Balancing Fairness and Efficiency in an Optimization Model

John Hooker Violet (Xinying) Chen Carnegie Mellon University

INFORMS 2020

Efficiency vs. Fairness

- Example: disaster relief
 - Power restoration in Puerto Rico after Hurricane Maria can focus on San Juan and other urban areas first (efficient solution).
 This leaves rural areas without power for weeks/months.

Efficiency vs. Fairness

Example: disaster relief

- Power restoration in Puerto Rico after Hurricane Maria can focus on San Juan and other urban areas first (efficient solution).
 This leaves rural areas without power for weeks/months.
- Or it can restore rural power as quickly as urban power (fair solution).
 This delays power restoration for most people, due to the difficulty of restoring rural power.

Efficiency vs. Fairness

- Other problem areas...
 - Health care resources.
 - Facility location (e.g., emergency services).
 - Taxation (revenue vs. progressivity).
 - Relief operations.
 - Telecommunications
 - Traffic signal timing

Utility vs. Equity

- Two classical criteria for distributive justice:
- Utilitarianism (max total benefit)

 $\max_{x} \sum_{i} u_{i}(x_{i}) \leftarrow Utility$ function allocation $(x_{1}, ..., x_{n}) \in S$

 Rawlsian difference principle = maximin (max welfare of worst off)

 $\max_{x} \min_{i} \{u_{i}(x_{i})\}$ $(x_{1},...,x_{n}) \in S$

Combining Equity and Efficiency

- Find socially optimal distribution of utility by maximizing a social welfare function *F(u)*.
 - Problem: design a suitable SWF.

Combining Equity and Efficiency

- Find socially optimal distribution of utility by maximizing a social welfare function *F(u)*.
 - Problem: design a suitable SWF.
- Some well-known proposals:
 - Alpha-fairness
 - Nonlinear. Choose α?
 - Proportional fairness
 - $\alpha = 1$. Nash bargaining argument makes strong assumptions.
 - Kalai-Smorodinksy bargaining solution
 - Counterintuitive implications.
 - Convex combination of utility and maximin
 - How to choose weights?.

Als:

$$F_{\alpha}(u) = \begin{cases} \frac{1}{1-\alpha} \sum_{i} u_{i}^{1-\alpha} & \text{for } \alpha \ge 0, \ \alpha \neq \\ \sum_{i} \log(u_{i}) & \text{for } \alpha = 1 \end{cases}$$

- Build on Hooker-Williams proposal (2012)
 - $-\Delta$ regulates equity-efficiency tradeoff, has practical meaning
 - Build mixed integer programming model.
- For 2 persons:

$$\max F(u_1, u_2) = \begin{cases} u_1 + u_2 & \text{if } |u_1 - u_2| \ge \Delta \\ 2\min\{u_1, u_2\} + \Delta & \text{otherwise} \end{cases}$$

Contours of **social welfare function** for 2 persons.

Healthcare interpretation

Person 1 is harder to treat.

But maximizing person 1's health requires too much sacrifice from person 2.

• *n*-person social welfare function

$$F(u) = (n-1)\Delta + nu_{\min} + \sum_{i=1}^{n} (u_i - u_{\min} - \Delta)^+$$

- Utilities in fair region (within Δ of smallest, u_{min}) receive some priority.
 - That is, disadvantaged individuals receive some priority.
 - $\Delta = 0$: utilitarian SWF (no fair region)
 - $\Delta = \infty$: maximin SWF (all utilities in fair region)
 - Utilities in fair region are equated with smallest utility, which receives weight equal to number of utilities in fair region.

MILP model of H-W social welfare function:

$$z \leq (n-1)\Delta + \sum_{i=1}^{n} v_{i}$$

$$u_{i} - \Delta \leq v_{i} \leq u_{i} - \Delta \delta_{i}, \quad i = 1, ..., n$$

$$w \leq v_{i} \leq w + (M - \Delta)\delta_{i}, \quad i = 1, ..., n$$

$$u_{i} \geq 0, \quad \delta_{i} \in \{0, 1\}, \quad i = 1, ..., n$$

Assumes $u_i - u_j \le M$ for all *i*, *j* to ensure MILP representability

Theorem. The model is correct and sharp (not easy to prove).

- Problem with H-W model
 - Utilities in fair region (other than u_{min}) do not affect value of the social welfare function.
 - There are many alternate socially optimal solutions with very different equity properties.

• Combine utilitarian and leximax criteria.

