬x5) (38)

The best-fit formula is x2 ∨¬x4, which results in e( fβ,γ) = 28 errors and p̂ ≈ 0.322.
In general, the regression formula can be any expression of the form

f (xβ) =
∨
i∈I

βiPi(x) (39)

where each Pi(x) is any desired logical proposition that contains atomic propositions
in x = (x1, . . . , xm). For example, each Pi(x) could be a conjunction of literals
(atomic propositions or their negations); in fact, any propositional formula can
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be written as (39) with Pi(x)s in this form. If x1, . . . , xn are the observations of
independent variables, let y0(x

j) be the number of observations of f (x j) for which
y = 0, and y1(x

j) the number for which y = 1. The pseudoboolan function to be
minimized is

e( fβ) =
n∑
j=1

y0(x
j) +

n∑
j=1

(
y1(x

j) − y0(x
j)
) ∏
i |Pi (x j )=1

β̄i

Solution methods for pseudoboolean optimization are extensively discussed in
[18]. Recent developments in solution methods include [38, 39, 83], and schemes
for integrating MILP techniques are described in [35, 36].

5.2 Statistical Significance

Boolean regression can provide meaaures of statistical significance, including
confidence levels and the significance of regression, the latter of which enables
stepwise regression. A potential barrier to calculating significance is that the
distribution of estimated regression parameters depends on the distribution of
observational error, which is unknown a priori. Classical regression deals with
this problem by identifying a “pivot” statistic whose distribution depends only on
the number of data points (or more precisely, the degrees of freedom). For example,
the t-statistic allows one to compute confidence intervals based on the pre-computed
distribution of the t-statistic. Apparently, no pivot statistic has been identified for
boolean regression, but one can nonetheless obtain useful significance indicators
from a Bayesian model. We follow here the analysis of [19].

A Bayesian significance model identifies the confidence level of a deduced
regression formula f with the posterior probability that f is the true formula, given
the observed data and prior probabilities. Thus, given observations y = (y1, . . . , yn),
the confidence level of f is Pr( f |y). Using Bayes’ rule, this is

Pr( f |y) =
Pr(y | f )Pr( f )

Pr(y)
(40)

where Pr( f ) is the prior probability that function f is the correct one. The conditional
probability Pr(y | f ) is obtained by integrating over possible error probabilities p:

Pr(y | f ) =
∫ 1

0
Pr(y | f , p)π(p)dp (41)

where π(p) is a prior probability density function for p, and Pr(y | f , p) is given by
(34). Also Pr(y) is

Pr(y) =
∑
f ′∈F

Pr(y | f ′)Pr( f ′)
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Since nothing is known in advance about which formula could be correct, we assume
Pr( f ′) is the same for all f ′ ∈ F and can therefore ignore this term. As for the
probability p of error, we can suppose it is no greater than some value ρ ≤ 1

2 , since
even a random guess is right half the time. Since we know nothing beyond this, we
assume p is uniformly distributed over [0, ρ], with π(p) = 1/ρ in this range. Thus,
using (34), (41) becomes

Pr(Y | f ) =
1
ρ

∫ ρ

0
(1 − p)n−e( f )pe( f )dp

Evaulating the integral, we obtain

Pr(y | f ) =
ρe( f )

n + 1

n−e( f )∑
i=1

(n − e( f )
i

) (n
i

)−1
(1 − ρ)n−e( f )−i (42)

It is reported in [19] that, using this analysis, the maximum likelihood formula
x2 can be inferred from the data in Table 3 with confidence level 0.282 when ρ = 1

2 .
This says one cannot have much confidence that the formula is exactly right. One
might calculate a confidence sphere that is analogous to an confidence interval in
classical regression. A confidence sphere could consist of all binary vectors β within
a Hamming distance of d from the inferred vector β of coefficients. In the example,
the confidence level increases to 0.433 when d = 1 and 0.572 when d = 2, still
rather low due to the large amount of noise in the dataset.

The significance of regression, however, is more encouraging. We can compute
it by considering the hypotheses:

H0 : βi = 0 for i = 1, . . . , 5 (null hypothesis)
H1 : βi = 1 for at least one i ∈ {1, . . . , 5}

The best fit under the null hypothesis is the function f0 defined by β0 = 1, with
Pr( f0 |y) = 0.0104. The best fit under H1 is again the function f corresponding to
β = (0, 0, 1, 0, 0, 0) with Pr( f |y) = 0.278. The significance of regression is

Pr( f0 |y)
Pr( f0 |y) + Pr( f |y)

= 0.036

This means that it is very likely (96.4% probability) that an expression of the form
β1x1 ∨ · · · ∨ β5x5 captures a relationship that is not purely the result of chance.

