Balancing Fairness and Efficiency in an Optimization Model

John Hooker Carnegie Mellon University

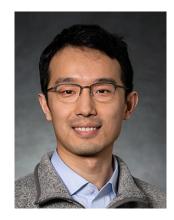
> University of Toronto November 2021

Much of this work is joint with:

Violet (Xinying) Chen, CMU

Özgün Elçi *CMU*

H. P. Williams London School of Economics



Peter Zhang CMU

Modeling Equity

- A growing interest in incorporating equity into models...
 - Health care resources.
 - Facility location (e.g., emergency services, infrastructure).
 - Taxation (revenue vs. progressivity).
 - Telecommunications (leximax, Nash bargaining solution).
 - Traffic signal timing
 - Disaster recovery (e.g., power restoration)...

Modeling Equity

- Example: disaster relief
 - Power restoration can focus on urban areas first (efficiency).
 - This can leave rural areas without power for weeks/months.
 - This happened in Puerto Rico after Hurricane Maria (2017).

A more equitable solution

 ...would give some priority to rural areas without overly sacrificing efficiency.

Modeling Equity

- It is far from obvious how to formulate equity concerns **mathematically**.
 - Less straightforward than maximizing total benefit or minimizing total cost.
 - Still less obvious how to combine equity with total benefit.

Outline

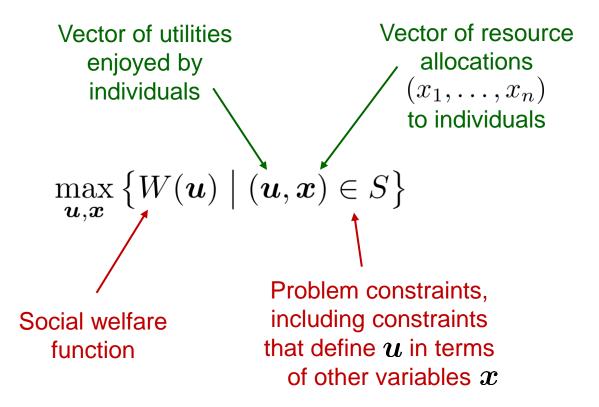
- Generic welfare optimization model
- Existing formulations of equity
 - Inequality-based criteria
 - Fairness for the **disadvantaged** (Rawlsian maximin, McLoone)
 - Convex combinations of utility and equity
 - Alpha fairness and Nash bargaining solution
 - Kalai-Smorodinsky bargaining solution
 - Statistical fairness metrics used in AI
 - Utility- and equity-threshold criteria combining utility & maximin
- Our most recent proposal
 - Utility-threshold criterion combining utility and leximax
 - Examples: health care and earthquake shelter location

• We formulate each fairness criterion as a **social welfare** function (SWF).

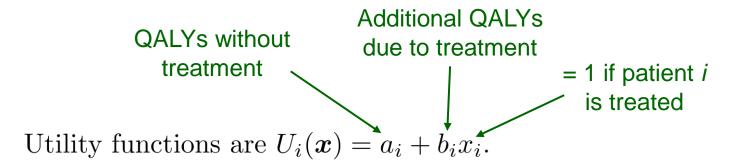
$$W(\boldsymbol{u}) = W(u_1, \ldots, u_n)$$

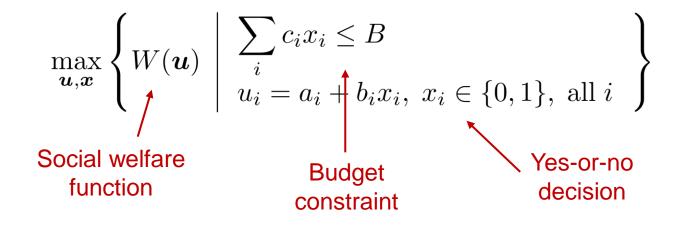
- Measures desirability of the magnitude and distribution of utilities across individuals.
- Utility can be wealth, health, negative cost, etc.

The social welfare optimization problem



Example – Medical triage





What we want to contribute to practice:

Show how to add equity considerations to an existing optimization model.

- Utility is already defined in the model.
- Identify a suitable social welfare function that can serve as the objective function of the model.

Equality vs fairness

Two views on ethical importance of equality:

- Irreducible: Inequality is inherently unfair.
- **Reducible:** Inequality is unfair only insofar as it reduces utility.

Frankfurt 2015

Parfit 1997

Scanlon 2003

Problems with inequality measures:

- No preference for an identical distribution with higher utility.
- Even when average utility is fixed, no preference for reducing inequality at the **bottom** rather than the **top** of the distribution.

Relative range

$$W(\boldsymbol{u}) = -\frac{u_{\max} - u_{\min}}{\bar{u}}$$

Rationale:

- Perceived inequality is relative to the best off.
- So, move everyone closer to the best off.

Problem:

• Ignores distribution **between** extremes.

Relative range

• Problem is **linearized** using same change of variable as in linear-fractional programming.

Let $\boldsymbol{u} = \boldsymbol{u}'/t$ and $\boldsymbol{x} = \boldsymbol{x}'/t$. The optimization problem is

$$\min_{\substack{\boldsymbol{x}',\boldsymbol{u}',t\\u_{\min}',u_{\max}'}} \left\{ u_{\max}' - u_{\min}' \mid \begin{array}{l} u_{\min}' \leq u_i' \leq u_{\max}', \text{ all } i\\ \bar{u}' = 1, \ t \geq 0, \ (\boldsymbol{u}',\boldsymbol{x}') \in S' \end{array} \right\}$$

where t, u'_{\min}, u'_{\max} are new variables.

Charnes & Cooper 1962

• Linear if original constraints $(\boldsymbol{u}, \boldsymbol{x}) \in S$ are linear.

Relative mean deviation

$$W(\boldsymbol{u}) = -\frac{1}{\bar{u}} \sum_{i} |u_i - \bar{u}|$$

Rationale:

• Considers all utilities.

Model:

• Again, linearized by change of variable.

$$\min_{\boldsymbol{x}',\boldsymbol{u}',\boldsymbol{v},t} \left\{ \sum_{i} v_i \mid \begin{array}{c} -v_i \leq u'_i - \bar{u}' \leq v_i, \text{ all } i \\ \bar{u}' = 1, t \geq 0, (\boldsymbol{u}',\boldsymbol{x}') \in S' \end{array} \right\}$$

where \boldsymbol{v} is vector of new variables.

Coefficient of variation

$$W(\boldsymbol{u}) = -\frac{1}{\bar{u}} \left[\frac{1}{n} \sum_{i} (u_i - \bar{u})^2 \right]^{\frac{1}{2}}$$

Rationale:

• Familiar. Outliers receive extra weight.

Problem:

• Nonlinear (but convex)

Model:

$$\min_{\boldsymbol{x}',\boldsymbol{u}',\boldsymbol{v},t} \left\{ \frac{1}{n} \sum_{i} (u'_i - \bar{u}')^2 \mid \begin{array}{c} \bar{u}' = 1, \ t \ge 0\\ (\boldsymbol{u}',\boldsymbol{x}') \in S' \end{array} \right\}$$

Gini coefficient $W(\boldsymbol{u}) = -G(\boldsymbol{u}), \text{ where } G(\boldsymbol{u}) = \frac{1}{2\bar{u}n^2} \sum_{i,j} |u_i - u_j|$ Cumulative utility Gini coeff. = $\frac{\text{blue area}}{\text{area of triangle}}$ Lorenz curve

Individuals ordered by increasing utility

Gini coefficient

$$W(\boldsymbol{u}) = -G(\boldsymbol{u}), \text{ where } G(\boldsymbol{u}) = \frac{1}{2\bar{u}n^2} \sum_{i,j} |u_i - u_j|$$

Rationale:

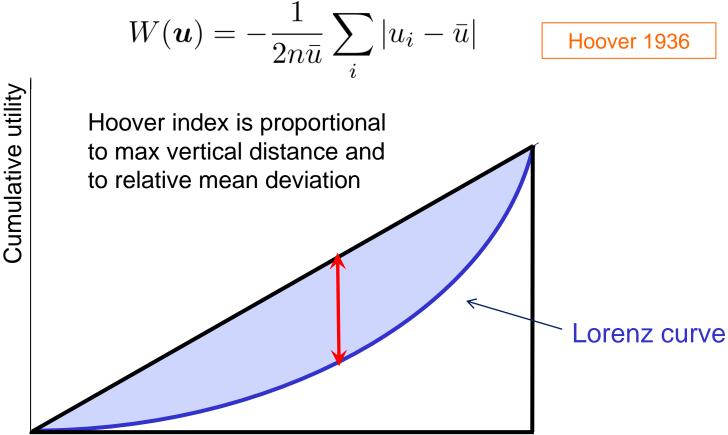
- Relationship to Lorenz curve.
- Widely used.