- Combine utilitarian and **leximax** criteria.
 - Leximax: Let $U_{\langle i \rangle} = i$ -th smallest utility.
 - Max $u_{(1)}$ to obtain $\overline{u}_{(1)}$, then max $u_{(2)}$ with $u_{(1)} = \overline{u}_{(1)}$, etc.
 - Solve **sequence** of optimization problems.
 - Problem *k* determines $\overline{u}_{\langle k \rangle}$ while maximizing a social welfare function $F_k(u)$ that combines equity and utility.
 - $F_1(u)$ is H-W social welfare function.
 - $\overline{u}_{\langle k \rangle}$ receives weight n k + 1 in $F_k(u)$, larger $u_{\langle i \rangle}$ s weight 1

- Combine utilitarian and **leximax** criteria.
 - Leximax: Let $u_{(i)} = i$ -th smallest utility.
 - Max $u_{(1)}$ to obtain $\overline{u}_{(1)}$, then max $u_{(2)}$ with $u_{(1)} = \overline{u}_{(1)}$, etc.
 - Solve **sequence** of optimization problems.
 - Problem *k* determines $\overline{u}_{\langle k \rangle}$ while maximizing a social welfare function $F_k(u)$ that combines equity and utility.
 - $F_1(u)$ is H-W social welfare function.
 - $\overline{u}_{\langle k \rangle}$ receives weight n k + 1 in $F_k(u)$, larger $u_{\langle i \rangle}$ s weight 1
- New social welfare functions:

$$F_{k}(u) = (n-k+1)\min\left\{u_{\langle 1\rangle} + \Delta, \ u_{\langle k\rangle}\right\} + \sum_{i=1}^{n} \left(u_{\langle i\rangle} - u_{\langle 1\rangle} - \Delta\right)^{+}, \quad k \geq 2$$

MILP model to maximize $F_k(u)$

$$\overline{\boldsymbol{u}}_{i_k} = \boldsymbol{u}_i \text{ determined by maximizing } \boldsymbol{F}_k(\boldsymbol{u})$$
$$\boldsymbol{I}_k = \{1, \dots, n\} \setminus \{i_1, \dots, i_{k-1}\}$$

$$\max z$$

$$z \leq (n-k+1)\sigma + \sum_{i \in I_{k}} v_{i}$$

$$0 \leq v_{i} \leq M\delta_{i}, i \in I_{k}$$

$$v_{i} \leq u_{i} - \overline{u}_{i_{1}} - \Delta + M(1 - \delta_{i}), i \in I_{k}$$

$$\sigma \leq u_{i_{1}} + \Delta$$

$$\sigma \leq w$$

$$w \leq u_{i}, i \in I_{k}$$

$$u_{i} \leq w + M(1 - \varepsilon_{i}), i \in I_{k}$$

$$\sum_{i \in I_{k}} \varepsilon_{i} = 1$$

$$w \geq \overline{u}_{i_{k-1}}$$

$$u_{i} - \overline{u}_{i_{k-1}} \leq M, i \in I_{k}$$

$$\delta_{i}, \varepsilon_{i} \in \{0, 1\}$$

Theorem. The MILP model is correct.

The model is not sharp, but there are valid inequalities:

$$z \leq (n-k+1)u_i + \beta \sum_{j \in I_k \setminus \{i\}} \left(u_j - u_{i_{k-1}}\right), \quad i \in I_k$$

where $\beta = \left(1 - \frac{\Delta}{M}\right) \left(1 - \frac{\overline{u}_{i_{k-1}} - \overline{u}_{i_1}}{M}\right)^{-1}$

Health Example

Measure utility in **QALY**s (quality-adjusted life years).

QALY and cost data based on Briggs & Gray, (2000) etc.

Decide whether to **fund** each disease/treatment pair.

Distinguish severity levels of each disease.

Treatment decisions are discrete, so funding is **all-or-nothing** for each category.