We can also perform stepwise regression by adding negative literals to the formula
as in (38). This significantly improves the fit if we can reject H0:

H0 : βi = 0 for i = 6, . . . , 10 (i.e., the negative literals do not improve the fit)
H1 : β = 1 for at least one i ∈ {6, . . . , 10}

We can reject H0 with probability 1 − 0.073 = 0.927, which means that the
improvement in fit is significant at the 10% level but not at the 5% level. In addition,
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the confidence level of the expanded regression formula x2 ∨ ¬x4 is only 0.11,
because it is competing with a much larger collection of admissible formulas.

Related research on learning boolean functions appears in [8, 26, 70, 71, 79, 82].
An important class of boolean functions are monotone, meaning that x ′ ≥ x implies
f (x ′) ≥ f (x), where x ′ ≥ x when x ′j ≥ xj for each j. For example, a monotone
boolean function implies that observing additional indicators of a particular disease
cannot reverse a prediction that the disease is present. The problem of learning
monotone Boolean functions from noisy and incomplete data is addressed in [2, 13,
17].

6 Inference as Projection

Optimization and logical inference are fundamentally related because they are both
special cases of projection [51]. The projection of a set S of tuples x = (x1, . . . , xn)
onto variables x̄ = (x1, . . . , xk) is

S |x̄ =
{
(x1, . . . , xk)

�� (x1, . . . , xn) ∈ S
}

Optimization is a special case of projection because any optimization problem can
be written min/max{z | (z, x) ∈ S} and solved by computing the projection S |z .
The minimum and maximum values of z, if they exist, are then easily recognized as
the smallest and largest elements of S |z . Inference can be seen as a special case of
projection if we let S(F) denote the set of assignments to x that satisfy a set F of
logical formulas. Then a formula f containing variables x̄ can be inferred from F if
and only if all the assignments in the projection S(F)|x̄ satisfy f .

This linkage of optimization and inference through projection provides a novel
opportunity to apply optimization to inference. The projection of S(F) onto x̄ can be
obtained with the assistance of a binary decision diagram (BDD), which compactly
and transparently displays satisfying solutions of F. The projection can be computed
using a generalization of Benders decomposition, a well-known optimizationmethod
that, in effect, (partially) computes the projection of the feasible set onto a subset of
variables. The first subsection below illustrates how a BDD represents the satisfying
set S(F), and how it relates to projection. The second subsection shows how Benders
decomposition can accelerate the computation of the projection, thereby deducing
all formulas that can be inferred from F.

This methodology can be useful to AI because it allows one to infer everything
that can be deduced from a knowledge base regarding a specific topic, rather than
checkwhich individual formulas can be deduced. For example, onemay be interested
in whether substances A, B, and C can interact to cause allergic reactions D and E.
Rather than check whether one can deduce that A and B interact to cause D (i.e.
(A ∧ B) ⊃ D), whether one can deduce that B and C cause reaction E, and so forth,
one can project the knowledge base onto the five variables A, B, C, D, and E. Since
one is projecting onto a handful of variables, the projection can be computed fairly
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rapidly. The rather small number of assignments in the projection (at most 25) is
easily converted to a few logical formulas that capture everything that is known about
allergic reactions to A, B and C.

6.1 Projection in a Binary Decision Diagram

Binary decision diagrams were introduced in the 1970s and have been used for logic
circuit verification, product configuration, and more recently, discrete optimization
[1, 12, 14, 21, 78]. We are interested in their potential for computing projections.
A BDD is a graphical representation of a boolean function f (x). Any set F of
propositional formulas defines a boolean function f (x) that takes the value 1 when
x satisfies F and 0 otherwise, where x = (x1, . . . , xn) are the variables in F. Thus,
any set F of formulas is represented by a suitable BDD.

