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 Karmarkar's Linear Programming Algorithm

 J. N. HOOKER Graduate School of Industrial Administration
 Carnegie-Mellon University
 Pittsburgh, Pennsylvania 15213

 Editor's Note: Occasionally an event occurs in our field that captures the attention of all ? aca
 demics and practitioners, public sector and private sector specialists, methodologists and mod
 elers. The report of Karmarkar's algorithm is such an event. The following article describes the
 importance of the advance and provides both an intuitive explanation of its strengths and weak
 ness as well as enough technical detail for readers to implement the method. The article is tech
 nical by Interfaces' standards. But the subject is central to MS/OR and is addressed clearly in
 this article. Dr. Karmarkar was invited to comment and has yet to respond as we go to press.

 N. Karmarkar's new projective scaling algorithm for linear
 programming has caused quite a stir in the press, mainly be
 cause of reports that it is 50 times faster than the simplex
 method on large problems. It also has a polynomial bound on
 worst-case running time that is better than the ellipsoid algo
 rithm's. Radically different from the simplex method, it

 moves through the interior of the polytope, transforming the
 space at each step to place the current point at the polytope7 s
 center. The algorithm is described in enough detail to enable
 one to write one's own computer code and to understand
 why it has polynomial running time. Some recent attempts to
 make the algorithm live up to its promise are also reviewed.

 Narendra Karmarkar's new projec
 tive scaling algorithm for linear

 programming has received publicity that
 is rare for mathematical advances. It at

 tracts attention partly because it rests on
 a striking theoretical result. But more im
 portant are reports that it can solve large
 linear programming problems much more

 Copyright ? 1986, The Institute of Management Sciences
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 HOOKER

 rapidly than the simplex method, the
 method of choice for over 30 years.

 (Although the name "projective algo
 rithm" is perhaps the most popular to
 date, J. K. Lagarias has suggested that
 the algorithm be called the "projective
 scaling algorithm" to distinguish it from a
 variant that is naturally called the "affine

 scaling algorithm." When I asked Dr.
 Karmarkar about this suggestion, he en
 dorsed it.)

 The simplex and projective scaling
 methods differ radically. George Dantzig's
 simplex method [1963] solves a linear pro
 gramming problem by examining extreme
 points on the boundary of the feasible re
 gion. The projective scaling method is an
 interior method; it moves through the in

 terior of the feasible polytope until it

 reaches an optimal point on the boundary.

 Figure 1 illustrates how the two meth
 ods approach an optimal solution. In this
 small problem the projective scaling

 method requires no fewer iterations (cir
 cles) than the simplex method (dots). But
 a large problem would require only a
 fraction as many projective as simplex
 iterations.

 The main theoretical attraction of the

 projective scaling method is its vastly su
 perior worst-case running time (or worst
 case "complexity"). Suppose we define
 the size of a problem to be the number N
 of bits required to represent the problem
 data in a computer. If an algorithm's run
 ning time on a computer is never greater
 than some fixed power of N, no matter

 what problem is solved, we say that the
 algorithm has polynomial worst-case run
 ning time. The projective scaling method
 is such an algorithm [Karmarkar 1984a;

 N
 'S

 'S

 /4 ?V \N
 /, -?3 \ / 3 2 \
 / o J

 .I2 )

 O - -

 Figure 1: Illustration of how the simplex
 method (dots) and projective scaling method
 (circles) approach the optimal solution of a
 small problem. Here the projective scaling
 method requires at least as many iterations as
 the simplex method, but in large problems it
 requires only a fraction as many.

 1984b], and the simplex method is not.
 Why does this matter? It matters be
 cause the running time of a nonpolynom
 ial algorithm like the simplex method can
 grow exponentially with the problem size
 in the worst case; that is, there are

 classes of problems in which the running
 time is proportional to 2N and thus is
 bounded by no fixed power of N. On
 these problems the simplex method is a
 miserable failure, because running time
 explodes very rapidly as the problem size
 increases. Such a problem having, say,
 100 variables would already run trillions
 of years on a Cray X-MP supercomputer
 (among the world's fastest). The projec
 tive scaling method, on the other hand,

 never exhibits this sort of exponential
 explosion.

 Curiously, the simplex method

 INTERFACES 16:4 76

This content downloaded from 
��������������128.2.27.86 on Sun, 19 Jul 2020 18:34:00 UTC�������������� 

All use subject to https://about.jstor.org/terms



 KARMARKAR'S ALGORITHM

 performs quite well in practice, despite its
 dreadful worst-case behavior. It appears
 that nothing remotely resembling a worst
 case problem ever arises in the real
 world. Still, one might expect a method
 that performs much better in the worst

 case, such as the projective scaling
 method, to excel on real-world problems
 as well. Such was the hope for the first

 and only other LP algorithm known to
 run in polynomial time, L. G. Hacijan's
 ellipsoid method [1979]. Hacijan's
 achievement was a theoretical break

 through and likewise made the front
 page. But it requires that calculations be
 done with such high precision that its
 performance on typical problems is much
 worse than the simplex method's.

 The projective scaling method, how
 ever, is more promising. It is free of the
 ellipsoid method's precision problem, and
 its worst-case behavior is substantially
 better. More important, one hears claims
 that when properly implemented it is

 much faster than the simplex method,
 even 50 times faster, on large real-world

 Figure 2: One can improve the current solution
 substantially by moving in the direction of
 steepest descent (arrows) if it is near the cen
 ter of the feasible region, as is x0, but gener
 ally not if it is near the boundary, as is x,.

 problems (for example, Kolata [1984]). I
 have yet to see these claims substanti
 ated, but it is much too early to close the
 case.

