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Efficiency vs. Fairness

• Example: disaster relief

– Power restoration in Puerto Rico after Hurricane Maria can focus 

on San Juan and other urban areas first (efficient solution).  

This leaves rural areas without power for weeks/months.
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Efficiency vs. Fairness

• Example: disaster relief

– Power restoration in Puerto Rico after Hurricane Maria can focus 

on San Juan and other urban areas first (efficient solution).  

This leaves rural areas without power for weeks/months.

– Or it can restore rural

power as quickly as urban 

power (fair solution).

This delays power

restoration for most

people, due to the

difficulty of restoring

rural power.
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• Other problem areas…

• Health care resources.

• Facility location (e.g., emergency services).

• Taxation (revenue vs. progressivity).

• Relief operations.

• Telecommunications

• Traffic signal timing

Efficiency vs. Fairness
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Utility vs. Equity

• Two classical criteria for distributive justice:

• Utilitarianism (max total benefit)

• Rawlsian difference principle = maximin

(max welfare of worst off)
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Combining Equity and Efficiency

• Find socially optimal distribution of utility by maximizing a 

social welfare function F(u).  

• Problem: design a suitable SWF.
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Combining Equity and Efficiency

• Find socially optimal distribution of utility by maximizing a 

social welfare function F(u).  

• Problem: design a suitable SWF.

• Some well-known proposals:  

• Alpha-fairness

• Nonlinear. Choose α?

• Proportional fairness

• α = 1.  Nash bargaining argument makes strong assumptions.

• Kalai-Smorodinksy bargaining solution

• Counterintuitive implications.

• Convex combination of utility and maximin

• How to choose weights?.
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H-W Model

• Build on Hooker-Williams proposal (2012)

– Δ regulates equity-efficiency tradeoff, has practical meaning

– Build mixed integer programming model.

• For 2 persons:
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u1

u2





H-W Model

Contours of social 

welfare function for 

2 persons.
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u1

u2





H-W Model

Contours of social 

welfare function for 

2 persons.

Maximin

region
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u1

u2





H-W Model

Contours of social 

welfare function for 

2 persons.

Utilitarian region
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Ensures continuous contours

Maximin

region
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u1

u2





Feasible set

Person 1 is harder 

to treat.

But maximizing 

person 1’s health 

requires too much 

sacrifice from 

person 2.

Optimal 

allocation

Suboptimal

Healthcare 

interpretation

H-W Model
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H-W Model

• n-person social welfare function

• Utilities in fair region (within Δ of smallest, umin) 

receive some priority. 

• That is, disadvantaged individuals receive some priority.

• Δ = 0:  utilitarian SWF (no fair region) 

• Δ = :  maximin SWF (all utilities in fair region)

• Utilities in fair region are equated with smallest utility, which 

receives weight equal to number of utilities in fair region.
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H-W Model

MILP model of H-W social welfare function:
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Theorem.  The model is correct and sharp (not easy to prove).
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H-W Model

• Problem with H-W model 

– Utilities in fair region (other than umin) do not affect value 

of the social welfare function.

– There are many alternate socially optimal solutions with 

very different equity properties.  
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H-W Model

Example: 3 persons

Contours for F(0,u2,u3)

All solutions in 

this region have 

same social 

welfare value
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Proposed Model

• Combine utilitarian and leximax criteria.
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Proposed Model

• Combine utilitarian and leximax criteria.

• Leximax:  Let  = i-th smallest utility.

• Max       to obtain      , then max       with                , etc.

• Solve sequence of optimization problems.

• Problem     determines       while maximizing a social welfare 

function           that combines equity and utility.

• is H-W social welfare function.

• receives weight                 in          , larger      s weight 1
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Proposed Model

• Combine utilitarian and leximax criteria.

• Leximax:  Let  = i-th smallest utility.

• Max       to obtain      , then max       with                , etc.

• Solve sequence of optimization problems.

• Problem     determines       while maximizing a social welfare 

function           that combines equity and utility.

• is H-W social welfare function.

• receives weight                 in          , larger      s weight 1

• New social welfare functions:
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H-W Model

Example: 3 persons

Contours for F2(0,u2,u3)

Model is 

sensitive to 

equity of all 

persons in 

maximin region
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Proposed Model

MILP model to maximize Fk(u)
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Proposed Model

Theorem.  The MILP model is correct.

The model is not sharp, but there are valid inequalities:
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Health Example

Measure utility in QALYs (quality-adjusted life years).

QALY and cost data based on Briggs & Gray, (2000) etc.

Decide whether to fund each disease/treatment pair.

Distinguish severity levels of each disease.

Treatment decisions are discrete, so funding is all-or-nothing 

for each category.
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Health Example
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QALY 

& cost 

data

Part 1
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QALY 

& cost 

data

Part 2
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H-W Results

Total budget £3 million
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H-W Results

Utilitarian solution
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H-W Results

Maximin solution
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H-W Results
More dialysis with

larger , beginning 

with longer life span
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H-W Results
Maximin solutions 

largely utilitarian 

due to tie breaking
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New Results

Curious fact: Rawlsian solution ( = ) achieves 

greater utility than some smaller values of .

Why?

Pure leximax Solution time < 0.5 sec 

for each Δ
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New Results

Curious fact: Rawlsian solution ( = ) achieves 

greater utility than some smaller values of .

Why?

Genuine equity-

utility tradeoff
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New Results

Curious fact: Rawlsian solution ( = ) achieves 

greater utility than some smaller values of .

Why?

Hardship cases 

come in earlier
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New Results

Curious fact: Rawlsian solution ( = ) achieves 

greater utility than some smaller values of .

Why?

Hardship cases 

stay in & displace

pacemaker 
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Shelter Location

Locate shelters for emergency (earthquake), and assign each 

neighborhood to a shelter.

Data from Mostajabdaveh, Gutjahr, and Salman (2019).

Remove stochastic elements.

100 neighborhoods, 50 or 100 candidate shelter locations.

Some neighborhoods far from any candidate location.

Solution time < 10 sec for 

most Δ, always < 18 sec
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100 neighborhoods

50 shelter locations
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Some nbhds

far from any

shelter location.

Model still 

prioritizes less 

disadvantaged

neighborhoods.

Additional

disadvantaged

nbhds receive

priority as

Δ increases

Easier-to-serve

neighborhoods

lose somewhat

as Δ increases
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100 neighborhoods

100 shelter locations
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Some less

advantaged nbhds

lose temporarily

as more nbhds

enter fair region

Some relatively

advantaged nbhds

improve status

temporarily as Δ

increases, then

lose as more nbhds

enter fair region.
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