
A Brief Tour of Logic and Optimization

John Hooker

Carnegie Mellon University

INFORMS 2018

Logic and Optimization

2

There are deep connections between logic and

optimization, going back at least to George Boole.

Some of these connections can lead to effective

new optimization methods.

Logic and Optimization

3

• Probability logic and linear programming

• Decision diagrams and optimization

• Predicate logic and integer programming

• Resolution and cutting planes

• Logic and duality

• Consistency and backtracking

Probability Logic and Linear Programming

Probability Logic and Linear Programming

5

George Boole is best known for Boolean logic.

But he proposed a strikingly original formulation

of reasoning under uncertainty...

.
…probability logic.

It was forgotten or ignored

for over 100 years.

Boole 1854

6

In 1970s, Theodore Hailperin showed that probability logic poses a

linear programming problem.

He sees this as implicit in Boole’s own work.

The idea was re-invented by AI community

in 1980s.

Nils Nilsson

Probability Logic and Linear Programming

Hailperin 1976,

1984, 1986

Nilsson 1986

Statement Probability

A 0.9

If A then B 0.8

If B then C 0.4

We can deduce C,

but with what probability?

Boole’s insights:

• We can only specify a range of probabilities for C.

• The range depends mathematically on the probabilities

of possible states of affairs (possible worlds).

Probability Logic and Linear Programming

Statement Probability

A 0.9

If A then B 0.8

If B then C 0.4

First, interpret the if-then

statements as material

conditionalsStatement Probability

A 0.9

not-A or B 0.8

not-B or C 0.4

Probability Logic and Linear Programming

Statement Probability

A 0.9

not-A or B 0.8

not-B or C 0.4

There are 8 possible worlds:

A B C Prob.

false false false p000

false false true p001

false true false p010

false true true p011

true false false p100

true false true p101

true true false p110

true true true p111

Identify the possible outcomes

(possible worlds), each having

an unknown probability.

Probability Logic and Linear Programming

Statement Probability

A 0.9

not-A or B 0.8

not-B or C 0.4

There are 8 possible worlds:

A B C Prob.

false false false p000

false false true p001

false true false p010

false true true p011

true false false p100

true false true p101

true true false p110

true true true p111

p100 + p101 + p110 + p111 = 0.9

The worlds in which A is true must

have probabilities that sum to 0.9.

Probability Logic and Linear Programming

Statement Probability

A 0.9

not-A or B 0.8

not-B or C 0.4

There are 8 possible worlds:

A B C Prob.

false false false p000

false false true p001

false true false p010

false true true p011

true false false p100

true false true p101

true true false p110

true true true p111

p100 + p101 + p110 + p111 = 0.9

p000 + p001 + p010 + p011 + p110 + p111 = 0.8

Probability Logic and Linear Programming

Statement Probability

A 0.9

not-A or B 0.8

not-B or C 0.4

There are 8 possible worlds:

A B C Prob.

false false false p000

false false true p001

false true false p010

false true true p011

true false false p100

true false true p101

true true false p110

true true true p111

p100 + p101 + p110 + p111 = 0.9

p000 + p001 + p010 + p011 + p110 + p111 = 0.8

p000 + p001 + p011 + p100 + p101 + p111 = 0.4

Probability Logic and Linear Programming

Statement Probability

A 0.9

not-A or B 0.8

not-B or C 0.4

There are 8 possible worlds:

A B C Prob.

false false false p000

false false true p001

false true false p010

false true true p011

true false false p100

true false true p101

true true false p110

true true true p111

p100 + p101 + p110 + p111 = 0.9

p000 + p001 + p010 + p011 + p110 + p111 = 0.8

p000 + p001 + p011 + p100 + p101 + p111 = 0.4

p000 +  + p111 = 1

Probability Logic and Linear Programming

Statement Probability

A 0.9

not-A or B 0.8

not-B or C 0.4

There are 8 possible worlds:

A B C Prob.

false false false p000

false false true p001

false true false p010

false true true p011

true false false p100

true false true p101

true true false p110

true true true p111

p100 + p101 + p110 + p111 = 0.9

p000 + p001 + p010 + p011 + p110 + p111 = 0.8

p000 + p001 + p011 + p100 + p101 + p111 = 0.4

p000 +  + p111 = 1

Minimize and maximize probability of C:

p001 + p011 + p101 + p111

subject to these equations and pijk  0

Probability Logic and Linear Programming

Statement Probability

A 0.9

not-A or B 0.8

not-B or C 0.4

p100 + p101 + p110 + p111 = 0.9

p000 + p001 + p010 + p011 + p110 + p111 = 0.8

p000 + p001 + p011 + p100 + p101 + p111 = 0.4

p000 +  + p111 = 1

Minimize and maximize probability of C:

p001 + p011 + p101 + p111

subject to these equations and pijk  0

This is a linear programming problem.