 My aim here is to present the projective
 scaling method in enough detail to allow
 one to write one's own computer imple
 mentation and to understand why its run
 ning time is polynomially bounded. I also
 mention some recent developments and
 computational experience and draw tenta
 tive conclusions.
 The Basic Idea

 Karmarkar [1984c] has said that his ap
 proach is based on two fundamental
 insights.
 (1) If the current solution is near the cen

 ter of the polytope, it makes sense to
 move in a direction of steepest de
 scent (when the objective is to
 minimize).

 (2) The solution space can be transformed
 so as to place the current solution
 near the center of the polytope, with
 out changing the problem in any es
 sential way.

 The first insight is evident in Figure 2.
 Since x0 is near the center of the poly

 tope, one can improve the solution sub
 stantially by moving it in a direction of
 steepest descent. But if xi is so moved, it

 will hit the boundary of the feasible re
 gion before much improvement occurs.

 The second insight springs from the ob
 servation that when one writes down the

 data defining a linear program, one, in a
 sense, overspecifies the problem. The
 scaling of the data, for instance, is quite
 arbitrary. One can switch from feet to

 inches without changing the problem in
 any important sense. Yet a transformation

 July-August 1986 77

This content downloaded from 
��������������128.2.27.86 on Sun, 19 Jul 2020 18:34:00 UTC�������������� 

All use subject to https://about.jstor.org/terms



 HOOKER

 of the data that leaves the problem essen
 tially unchanged may nonetheless ease its
 solution. Rescaling, for example, may re
 duce numerical instability.

 Karmarkar has observed that there is a

 transformation of the data more general

 than ordinary rescaling but equally natu
 ral. It occurs every time one views the
 graph of an LP problem at an oblique an
 gle. The projection of the graph on one's

 Karmarkar's new projective
 scaling algorithm for linear
 programming has received
 publicity that is rare for
 mathematical advances.

 retina is a distortion of the original prob
 lem; it is a special case of a projective
 transformation. Straight lines remain
 straight lines, while angles and distances
 change. Yet it seems clear that the distor
 tion scarcely alters anything essential

 about the problem, since we readily solve
 such problems visually.
 A key property of projective transfor

 mations is that a suitable one will move a

 point strictly inside a polytope to a place
 near the center of the polytope. One can
 verify this with Figure 2 by viewing it at
 an angle and distance that makes xi ap
 pear to be at the center of the polytope.

 The basic strategy of the projective scal
 ing algorithm is straightforward. Take an
 interior point, transform the space so as

 to place the point near the center of the

 polytope and then move it in the direc
 tion of steepest descent, but not all the
 way to the boundary of the feasible re
 gion (so that the point remains interior).

 Transform the space again to move this
 new point to a place near the center of
 the polytope and keep repeating the proc
 ess until an optimum is obtained with the
 desired accuracy.

 A problem must satisfy two conditions
 before Karmarkar's original algorithm will
 solve it: it must be in (almost) "homoge
 neous" form, and its objective function
 must have a minimum value of zero. It is

 not hard to put any given problem in the
 required form, but it is more difficult to
 deal with the second requirement.
 The Required Form of the Problem

 The Karmarkar algorithm requires that
 the problem be transformed to one that

 has a very special form, namely
 minimize cry
 subject to Ay = 0 (1)

 eTy = 1, y > 0,
 where A is an m x n matrix, and e is a
 vector of n ones. Also, an interior feasible

 starting solution for (1) must be known.
 (An interior solution is one in which every

 variable is strictly positive.)

 An example problem that is already in
 the right form is,

 minimize 2y1 +1/2+1/3
 subject to 2y1 + y2 - 3y3 = 0 (2)

 3/1 + y2+ y3 = 1/1/1/ 3/2/ y3^ o.

 Figure 3 is a plot of the problem. The tri
 angular area, which we will call the "sim
 plex," is the set of points satisfying the
 normalization constraint y1 + y2 + y3 = 1
 and the nonnegativity constraints ylf y2,

 y3 > 0. The line segment stretching across
 the triangle is the feasible polytope for
 the problem. Some contours of the objec
 tive function appear, and the optimal
 point y* = (0,3/4,1/4) is indicated. Note
 that the objective function value at this
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 Figure 3: Illustration of a three-variable prob
 lem in the required form. The "simplex, " or
 triangular area, is the set of points satisfying
 the normalization and nonnegativity con
 straints. The line segment stretching across
 the triangle is the feasible polytope. The
 dashed lines are objective function contours,
 y1 is the solution obtained at the end of the
 first iteration, and y* is the optimal solution.

 point is one, not zero as required. We can
 spot an interior starting feasible solution:
 y = (1/3,1/3,1/3) = ein, which is marked
 in the figure.

 Offsetting the Objective Function
 There is no generally accepted way to

 deal with the requirement that the objec
 tive function cTy have a minimum value
 of zero. Karmarkar originally proposed a
 "sliding objective function" approach
 [1984a], but it was intended for the theo

 retical purpose of proving polynomial
 complexity and is totally unsuited for
 practical use. He later proposed that a
 linear program be solved by solving the

 primal/dual feasibility problem [1984b],
 but this approach roughly quadruples the
 size of the problem. He has also alluded
 to a "two dimensional search" method

 [1985].