Health Example

Add constraints to define feasible set...

max zmodel for $F_k(u)$ (modified for patient groups of different sizes) $\overline{u}_i = q_i y_i + \alpha_i$ $\sum_i n_i c_i y_i \leq budget$ $y_i \in \{0,1\}, all i$

 U_1

Intervention	$\begin{array}{c} \text{Cost} \\ \text{per person} \\ c_i \\ (\pounds) \end{array}$	$\begin{array}{c} \text{QALYs} \\ \text{gained} \\ q_i \end{array}$	Cost per QALY (£)	$\begin{array}{c} {\rm QALYs} \\ {\rm without} \\ {\rm intervention} \\ \alpha_i \end{array}$	Subgroup size n_i
Pacemaker for atriove	ntricular hear	rt block			
Subgroup A	3500	3	1167	13	35
Subgroup B	3500	5	700	10	45
Subgroup C	3500	10	350	5	35
Hip replacement					
Subgroup A	3000	2	1500	3	45
Subgroup B	3000	4	750	4	45
Subgroup C	3000	8	375	5	45
Valve replacement for	aortic stenos	is			
Subgroup A	4500	3	1500	2.5	20
Subgroup B	4500	5	900	3	20
Subgroup C	4500	10	450	3.5	20
CABG ¹ for left main	disease				
Mild angina	3000	1.25	2400	4.75	50
Moderate angina	3000	2.25	1333	3.75	55
Severe angina	3000	2.75	1091	3.25	60
CABG for triple vesse	el disease				
Mild angina	3000	0.5	6000	5.5	50
Moderate angina	3000	1.25	2400	4.75	55
Severe angina	3000	2.25	1333	3.75	60
CABG for double vess	el disease				
Mild angina	3000	0.25	12,000	5.75	60
Moderate angina	3000	0.75	4000	5.25	65
Severe angina	3000	1.25	2400	4.75	70

QALY

& cost

data

Part 1

	Intervention	Cost per person c_i	$\begin{array}{c} \text{QALYs} \\ \text{gained} \\ q_i \end{array}$	Cost per QALY	QALYs without intervention	$\begin{array}{c} \text{Subgroup} \\ \text{size} \\ n_i \end{array}$
		(\mathfrak{L})		(£)	$lpha_i$	
		22,500	4.5	5000	1.1	2
	Kidney transplant					
	Subgroup A	15,000	4	3750	1	8
QALY	Subgroup B	15,000	6	2500	1	8
9 ooot	Kidney dialysis					
& COSI	Less than 1 year su	ırvival				
data	Subgroup A	5000	0.1	50,000	0.3	8
uulu	1-2 years survival					
	Subgroup B	12,000	0.4	30,000	0.6	6
Dort 2	2-5 years survival					
Part 2	Subgroup C	20,000	1.2	$16,\!667$	0.5	4
	Subgroup D	28,000	1.7	16,471	0.7	4
	Subgroup E	36,000	2.3	$15,\!652$	0.8	4
	5-10 years survival					
	Subgroup F	46,000	3.3	13,939	0.6	3
	Subgroup G	56,000	3.9	14,359	0.8	2
	Subgroup H	66,000	4.7	14,043	0.9	2
	Subgroup I	77,000	5.4	14,259	1.1	2
	At least 10 years su	urvival				
	Subgroup J	88,000	6.5	13,538	0.9	2
	Subgroup K	100,000	7.4	13,514	1.0	1
	Subgroup L	111,000	8.2	13,537	1.2	1

Total budget £3 million

Δ	Pace-	Hip	Aortic	(CAB	G	Heart	Kidney		Kid	lney	dialys	is	Avg.
range	maker	repl.	valve	L	3	2	trans.	trans.	<1	1-2	2-5	5-10	>10	QALYs.
0-3.3	111	111	111	111	111	111	1	11	0	0	000	0000	000	7.54
3.4-4.0	111	111	111	111	111	111	0	11	1	0	000	0000	000	7.54
4.0 - 4.4	111	111	111	111	111	111	0	01	1	0	000	0000	001	7.51
4.5 - 5.01	111	011	111	111	111	111	1	01	1	0	000	0000	011	7.43
5.02 - 5.55	111	011	011	111	111	111	1	01	1	0	000	0001	011	7.36
5.56 - 5.58	111	011	011	111	111	011	0	01	1	0	000	0001	111	7.36
5.59	111	011	011	110	111	111	0	01	1	0	000	0001	111	7.20
5.60 - 13.1	111	111	111	101	000	000	1	11	1	0	111	1111	111	7.06
13.2 - 14.2	111	011	111	011	000	000	1	11	1	1	111	1111	111	7.03
14.3 - 15.4	111	111	111	011	000	000	1	11	1	1	101	1111	111	7.13
15.5 up	111	011	111	011	001	000	1	11	1	0	011	1111	111	7.19