The result is a range of probabilities

for C:
0.1 to 0.4

Probability Logic and Linear Programming

Statement Probability

A 0.9

not-A or B 0.8

not-B or C 0.4

p100 + p101 + p110 + p111 = 0.9

p000 + p001 + p010 + p011 + p110 + p111 = 0.8

p000 + p001 + p011 + p100 + p101 + p111 = 0.4

p000 +  + p111 = 1

Minimize and maximize probability of C:

p001 + p011 + p101 + p111

subject to these equations and pijk  0

This is a linear programming problem.

The result is a range of probabilities

for C:

Probability Logic and Linear Programming

0.1 to 0.4

Large instances solved by column

generation.

There are linear programming models for logics of belief and evidence

such as Dempster-Shafer theory and related systems.

Leonid

Kantorovich

A. P. Dempster Glenn Shafer

Probability Logic and Linear Programming

Dempster 1968, Shafer 1976

Decision Diagrams and Optimization

Boolean logic was also forgotten for decades, except in the minds of a few

logicians, including philosopher Charles Sanders Pearce.

Pearce saw that Boolean logic could be represented by switching circuits.

C. S. Pearce

Decision Diagrams and Optimization

Pearce 1886

Boolean logic was also forgotten for decades, except in the minds of a few

logicians, including philosopher Charles Sanders Pearce.

Pearce saw that Boolean logic could be represented by switching circuits.

Claude Shannon was required to take a philosophy course

while an undergraduate at the University of Michigan,

where he was exposed to Pearce’s work.

This gave rise to his famous master’s

thesis , A Symbolic Analysis of

Relay and Switching Circuits,

which provided the basis of

modern computing.

C. S. Pearce C. Shannon

Decision Diagrams and Optimization

Pearce 1886

Shannon 1940

C. Y. Lee proposed binary-decision programs as a

means of calculating the output of switching circuits.

S. B. Akers represented binary-decision programs with

binary decision diagrams.

R. E. Bryant showed that ordered BDDs provide a

unique minimal representation of a Boolean function.

Ordered BDD

Decision Diagrams and Optimization

Lee 1959

Akers1978

Bryant 1986

BDDs have long been used for logic circuit design and

product configuration.

They were recently adapted to optimization and

constraint programming.

There are at least 12 talks on DDs and optimization

at this meeting.

Decision Diagrams and Optimization

Hadžić and JH (2006, 2007)

Andersen, Hadžić, JH and Tiedemann (2007)
Tarik Hadžić

Henrik Reif

Andersen

23

Modeling

with recursive

formulations

Relaxation

with relaxed

diagrams

Primal

heuristics

with restricted

diagrams

Constraint

propagation

through a

relaxed diagram

Search

with a novel branch-and-

bound method

Optimization

Postoptimality

analysis

with sound diagrams

Decision Diagrams and Optimization

There is a unique reduced DD representing any given Boolean

function, once the variable ordering is specified.

The reduced DD can be viewed

as a branching tree with

redundancy removed.

Superimpose isomorphic subtrees

and remove redundant nodes.

Bryant (1986)