Model:

$$\min_{\boldsymbol{x}',\boldsymbol{u}',V,t} \left\{ \frac{1}{2n^2} \sum_{i,j} v_{ij} \mid \frac{-v_{ij} \leq u'_i - u'_j \leq v_{ij}, \text{ all } i,j}{\bar{u}' = 1, t \geq 0, (\boldsymbol{u}',\boldsymbol{x}') \in S'} \right\}$$

where V is a matrix of new variables.

Hoover index



Individuals ordered by increasing utility

Hoover index

$$W(\boldsymbol{u}) = -\frac{1}{2n\bar{u}}\sum_{i}|u_{i} - \bar{u}|$$

Rationale:

• Hoover index is fraction of total utility that would have to be redistributed to achieve perfect equality.

Model:

• Same as relative mean deviation.

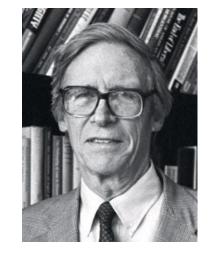
Maximin

$$W(\boldsymbol{u}) = \min_i \{u_i\}$$

Rationale:

- Based on difference principle of John Rawls.
- Inequality is justified only to the extent that it increases the utility of the worst-off.
- Originally intended only for the design of social institutions and distribution of primary goods (goods that any rational person would want).
- Can be adopted as a general principle of equity: maximize the minimum utility.

Rawls 1971, 1999



Maximin

$$W(\boldsymbol{u}) = \min_i \{u_i\}$$

Social contract argument:

- We decide on social policy in an "original position," behind a "veil of ignorance" as to our position on society.
- All parties must be willing to **endorse** the policy, no matter what position they end up assuming.
- No rational person can endorse a policy that puts him/her on the **bottom** of society – unless that person would be even worse off under another social arrangement.
- Therefore, an agreed-upon social policy must maximize the welfare of the worst-off.

Maximin

$$W(\boldsymbol{u}) = \min_{i} \{u_i\}$$

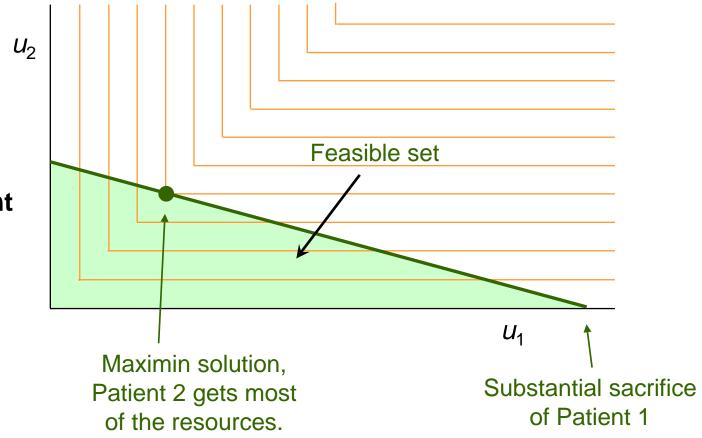
Model:
$$\max_{\boldsymbol{x},\boldsymbol{u},w} \{ w \mid w \le u_i, \text{ all } i; (\boldsymbol{u},\boldsymbol{x}) \in S \}$$

Problems:

- Can force equality even when this is extremely costly in terms of total utility.
- Does not care about 2nd worst off, etc., and so can waste resources.

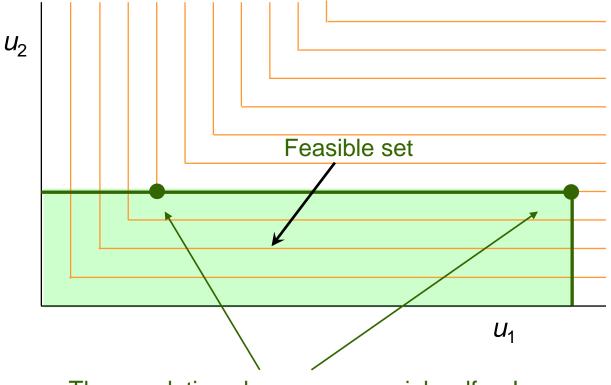
Maximin

Medical example with budget constraint



Maximin

Medical example with resource bounds

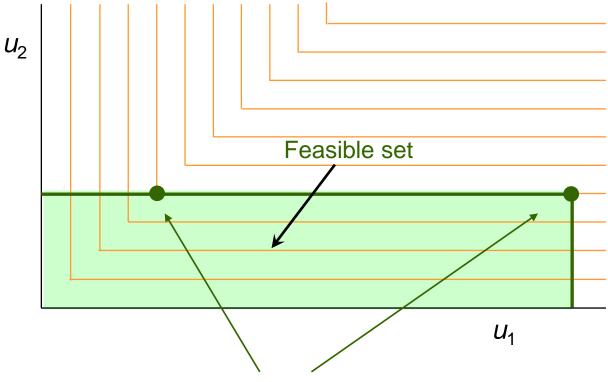


These solutions have same social welfare!

Maximin

Medical example with resource bounds

Remedy: use leximax solution



These solutions have same social welfare!

Leximax

Rationale:

- Takes in account 2nd worst-off, etc., and avoids wasting utility.
- Can be justified with Rawlsian argument.

Problem:

- No practical SWF for leximax.
- Must solve sequence of max problems.
- Even this requires enumeration of all ties to ensure that leximax is found.

McLoone index

$$W(\boldsymbol{u}) = \frac{1}{|I(\boldsymbol{u})|\tilde{u}} \sum_{i \in I(\boldsymbol{u})} u_i$$

where \tilde{u} is the median of utilities in \boldsymbol{u} and $I(\boldsymbol{u})$ is the set of indices of utilities at or below the median

Rationale:

- Compares total utility of those at or below the median to the utility that would result from bringing them up to the median.
- Index = 1 if no one is below median, \rightarrow 0 for long lower tail.
- Focus on all the disadvantaged.
- Often used for public goods (e.g., educational benefits).

McLoone index

Model: Nonlinear, requires 0-1 variables.

$$\max_{\substack{\boldsymbol{x},\boldsymbol{u},m\\\boldsymbol{y},\boldsymbol{z},\boldsymbol{\delta}}} \left\{ \frac{\sum_{i} y_{i}}{\sum_{i} z_{i}} \middle| \begin{array}{l} m - M\delta_{i} \leq u_{i} \leq m + M(1 - \delta_{i}), \text{ all } i\\ y_{i} \leq u_{i}, y_{i} \leq M\delta_{i}, \delta_{i} \in \{0,1\}, \text{ all } i\\ z_{i} \geq 0, z_{i} \geq m - M(1 - \delta_{i}), \text{ all } i\\ \sum_{i} \delta_{i} \leq n/2, (\boldsymbol{u}, \boldsymbol{x}) \in S \end{array} \right\}$$

Linearize with change of variable, obtain MILP.

$$\max_{\substack{\boldsymbol{x}', \boldsymbol{u}', m'\\ \boldsymbol{y}', \boldsymbol{z}', t, \boldsymbol{\delta}}} \begin{cases} \sum_{i} y'_{i} & u'_{i} \geq m' - M\delta_{i}, \text{ all } i \\ u'_{i} \leq m' + M(1 - \delta_{i}), \text{ all } i \\ y'_{i} \leq u'_{i}, y'_{i} \leq M\delta_{i}, \delta_{i} \in \{0, 1\}, \text{ all } i \\ z'_{i} \geq 0, z'_{i} \geq m' - M(1 - \delta_{i}), \text{ all } i \\ \sum_{i} z'_{i} = 1, t \geq 0 \\ \sum_{i} \delta_{i} \leq n/2, (\boldsymbol{u}', \boldsymbol{x}') \in S' \end{cases}$$

Utility & Fairness – Convex Combinations

Utility + Gini coefficient

$$W(\boldsymbol{u}) = (1 - \lambda) \sum_{i} u_{i} + \lambda (1 - G(\boldsymbol{u}))$$

Rationale.