Consider, for example, the set F of formulas

x1x2 ⊃ (x3 x̄4x5 x̄6) ( f1)
x̄1 x̄2 ⊃ (x̄4x5 x̄6 ∨ x3x4x5x6) ( f2)
(x1 x̄2 ∨ x̄1x2) ⊃ x̄3 x̄4 x̄5x6 ( f3)

(43)

where, for readability, xi xj means xi ∧ xj and x̄i means ¬xi . The set F is represented
by the BDD in Fig. 5(a). The nodes of the BDD are arranged in layers that, except
for the terminal node at the bottom, correspond to variables x1, . . . , x6. A dashed arc
leaving a node in layer i toward a layer below it represents setting xi = 0, and a solid
arc represets xi = 1. Each path from top to bottom therefore represents an assignment
to x. The BDD is constructed so that the top-to-bottom paths correspond exactly
to assignments that satisfy the formulas in F.3 The BDD in Fig. 5(a) is reduced
in the sense that no smaller BDD that uses the same variable ordering represents
(43). In fact, any given boolean function is uniquely represented by a reduced BDD
with a specified variable ordering [21]. Methods for constructing reduced BDDs are
described in [86, 87].

Let’s suppose that we wish to know what can be deduced from (43) regarding the
variables x2, x4, and x6. To deduce all formulas containing x2, x4, x6 that are implied
by (43), we can derive the BDD B′ that results from B by projecting out variables
x1, x3, x5. Then the top-to-bottom paths in B′ correspond to the assignments in the
projection onto (x2, x4, x6). The deducible formulas are then easily obtained from
this projection, as we will illustrate shortly.

The classical method for projecting out a variable xi proceeds by first obtaining
the BDDs B1 and B0 that result from setting xi to 1 and 0, respectively, and then
computing B′ by taking the disjunction of B1 and B0. However, the disjunction
operation on BDDs tends to be quite expensive, and it must be performed recursively
for each variable to be projected out.

3 Classically, BDDs also contain paths to a second terminal node that represent non-satisfying
assignments, but these can be omitted for present purposes.
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Fig. 5 (a) Reduced binary decision diagram for a small set of logical propositions. (b) Reduced
BDD after fixing x2 = 1. (c) Reduced BDD after fixing (x2, x4, x6) = (1, 0, 1).

Since we wish to project (43) onto a small number of variables, it is more efficient
to check directly which assignments to (x2, x4, x6) are represented by top-to-bottom
paths in B. Suppose, for example, we first check (x2, x4, x6) = (1, 1, 1). We might
begin by setting x2 = 1 and removing the dashed arcs corresponding to x2 = 0 in
Fig. 5(a). This permits the removal of several arcs and nodes because they no longer
lie on a top-to-bottom path, resulting in the smaller BDD of Fig. 5(b). Now if we try
setting x4 = 1 and remove all dashed arcs corresponding to x4 = 0, this causes all
remaining arcs to be removed. Since this already eliminates all top-to-bottom paths,
(x2, x4, x6) can be neither (1, 1, 0) nor (1, 1, 1). Now if we try (x2, x4, x6) = (1, 0, 1),
the BDD reduces to that in Fig. 5(c). Since there is a top-to-bottom path (in this case,
a single such path), we conclude that (1, 0, 1) is part of the projection. Continuing in
this fashion, we find that the projection onto (x2, x4, x6) is{

(1, 0, 1), (1, 0, 0), (0, 1, 1), (0, 0, 1), (0, 0, 0)
}

(44)

It is readily seen that these are the satisfying assignments of the formulas x2 ⊃ ¬x4
and x4 ⊃ x6. These formulas therefore represent everything that can be deduced
from (43) regarding variables x2, x4, x6.

A possible barrier to the use of reducedBDDs is their ability to grow exponentially
with the number of variables. However, the size of the BDD depends on other factors
as well. For example, the knowledge base may decouple into sections that deal with
different topics and therefore have no variables in common. In such cases, a BDD
can be generated for each section independently of the others, resulting in much
smaller diagrams. A generalization of this approach exploits the structure of the
dependency graph of the knowledge base. The dependency graph contains a vertex
for every formula, and two vertices are connected by an edge when the corresponding
formulas have at least one variable in common. The complexity of logical inference
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is at worst exponential in the treewidth of the dependency graph, which tends to be
small when the formulas are loosely coupled. In such cases, one can build a nonserial
BDD as described in [50], which can be markedly smaller than a conventional serial
BDD and is quite suitable for computing projections. In addition, the size of a serial
or nonserial BDD can be very sensitive to the ordering of the variables, and it may
be possible to find an ordering that results in a much smaller diagram [86, 87].
Finally, given that AI’s large language models are based on neural networks that may
contain upwards of a trillion parameters, a very large BDD may be acceptable in AI
applications.