Decision Diagrams and Optimization

Randy Bryant

x0

x1

x2 x2

x3 x3 x3 x3

1 1

x1

x2 x2

x3 x3 x3 x3

1 0 1 1 1 0 1 1 1 0 1 0 0 0 1

Branching tree for 0-1 inequality

1 indicates feasible solution,

0 infeasible

0 1 2 32 3 5 5 7x x x x   

0 1x  0 0x 

x0

x1

x2 x2

x3 x3 x3 x3

1 1

x1

x2 x2

x3 x3 x3 x3

1 0 1 1 1 0 1 1 1 0 1 0 0 0 1

Remove redundant nodes…

Branching tree for 0-1 inequality

0 1 2 32 3 5 5 7x x x x   

x0

x1

x2 x2

x3 x3 x3 x3

1 1

x1

x2 x2

x3 x3 x3 x3

1 0 1 1 1 0 1 1 1 0 1 0 0 0

x0

x1

x2 x2

x3

1

x1

x2 x2

0

x3

1 0

x3

1 0

x3

011 1 1 0

x0

x1

x2 x2

x3

1

x1

x2 x2

0

x3

1 0

x3

1 0

x3

01

Superimpose identical

subtrees…

1 1 1 0

x0

x2

x1

x2

x3

1 0

x3

1 0

x0

x1

x2 x2

x3

1

x1

x2 x2

0

x3

1 0

x3

1 0

x3

011 1 1 01 0

x0

x2

x1

x2

x3

1 0

x3

1 01 0

Superimpose identical

subtrees…

x0

x2

x1

x2

x3

1 0

x3

1 01 0

x0

x2

x1

x2

x3

1 0 01

x0

x2

x1

x2

x3

1 0 01

Superimpose identical leaf

nodes…

x0

x2

x1

x2

x3

1 0

x0

x2

x1

x2

x3

1 0 01

as generated by software

x0

x2

x1

x2

x3

1 0

35

Decision diagrams can represent the feasible set of an optimization

problem.

• Remove paths to 0.

• Paths to 1 are feasible solutions.

• Associate costs with arcs.

• Reduces optimization to a shortest (longest) path problem

We illustrate with the stable set problem (max independent set).

Decision Diagrams and Optimization

1

2 3

5 4

Stable Set Problem

Let each vertex have weight wi

Let xi = 1 when vertex i is in stable set

Select nonadjacent vertices to maximize i wixi

x1

x2

x3

x4

x5

Exact DD for

stable set problem

1

2 3

5 4

{12345}

To build DD,

associate state

with each node

x1

x2

x3

x4

x5

Exact DD for

stable set problem

1

2 3

5 4

{12345}

{2345} {34}

To build DD,

associate state

with each node

x1

x2

x3

x4

x5

Exact DD for

stable set problem

1

2 3

5 4

{12345}

{2345} {34}

{345} {4} {34}

To build DD,

associate state

with each node

x1

x2

x3

x4

x5

Exact DD for

stable set problem

1

2 3

5 4

{12345}

{2345} {34}

{345} {4} {34}

{45}
{4}

Merge nodes that

correspond to the

same state

{4}

x1

x2

x3

x4

x5

Exact DD for

stable set problem

1

2 3

5 4

{12345}

{2345} {34}

{345} {4} {34}

{45} {4}

Merge nodes that

correspond to the

same state

x1

x2

x3

x4

x5

Exact DD for

stable set problem

1

2 3

5 4

{12345}

{2345} {34}

{345} {4} {34}

{45} {4}

{5}




To build DD,

associate state

with each node

x1

x2

x3

x4

x5

Exact DD for

stable set problem

1

2 3

5 4

{12345}

{2345} {34}

{345} {4} {34}

{45} {4}

{5}







Resulting DD is

not necessarily

reduced

(it is in this case).

DD reduction is a

more powerful

simplification

method than DP

Relaxed DDs are essential for obtaining optimization bounds.

A relaxed DD represents a superset of feasible set.

• Shortest (longest) path length is a bound on optimal value.

• Size of DD is controlled.

• Analogous to LP relaxation in IP, but discrete.

• Does not require linearity, convexity, or inequality

constraints.

Decision Diagrams and Optimization

Andersen, Hadžić, JH and Tiedemann (2007)

x1

x2

x3

x4

x5

1

2 3

5 4

{12345}

To build relaxed

DD, merge some

additional nodes

as we go along

x1

x2

x3

x4

x5

1

2 3

5 4

{12345}

{2345} {34}

To build relaxed

DD, merge some

additional nodes

as we go along

x1

x2

x3

x4

x5

1

2 3

5 4

{12345}

{2345} {34}

{345} {4} {34}

To build relaxed

DD, merge some

additional nodes

as we go along.

Take the union of

merged states

x1

x2

x3

x4

x5

1

2 3

5 4

{12345}

{2345} {34}

{345} {34}

To build relaxed

DD, merge some

additional nodes

as we go along.