- Takes into account both efficiency and equity.
- Allows one to adjust their relative importance.

Problem.

- Combines utility with a dimensionless quantity.
- Choice of λ is an issue with convex combinations in general.

Utility & Fairness – Convex Combinations

Utility + Maximin

$$W(\boldsymbol{u}) = (1 - \lambda) \sum_{i} u_i + \lambda \min_{i} \{u_i\}$$

Rationale.

• Explicitly considers individuals other than worst off.

Problem.

• If u_k is smallest utility, this is simply the linear combination

$$W(\boldsymbol{u}) = u_k + (1 - \lambda) \sum_{i \neq k} u_i$$

• How to interpret λ ?

Alpha Fairness

$$W_{\alpha}(\boldsymbol{u}) = \begin{cases} \frac{1}{1-\alpha} \sum_{i} u_{i}^{1-\alpha} & \text{for } \alpha \geq 0, \ \alpha \neq 1 \\ \sum_{i} \log(u_{i}) & \text{for } \alpha = 1 \end{cases}$$

Mo & Walrand 2000; Verloop, Ayesta & Borst 2010

Rationale.

• Continuous and well-defined adjustment of equity/efficiency tradeoff.

Utility u_j must be reduced by $(u_j/u_i)^{\alpha}$ units to compensate for a unit increase in u_i (< u_j) while maintaining constant social welfare.

- Integral of power law $\Sigma_i u_i^{-\alpha}$
- Utilitarian when $\alpha = 0$, maximin when $\alpha \rightarrow \infty$

Alpha Fairness

$$W_{\alpha}(\boldsymbol{u}) = \begin{cases} \frac{1}{1-\alpha} \sum_{i} u_{i}^{1-\alpha} & \text{for } \alpha \geq 0, \ \alpha \neq 1 \\ \sum_{i} \log(u_{i}) & \text{for } \alpha = 1 \end{cases}$$

Model

• Nonlinear but concave.

$$\max_{\boldsymbol{x},\boldsymbol{u}} \left\{ W_{\alpha}(\boldsymbol{u}) \mid (\boldsymbol{u},\boldsymbol{x}) \in S \right\}$$

• Can be solved by efficient algorithms if constraints are linear (or perhaps if S is convex).

Alpha Fairness

$$W_{\alpha}(\boldsymbol{u}) = \begin{cases} \frac{1}{1-\alpha} \sum_{i} u_{i}^{1-\alpha} & \text{for } \alpha \geq 0, \ \alpha \neq 1\\ \sum_{i} \log(u_{i}) & \text{for } \alpha = 1 \end{cases}$$

Problems

- Unclear how to choose α in practice.
- An egalitarian distribution can have same social welfare as arbitrarily extreme inequality.

In a 2-person problem, the distribution $(u_1, u_2) = (1, 1)$ has the same social welfare as $(2^{1/(1-\alpha)}, \infty)$ when $\alpha > 1$.

Proportional Fairness

$$W(\boldsymbol{u}) = \sum_{i} \log(u_i)$$

Nash 1950

- Special case of alpha fairness ($\alpha = 1$).
- Also known as Nash bargaining solution, in which case bargaining starts with a default distribution d.

$$W(\boldsymbol{u}) = \sum_{i} \log(u_i - d_i) \text{ or}$$
$$W(\boldsymbol{u}) = \prod_{i} (u_i - d_i)$$



Proportional Fairness

$$W(\boldsymbol{u}) = \sum_{i} \log(u_i)$$

Nash 1950

- Special case of alpha fairness ($\alpha = 1$).
- Also known as Nash bargaining solution, in which case bargaining starts with a default distribution d.

$$W(\boldsymbol{u}) = \sum_{i} \log(u_i - d_i) \text{ or } W(\boldsymbol{u}) = \prod_{i} (u_i - d_i)$$

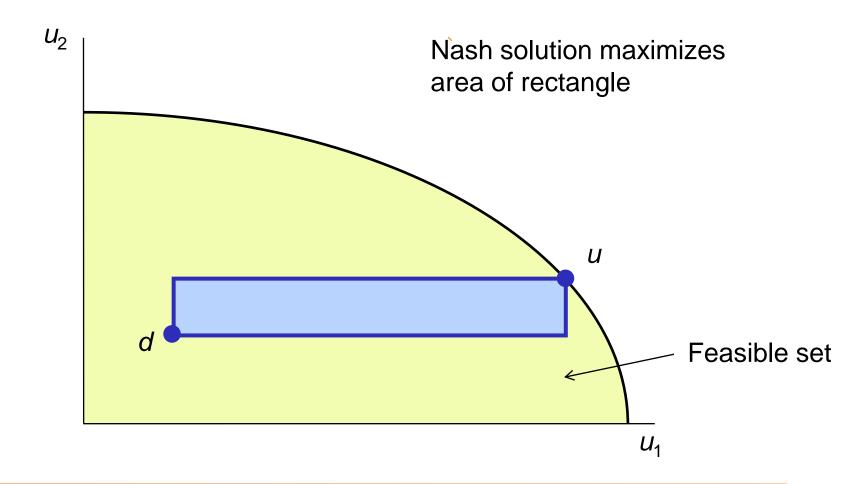
Rationale

- Has nice geometric interpretation.
- Can be derived from axiomatic and bargaining arguments.
- Used in engineering applications (telecom, traffic signaling).