Utilitarian solution

Δ	Pace-	Hip	Aortic	(CAB	G	Heart	Kidney		Kic	lney	dialys	is	Avg.
range	maker	repl.	valve	L	3	2	trans.	trans.	<1	1-2	2-5	5-10	>10	QALYs.
0-3.3	111	111	111	111	111	111	1	11	0	0	000	0000	000	7.54
3.4 - 4.0	111	111	111	111	111	111	0	11	1	0	000	0000	000	7.54
4.0 - 4.4	111	111	111	111	111	111	0	01	1	0	000	0000	001	7.51
4.5 - 5.01	111	011	111	111	111	111	1	01	1	0	000	0000	011	7.43
5.02 - 5.55	111	011	011	111	111	111	1	01	1	0	000	0001	011	7.36
5.56 - 5.58	111	011	011	111	111	011	0	01	1	0	000	0001	111	7.36
5.59	111	011	011	110	111	111	0	01	1	0	000	0001	111	7.20
5.60 - 13.1	111	111	111	101	000	000	1	11	1	0	111	1111	111	7.06
13.2 - 14.2	111	011	111	011	000	000	1	11	1	1	111	1111	111	7.03
14.3 - 15.4	111	111	111	011	000	000	1	11	1	1	101	1111	111	7.13
15.5 up	111	011	111	011	001	000	1	11	1	0	011	1111	111	7.19

Maximin solution

Δ	Pace-	Hip	Aortic	(CAB	G	Heart	Kidney		Kic	lney	dialys	is	Avg.
range	maker	repl.	valve	L	3	2	trans.	trans.	<1	1-2	2-5	5-10	>10	QALYs.
0-3.3	111	111	111	111	111	111	1	11	0	0	000	0000	000	7.54
3.4 - 4.0	111	111	111	111	111	111	0	11	1	0	000	0000	000	7.54
4.0 - 4.4	111	111	111	111	111	111	0	01	1	0	000	0000	001	7.51
4.5 - 5.01	111	011	111	111	111	111	1	01	1	0	000	0000	011	7.43
5.02 - 5.55	111	011	011	111	111	111	1	01	1	0	000	0001	011	7.36
5.56 - 5.58	111	011	011	111	111	011	0	01	1	0	000	0001	111	7.36
5.59	111	011	011	110	111	111	0	01	1	0	000	0001	111	7.20
5.60 - 13.1	111	111	111	101	000	000	1	11	1	0	111	1111	111	7.06
13.2 - 14.2	111	011	111	011	000	000	1	11	1	1	111	1111	111	7.03
14.3 - 15.4	↓ 111	111	111	011	000	000	1	11	1	1	101	1111	111	7.13
15.5 up	111	011	111	011	001	000	1	11	1	0	011	1111	111	7.19

More dialysis with larger Δ , beginning with longer life span

Δ	Pace-	Hip	Aortic	(CAB	G	Heart	Kidney		Kid	lney	dialys	is	Avg.
range	maker	repl.	valve	L	3	2	trans.	trans.	<1	1-2	2-5	5-10	>10	QALYs.
0-3.3	111	111	111	111	111	111	1	11	0	0	000	0000	000	7.54
3.4 - 4.0	111	111	111	111	111	111	0	11	1	0	000	0000	000	7.54
4.0 - 4.4	111	111	111	111	111	111	0	01	1	0	000	0000	001	7.51
4.5 - 5.01	111	011	111	111	111	111	1	01	1	0	000	0000	011	7.43
5.02 - 5.55	111	011	011	111	111	111	1	01	1	0	000	0001	011	7.36
5.56 - 5.58	111	011	011	111	111	011	0	01	1	0	000	0001	111	7.36
5.59	111	011	011	110	111	111	0	01	1	0	000	0001	111	7.20
5.60 - 13.1	111	111	111	101	000	000	1	11	1	0	111	1111	111	7.06
13.2 - 14.2	111	011	111	011	000	000	1	11	1	1	111	1111	111	7.03
14.3 - 15.4	111	111	111	011	000	000	1	11	1	1	101	1111	111	7.13
15.5 up	111	011	111	011	001	000	1	11	1	0	011	1111	111	7.19