Take the union of

merged states.

x1

x2

x3

x4

x5

1

2 3

5 4

{12345}

{2345} {34}

{345} {34}

{45}  {4}
To build relaxed

DD, merge some

additional nodes

as we go along.

Take the union of

merged states.

x1

x2

x3

x4

x5

1

2 3

5 4

{12345}

{2345} {34}

{345} {34}

{45} 

{5} 

To build relaxed

DD, merge some

additional nodes

as we go along.

Take the union of

merged states.

x1

x2

x3

x4

x5

1

2 3

5 4

{12345}

{2345} {34}

{345} {34}

{45} 

{5} 



Represents 11

solutions,

including 9

feasible solutions

Width = 2

x1

x2

x3

x4

x5

{12345}

{2345} {34}

{345} {34}

{45} 

{5} 



Represents

11 solutions,

including

9 feasible

solutions

Width = 2

Longest path (90)

gives bound on

optimal value (70)

20

40

0

0

050

10

0

0

0

1

2 3

5 4

20

40 50

30 10

50

30

0

0

Bound from Relaxed DD

DDs vs. CPLEX

bound at root node

for max stable set

problem

• Using CPLEX

default cut

generation

• DD max width

of 1000.

• DDs require

about 5% the

time of CPLEX

53

Bergman, Ciré,

van Hoeve, JH (2013)

CPLEX bound

is better

DD bound

is better

Propagation through a relaxed DD can substantially improve

performance of constraint programming.

Example: TSP with time windows and other sequencing problems.

DDs allowed closure of several open problem instances.

Decision Diagrams and Optimization

Ciré, van Hoeve (2013)

CPO =

CP Optimizer

Pure CP better

CP + DD

better

Computation time scatter plot, lex search

CPO =

CP Optimizer

Performance profile, depth-first search

A restricted DD represents a subset of the feasible set.

Restricted DDs provide a basis for a primal heuristic.

Bergman, Ciré, van Hoeve, Yunes (2014)

Decision Diagrams and Optimization

Optimality gap for set covering, n variables

Restricted DDs vs

Primal heuristic at root node of CPLEX

IP

DD

Computation time

Restricted DDs vs

Primal heuristic at root node of CPLEX (cuts turned off)

IP

DD

DDs provide a general purpose solver for discrete

optimization.

• Bounds from relaxed DDs.

• Primal heuristic from restricted DDs.

• Recursive modeling

• Novel branching algorithm – branch inside relaxed DD

60

Bergman, Ciré, van Hoeve, JH (2016)

Decision Diagrams and Optimization

1

2

3

4

5

6

Diagram is exact

down to here

Branching in a relaxed

decision diagram

61

Branching Algorithm

Branch on nodes in

this layer

Branching in a relaxed

decision diagram

62

1

2

3

4

5

6

Branching Algorithm

First branch

New relaxed decision diagram

Branching in a relaxed

decision diagram

63

1

2

3

4

5

6

Branching Algorithm

First branch

New relaxed decision diagram

Branching in a relaxed

decision diagram

64

1

2

3

4

5

6

Branching Algorithm

Pruning based on cost bounds

from relaxed DDs (branch and bound).

Second branch

Branching in a relaxed

decision diagram

65

1

2

3

4

5

6

Branching Algorithm

Pruning based on cost bounds

from relaxed DDs (branch and bound).

Third branch

Continue recursively

Branching in a relaxed

decision diagram

66

1

2

3

4

5

6

Branching Algorithm

Pruning based on cost bounds

from relaxed DDs (branch and bound).

Max cut

on a graph

Avg. solution time

vs

graph density

30 vertices

0

10

20

30

40

50

60

70

80

0 0.2 0.4 0.6 0.8 1

A
v
e

ra
g

e
 s

o
lu

ti
o

n
 t
im

e
 (

s
e

c
)

Density of graph

CPLEX

MDDs

Computational performance

Max 2-SAT

Performance

profile

30 variables

0

10

20

30

40

50

60

70

80

90

100

0.1 1 10 100 1000

N
u

m
b

e
r

o
f
in

s
ta

n
c
e

s
 s

o
lv

e
d

Computation time (sec)

MDDs

CPLEX

Computational performance

2+5

1+15

4+3

2+9

0+6

0 21

0 21

0 21

0

0

0+8

0+6
0+4

0+12

0+9

0+10

0+20

0+15

4+6

4+0

2+10

2+0

4+0

0+12

2+3

2+6

1+5

1+10

2+6

State transition graph for

inventory problem

Simplification of DP Models

JH (2013)

We can reformulate the recursion to yield

the unique reduced weighted DD.