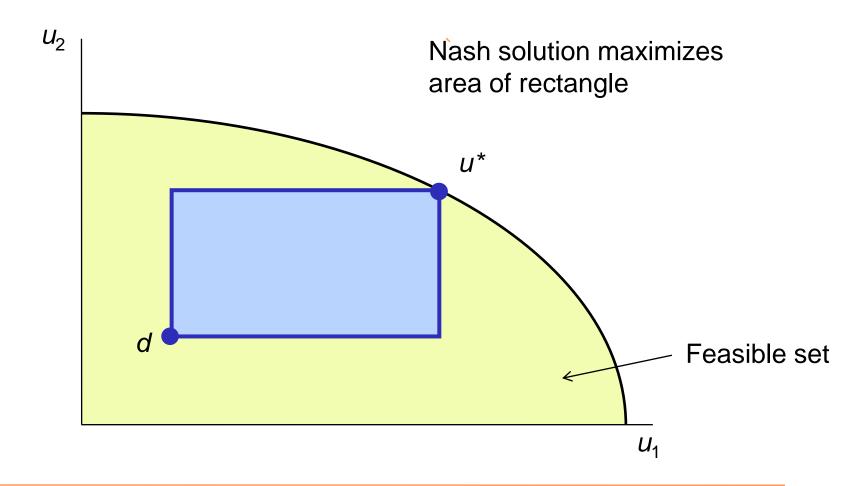
Proportional Fairness



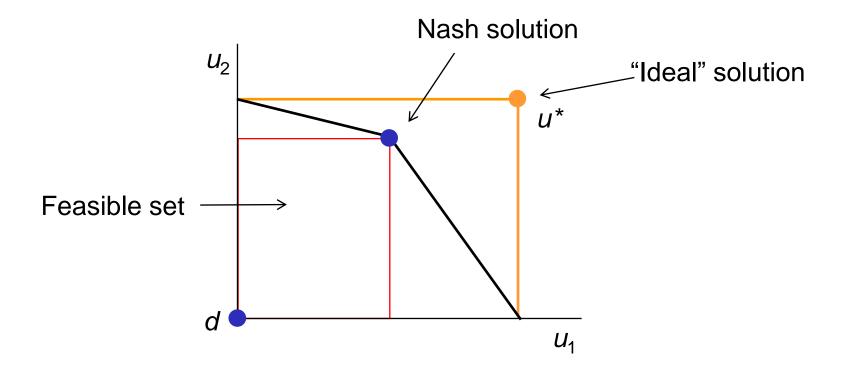
Proportional Fairness



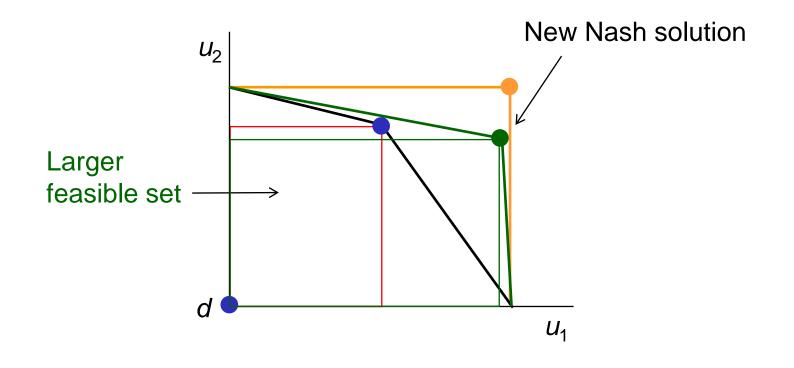
Proportional Fairness



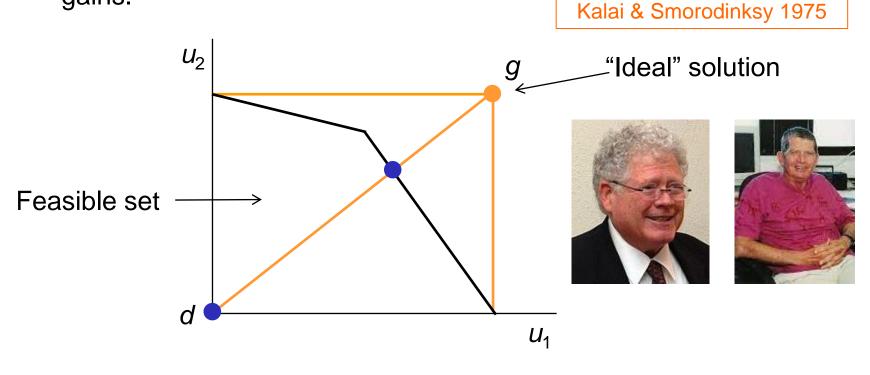
• Begins with a critique of the Nash bargaining solution.



- Begins with a critique of the Nash bargaining solution.
- The new Nash solution is **worse** for player 2 even though the feasible set is **larger**.

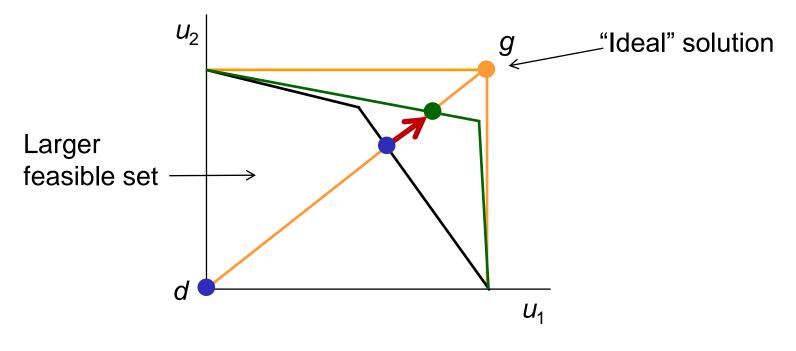


- **Proposal**: Bargaining solution is optimal point on the line segment from *d* to ideal solution.
- The players receive an equal fraction of their possible utility gains.



Rationale

- Satisfies monotonicity, unlike Nash solution.
- Bargaining justification.
- Perhaps suitable for wage, price negotiation.



Possible problems

- May not be ethical to allocate utility in proportion to one's potential.
- For example, when allocating resources to those with minor ailments vs chronic diseases.

- Widely discussed in AI.
- Intended to measure bias across groups.
- Most are based on statistical measures of classification error.
- Utility vector \boldsymbol{u} is now vector $\boldsymbol{\delta}$ of yes-no decisions.
- For example: mortgage loans, job interviews, parole.

Rationale

- Unjustified bias against certain groups generally seen as inherently unfair.
- Bias may also incur legal problems.

Notation

- TP = number of true positives (correct yes's)
- FP = number of false positives (incorrect yes's).
- TN = number of true negatives (correct no's).
- FN = number of false negatives (incorrect no's).

Basic model

• Maximize accuracy, perhaps

 $\frac{\mathrm{TP} + \mathrm{TN}}{\mathrm{TP} + \mathrm{TN} + \mathrm{FP} + \mathrm{FN}}$

...subject to a **bound** on a bias SWF.

Bias measured by comparing various statistics across
 2 groups (a protected group and everyone else).

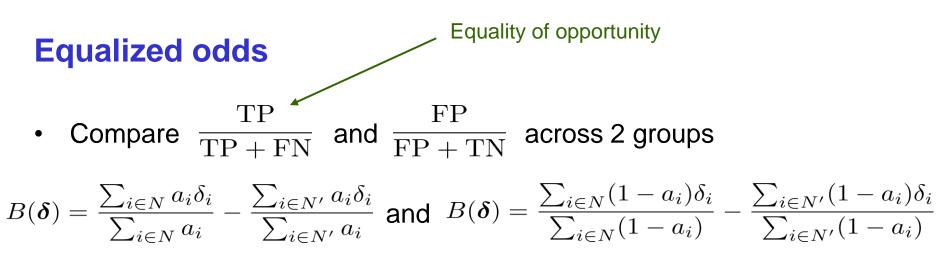
Demographic parity

• Compare
$$\frac{\text{TP} + \text{FP}}{\text{TP} + \text{TN} + \text{FP} + \text{FN}}$$
 across 2 groups
 $W(\delta) = 1 - |B(\delta)|$, where $B(\delta) = \frac{1}{|N|} \sum_{i \in N} \delta_i - \frac{1}{|N'|} \sum_{i \in N'} \delta_i$
Rationale
• Equality of outcomes. Majority group group

Possible problem

 Can discriminate against a minority group that is more qualified than majority group.

46



Rationale

• Compares fraction of qualified (or unqualified) persons selected.

Possible problem

• Considers only **yes** (or only **no**) decisions.

Hardt et al. 2016

Accuracy parity

• Compare
$$\frac{\text{TP} + \text{TN}}{\text{TP} + \text{TN} + \text{FP} + \text{FN}} \text{ across 2 groups.}$$
$$B(\boldsymbol{\delta}) = \frac{1}{|N|} \sum_{i \in N} \left(a_i \delta_i + (1 - a_i)(1 - \delta_i) \right) - \frac{1}{|N'|} \sum_{i \in N'} \left(a_i \delta_i + (1 - a_i)(1 - \delta_i) \right)$$

Rationale

Berk et al. 2018

- Compares overall accuracy.
- Only one comparison needed, rather than 2 as in equalized odds.

Possible problem

• Less popular in applications.

Predictive rate parity

• Compare
$$\frac{TP}{TP + FP}$$
 across 2 groups.

$$B(\boldsymbol{\delta}) = \frac{\sum_{i \in N} a_i \delta_i}{\sum_{i \in N} \delta_i} - \frac{\sum_{i \in N'} a_i \delta_i}{\sum_{i \in N'} \delta_i}$$

Rationale

Compares what fraction of selected individuals should have been selected.

Dieterich et al. 2016

Problem

- Poses very difficult nonconvex discrete optimization problem.
- Unclear what justifies the computational burden.

Counterfactual fairness

Rationale

- Attempts to determine whether the decision for minority individuals would have been different if they were majority individuals.
- Computes conditional probabilities on Bayesian (causal) networks.

Kusner et al. 2017, Russell et al. 2017

Problems

- Unclear if data are available to allow a reliable determination of causality.
- Unclear how to embed this into a social welfare optimization model.