 Here we adopt a method devised by
 Todd and Burrell [1985], which does not

 enlarge the problem, is fairly easy to im
 plement, and delivers an optimal solution
 of the dual problem as a byproduct.
 Anstreicher [1986] has described a similar
 method that has an entirely different,

 geometrical motivation.
 Todd and Burrell's method works basi

 cally like this. Let us say we are given a
 problem, such as (2), that is in the form
 (1) but whose objective function has some
 unknown minimum value v*. If we only
 knew v*, we could offset cry by v* to get

 an objective function cry - v* with a
 minimum value of zero. In fact, since eTy
 = 1, we could observe that cTy - v* =
 cTy - u*eTy = (c - i?*e)Ty. Then we
 could replace c in (1) with c - v*e and
 solve the problem Karmarkar's way.

 Since we don't know if, Todd and Bur
 rell propose that we use an estimate v of

 v*, updated as we go along. At each itera
 tion we replace c in (1) with c(v) = c -
 ve. This method should work if the esti

 mate v becomes arbitrarily close to the
 true minimum v* in the course of the al

 gorithm. To make sure that it does, Todd
 and Burrell identify a dual feasible solu
 tion at each iteration. They let v be the
 corresponding value of the dual objective
 function, which by duality theory is a
 lower bound on v*. They show that these
 dual feasible solutions converge to the
 dual optimal solution, so that v converges
 to v*, as desired.

 To see how to find a dual feasible solu

 tion, just write down the dual of (1). It is,
 maximize v
 subject to AT\x + ev < c .

 Note that for any m-vector u whatever,
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 HOOKER

 (u,i?) is a dual feasible solution if v

 = min7{ (c - ATu)j\. It remains only to
 choose a u at each iteration so that the

 (u,i;)'s converge to an optimal dual solu
 tion as the algorithm progresses.
 The Main Algorithm

 The main algorithm begins with a
 problem in the form (1) and with a start
 ing point y? that lies in the interior of the

 polytope. The statement of the algorithm
 may be easier to follow if, on first read

 ing, the material dealing with dual varia
 bles is ignored. This material is enclosed
 in brackets.

 Step 0. Set the iteration counter k to

 zero, and let y? be a point interior to the
 polytope. [Let the first value u? of the
 vector u of dual variables be the solution

 of the equation AATu? = Ac, and let the
 first estimate of v be v?

 = mirxj {(c - Aru?);}.]
 In the example, the initial point is y?

 = (1/3,1/3,1/3). [Since AAT = 14 is a sca
 lar in this problem, and Ac = 2, u? is eas
 ily seen to be 1/7. Thus v?
 = min{12/7,6/7,10/7} = 6/7]

 Step 1. Transform the space so as to put
 the current point y* at the center of the
 simplex. The transformation T and its in
 verse are given by,

 D~ly Dz
 z = T(y)=-?,y = T-i(z) = ?

 eT?)-iy eTDz

 where D = diag(y/, ..., ynk). Note that
 T(yk) = e/n. The problem (1) becomes,

 crDz
 minimize -

 eTDz m\

 subject to e,z = lf z ^ 0

 In the example, the starting point y?

 = (1/3,1/3,1/3) is already at the center of
 the simplex, so that T is just the identity
 transformation, and y = z. Also AD
 = [2/3 1/3 -1].

 [Step 2. Update the dual variables. Let
 uk+i be th.e solution of the system of lin
 ear equations,

 AEPATuk+1 = AD2c(vk), (5)
 and let v = miny{ (c - ATuk+1)J}. If v <
 vk, then we have not improved our pre
 vious lower bound vk on v*, and we can

 let vk+l = i^. If z) > i;^, then we adopt the
 tighter bound vk+l = v, and we revise
 uk+1 to be the solution of the system of
 linear equations,

 AD2ATuk+l = AD2c(vk+?). (6)
 If equation (5) is solved, say, by comput
 ing a QR factorization of AT, then (6) can

 be solved with relatively little extra work.
 Todd and Burrell prove that when the u^'s
 are chosen in the above way, the (u*,i^)'s
 converge to an optimal dual solution.]

 [In the example problem, AD2AT and u*
 are scalars. Since c(v?) = (8/7,1/7,1/7),

 equation (5) has the solution ul = 1/7.
 Thus v = min{12/7,6/7,10/7} = 6/7. Since v
 = v?, we have not improved our lower
 bound on v*, and we set v1 = 6/7]

 Step 3. Find the direction of steepest
 descent in the transformed polytope. The
 objective function of (4), with c(^+1) re
 placing c, drops most rapidly in the direc
 tion of the negative gradient, which at e/n
 is parallel to -Dc(z^+1) (if we ignore a
 component normal to the simplex and
 therefore irrelevant here). In Figure 3 this
 direction is parallel to the dashed arrow
 labeled -Dc^1). To find the direction ?cp
 of steepest descent within the polytope
 (heavy line segment), we drop a perpen
 dicular from the dashed arrow onto the
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 KARMARKAR'S ALGORITHM

 subspace (here, a line) defined by ADz
 = 0 and eTz = 0. This yields its orthogo
 nal projection, the solid arrow labeled - cp.
 (Do not confuse this orthogonal projec
 tion with the projective transformation T.)