6.2 Projection with Benders Decomposition

The previous section showed how to compute the projection of (43) onto (x2, x4, x6)
by employing a decision diagram to check every possible assignment to these
variables for consistencywith (43). It is generally possible, however, to accelerate this
process significantly by applying Benders decomposition. This popular optimization
technique was originally applied to mixed integer programming [11], but we use a
generalization known as logic-based Benders decomposition (LBBD) [49, 52, 53].

LBBD is applied to a general optimization problem of the form

max
{

f (x, y)
�� (x, y) ∈ S, x ∈ Dx, y ∈ Dy

}
where Dx and Dy are the domains of x and y, respectively (e.g., tuples of integers or
reals). For our purposes, we can restrict attention to problems in which the objective
function depends only on x:

max
{

f (x)
�� (x, y) ∈ S, x ∈ Dx, y ∈ Dy

}
(45)

The problem is decomposed into a master problem

max
{

f (x)
�� Benders cuts, x ∈ Dx

}
and a feasibility subproblem that asks whether (x̄, y) ∈ S for some y ∈ Dy , where x̄
is the most recent solution of the master problem. If the subproblem has a feasible
solution ȳ, the original problem (45) has optimal solution (x̄, ȳ). If the subproblem is
infeasible, the proof of infeasibility is analyzed to obtain a valid constraint (Benders
cut) x ∈ Sx̄ that is violated by x = x̄ as well as by other values of x that the same
proof shows to be infeasible. The Benders cut is added to the constraint set of the
master problem, which is re-solved to obtain the next x̄. The process continues until
(a) the subproblem is feasible, or (b) the master problem is infeasible (in which case
the original problem infeasible).

Of greatest interest to us is the fact that Benders cuts generated during this process
at least partially define the projection of the feasible set of (45) onto x. A complete
description of the projection can be obtained simply by adding the constraint x , x̄
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to themaster problem (and continuing to generate cuts) each time an optimal solution
(x̄, ȳ) is found.When themaster problemfinally becomes infeasible, the accumulated
Benders cuts completely describe the projection onto x.

To project (43) onto (x2, x4, x6), we solve the problem

max
{

x2 + x4 + x6
�� (43)} (46)

by LBBD as follows.4 We let x = (x2, x4, x6) and y = (x1, x3, x5), so that the master
problem is the integer programming problem

max
{

x2 + x4 + x6
�� Benders cuts, x2, x4, x6 ∈ {0, 1}

}
(47)

Initially there are no Benders cuts, and the solution is (x2, x4, x6) = (1, 1, 1). This
defines a subproblem that seeks a feasible solution of (46) in which (x2, x4, x6) =
(1, 1, 1). That is, we seek top-to-bottom path in the BDD of Fig. 5(a) in which arcs
corresponding to (x2, x4, x6) = (0, 0, 0) are removed. We solved this subproblem in
the previous section by first fixing x1 = 1 and generating the BDD of Fig. 5(b). At
this point we noted that (x2, x4) = (1, 1) is already infeasible. This allows us to create
a Benders cut that excludes solutions in which (x2, x4) = (1, 1). We write the cut as
(1 − x2) + (1 − x4) ≥ 1 and add it to the master problem (47). Re-solving the master
problem, we obtain (x2, x4, x6) = (1, 0, 1), which defines a feasible subproblem and
therefore solves (46). To continue generating Benders cuts, we add the constraint
(x2, x4, x6) , (1, 0, 1) to the master problem by writing (1 − x2) + x4 + (1 − x6) ≥ 1.
After generating the optimal solutions (44) in this fashion, the master problem
becomes infeasible, and we have the projection onto (x2, x4, x6). In larger instances,
the Benders cuts speed up this process by eliminating many infeasible assignments
to the master problem variables before they are submitted to the subproblem.

7 Transparency through Postoptimality Analysis

Optimization-based inference can contribute significantly to transparency in AI
applications by means of postoptimality analysis. This type of analysis can identify
constraints that are essential to proving optimality, and in many cases, whether or
howmuch the optimal solution would change if the constraints were modified a given
amount. When applied to inference, postoptimality analysis can identify premises in
the knowledge base that play a role in deriving inferred propositions, and perhaps
determine whether and how much the inferred propositions would change if the
premises were modified.