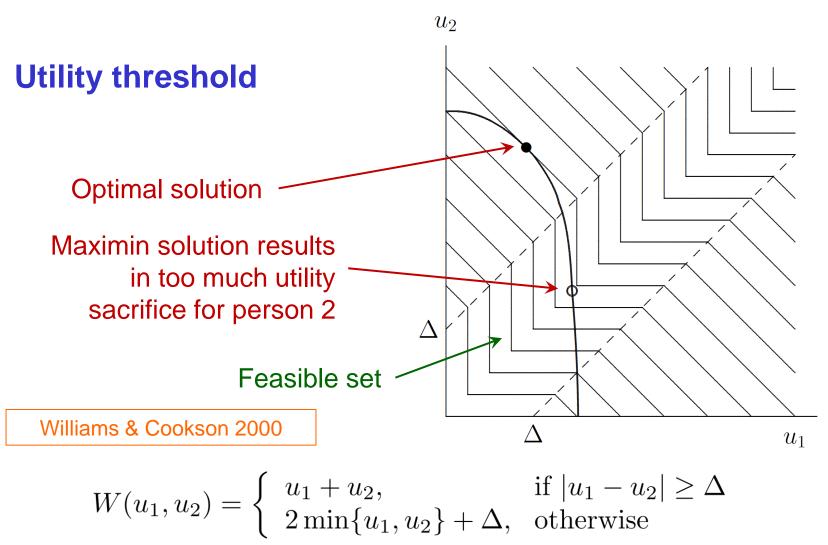
General problems

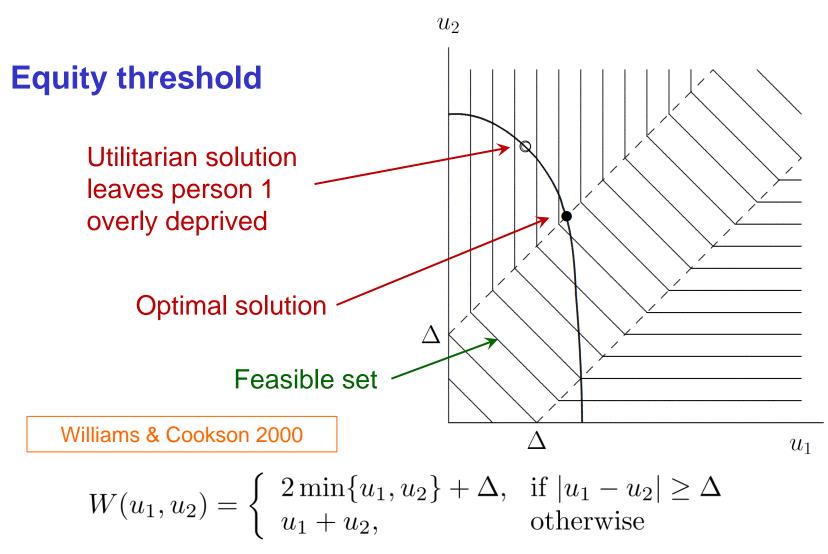
- Yes-no outcomes (δ) provide a **limited perspective** on utility consequences (u).
- **No consensus** on which bias metric $B(\delta)$, if any, is suitable for a given context. Bias metrics were developed to measure predictive accuracy, not fairness.
- No principle for **balancing** equity and efficiency.
- No clear principle for **selecting protected groups** (*N*), unless one simply selects those protected by law.

Combining utility and maximin

- **Utility threshold:** Use a maximin criterion until the utility cost becomes too great, then switch a utilitarian criterion.
- Equity threshold: Use a utilitarian criterion until the inequity becomes too great, then switch to a maximin criterion.

Williams & Cookson 2000

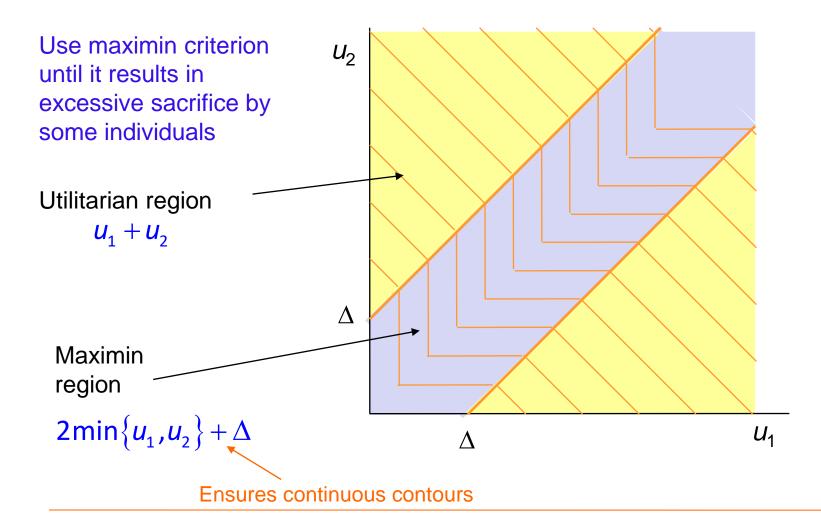




Combining utility and maximin

Rationale

- **Utility threshold:** Suitable when equity is the main consideration, but without excessive utility sacrifice.
 - As in medical applications, politically sensitive contexts.
- Equity threshold: Suitable when utility is the main consideration, but without sacrificing basic equity.
 - As in telecommunications, disaster management, traffic control.



Generalization to *n* persons

$$W(\boldsymbol{u}) = (n-1)\Delta + \sum_{i=1}^{n} \max \left\{ u_i - \Delta, u_{\min} \right\}$$

where $u_{\min} = \min_i \{u_i\}$ JH & Williams 2012

Rationale

- Utilities within Δ of the lowest are in the **fair region**.
- Utilities in fair region are **equated** with smallest utility.
 - In effect, this gives weight to lowest utility equal to number of utilities in the fair region.

$$W(\boldsymbol{u}) = t(\boldsymbol{u})u_{\langle 1 \rangle} + (t(\boldsymbol{u}) - 1)\Delta + \sum_{i=t(\boldsymbol{u})+1}^{n} u_{\langle i \rangle}$$
 utility

Number of utilities in fair region

Generalization to *n* persons

$$W(\boldsymbol{u}) = (n-1)\Delta + \sum_{i=1}^{n} \max\left\{u_i - \Delta, u_{\min}\right\}$$

where $u_{\min} = \min_{i}\{u_i\}$ JH & Williams 2012

Rationale

- Trade-off parameter Δ has a **practical interpretation**.
- Δ is chosen so that individuals in fair region are sufficiently deprived to **deserve priority**.
- $\Delta = 0$ corresponds to utilitarian criterion, $\Delta = \infty$ to maximin.

• Tractable MILP model.

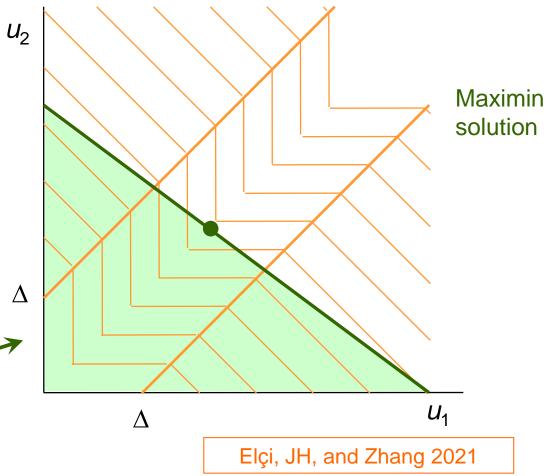
JH & Williams 2012

- Model is **sharp** without $(u, x) \in S$.
- Easily generalized to differently-sized groups of individuals.

Theorem. When maximizing the SWF subject to a **budget constraint**, the optimal solution is purely **maximin** or **purely utilitarian**.

Purely maximin if $\Delta \geq B \Big(\frac{1}{a_{\langle 1 \rangle}} - \frac{n}{\sum_i a_i} \Big) \quad \Delta$

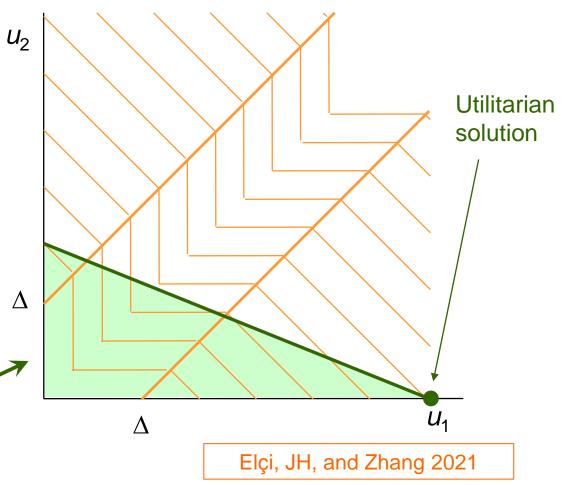
Here, patients have \checkmark similar treatment costs, or Δ is large.