 Since cp is an orthogonal projection, z
 = cp solves the least squares problem,
 minimize ||Dc(i^+1) ? z||

 z

 (7)
 subject to ADz = 0 w

 eTz = 0 .

 Remarkably, we have already done most
 of the work necessary to solve (7), be
 cause (6) is precisely the system of nor
 mal equations one would solve to solve
 (7) with the last constraint omitted. We

 can easily compute cp by
 cp = P[Dc(^+1) - DATuk+1], (8)
 where P is the matrix for a projection
 onto {z | eTz = 0}, given by P = I
 - eeT/n.

 In the example problem, we get cp
 = P[Dc(vl) - DAW] = P(6/21,0,4/21)
 = (8/63,-10/63,2/63). Since the feasible
 polytope in this example is a line seg
 ment, there are only two feasible direc
 tions: cp and - cp. A more interesting
 example would unfortunately require an
 illustration in four or more dimensions.

 Step 4. We now move in the direction
 - cp of steepest descent, but not so far as
 to leave the feasible set. One easy way to
 avoid infeasibility is to inscribe a circle of
 radius r = [n(n-l)]~m in the triangle of
 Figure 3, with its center at ein. Since the
 circle contains only feasible points, it is
 always safe to move across a distance ar
 where 0 < a < r.

 Another method is simply to move as
 far as possible in the direction - cp with
 out reaching the boundary of the poly

 tope ? that is, without letting any zj go
 to zero. This can be achieved with a sim

 ple ratio test. If the new point is zk+l
 = ein - 7Cp, we want 7 to be as large as
 possible subject to the condition that each
 component of zk+1 be no less than some
 small positive number e. That is, we want
 to

 maximize 7 ,q,
 subject to 1/n - ycpj> e, j = 1, ..., n.
 Clearly the maximum permissible value of
 7 is the minimum of the ratios (1/n - e)

 /Cpj over all ; for which cpj > 0. (Since an
 overly large 7 does more harm than
 good, it is better in practice to minimize

 g(e/n - ycp) subject to the constraints in
 (9) rather than to maximize 7, where g is

 the "potential function" defined in Ap
 pendix 1.)

 In the example, if we set e = 1/30,
 then (9) becomes
 maximize 7
 subject to 1/3 - (8/63)7 ^ 1/30

 1/3 + (10/63)7 > 1/30
 1/3 - (2/63)7 ^ 1/30 .

 Clearly we want 7 = min
 {0.3/(8/63), 0.3/(2/63)} = 2.3625. The new
 point is z1 = e/3 - ycp
 = (0.0333, 0.7083, 0.2583). In this exam
 ple we could have reached the optimum
 by going all the way to the end of the fea
 sible line segment (rather than just 90
 percent of the way), but only because the
 feasible polytope happens to be a line
 segment.

 Step 5. We now map the new point zk+1
 back to its position in the original sim
 plex, namely yk+1 = T_1(z*+1). If the offset

 objective function value c(vk+1)Tyk+1 is not

 yet close enough to zero, set k = k + 1
 and go to Step 1. Otherwise stop.
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 Figure 4: Illustration of the problem of Figure
 3 after it has been distorted by a projective
 transformation in the second iteration of the

 algorithm. The current solution y1 has been
 mapped to the center ein of the simplex. The
 feasible polytope (heavy line segment) has

 moved but remains a polytope, and the objec
 tive function contours (dashed lines) are

 rearranged but remain straight lines.

 In the example, y1 = z1, and the value
 of the original objective function is cTy!
 = 1.0333, not far from the optimum of 1.
 But the offset objective function c^Yy1
 = 0.176 is not close enough to zero to
 terminate the algorithm.

 If we carry the example through an
 other iteration, the projective transforma
 tion in Step 1 converts the problem of
 Figure 3 to that of Figure 4. The current
 point y1 is mapped to the center e/n of
 the simplex in Figure 4. Note that straight
 lines remain straight lines, but the spac
 ing of the contours is severely distorted,
 reflecting the nonlinearity of the objective
 function in (4).

 [In Step 2, (5) yields u2 = 0.0412, so
 that v = 0.9588. Since v > v1 = 6/7, we

 have improved our lower bound on v*,

 and we set v2 = 0.9588, already quite
 close to v* = 1. We solve (6) to get u2
 = 0.0133 and the dual feasible solution

 (u2,v2) = (0.0133,0.9588), which is close to
 the optimal dual solution (0,1).]

 The projected gradient cp in Step 3 is
 (0.00897,-0.00509,-0.00388), and the
 new point in Step 4 is z2
 = (0.0333,0.5035,0.4631). This corre
 sponds to the point y2 = T-1(z2)
 = (0.0023,0.7471,0.2506) in the original
 space, at which cry2 = 1.0023 and c(y2)Ty2
 = 0.044.
 Putting the Problem in the Required
 Form

 Suppose we are given an arbitrary lin
 ear program,

 minimize cTx nn.
 subject to ?x = b, x > 0 .