Webeginwith a brief discussion of postoptimality analysis in linear programming,
which we applied in earlier sections to probabilistic logic and various belief logics.
We then describe two methods of postoptimality analysis for mixed integer/linear
programming (MILP), which we applied to nonmonotonic logic, multivalued logic,

4 We could just as well minimize, or replace any xi by −xi .
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boolean regression, and inference via projection. One is an inference-based method
that uses dual multipliers obtained in the branch-and-bound search tree. The other is
based on a BDD that encodes near-optimal solutions of the problem.

7.1 Postoptimality Analysis in Linear Programming

Postoptimality analysis in linear programming (LP) consists primarily of elementary
techniques that have been implemented in LP solvers for decades. An LP problem
has the form

min
{
cᵀx

�� Ax ≥ b, x ≥ 0
}

(48)

The corresponding dual problem is

max
{
uᵀb

�� uᵀA ≤ cᵀ, u ≥ 0
}

The dual variables u = (u1, . . . , um) correspond to the m constraints Ax ≥ b of the
original problem (48). Under weak conditions, an LP problem has the same optimal
value z∗ as its dual, and the dual solution is obtained for free as a byproduct of
solving the original problem.

The optimal dual solution u is a key to postoptimality analysis. The dualmultiplier
ui associated with constraint i of Ax ≥ b tells us that if the right-hand side bi of
constraint i is changed to bi +∆bi (where ∆bi can be negative), the resulting optimal
value is at least z∗+ui∆bi . Also, one can easily compute a range of perturbations ∆bi
within which the new optimal value is exactly z∗ + ui∆bi . A consequence of this is
that only constraints with positive dual multipliers ui serve as premises in the proof
of optimality, and all other constraints can be dropped without changing the optimal
solution. In fact, it is not hard to state conditions under which this set of premises is
irreducible, meaning that they are all essential to the proof. This and related matters
are studied in [27, 28, 29, 30].

As an example, consider the probabilistic logic problem instance discussed in
Section 2.1, in which probablities 0.9, 0.8, and 0.7 are assigned to x1, x2 ⊃ x2, and
x2 ⊃ x3, respectively. The inferred probability range for x3 is [0.5, 0.7]. The lower
limit 0.5 is obtained by minimizing Pr(x3), and the resulting dual multipliers for the
three probability assignments are all 1.25. So, reducing the assigned probability 0.9
to 0.8, for example, results in new a lower limit of at least 0.5− (1.25)(0.1) = 0.375.
In fact, the lower limit is exactly 0.375, because this calculation is exact for any
perturbation ∆b1 ∈ [−0.4, 0]. As it happens any positive perturbation results in an
infeasible problem, and similarly for the other two assigned probabilities.5 The upper
limit 0.7, which results from maximizing Pr(x3), yields dual multipliers 0, 0, and 1
for the three assigned probabilities. This means that only the proposition x2 ⊃ x3

5 The calculated value remains a valid lower bound on the optimal value, because the optimal value
of an infeasible minimization problem is∞.
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plays a role in inferring the upper limit on Pr(x3), and the other two probability
assignments can be dropped without affecting it.

7.2 Inference-Based MILP Postoptimality Analysis

An inference-based method [32] provides comprehensive postoptimality analysis
for MILP when the problem has moderate size, and a limited analysis for larger
instances. We will suppose the integer-valued variables in the problem are binary, in
which case it has the form

min
{
z = cᵀx

�� Ax ≥ b, x ≥ 0, xi ∈ {0, 1} for i ∈ I
}

(49)

It is convenient to suppose that Ax ≥ b contains constraints xi ≤ 1 for i ∈ I. Such
problems are normally solved by a branch-and-bound method that builds a search
tree by branching on binary variables. For simplicity of exposition, we assume no
cutting planes are added to the constraint set during the search. Let z∗ be the optimal
value of z obtained for (49).