Theorem. When maximizing the SWF subject to a **budget constraint**, the optimal solution is purely **maximin** or **purely utilitarian**.

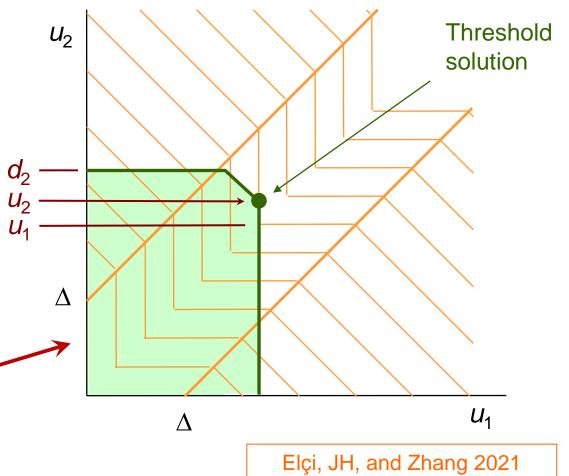
Purely utilitarian if $\Delta \leq B\left(\frac{1}{a_{\langle 1\rangle}} - \frac{n}{\sum_{i}a_{i}}\right) \quad \Delta \leq B\left(\frac{1}{a_{\langle 1\rangle}} - \frac{n}{\sum_{i}a_{i}}\right)$

Here, patients have very \nearrow different treatment costs, or Δ is small.



Theorem. When maximizing the SWF subject to a **budget constraint and upper bounds** d_i at most one utility is **strictly between** its upper bound and the smallest utility.

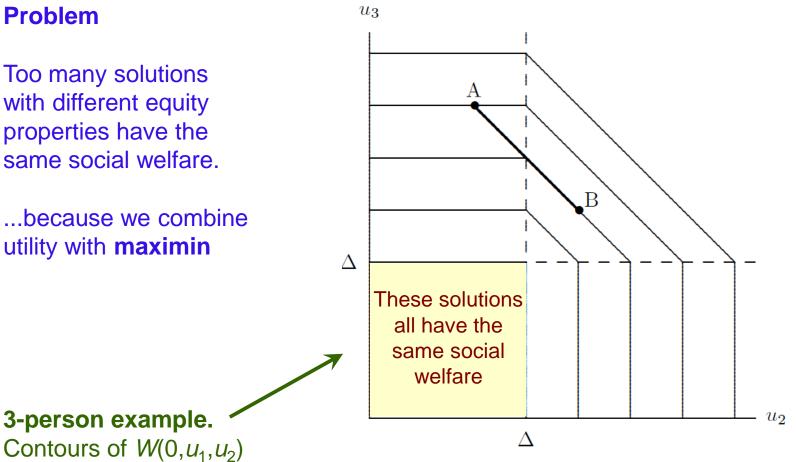
Here, **one** utility u_2 is **strictly between** upper bound d_2 and the smallest utility u_1 .



Problem

Too many solutions with different equity properties have the same social welfare.

...because we combine utility with maximin



Equity Threshold with Maximin

Generalization to *n* persons

$$W(\boldsymbol{u}) = n\Delta + \sum_{i=1}^{n} \min\{u_i - \Delta, u_{min}\}$$
 Chen & JH 2021

Rationale

- Utilities more than Δ above the lowest are in the **fair region**.
- Δ is chosen so that well-off individuals (those in fair region) **do not deserve more utility** unless smaller utilities are also increased.
- Suitable when efficiency is the initial concern, but one does not want to create excessive inequality (traffic management, telecom, disaster recovery).

Equity Threshold with Maximin

Equity threshold Model

$$\max_{\boldsymbol{x},\boldsymbol{u},\boldsymbol{v},w,z} \left\{ n\Delta + \sum_{i} v_{i} \middle| \begin{array}{l} v_{i} \leq w \leq u_{i}, \text{ all } i \\ v_{i} \leq u_{i} - \Delta, \text{ all } i \\ w \geq 0, v_{i} \geq 0, \text{ all } i \\ (\boldsymbol{u},\boldsymbol{x}) \in S \end{array} \right\}$$

• Linear model.

Chen & JH 2021

• Easily generalized to differently-sized groups of individuals.

Equity Threshold with Maximin

Problem

 U_3 Too many solutions These solutions with different equity all have the same properties have the social welfare same social welfare. ...because we combine utility with maximin Δ **3-person example.** U_2 Λ Contours of $W(0, u_1, u_2)$

Maximize sequence of SWFs

- Each SWF $F_1(\mathbf{u}), \ldots F_n(\mathbf{u})$ combines equity and utility.
 - Max $F_1(\boldsymbol{u})$ to obtain $u^*_{\langle 1 \rangle}$.
 - Then max $F_2(\boldsymbol{u})$ with $u_{\langle 1 \rangle} = u^*_{\langle 1 \rangle}$ to obtain $u^*_{\langle 2 \rangle}$, etc.
 - $(\boldsymbol{u}^*_{\langle 1 \rangle}, \dots, \boldsymbol{u}^*_{\langle n \rangle})$ is socially optimal solution.

Rationale

 Sensitive to equity concerns of disadvantaged parties other than the very worst off.

Chen & JH 2021

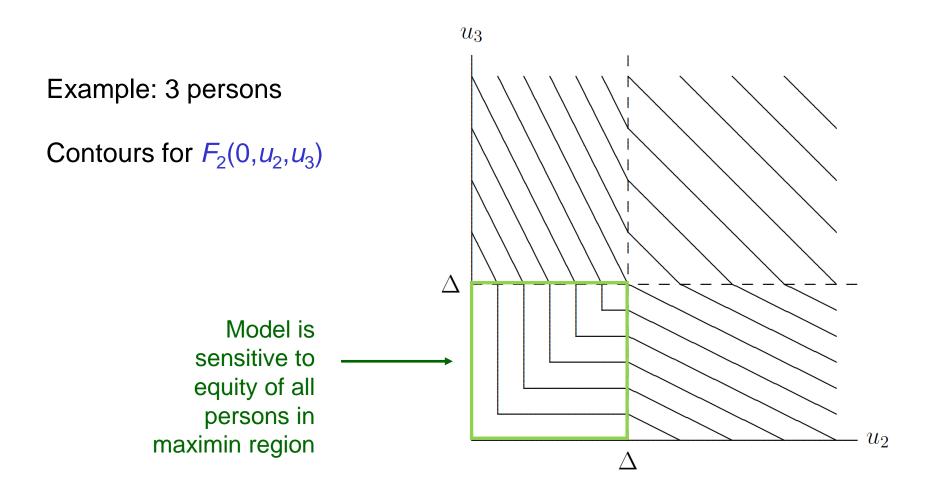
The SWFs

- $W_1(\boldsymbol{u})$ is the utility threshold SWF defined earlier.
- W_k for $k \ge 2$ is

$$W_{k}(\boldsymbol{u}) = \sum_{i=1}^{k-1} (n-i+1)u_{\langle i\rangle} + (n-k+1)\min\left\{u_{\langle 1\rangle} + \Delta, u_{\langle k\rangle}\right\} + \sum_{i=k}^{n} \max\left\{0, \ u_{\langle i\rangle} - u_{\langle 1\rangle} - \Delta\right\}$$

where $u_{\langle 1 \rangle}, \ldots, u_{\langle n \rangle}$ are u_1, \ldots, u_n in nondecreasing order.

- In $F_k(\boldsymbol{u})$, $u_{\langle k \rangle}$ receives weight n k + 1, and $u_{\langle i \rangle}$ for i > k weight 1.
- So, less disadvantaged parties receive less weight.
- When $k \ge 2$, weights cannot depend on \boldsymbol{u} (e.g., on number of utilities in fair region), else the SWF is discontinuous.