 We wish to convert (10) to the form (1) so

 that it can be solved by the projective
 scaling method. I will present essentially
 the conversion proposed by Tomlin [1985],

 which has the advantage that it yields an
 interior starting point as well.
 We first define m and n such that x e

 Rn~3 and ? is (ra-1) x (n-3). We define
 y = (yu ..., y?_3) and rescale the problem
 by replacing x with y = x/o\ The scale
 factor o is chosen large enough so that
 we can be sure any feasible solution x sat
 isfies XjXj < o unless (10) is (for all practi
 cal purposes) unbounded. After rescaling,
 (10) becomes min acTy subject to ?y
 = b/a, y > 0. Rather than solve this
 problem, we solve the related problem,
 minimize

 [oc7 0 0 M ]  y
 y?-2
 Vn~X
 Vn

 (11)
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 subject to
 A 0 -nb/a nb/v-Ae
 0 0 n 0

 eTy

 Vn
 Vn
 Vn

 + yn-2 + y?-i + yn = 1, y > 0 .

 Here y?_2 is a slack variable that absorbs
 the difference between 1 and the sum of

 the other variables; y?_lr which is con

 strained to be equal to 1/n, is introduced
 so that b/a may be brought to the left

 hand side; and a "Big M" cost M is given
 to artificial variable yn to force it to zero

 when (10) has a feasible solution.
 The formulation (11) is contrived so that

 if y solves (11), then x = cry solves (10) if
 (10) has a feasible solution. Also the inte
 rior point y - e/n is a feasible solution of

 (11). Finally, (11) is in the desired form (1)

 except for a 1 on the right hand side. This

 can be corrected by subtracting the last
 constraint from the next to last constraint:

 minimize
 [crcT 0 0 M]

 Vn-2
 Vn-l

 Un

 subject to  (12)

 [  0 -nb/a nb/d-Ae  y = 0
 1 n-1 -1 J y?_2 |0.

 y?-i
 y? _

 e7y + Vn-2 + y?-i + yn = 1, y => 0 .

 Now we have the problem in the desired
 form.

 A "Big M" causes numerical problems
 in the simplex method, but not here. In a
 feasible problem yn soon vanishes, so that
 the Big M is multiplied by a very small yn
 in the product AD in (3).

 If, upon solving (12), we find that the

 artificial variable yn > 0, we know (10) is
 infeasible. If the slack variable yn_2 = 0,

 we know that (10) is unbounded.
 As an example I will transform the

 problem
 minimize xx + 2x2
 subject to x1 + x2 - x3 = 2

 ?X\ X2 = U, Xj, X2, X3 ? u .
 Here m = 3 and n = 6, and if we let a
 = 10, (12) becomes,
 minimize 10yj + 20y2 + My6
 subject to

 yi + y2 - y3 - 1.2y5 +0.2y6 = 0
 *3yi - y2 - 2y6 = 0
 "3/i - V2 - y3 - y4 + 5y5 - y6 = 0

 y 1 + y2 + y3 + y4 + y5 + y6 = i
 yu y2/ y3/ y4, y5, y6 ^ o .

 The solution is y
 = (0.05,0.15,0,19/30,1/6,0), which corre
 sponds to x = (0.5,1.5,0) in the original
 problem.

 A variation of this approach, used to
 solve the problem in Figure 1, is to em
 ploy a two-phase technique reminiscent
 of that generally used for the simplex
 method. Phase 1 achieves a feasible solu

 tion for (10) by setting c = 0 and vk = 0
 in every iteration until yn essentially van
 ishes in, say, iteration V. Then an initial

 value of 1^' is got as in Step 0 (replacing
 A and c with AD and Dc), and Phase 2
 proceeds with the algorithm in its origi
 nal form (that is, using the original c and
 calculating vk+1 as indicated in Step 2).
 Figure 1 depicts the simplex and projec
 tive iterations for Phase 2 only. The pro
 jective iterations are based on

 minimization of g(e/n ? ycp), rather than
 maximization of 7, in (9).
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 Complexity of the Algorithm
 Much of the interest in the projective

 scaling algorithm is due to Karmarkar's
 ingenious proof that its running time is a
 polynomial function of the problem size
 even in the worst case. He showed that if

 n is the number of variables in problem
 (1) and L is the number of bits used to

 represent numbers in the computer, the
 theoretical worst-case running time is
 0(h3 5L2). That is, as the problem size in
 creases, the running time tends to be a
 constant multiple of n35L2. This is sub
 stantially better than the ellisoid algo
 rithm's worst-case running time of
 0(n6L2).

 Appendix 1 explains why the algorithm
 has complexity 0(n35L2). Although this
 material is relegated to an appendix, it is
 only a little more technical than the fore
 going, and one cannot appreciate the in
 genuity of Karmarkar's contribution
 without understanding it.
 Recent Developments

 The projective scaling algorithm has
 sparked an impressive amount of re
 search. One of the most significant devel
 opments has been the discovery by Gill et
 al. [1985] that the projective scaling algo
 rithm belongs to a class of solution meth
 ods that have been known for some time,

 the "projected Newton barrier methods."
 They show that if one applies a projected
 barrier method to an LP in the homoge
 neous form (1) and uses just the right
 "barrier parameter," one gets an algo
 rithm that is identical to Karmarkar's

 (Appendix 2). Apparently no one has
 ever tried using this particular parameter
 before, however, and no one has shown
 any barrier method other than

 Karmarkar's to have polynomial
 complexity.