Radical simplification of the problem –

only 1 state per stage.

12

0

13 14

10 9 8

6 7 8

4

JH (2013)

Simplification of DP Models

Bergman and Ciré (2018)

Nonlinear optimization: Portfolio design

Decision Diagrams and Optimization

Nonlinear optimization: Portfolio design

Decision Diagrams and Optimization

Bergman and Ciré (2018)

Nonlinear optimization: Product assortment

Decision Diagrams and Optimization

Bergman and Ciré (2018)

Nonlinear optimization: Workflow employee assignment

Decision Diagrams and Optimization

Bergman and Ciré (2018)

Nonlinear optimization: Workflow employee assignment

Decision Diagrams and Optimization

Bergman and Ciré (2018)

Predicate Logic and Integer Programming

Fundamental compactness result in 1st-order predicate logic:

Theorem (Herbrand). A formula in Skolem

normal form is unsatisfiable if and only if some

finite combination of Herbrand ground instances

of its clauses is unsatisfiable.

Predicate Logic and Integer Programming

Jacques

Herbrand

Herbrand 1930

Fundamental compactness result in 1st-order predicate logic:

Theorem (Herbrand). A formula in Skolem

normal form is unsatisfiable if and only if some

finite combination of Herbrand ground instances

of its clauses is unsatisfiable.

Fundamental compactness result in infinite

integer programming:

Theorem. An IP with infinitely many constraints

is infeasible if and only if some finite subfamily

of the constraints is infeasible.

Predicate Logic and Integer Programming

Jacques

Herbrand

Herbrand 1930

Fundamental compactness result in 1st-order predicate logic:

Theorem (Herbrand). A formula is Skolem

normal form is unsatisfiable if and only if some

finite combination of Herbrand ground instances

of its clauses is unsatisfiable.

Fundamental compactness result in infinite

integer programming:

Theorem. An IP with infinitely many constraints

is infeasible if and only if some finite subfamily

of the constraints is infeasible.

These are the same theorem!

Predicate Logic and Integer Programming

Jacques

Herbrand

Herbrand 1930

Resolution and Cutting Planes

An input proof is a resolution proof in which one parent of every

resolvent is among the original premises.

Resolution is a complete inference method

for propositional logic.

Resolution and Cutting Planes

Quine1952,1955

Resolution:

W. V. Quine

A resolvent is a rank 1 Chvátal cut.

Resolution and Cutting Planes

Chvátal’s cutting plane proof implicitly relies

on resolution!

V. Chvátal

Chvátal 1973

A resolvent is a rank 1 Chvátal cut.

Resolution and Cutting Planes

Chvátal’s cutting plane proof implicitly relies

on resolution!

Theorem. The logical clauses one can infer using input proofs are

precisely those that are rank 1 cuts.

Theorem. Resolution can be generalized to a complete inference

method for 0-1 inequalities (a logical analog of Chvátal’s theorem).

V. Chvátal

Chvátal 1973

JH 1989

JH 1992

Logic and Duality

Optimization duals are logical inference problems.

This implies a tight connection between logic and optimization.

It leads to an extension of Benders decomposition

that has seen many applications.

Logic and Duality

All optimization duals are special cases of inference duality

min ()f x

x S

max

()
P

v

x S f x v

P

  

PFind best feasible

solution by

searching over

values of x.

Find a proof of optimal

value by searching over

proofs P.

Primal problem:

Optimization

Dual problem:

Inference

In classical LP, the proof is a tuple of dual multipliers

86

Logic and Duality

Logic and Duality

Type of Dual Inference Method Strong?

Linear programming Nonnegative linear combination

+ material implication

Yes*

Lagrangian Nonnegative linear combination

+ domination

No

Surrogate Nonnegative linear combination

+ material implication

No

Subadditive Cutting planes Yes**

*Due to Farkas Lemma

**Due to Chvátal’s theorem

LP Duality



  
0

max
x

v

Ax b cx v







min

0

cx

Ax b

x
implies

Dual problem: Find the tightest lower bound on the objective

function that is implied by the constraints.