Inference-based postoptimality analysis is based on dual solutions obtained at
nodes of the search tree. An LP relaxation of (49) is solved at each node of the tree,
namely

min
{
zLP = cᵀx

�� Ax ≥ b, x ≥ 0, Dx ≥ d
}

(50)

where Dx ≥ d consists of branching constraints of the form xi ≤ 0 (when branching
to xi = 0) or xi ≥ 1 (when branching to xi = 1) that are added along the path from
the root of the tree to the current node. If one or more of the 0–1 variables has a
fractional value in the LP solution, the search creates two branches by setting xi = 0
and xi = 1 for one such variable xi .

The LP dual of (50) is

max
{
uᵀb + vᵀd

�� uᵀA + vᵀD ≤ cᵀ, u ≥ 0, v ≥ 0
}

Let xB be the variables fixed by Bx ≥ b, and x̄ the values to which they are fixed.
Then at each leaf node of the tree, one of three cases obtains:

(a) Problem (50) is infeasible. Then there is a dual feasible extreme ray (ū, v̄) for
which xB = x̄B violates the surrogate inequality ūᵀAx ≥ ūᵀb.
(b) Problem (50) has an optimal solution x̄ with value z̄LP in which x̄j ∈ {0, 1}
for j ∈ J, which means that x̄ is feasible in (49) and therefore a candidate
solution. Then if (ū, v̄) is an optimal dual solution, xB = x̄B violates the surrogate
inequality ūᵀAx − cᵀx > ūᵀb − z̄LP.
(c) Problem (50) has an optimal solution with value z̄LP that is no smaller than
the value z̄min of the best candidate solution found so far. Then if (ū, v̄) is an
optimal dual solution, xB = x̄B violates the surrogate inequality ūᵀAx − cᵀx >
ūᵀb − z̄min.



32 J. N. Hooker July 2025

To conduct postoptimality analysis, we first observe that if a constraint i has a
vanishing dual multiplier ūi at every leaf node, then the constraint plays no role
in the proof of optimality (or infeasibility, but for simplicity we suppose that the
problem is feasible). Constraint i can therefore be dropped without changing the
optimal solution.

Beyond this, we can study which perturbations in the problem data allow one to
prove an optimal value of at least z∗. We first observe that setting xB = x̄B at a leaf
node falsifies a logical clause that negates these settings. For example, if a leaf node
is reached by setting (x1, x2, x3) = (1, 0, 1), the clause ¬x1 ∨ x2 ∨ ¬x3 is falsified.
We will call this the branching clause at the node. Since the branching search is
exhaustive, the set of branching clauses for all the leaf nodes is unsatisfiable. We
also observe that since xB = x̄B violates the surrogate inequality at any given leaf
node, the surrogate inequality must imply a logical clause that implies the branching
clause at that node. We will call this the surrogate clause. To continue the example,
if the surrogate inequality at the leaf node is −4x1 + 3x2 − 2x3 ≥ −3, it implies
the surrogate clause ¬x1 ∨ x2, which implies the branching clause ¬x1 ∨ x2 ∨ ¬x3.
We conclude that after a perturbation, the original search tree remains exhaustive
and proves an optimal value of at least z∗ if the perturbed surrogate inequality still
implies the original surrogate clause at each node. The actual optimal value of the
perturbed problem may, of course, be larger than z∗.

This analysis leads to a system of inequalities whose satisfaction by a perturbation
ensures that the optimal valuewill not fall below z∗. For present purposes, it suffices to
illustrate how this works in the many-valued logic example presented in Section 4.2.
Recall that the objective is to find the smallest truth value t ′ for which we can infer
≥ t ′ ((P ⊃ Q) ⊃ ¬P), given ≤ p P and ≤ q Q. For the sake of illiustration,
we suppose (p, q) = (0.3, 0.7). The smallest t ′ is found by minimizing t ′ subject to
the MILP constraint set in (33), which is reproduced below in a consistent format
(omitting nonnegativity constraints on the variables):

1. t ′ − δ′ ≥ 0
2. − t + v(P) − δ′ ≥ −2
3. t − δ ≥ 0
4. − v(P) + v(Q) − δ ≥ −1
5. − v(Q) ≥ −0.7

(u1)
(u2)
(u3)
(u4)
(u5)

6. t ′ + δ′ + t + v(P) ≥ 2
7. − t ≥ −1
8. t + v(P) − v(Q) + δ ≥ 1
9. − v(P) ≥ −0.3

δ, δ′ ∈ {0, 1}

(u6)
(u7)
(u8)
(u9)

(51)

