
Improved Job Sequencing Bounds

from Decision Diagrams

John Hooker

CP 2019

University of Connecticut, USA

Motivation

• Job sequencing problems are usually solved by

heuristics.

• Bounds are needed to judge quality of solutions.

• It’s really hard to derive tight bounds for combinatorial

problems, except in a branching framework.

2

Motivation

• Job sequencing problems are usually solved by

heuristics.

• Bounds are needed to judge quality of solutions.

• It’s really hard to derive tight bounds for combinatorial

problems, except in a branching framework.

• Decision diagrams can provide bounds.

• But they are weak as the problem scales up.

3

Motivation

• Job sequencing problems are usually solved by

heuristics.

• Bounds are needed to judge quality of solutions.

• It’s really hard to derive tight bounds for combinatorial

problems, except in a branching framework.

• Decision diagrams can provide bounds.

• But they are weak as the problem scales up.

• Lagrangian duality can provide bounds.

• But they are usually weak because of duality gap.

4

Motivation

• Job sequencing problems are usually solved by

heuristics.

• Bounds are needed to judge quality of solutions.

• It’s really hard to derive tight bounds for combinatorial

problems, except in a branching framework.

• Decision diagrams can provide bounds.

• But they are weak as the problem scales up.

• Lagrangian duality can provide bounds.

• But they are usually weak because of duality gap.

• How about DDs + Lagrangian?

• When can they be combined?

5

Objectives

• Derive tight bounds for job sequencing problems.

• Use Lagrangian relaxation to tighten bounds from

decision diagrams.

6

Objectives

• Derive tight bounds for job sequencing problems.

• Use Lagrangian relaxation to tighten bounds from

decision diagrams.

• Generalize to dynamic programming.

• General conditions under which Lagrangian relaxation

can combine with decision diagrams.

7

Objectives

• Derive tight bounds for job sequencing problems.

• Use Lagrangian relaxation to tighten bounds from

decision diagrams.

• Generalize to dynamic programming.

• General conditions under which Lagrangian relaxation

can combine with decision diagrams.

• Apply to specific job-sequencing problems.

• Which ones are suitable for this kind of bounding?

• Compute tight bounds for some well-known benchmarks.

8

Build on Recent Work

• Tight DD-based bounds for job sequencing with

state-dependent processing times.

• Approach doesn’t scale up.

• Add Lagrangian relaxation.

9

JH (2017)

Build on Recent Work

• Tight DD-based bounds for job sequencing with

state-dependent processing times.

• Approach doesn’t scale up.

• Add Lagrangian relaxation.

• Bounds from DDs+Lagrangian for TSP with time

windows within CP solver.

• Use stand-alone DD.

• Extend to other objectives, e.g. min tardiness.

• Find general conditions for combining DDs and

Lagrangian relaxation.

10

JH (2017)

Bergman, Cire, van Hoeve (2015)

Decision Diagrams

• Graphical encoding of a

boolean function

– Historically used for circuit design

& verification

– Binary diagrams easily extended

to multivalued diagrams.

– Unique reduced diagram for

a give variable ordering.

11

Lee (1959), Bryant (1986)

Decision Diagrams

• Adapt to optimization and

constraint programming

– Paths from top to T represent

feasible solutions

– Can delete paths to F

– Path lengths represent costs.

– Shortest path is optimal solution.

12

Hadžić and JH (2006, 2007)

Job Sequencing Example

• Problem: sequence jobs with given processing times

– Minimize tardiness subject to time windows.

13

Job Sequencing Example

• Problem: sequence jobs with given processing times

– Minimize tardiness subject to time windows

14

Release time

Job Sequencing Example

• Problem: sequence jobs with given processing times

– Minimize tardiness subject to time windows

15

Release time
Processing time

Job Sequencing Example

• Problem: sequence jobs with given processing times

– Minimize tardiness subject to time windows

16

Release time

Due date

Processing time

Job Sequencing Example

𝑥𝑗 = j th job in sequence

Decision diagram

for job sequencing

𝑥𝑗

Each r-t path corresponds

to a feasible solution

Tardiness

of job j

Job Sequencing

𝑥𝑗 = j th job in sequence

An optimal solution:

Sequence 2-3-1

Schedule [1,3], [3,5], [5,7]

Tardiness 0 + 0 + 4 = 4𝑥𝑗

Each r-t path corresponds

to a feasible solution

Tardiness

of job j

Building a Decision Diagram

• Our approach:

– Associate dynamic programming states with nodes..