Theorem. In a socially optimal solution subject to a **budget constraint**, solution may be **neither utilitarian nor maximin**.

Theorem. In a socially optimal solution subject to a budget constraint and **bounds**, **several** utilities may lie strictly between their upper bounds and the smallest utility.

Elçi, JH, and Zhang 2021

Model (MILP for W_k)

$$\max_{\substack{\boldsymbol{x},\boldsymbol{u},\boldsymbol{\delta},\boldsymbol{\epsilon}\\\boldsymbol{v},\boldsymbol{w},\boldsymbol{\sigma},\boldsymbol{z}}} \left\{ z \left| \begin{array}{c} z \leq (n-k+1)\sigma + \sum_{i \in I_{k}} v_{i} \\ 0 \leq v_{i} \leq M\delta_{i}, \ i \in I_{k} \\ v_{i} \leq u_{i} - \bar{u}_{i_{1}} - \Delta + M(1-\delta_{i}), \ i \in I_{k} \\ \sigma \leq \bar{u}_{i_{1}} + \Delta \\ \sigma \leq w \\ w \leq u_{i}, \ i \in I_{k} \\ u_{i} \leq w + M(1-\epsilon_{i}), \ i \in I_{k} \\ \sum_{i \in I_{k}} \epsilon_{i} = 1 \\ w \geq \bar{u}_{i_{k-1}} \\ u_{i} - \bar{u}_{i_{1}} \leq M, \ i \in I_{k} \\ \delta_{i}, \epsilon_{i} \in \{0, 1\}, \ i \in I_{k} \end{array} \right.$$

where \bar{u}_{i_k} is the value of the smallest utility in the optimal solution of the *k*th MILP model, and $I = \{1, \ldots, n\} \setminus \{i_1, \ldots, i_{k-1}\}$. The socially optimal solution is $(\bar{u}_1, \ldots, \bar{u}_n)$.

Theorem. The following inequalities are valid in the MILP model for $F_k(\boldsymbol{u})$.

$$z_k \leq \sum_{i \in I_k} u_i$$
$$z_k \leq (n-k+1)u_i + \beta \sum_{j \in I_k \setminus \{i\}} (u_i - \bar{u}_{i_{k-1}}), \quad i \in I_k$$

where
$$\beta = \frac{M - \Delta}{M - (\bar{u}_{i_{k-1}} - \bar{u}_{i_1})}$$

Theshold Methods – Healthcare Example

- Based on budget decisions in UK National Health Service
- Allocate limited treatment resources to disease/prognosis categories of patients.
- Based on cost, number of patients, and QALY estimates with and without treatment.*
- We will compare **2 utility-threshold SWFs**: utility + maximin and sequential utility + leximax.
- Solution time = fraction of second for each value of Δ .

Problem due to JH & Williams 2012

*QALY = quality adjusted life-year. Data reflect a particular situation and are not valid in general. Solutions presented here should not be taken as a general recommendation for healthcare resource allocation, but only as an illustration of social welfare functions.

Intervention	$\begin{array}{c} \text{Cost} \\ \text{per person} \\ c_i \\ (\pounds) \end{array}$	$\begin{array}{c} \text{QALYs} \\ \text{gained} \\ q_i \end{array}$	Cost per QALY (£)	$\begin{array}{c} {\rm QALYs} \\ {\rm without} \\ {\rm intervention} \\ \alpha_i \end{array}$	$\begin{array}{c} \text{Subgroup} \\ \text{size} \\ n_i \end{array}$
Pacemaker for atriove	entricular heat	rt block			
Subgroup A	3500	3	1167	13	35
Subgroup B	3500	5	700	10	45
Subgroup C	3500	10	350	5	35
Hip replacement					
Subgroup A	3000	2	1500	3	45
Subgroup B	3000	4	750	4	45
Subgroup C	3000	8	375	5	45
Valve replacement for	aortic stenos	is			
Subgroup A	4500	3	1500	2.5	20
Subgroup B	4500	5	900	3	20
Subgroup C	4500	10	450	3.5	20
CABG ¹ for left main	disease				
Mild angina	3000	1.25	2400	4.75	50
Moderate angina	3000	2.25	1333	3.75	55
Severe angina	3000	2.75	1091	3.25	60
CABG for triple vesse	el disease				
Mild angina	3000	0.5	6000	5.5	50
Moderate angina	3000	1.25	2400	4.75	55
Severe angina	3000	2.25	1333	3.75	60
CABG for double vess	sel disease				
Mild angina	3000	0.25	12,000	5.75	60
Moderate angina	3000	0.75	4000	5.25	65
Severe angina	3000	1.25	2400	4.75	70

& cost data

QALY

Part 1

Intervention	$\begin{array}{c} \text{Cost} \\ \text{per person} \\ c_i \\ (\pounds) \end{array}$	$\begin{array}{c} \text{QALYs} \\ \text{gained} \\ q_i \end{array}$	Cost per QALY (£)	$\begin{array}{c} \text{QALYs} \\ \text{without} \\ \text{intervention} \\ \alpha_i \end{array}$	$\begin{array}{c} {\rm Subgroup} \\ {\rm size} \\ n_i \end{array}$
Heart transplant					
	22,500	4.5	5000	1.1	2
Kidney transplant					
Subgroup A	15,000	4	3750	1	8
Subgroup B	15,000	6	2500	1	8
Kidney dialysis					
Less than 1 year su	urvival				
Subgroup A	5000	0.1	50,000	0.3	8
1-2 years survival					
Subgroup B	12,000	0.4	30,000	0.6	6
2-5 years survival					
Subgroup C	20,000	1.2	16,667	0.5	4
Subgroup D	28,000	1.7	16,471	0.7	4
Subgroup E	36,000	2.3	$15,\!652$	0.8	4
5-10 years survival					
Subgroup F	46,000	3.3	13,939	0.6	3
Subgroup G	56,000	3.9	14,359	0.8	2
Subgroup H	66,000	4.7	14,043	0.9	2
Subgroup I	77,000	5.4	14,259	1.1	2
At least 10 years s	urvival		-		
Subgroup J	88,000	6.5	13,538	0.9	2
Subgroup K	100,000	7.4	13,514	1.0	1
Subgroup L	111,000	8.2	13,537	1.2	1