 Vanderbei et al. [1985], Chandru and
 Kochar [1986], and others have discussed
 an interesting modification of the projec
 tive scaling algorithm that might be called
 the "affine scaling algorithm." It dispen
 ses with projective transformations of the

 solution space and merely rescales the
 variables so that the current point be
 comes the point e = (1, ..., 1). In this
 way, it achieves Karmarkar's objective of
 keeping the point away from the walls of

 Curiously, the simplex
 method performs quite well
 in practice, despite its dread
 ful worst-case behavior.

 the feasible polytope. It also has the ad
 vantage that the objective function need
 not be offset to achieve a minimum valve

 of zero. But convergence is not guaran
 teed when the optimum is degenerate in
 the primal problem, and there is no proof
 of polynomial complexity. Gill et al. re
 mark that this method is related to a bar

 rier method applied to an LP in the form
 (10).

 In other developments, Anstreicher
 [1986] has shown how the projective scal
 ing algorithm relates to fractional pro
 gramming, and Kojima [1985] has
 described a test one can perform in the
 midst of the algorithm to determine
 whether a variable is going to be basic in
 the optimal solution. Tone [1985] has pro
 posed a hybrid algorithm that uses the
 reduced rather than the projected gra
 dient as a search direction whenever
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 possible. D. Bayer of Columbia University
 and J. Lagarias of AT&T Bell Labs are de
 veloping a technique, inspired by differ
 ential geometry, that moves through the
 polytope along a curve rather than along
 a straight line.

 Computational Experience
 Karmarkar himself has not released a

 paper containing computational results.
 Other investigators have reported some
 preliminary testing. There seems to be a
 consensus that the number of iterations

 grows very slowly with problem size, as
 Karmarkar predicted. But each iteration
 poses a nasty least-squares problem. It
 has become clear that an efficient least

 squares routine is key to the success of
 the projective scaling method.

 Tomlin [1985] used versions of the well

 known QR method (employing both
 Householder transformations and Givens

 rotations) to solve the least-squares prob
 lems. In both cases the projective scaling
 algorithm was substantially slower than
 the simplex method. The main reason is
 that whereas the simplex method deals

 with the sparse matrix ? in (10), the pro
 jective scaling method must solve the nor

 mal equations with a dense matrix
 AD2AT. This matrix is dense because the

 last two columns of A, as constructed in

 (10), are dense and propagate a large
 number of nonzeros in the product
 AD2AT.

 There are ways to try to circumvent the

 density problem. Gill et al. [1985] imple
 mented their projected barrier method by
 computing a Cholesky factorization of
 AD2AT with dense columns removed from

 A and using the result as input to the
 LSQR method of Paige and Saunders

 [1982]. Their method was competitive
 with the simplex method on some prob
 lems. Shanno [1985] has tried using
 Fletcher-Powell updates of a similar
 Cholesky factorization with encouraging
 results.

 Shanno and Mar s ten [1985] found that

 they had to solve the normal equations
 very accurately, or else the current point
 would become infeasible and convergence
 lost. They tried to avoid this with a conju
 gate gradient version of the projective
 scaling algorithm, as well as an "inexact"
 projection algorithm, both without suc
 cess. Aronson et al. [1985] found that the

 projective scaling algorithm (using the
 LSQR method) took 14 times longer than
 the simplex method to solve small, dense,

 randomly-generated assignment
 problems.

 Vanderbei et al. [1985] report that their
 affine scaling algorithm requires fewer
 than one-half as many iterations as the

 projective scaling method on small, dense
 problems, with about the same amount of
 work per iteration. They also say that its
 computation time is comparable to that of

 the simplex method on such problems.
 A common experience is that the least

 squares problem becomes ill-conditioned
 as the optimum is approached. The prob
 lem is especially acute when the optimal
 point is degenerate, and the reason is
 clear. At a degenerate extreme point
 fewer than m of the variables z; are non
 zero, which means that fewer than m col

 umns of AD in (6) and (7) are nonzero.
 Thus AD is not of full row rank, so that

 AD2AT is singular. Perhaps zfs destined to
 vanish can be identified and removed

 from the problem before AD2AT becomes
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 ill-conditioned. Shanno and Marsten

 found that it is risky simply to remove

 variables that approach zero, but
 Kojima's basic variable test may prove
 useful. Also, Karmarkar has pointed out
 in conversation that although (AD2AT)~l
 "blows up" as y approaches a degenerate
 solution, u = (AiyA^^ADc does not. In
 other words, the problem is not ill
 conditioned, and it should be possible to
 design a numerically stable algorithm.

 Just before going to press I received

 documentation of some very encouraging
 test results obtained at Berkeley by
 I. Adler et al. [1986]. This public domain
 implementation was written by Adler and
 several graduate students with
 Karmarkar's assistance. It solved 30 real

 world LP's an average of three times
 faster than the state-of-the-art simplex
 routine in MINOS 4.0. Problem sizes

 ranged from 27 rows, 51 columns to 1151
 rows, 5533 columns. Run times varied

 from 70 percent as fast as simplex to 8.6
 times faster, and the ratio shows a clear

 tendency to increase with problem size.
 MINOS is not the fastest simplex code,
 but the clearly faster ones, such as IBM's
 MPSX, have the unfair advantage of
 being written in assembly language. E. R.
 Barnes has reported similar results at
 IBM (see Kozlov [1985]), but I have yet to
 receive a technical paper documenting
 them.