The dual multipliers ui are indicated to the right of the constraints. The search tree
for this problem consists of of three nodes, as shown in Fig. 6. Since δ′ is a fraction
0.35 in the solution of the LP relaxation at the root node, the search branches on δ′
to create nodes 2 and 3. The LP relaxation at node 2 has an integral solution with
(δ, δ′) = (0, 0) and optinal value t̄ ′LP = 0.7, so that case (b) applies. The solution
at node 3 is nonintegral, but since the optimal value t̄ ′LP = 1 is worse than the
best previous solution value 0.7, case (c) applies, and there is no need for further
branching. The minimum value of t ′ is therefore 0.7, and so (P ⊃ Q) ⊃ ¬P has a
truth value no less than 0.7.
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1

t̄′ = 0.35
(δ, δ′) = (0, 0.35)

2

Case (b)
t̄′ = 0.7

(δ, δ′) = (0, 0)
(u6, u7, u9) = (1, 1, 1)
Surrogate inequality
δ′ > −∆p−∆t′

Surrogate clause δ′

δ′ = 0

3

Case (c)
t̄′ = 1

(δ, δ′) = (0.5, 1)
(u1, u4) = (1, 1)

Surrogate inequality
−δ′ > −0.7−∆t′

Surrogate clause ¬δ′

δ′ = 1

Fig. 6 Branch-and-bound search tree for the multi-valued logic problem (33). Only nonzero dual
multipliers ui are indicated. The surrogate inequalities reflect a perturbation of the problem data.

We are particularly interested in the sensitivity of the solution to changes in
truth value bounds (p, q) = (0.3, 0.7), which are encoded in constraints 5 and 9.
Figure 6 indicates the nonzero dual multipliers at each leaf node, and we note that
the multiplier u5 corresponding to v(Q) ≤ 0.7 is zero at both leaf nodes. This means
that the lower bound of 0.7 on the truth value of (P ⊃ Q) ⊃ ¬P remains valid even
if the bound on v(Q) is dropped.6

To proceed to a deeper analysis, we begin by examining node 2. To obtain the
surrogate inequality, we first take a linear combination of perturbed constraints 6, 7,
and 9 with multipliers (u6, u7, u9) = (1, 1, 1). Constraint 9 is perturbed by replacing
the bound 0.3 with 0.3 + ∆p to allow us to account for the effect of perturbations
in this bound. Constraint 6 is perturbed by replacing t ′ with t ′ + ∆t ′ to permit
an investigation of which lower bounds for t ′ other than 0.7 can be proved after
the perturbation. Since case (b) applies to node 2, we get the surrogate inequality
δ′ > −∆p − ∆t ′. This implies the single-literal clause δ′ when ∆p = ∆t ′ = 0, which
means that δ′ is the surrogate clause. The surrogate inequality continues to imply
clause δ′ as long as

∆p + ∆t ′ ≤ 0 (52)

Node 3, which corresponds to case (c), similarly yields the surrogate inequality
−δ′ > −0.7 − ∆t ′. This implies the clause ¬δ′ when ∆t ′ = 0, which is therefore the
surrogate clause. The surrogate inequality continues to imply ¬δ′ as long as

∆t ′ ≤ 0.3 (53)

6 This does not mean that the bound on v(Q) cannot affect the actual minimum value of t′. For
example, setting v(Q) = 0.1 results in t̄′ = 0.9. Yet t̄′ is still at least 0.7.



34 J. N. Hooker July 2025

The lower bound 0.7 remains proven for t ′ as long as the perturbation ∆p satisfies
(52) and (53) with∆t ′ = 0; that is, as long as∆p ≤ 0, which is to say that p (currently
0.3) can be reduced but not increased.

If we wish to know under what conditions a lower bound of 0.9 (rather than 0.7)
can be proved for t ′, we can let ∆t ′ = 0.2 in (52) and (53). Since ∆t ′ = 0.2 satisfies
(53), condition (52) tells us that ∆p ≤ −0.2 suffices to prove t ′ ≥ 0.7 + 0.2. Thus if
the upper bound on v(P) is reduced from 0.3 to to 0.1, a lower bound of 0.9 can be
proved for the truth value of (P ⊃ Q) ⊃ ¬P, regardless of the bound (if any) given
for v(Q). As it happens, this is exactly the optimal value of t ′ after the perturbation.