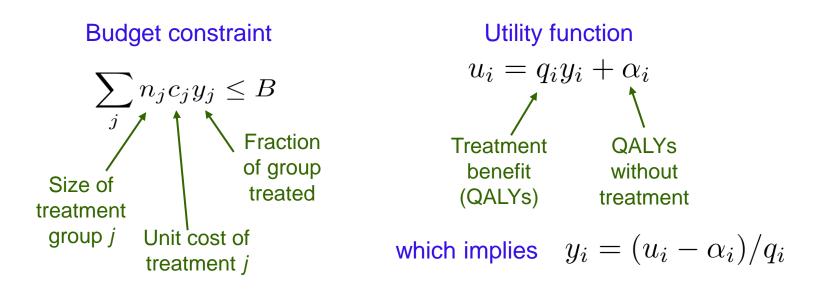
QALY

& cost

Part 2

data

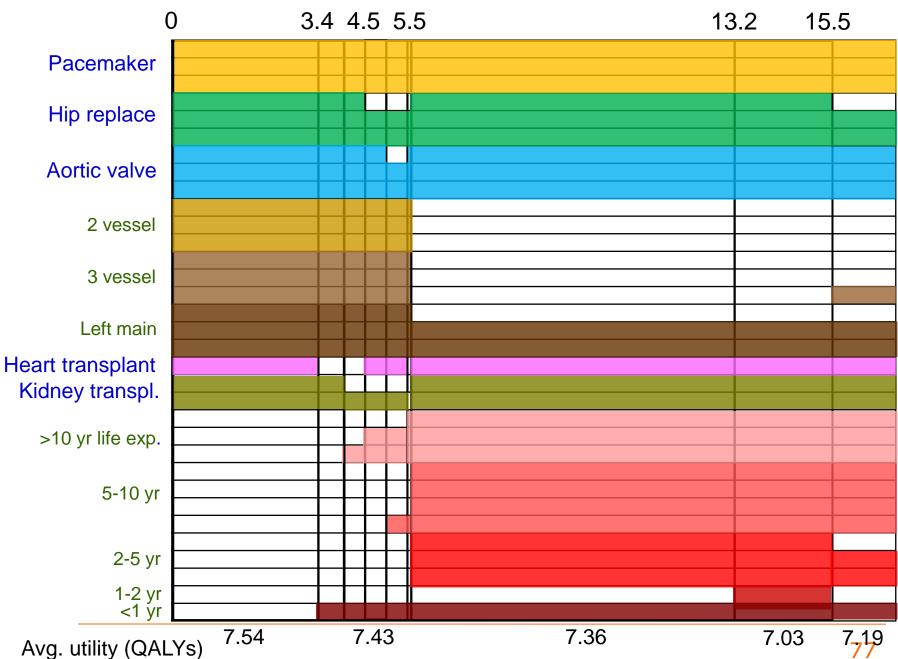
Theshold Methods – Healthcare Example



So the optimization problem becomes

$$\max_{\boldsymbol{u}} \left\{ W(\boldsymbol{u}) \mid \sum_{j} \frac{n_{j}c_{j}}{q_{j}} u_{j} \leq B + \sum_{j} \frac{n_{j}c_{j}\alpha_{j}}{q_{j}}; \ \boldsymbol{\alpha} \leq \boldsymbol{u} \leq \boldsymbol{q} + \boldsymbol{\alpha} \right\}$$

Utility + maximin

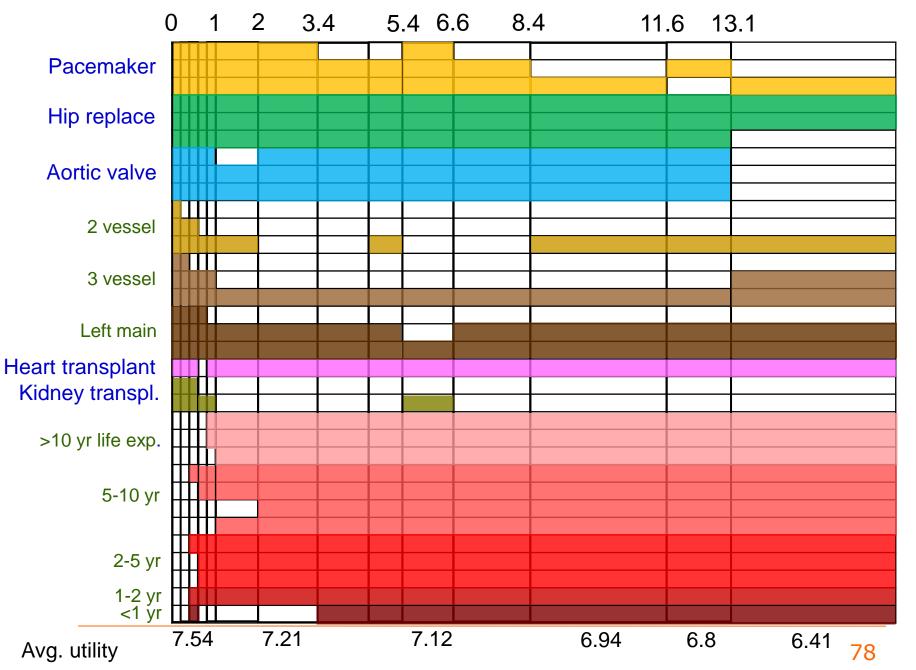


 Δ (QALYs)

Increasing severity \rightarrow

Budget = £3 million

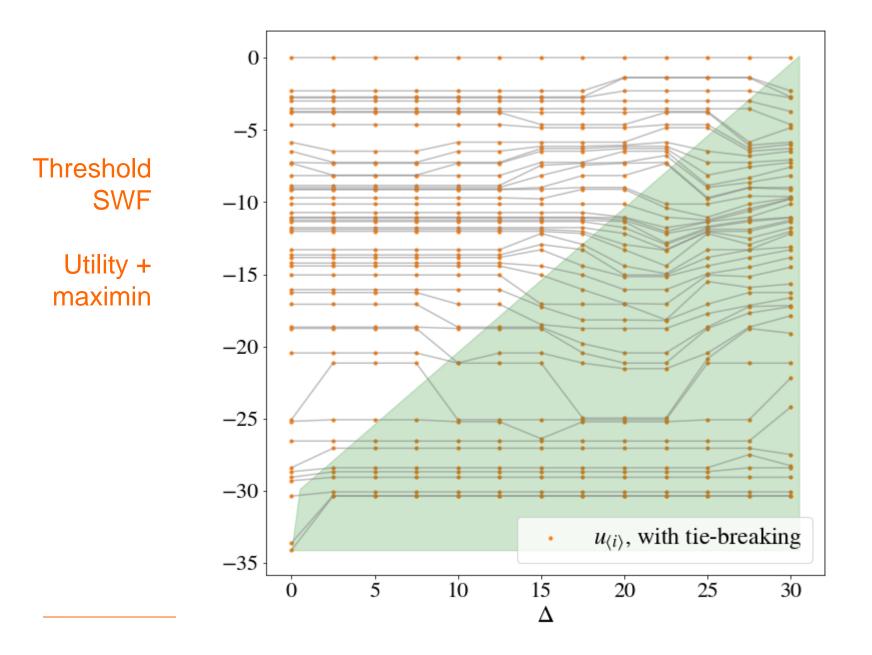
Budget = £3 million

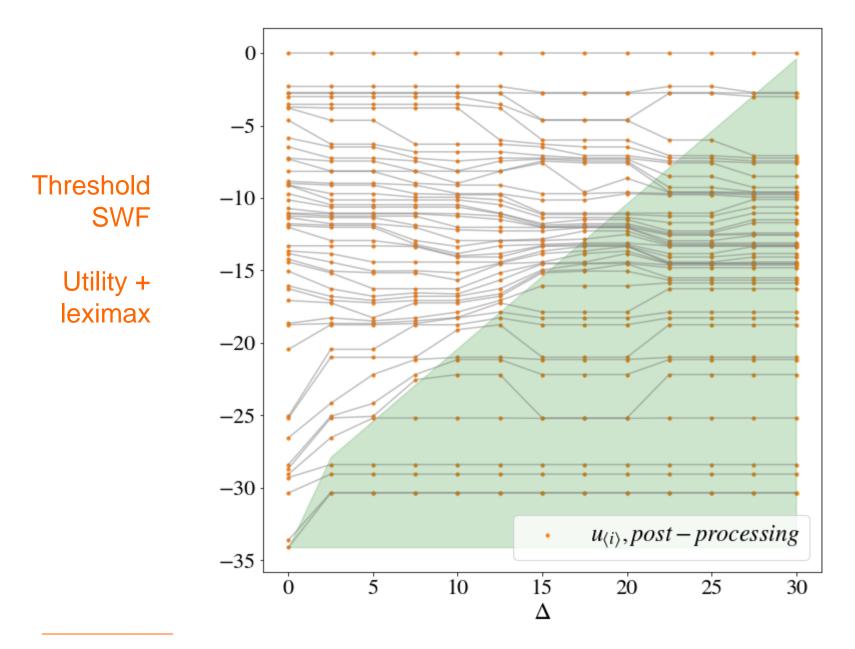


Threshold Methods – Disaster Preparedness Example

- Select earthquake shelter locations.
- Utility = negative distance of each neighborhood to nearest shelter, subject to limited budget.
- We will compare **2 utility-threshold SWFs**: utility + maximin and sequential utility + leximax.
- 50 neighborhoods, 50 potential shelter locations.
- Solution time = 1 to 18 seconds for each value of Δ .

Problem due to Mostajabdaveh, Gutjahr & Salman 2019





References

- J. N. Hooker, Tutorial in equity modeling, CP 2021, video (90 minutes), slides
- V. Chen & J. N. Hooker, <u>Combining leximax fairness and efficiency in a mathematical</u> programming model, *European Journal of Operational Research*, to appear.
- V. Chen & J. N. Hooker, <u>A guide to formulating equity and fairness in an optimization</u> <u>model</u>, submitted, 2021.
- Ö. Elçi, J. N. Hooker, and P. Zhang, <u>Structural characteristics of equitable and</u> <u>efficient distributions</u>, 2021.