 Adler's implementation is a variation of
 the affine scaling algorithm. It maximizes
 crx subject to the inequality constraints
 Ax<b, where x is not restricted to be

 nonnegative. (This form rarely occurs in
 practice, but it is precisely the dual of the
 standard form (10); Adler therefore solves

 a practical LP by solving its dual). The
 implementation adds a vector s of slack
 variables to obtain the constraints

 Ax + s = b, s^O, and applies the affine
 transformation only to the slacks. This

 makes it possible to compute the orthogo
 nal projection only approximately without
 losing feasibility.

 Concluding Remarks
 I have seen no evidence that the projec

 tive scaling method can beat the simplex
 method by a factor of 50, as originally
 claimed. But there is little doubt that it or

 its variations can outperform the simplex
 method on a large class of problems. Al
 ready one implementation of it (actually

 an affine scaling method that differs sub

 stantially from Karmarkar's original) runs
 several times faster than the simplex rou
 tine in MINOS on problems having a few
 thousand variables. More importantly, its
 speed relative to the simplex method in
 creases with problem size. There is every
 reason to believe that implementations
 will continue to improve. After all, ex
 perts honed the simplex method for dec
 ades, and similar attention should benefit
 its rival.

 Whatever the eventual outcome, it is

 clear that one can't spend an afternoon
 writing a straightforward implementation
 of the projective scaling method and get
 something that beats the simplex method.
 Sophisticated numerical mathematics is as
 important as the underlying method.

 People often ask how one can get a
 basic optimal solution, a dual solution,
 and sensitivity analysis out of the projec
 tive scaling method. One approach is to
 use a simplex postprocessor. It would be
 gin by applying a routine available in
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 many mathematical programming sys
 tems (called BASIC in MPSX, for instance)
 to convert the projective scaling method's
 solution to an equally good basic solution;
 for a description of the method see sec
 tion 2.7 of Benichou et al. [1977]. Then
 one or more simplex iterations could be
 carried out. This approach has two ad
 vantages. Since convergence may be slow
 in the last few projective iterations, it may
 pay to let the simplex method finish the
 job. Also, the final simplex iteration sup
 plies the dual variables and sensitivity
 analysis to which we are accustomed.
 Tomlin [1985] outlines some difficulties

 one may encounter.
 Karmarkar has suggested that the pro

 jective scaling algorithm may have other
 advantages, yet untested. It may be use
 ful for nonlinear programming; even in
 the linear case it minimizes a nonlinear

 function. It may perform well when tai
 lored to the special structure of certain
 linear programming problems, such as

 multicommodity flow problems. Finally, it

 may lead to a decomposition approach
 more effective than Dantzig-Wolfe decom
 position. Such an approach would pre
 sumably use decomposition to solve the
 normal equations in each iteration. It may
 therefore escape the slow convergence
 that often characterizes Dantzig-Wolfe
 decomposition.
 Whatever may be its practical value, the

 projective scaling algorithm represents a
 substantial theoretical contribution, both

 for the novelty of the idea and its im

 provement over the worst-case complexity

 of the ellipsoid algorithm. The discovery
 that it is formally equivalent to a proj
 ected Newton barrier method does not, in

 my opinion, mitigate this contribution.
 The equivalence holds only when one
 packs into the barrier parameter a good
 deal of problem-solving strategy that is

 unrelated to the motivation underlying
 barrier methods. It is unlikely, after all,
 that anyone would have soon discovered
 a'barrier method of polynomial complex
 ity without the projective scaling method
 as a guide.

 Beyond this, Karmarkar's work has in
 spired a flurry of research papers. Some
 thing akin to a general rethinking of

 mathematical programming may grow out
 of this activity and lead to better meth

 ods, whether or not Karmarkar's original
 algorithm survives.

 The projective scaling method has
 made another sort of contribution. Ours

 is an age when technical research is dissi
 pated into minute specialties. It is re
 freshing and exciting to find a topic that
 engages an entire technical community,
 and Karmarkar has provided one.
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 APPENDIX 1: Proof of Polynomial
 Complexity

 I wish to explain why the projective
 scaling algorithm has 0(n35L2) complexity.
 (See Padberg [1986] for another proof.) I

 will consider Karmarkar's original algo
 rithm, which assumes that the objective
 function has a minimum value of zero.

 Todd and Burrell [1985] have modified the
 proof to show that their method, which
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 puts no restriction on the value of the ob
 jective function, likewise has polynominal
 complexity.
 Karmarkar showed that each iteration

 of the algorithm has theoretical running
 time 0(n25L), which is essentially the
 time required to solve the least-squares
 problem (7). To get an overall running
 time of 0(n35L2), he must therefore estab
 lish that the number of iterations is at

 most 0(nL).
 A problem is considered solved when

 the original value cTy? of the objective
 function in (1) is reduced by a factor of
 2L, since 2~L is the precision of the com
 puter. Thus the problem is solved in itera
 tion k if cryVcTy? ^ 2~L. Karmarkar must
 show that the problem is solved when k
 = 0(nL).

 It would be nice if one could show that

 the algorithm shrinks the objective func
 tion cTy* to at most cTy*(e~s/") each itera
 tion, where a > 0 is some constant. This
 is equivalent to showing that it reduces n
 In cry* to n In cTy* - ? each iteration
 (where In x = log^). Then after k itera
 tions we would have n In cTy* < n In cry?
 - kb, or cTyVcTy? ^ e~kb/n = 2-?'"2>/". To

 make the exponent of 2 equal to - L and
 get the desired precision, we could set k
 = nL/bln2 = 0(nL). This would verify
 that k = O(nL) iterations are enough.