88

Logic and Duality

From Farkas Lemma: If Ax  b, x  0 is feasible,

 



  
  



0 implies
iff

for some 0

x Ax b cx v
Ax b cx v

A  c and b  v

89

LP Duality

Logic and Duality



  
0

max
x

v

Ax b cx v







min

0

cx

Ax b

x

From Farkas Lemma: If Ax  b, x  0 is feasible,











max

0

b

A c

 This is the

classical

LP dual

90

LP Duality

Logic and Duality

A  c and b  v



  
0

max
x

v

Ax b cx v







min

0

cx

Ax b

x

 



  
  



0 implies
iff

for some 0

x Ax b cx v
Ax b cx v

() 0 dominates () 0
() 0 () iff

for some 0

x S g x f x v
g x f x v





   
  



max

() ()
s S

v

g x b f x v


  

min ()

() 0

f x

g x

x S





Let us say that

Primal Dual

Surrogate

g(x)  f(x)  v for all x  S

That is, v  f(x)  g(x) for all x  S

Lagrangian Duality

Primal Dual

g(x)  f(x)  v for all x  S

That is, v  f(x)  g(x) for all x  S

If we replace domination with material implication,

we get the surrogate dual, which gives better bounds

but lacks the nice properties of the Lagrangean dual.

Lagrangian Duality

max

() ()
s S

v

g x b f x v


  

min ()

() 0

f x

g x

x S





() 0 dominates () 0
() 0 () iff

for some 0

x S g x f x v
g x f x v





   
  



Let us say that

Surrogate

Primal Dual

g(x)  f(x)  v for all x  S

That is, v  f(x)  g(x) for all x  S

Or  min () ()
x S

v f x g x


 

Lagrangian Duality

max

() ()
s S

v

g x b f x v


  

min ()

() 0

f x

g x

x S





() 0 dominates () 0
() 0 () iff

for some 0

x S g x f x v
g x f x v





   
  



Let us say that

Surrogate

If we replace domination with material implication,

we get the surrogate dual, which gives better bounds

but lacks the nice properties of the Lagrangean dual.

So the dual becomes

 

max

min () () for some 0
x S

v

v f x g x 


  

Lagrangian Duality

Primal Dual

g(x)  f(x)  v for all x  S

That is, v  f(x)  g(x) for all x  S

Or

max

() ()
s S

v

g x b f x v


  

min ()

() 0

f x

g x

x S





() 0 dominates () 0
() 0 () iff

for some 0

x S g x f x v
g x f x v





   
  



Let us say that

Surrogate

 min () ()
x S

v f x g x


 

Classical Benders decomposition requires an LP subproblem.

The Benders cuts are obtained from the LP dual of the subproblem.

Logic-based Benders decomposition accepts any optimization or

feasibility problem as the subproblem.

• Benders cuts are obtained from an inference dual of the subproblem.

• Speedup over state of the art can be several orders of magnitude.

• Benders cuts must be designed specifically for every class of problems.

95

Logic and Duality

JH 2000

JH, Ottosson 2003

96

Number of Articles that Mention Benders Decomposition

Logic and Duality

Logic-based Benders decomposition solves a problem of the form

…where the problem simplifies when x is fixed to a specific value.

97

min (,)

(,)

,x y

f x y

x y S

x D y D



 

Logic and Duality

Decompose problem into master and subproblem.

Subproblem is obtained by fixing x to solution value in master problem.

min

() (Benders cuts)k

x

z

z g x

x D





min (,)

(,)

f x y

x y S

Minimize cost z subject to

bounds given by Benders

cuts, obtained from previous

iterations k.

Obtain proof of optimality

(solution of inference dual).

Use same proof to deduce

cost bounds for other

assignments, yielding

Benders cut.

Trial value x

that solves

master

Benders cut

z  gk(x)

Master problem Subproblem

x

98

Logic and Duality

Iterate until master problem value equals best subproblem value so far.

Classical Benders uses LP dual of subproblem to obtain a proof.

min

() (Benders cuts)k

x

z

z g x

x D





min (,)

(,)

f x y

x y S

Minimize cost z subject to

bounds given by Benders

cuts, obtained from previous

iterations k.

Obtain proof of optimality

(solution of inference dual).

Use same proof to deduce

cost bounds for other

assignments, yielding

Benders cut.