The upshot of this analysis is that (P ⊃ Q) ⊃ ¬P has a truth value of at least 0.7,
given that P’s truth value is at most 0.3, regardless of the upper bound we place on
Q’s truth value. The guaranteed truth value 0.7 remains valid so long as the upper
bound 0.3 on P’s truth value is not relaxed. In fact, if it is tightened (reduced), the
guaranteed truth value of (P ⊃ Q) ⊃ ¬P increases by an equal amount, but if it is
relaxed, the guaranteed truth value is reduced by an equal amount.

The practicality of this type of comprehensive analysis depends on the number
of leaf nodes that generate relevant surrogate inequalities. The total of number of
leaf nodes can be very large, but it is likely that only a fraction of them generate
surrogate inequalities that contain perturbation terms for the constraints of interest.
The remainder of the leaf nodes can be ignored. If we are interested only in learning
which constraints play a role in deducing the optimal solution, we need only observe
which constraints have a positive dual multiplier in at least one leaf node. There is
no need to generate and store surrogate inequalities. This limited form of analysis
can be performed on any problem instance that can be solved by a branch-and-bound
method.

7.3 MILP Postoptimality Analysis with Decision Diagrams

A second method of postoptimality analysis for MILP, described in [80], generates
a BDD that represents near-optimal solutions of the problem. Such a BDD
is convenient for conducting several types of postoptimality analysis. One can
efficiently build a BDD that compactly stores all such solutions during the normal
branch-and-bound search for an optimal solution. A simple procedure (“sound
reduction”) allows it to be further compressed, often by several orders of magnitude,
by introducing certain infeasible solutions that do not affect postoptimality analysis.
As a result, very large optimization problems can be analyzed in this fashion.

We illustrate the idea by applying it to the problem of inference in propositional
logic. Consider again the set F = { f1, f2, f3} of formulas listed in (43). Suppose we
wish to determine the minimum number of atomic propositions xi that can be false
if F is to be satisfied. This can be ascertained by minimizing

∑
i(1 − xi) subject to

F, a problem that can be solved by integer programming. As it happens, at least two
variables must be false. We would like to know which of the formulas in F play a
role in this deduction.
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This question can be addressed by introducing 0–1 variables y1, y2, y3 that
respectively indicate whether f1, f2, f3 are enforced. We augment F by adding
formulas yi ⊃ fi for i = 1, 2, 3 to obtain F ′. The minimum of

∑
i(1 − xi) subject

to F ′ is of course zero, since the yis can all be 0, in which case no fi is enforced.
However, we can investigate the role of the fis by building a BDD that represents
certain near-optimal solutions of this problem; namely, solutions with value 0, 1, or
2. Such a BDD appears in Fig. 7(a).
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Fig. 7 (a) BDD for postoptimality analysis of inference from formulas (43). (b) BDD after fixing
(y1, y2, y3) = (1, 1, 1). (c) BDD after fixing (y1, y2, y3) = (1, 0). Thick arcs indicate optinal values
of x.

An optimal solution subject to F ′ can be found by solving an easy shortest path
problem in the BDD of Fig. 7(a). Since we are minimizing the number of false xis,
we place a cost (length) of 1 on dashed arcs in Fig, 7 that correspond to values of
the xis, and view all other arcs as having cost 0. The shortest top-to-bottom path has
zero cost, indicating that an optimal solution has value 0, as expected. Now we can
determine the result of enforcing any subset of fis by fixing the corresponding yis
to 1 and computing shortest paths in the simplified BDD that results.

We can see right away that f2 has no bearing on the problem, since the value of
y2 has no effect on any path length. If we enforce all the fis by fixing all yis to 1,
we get the BDD in Fig. 7(b), in which the shortest path length is 2, as expected. If
we enforce only f1, we obtain the BDD of Fig. 7(c), in which the shortest path has
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length 1. Thus without premise f3, the minimum number of false atoms drops to 1.
It is similarly shown that without f1, the number drops to 0.

The BDDs also allow inferences regarding possible values of the variables xi . If
all three formulas are enforced, as in Fig. 7(b), we see immediately that the number
of false atoms can be reduced to 2 only by setting x3 and x5 to true. If we enforce
only f1, as in Fig. 7(c), we see that the number of false atoms can be reduced to 1
only by setting x1 or x2 to false.
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