 But Karmarkar could not prove that the
 algorithm reduces n In cry by a constant
 amount ? each iteration. Instead, he in
 geniously suggested that the algorithm
 does reduce the following "potential func
 tion" by 8 each iteration:

 n

 /(y) = 2 In cTy/j//
 i-i

 n

 = n In cTy - 2 In y;.
 7 = 2

 This is all we need, because if we reduce
 /(y) by ? eacn iteration and hence by kb
 over k iterations, then we simultaneously

 reduce n In cry by at least /c8 over the k
 iterations. To see why, note that the sec
 ond term - S; In yj of /(y) takes its mini
 mum value in the very first iteration,
 when y = ein. Thus if we reduce /(y) by
 kb over k iterations, we reduce n In cTy by
 even more than kb. It is enough, then, to
 show that we reduce f(y) by at least 8 in
 each iteration.

 To show this, Karmarkar first observes
 that when the problem is transformed by
 T, the potential function assumes exactly
 the same form except for the addition of a
 constant; it becomes g(z) = n In cTDz
 - ^jln Zj + constant, where g(z) = f(y)
 when z = T(y). This means that if n In
 cTDz - l<jln Zj drops by 8 in the trans
 formed space, then the original /(y) drops
 by 8 in the original space.

 Now we reach the heart of the argu
 ment. At any given iteration we begin
 with the current point at the center ein of
 the transformed simplex. We noted in
 Section 4 that we can always move it a
 distance equal to ar without forcing any
 variable to zero, where r is the radius of a
 sphere inscribed in the simplex and 0 < a
 < 1. The optimal point lies somewhere in
 the simplex and therefore no further away
 from the center than the vertices of the

 simplex. The distance of the vertices from
 the center is equal to the radius nr of a
 sphere circumscribed about the simplex.
 So, we can always move at least arlnr =
 ctln of the way to the optimal point in
 each iteration. Thus we can reduce the
 linear function cTDz (which is zero at the
 optimal point) to at most crDz(l ? a/ri)
 < cTDz(e~a/n) each iteration. This means
 that we can reduce the first term n In

 cTDz of g(z) by at least a constant a each
 iteration.

 But will the second term - Xfln z;- of
 g(z) increase enough to offset the reduc
 tion in the first term? It will not if a is

 small enough, say a = 1/3. To see this,
 note that when we move from point ein
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 to zk+l, the increase in ? 2;/n z;- is
 -2;/nz*+1 + Xjln(l/n) = -2,/n(z/+1). But
 zk+1 satisfies \\zk+l - e/n\\ < ar and erz*+1
 = 1, and Karmarkar showed (using calcu
 lus, and so forth) that any such point also
 satisfies -Xjln(nzk+1) < ?2/2(l-?), where
 ? = a[n/(n-l)]1/2. For large n we have a
 ~ ?, so that the increase in - Xjln(nZj) is
 at most about a2/2(l-a). Thus in each it
 eration we can guarantee a reduction in
 /(y) of at least 8 ~ a - a2/2(l-a). As ex
 pected, 8 is positive for small a; for in
 stance, ? ~ 1/4 when a = 1/3.

 There are two keys to the success of
 Karmarkar's argument. One is the geo
 metrical fact that the radii of spheres cir
 cumscribing and inscribing a simplex bear
 a ratio n equal to the dimension of the
 space. This allows the algorithm to re
 duce the objective function by about 1/n
 of its current value, on the average, each
 iteration, so that the number of iterations
 is proportional to n. To demonstrate this
 Karmarkar uses the other key to his suc
 cess, the ersatz objective function/(y).
 APPENDIX 2: Interpretation as a Barrier
 Method

 It turns out that the projective algo
 rithm belongs to a class of solution meth
 ods that have been known for some time,
 the "projected Newton barrier methods."
 This was demonstrated by Gill et al.
 [1985] in one of the more significant de
 velopments since Karmarkar introduced
 his algorithm.

 One can solve the homogeneous linear
 program (1) with a barrier method by
 writing it in the following way:
 minimize cTy ? |x % In y? (13)
 subject to Ay = 0

 e7y = i/ y - ?
 Here S; In y; is a barrier function, and (x is
 the barrier parameter. Since In y? becomes
 very negative as y; approaches zero, the
 barrier function has a built-in incentive to

 observe the nonnegativity constraints y; >
 0. To ensure convergence, jjl must go to

 zero as one nears the optimum.
 Since now all of the constraints are

 equality constraints, we can solve prob
 lem (13) with a variant of Newton's

 method. In each iteration we orthogonally
 project the usual Newton search direction
 onto the space satisfying the constraints,
 so as to obtain a feasible search direction.

 Because Karmarkar's algorithm involves
 a similar orthogonal projection (Step 3)
 and a "potential function" that closely re
 sembles the objective function in (13), one

 might suspect a connection between the
 two algorithms. The connection is not ob
 vious, but Gill et al. demonstrated that
 for a particular choice of barrier parame
 ter, namely

 V = (yT(cP - cye/n), (14)
 the barrier and projective methods are
 identical.

 Here we see, incidentally, that if the ob
 jective function cTy has a minimum value
 of zero (as Karmarkar requires), |x as de
 fined in (14) will go to zero, as it must to
 guarantee convergence.
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