Maximin solutions largely utilitarian due to tie breaking

Δ	Pace-	Hip	Aortic	(CAB	G	Heart	Kidney		Kic	lney	dialys	is	Avg.
range	maker	repl.	valve	L	3	2	trans.	trans.	<1	1-2	2-5	5-10	>10	QALYs.
0-3.3	111	111	111	111	111	111	1	11	0	0	000	0000	000	7.54
3.4 - 4.0	111	111	111	111	111	111	0	11	1	0	000	0000	000	7.54
4.0-4.4	111	111	111	111	111	111	0	01	1	0	000	0000	001	7.51
4.5 - 5.01	111	011	111	111	111	111	1	01	1	0	000	0000	011	7.43
5.02 - 5.55	111	011	011	111	111	111	1	01	1	0	000	0001	011	7.36
5.56 - 5.58	111	011	011	111	111	011	0	01	1	0	000	0001	111	7.36
5.59	111	011	011	110	111	111	0	01	1	0	000	0001	111	₹7.20
5.60 - 13.1	111	111	111	101	000	000	1	11	1	0	111	1111	111	7.06
13.2 - 14.2	111	011	111	011	000	000	1	11	1	1	111	1111	111	7.03
14.3 - 15.4	111	111	111	011	000	000	1	11	1	1	101	1111	111	7.13
15.5 up	111	011	111	011	001	000	1	11	1	0	011	1111	111	7.19

Pure leximax

New Results

Solution time < 0.5 sec for each Δ

Δ	Pace-	Hip	Aortic	(CAB	G	Heart	Kidney		Kic	lney	dialys	is	Avg.
range	maker	repl.	valve	L	3	2	trans.	trans.	<1	1-2	2-5	5-10	>10	QALYs.
0-3.24	111	111	111	111	111	111	1	11	0	0	000	0000	000	7.544
3.25 - 3.65	111	111	111	111	111	111	0	11	1	0	000	0000	000	7.535
3.66 - 4.41	111	111	111	111	111	111	1	01	1	0	100	0000	000	7.515
4.42 - 5.43	111	111	111	111	111	011	1	01	1	0	110	0000	000	7.506
5.44 - 5.50	111	111	111	111	011	001	0	01	1	0	110	0001	100	7.438
5.51 - 5.53	111	111	111	011	101	001	1	01	1	0	110	1011	100	7.348
5.54 - 5.56	111	111	111	011	001	010	1	01	1	1	111	0111	100	7.286
5.57 - 6.59	111	111	111	011	001	000	1	01	1	1	111	1111	100	7.243
6.60 - 7.07	111	111	111	011	101	000	1	00	1	1	111	1111	100	7.220
7.08-8.10	011	111	111	011	001	010	1	00	1	1	111	1111	100	7.128
8.11-8.61	011	111	111	011	001	001	1	00	1	1	111	1111	100	7.171
8.62-9.34	010	111	111	011	001	011	1	00	1	1	111	1111	100	6.838
9.35-11.21	000	111	111	011	101	011	1	00	1	1	111	1111	100	6.621
11.22-12.88	8 100	, 110	111	011	011	011	1	00	1	1	111	1111	100	6.392
12.89 up	000	110	111	111	111	001	1	00	1	1	111	1111	100	6.322

Δ	Pace-	Hip	Aortic	(CAB	G	Heart	Kidney		Kic	lney	dialys	is	Avg.	
range	maker	repl.	valve	L	3	2	trans.	trans.	<1	1-2	2-5	5-10	>10	QALYs.	•
0-3.24	111	111	111	111	111	111	1	11	0	0	000	0000	000	7.544	
3.25 - 3.65	111	111	111	111	111	111	0	11	1	0	000	0000	000	7.535	
3.66 - 4.41	111	111	111	111	111	111	1	01	1	0	100	0000	000	7.515	
4.42 - 5.43	111	111	111	111	111	011	1	01	1	0	110	0000	000	7.506	
5.44 - 5.50	111	111	111	111	011	001	0	01	1	0	110	0001	100	7.438	
5.51 - 5.53	111	111	111	011	101	001	1	01	1	0	110	1011	100	7.348	
5.54 - 5.56	111	111	111	011	001	010	1	01	1	1	111	0111	100	7.286	
5.57 - 6.59	111	111	111	011	001	000	1	01	1	1	111	1111	100	7.243	
6.60 - 7.07	111	111	111	011	101	000	1	00	1	1	111	1111	100	7.220	
7.08 - 8.10	011	111	111	011	001	010	1	00	1	1	111	1111	100	7.128	
8.11-8.61	011	111	111	011	001	001	1	00	1	1	111	1111	100	7.171	
8.62 - 9.34	010	111	111	011	001	011	1	00	1	1	111	1111	100	6.838	
9.35 - 11.21	000	111	111	011	101	011	1	00	1	1	111	1111	100	6.621	
11.22-12.88	100	110	111	011	011	011	1	00	1	1	111	1111	100	6.392	
12.89 up	000	110	111	111	111	001	1	00	1	1	111	1111	100	6.322	