Trial value x

that solves

master

Benders cut

z  gk(x)

Master problem Subproblem

x

99

Logic and Duality

0

5

10

15

20

25

30

35

40

45

50

0.01 1 100 10000

N
u

m
b

e
r

o
f

n
s

ta
n

c
e

s
 s

o
lv

e
d

Computation time (sec)

Relax + strong cuts

Relax + weak cuts

MIP (CPLEX)

Performance profile

50 problem instances

Solve master by MIP,

subproblem by CP

100

Machine Assignment and Scheduling

Ciré, Çoban, JH 2016

101

Home Healthcare Routing and Scheduling

S-LBBD = standard LBBD

B&Ch = branch and check, variant of LBBD in which Benders cuts are

generated during a single branch-and-bound solution of master problem

Solve master by MIP,

subproblem by CP

Heching, JH, Kimura 2018

LBBD in planning and scheduling:

• Chemical batch processing (BASF, etc.)

• Auto assembly line management (Peugeot-Citroën)

• Allocation and scheduling of multicore processors (IBM, Toshiba, Sony)

• Steel production scheduling

• Worker assignment in a queuing environment

102

Logic and Duality

Other scheduling applications:

• Lock scheduling

• Shift scheduling

• Permutation flow

shop scheduling

• Resource-constrained

scheduling

• Hospital scheduling

• Optimal control of

dynamical systems

• Sports scheduling

103

Logic and Duality

LBBD in routing and scheduling:

• Vehicle routing

• Home health care

• Food distribution

• Automated guided

vehicles in flexible

manufacturing

• Traffic diversion

• Concrete delivery

104

Logic and Duality

LBBD in location and design:

• Allocation of frequency

spectrum (U.S. FCC)

• Wireless local area

network design

• Facility location-allocation

• Stochastic facility location

and fleet management

• Capacity and distance-

constrained plant location

• Queuing design and control

105
105

Logic and Duality

Other LBBD applications:

• Logical inference (SAT solvers essentially use Benders!)

• Logic circuit verification

• Bicycle sharing

• Service restoration

in a network

• Inventory

management

• Supply chain

management

• Space packing

106

Logic and Duality

Consistency and Backtracking

Consistency is a core concept of constraint programming.

A consistent partial assignment is one that occurs in some

feasible solution.

A constraint set is consistent if all partial assignments that

violate no constraint are consistent with the constraint set.

108

Consistency and Backtracking

Consistency is a core concept of constraint programming.

A consistent partial assignment is one that occurs in some

feasible solution.

A constraint set is consistent if all partial assignments that

violate no constraint are consistent with the constraint set.

Various forms of consistency: full consistency, k-consistency,

domain consistency.

Consistency implies less backtracking

109

Consistency and Backtracking

The concept of consistency never developed in the

optimization literature.

Yet valid inequalities (cutting planes) reduce backtracking

by achieving a greater degree of consistency, as well as

by tightening a relaxation.

110

Consistency and Backtracking

The concept of consistency never developed in the

optimization literature.

Yet valid inequalities (cutting planes) reduce backtracking

by achieving a greater degree of consistency, as well as

by tightening a relaxation.

Consistency can be adapted to MILP.

Cuts that achieve consistency cut off inconsistent 0-1

partial assignments and so reduce backtracking.

111

Consistency and Backtracking

112

This inequality is the sum

of the 2 nontrivial facet-defining

inequalities for S and so is

“weaker.”

Yet it cuts off more infeasible

0-1 points than either

facet-defining inequality.

x2

x1

x3

Consistency and Backtracking

x1 + 2x2 + x3  2

x1 + x2  1

x1 + x2  1

113

The constraint set S is

LP-consistent.

It explicitly excludes infeasible

0-1 partial assignments.

A weak form of LP-consistency

can reduce backtracking

by excluding inconsistent

partial assignments that

facet-defining inequalities

may not exclude.

x2

x1

x3

Consistency and Backtracking

x1 + 2x2 + x3  2

x1 + x2  1

x1 + x2  1

114

We obtain a theory of consistency

parallel to the one in CP.

Details in my INFORMS talk.

Next session, TC04.

x2

x1

x3

Consistency and Backtracking

x1 + 2x2 + x3  2

x1 + x2  1

x1 + x2  1

Questions? Comments?