New Results

Genuine equity-

utility tradeoff

New Results

Hardship cases come in earlier

Δ	Pace-	Hip	Aortic	(CAB	G	Heart	Kidney		Kic	lney	dialys	is	Avg.
range	maker	repl.	valve	L	3	2	trans.	trans.	<1	1-2	2-5	5-10	>10	QALYs.
0-3.24	111	111	111	111	111	111	1	11	0	0	000	0000	000	7.544
3.25 - 3.65	111	111	111	111	111	111	0	11	1	0	000	0000	000	7.535
3.66 - 4.41	111	111	111	111	111	111	1	01	1	0	100	0000	000	7.515
4.42 - 5.43	111	111	111	111	111	011	1	01	1	0	110	0000	000	7.506
5.44 - 5.50	111	111	111	111	011	001	0	01	1	0	110	0001	100	7.438
5.51 - 5.53	111	111	111	011	101	001	1	01	1	0	110	1011	100	7.348
5.54 - 5.56	111	111	111	011	001	010	1	01	1	1	111	0111	100	7.286
5.57 - 6.59	111	111	111	011	001	000	1	01	1	1	111	1111	100	7.243
6.60 - 7.07	111	111	111	011	101	000	1	00	1	1	111	1111	100	7.220
7.08-8.10	011	111	111	011	001	010	1	00	1	1	111	1111	100	7.128
8.11 - 8.61	011	111	111	011	001	001	1	00	1	1	111	1111	100	7.171
8.62 - 9.34	010	111	111	011	001	011	1	00	1	1	111	1111	100	6.838
9.35 - 11.21	000	111	111	011	101	011	1	00	1	1	111	1111	100	6.621
11.22 - 12.88	100	110	111	011	011	011	1	00	1	1	111	1111	100	6.392
12.89 up	000	110	111	111	111	001	1	00	1	1	111	1111	100	6.322

Hardship cases stay in & displace pacemaker χ

New Results

Δ	Pace-	Hip	Aortic	(CAB	G	Heart	Kidney		Kic	lney	dialys	is	Avg.
range	maker	repl.	valve	L	3	2	trans.	trans.	<1	1-2	2-5	5-10	>10	QALYs.
0-3.24	111	111	111	111	111	111	1	11	0	0	000	0000	000	7.544
3.25 - 3.65	111	111	111	111	111	111	0	11	1	0	000	0000	000	7.535
3.66 - 4.41	111	111	111	111	111	111	1	01	1	0	100	0000	000	7.515
4.42 - 5.43	111	111	111	111	111	011	1	01	1	0	110	0000	000	7.506
5.44 - 5.50	111	111	111	111	011	001	0	01	1	0	110	0001	100	7.438
5.51 - 5.53	111	111	111	011	101	001	1	01	1	0	110	1011	100	7.348
5.54 - 5.56	111	111	111	011	001	010	1	01	1	1	111	0111	100	7.286
5.57 - 6.59	111	111	111	011	001	000	1	01	1	1	111	1111	100	7.243
6.60 - 7.07	111	111	111 🖌	011	101	000	1	00	1	1	111	1111	100	7.220
7.08-8.10	011	111	111	011	001	010	1	00	1	1	111	1111	100	7.128
8.11 - 8.61	011	111	111	011	001	001	1	00	1	1	111	1111	100	7.171
8.62-9.34	010	111	111	011	001	011	1	00	1	1	111	1111	100	6.838
9.35 - 11.21	000	111	111	011	101	011	1	00	1	1	111	1111	100	6.621
11.22 - 12.88	100	110	111	011	011	011	1	00	1	1	111	1111	100	6.392
12.89 up	000	110	111	111	111	001	1	00	1	1	111	1111	100	6.322

Shelter Location

Locate shelters for emergency (earthquake), and **assign** each neighborhood to a shelter.

Data from Mostajabdaveh, Gutjahr, and Salman (2019).

Remove stochastic elements.

100 neighborhoods, 50 or 100 candidate shelter locations.

Some neighborhoods far from any candidate location.

Solution time < 10 sec for most Δ , always < 18 sec

100 neighborhoods

50 shelter locations

100 neighborhoods

100 shelter locations

Reference

V. Chen and J. N. Hooker, Balancing fairness and Efficiency in an optimization model, submitted (available on arXiv).