– …as in a state transition graph.

19

Dynamic Programming Model

• Our approach:

– Associate dynamic programming states with nodes..

– …as in a state transition graph.

20

General recursive model

State in stage i

Dynamic Programming Model

• Our approach:

– Associate dynamic programming states with nodes..

– …as in a state transition graph.

21

General recursive model

State in stage i

Set of possible

controls

Dynamic Programming Model

• Our approach:

– Associate dynamic programming states with nodes..

– …as in a state transition graph.

22

General recursive model

Immediate

cost

State in stage i

Set of possible

controls

Dynamic Programming Model

• Our approach:

– Associate dynamic programming states with nodes..

– …as in a state transition graph.

23

General recursive model
State transition

function

Immediate

cost
Set of possible

controls

State in stage i

Dynamic Programming Model

• Our approach:

– Associate dynamic programming states with nodes..

– …as in a state transition graph.

24

General recursive model

Cost to go

State transition

function

Immediate

cost
Set of possible

controls

State in stage i

DP Model for Job Sequencing

State:

25

Cost to go
Immediate

cost
Set of possible

controls

State in stage i

Set of jobs scheduled so far

Finish time of last job scheduled

Initial state =

State:

Controls:

26

DP Model for Job Sequencing

Cost to go
Immediate

cost
Set of possible

controls

State in stage i

Set of jobs scheduled so far

Finish time of last job scheduled

Initial state =

State:

Controls:

Immediate cost:

27

DP Model for Job Sequencing

Cost to go
Immediate

cost
Set of possible

controls

State in stage i

Set of jobs scheduled so far

Finish time of last job scheduled

Initial state =

State:

Controls:

Immediate cost:

Transition:

28

Set of jobs scheduled so far

Finish time of last job scheduled

Initial state =

DP Model for Job Sequencing

Cost to go
Immediate

cost
Set of possible

controls

State in stage i

Job Sequencing Diagram

𝑥𝑗 = j th job in sequence

𝑥𝑗
State variable:

finish time

of last job

State variable:

jobs scheduled

so far

Cost to go

Decision diagram

with states and

costs to go

Relaxed Decision Diagram

• Definition

– Every r-t path of the original diagram appears in the

relaxed diagram with equal or smaller cost.

– So a relaxed diagram may represent some infeasible

solutions.

• Motivation

– Shortest path in the relaxed diagram provides a lower

bound on the optimal value.

30

Andersen, Hadžić, JH, Tiedemanmn (2007)

Building a Relaxed Diagram

• Node splitting

– Start with a diagram that represents all solutions (feasible

and infeasible) and refine it.

31

Ciré and van Hoeve (2013)

Andersen, Hadžić, JH, Tiedemanmn (2007)

Building a Relaxed Diagram

• Node splitting

– Start with a diagram that represents all solutions (feasible

and infeasible) and refine it.

• Node merger – used here

– Merge some nodes in the exact diagram.

– …to make the diagram smaller while excluding no

feasible solutions and introducing some infeasible low-cost

solutions.

32

Andersen, Hadžić, JH, Tiedemanmn (2007)

Bergman, Ciré, van Hoeve, JH (2013)

Ciré and van Hoeve (2013)

Node Merger

• Don’t begin with exact diagram

– It is too large

• Merge nodes as the diagram is constructed

– Combine states of the merged nodes in a way that yields a

valid relaxation.

– This may require additional state variables.

33

Bergman, Ciré, van Hoeve, JH (2013, 2016)

JH (2017)

Relaxed DP Model

• In the example, no new states needed

– Transition function same as before.

Reflects node merger in layer i + 1

Recursion:

Relaxed DP Model

Transition:

Set of jobs scheduled in all feasible

solutions so far

Earliest possible finish time of

immediately previous job

Initial state =

Recursion:

Node Merger in Relaxation

• Merge states as the diagram is constructed

– States S, T merge to form state

• Merger operation must yield valid relaxation

– There are sufficient conditions for this.

– In state-dependent job sequencing,

36

JH (2017)

Job Sequencing Diagram

𝑥𝑖 = i th job in sequence

Decision diagram

with states and

costs to go

Example: merge these nodes

Job Sequencing Relaxed Diagram

State variable:

Jobs scheduled

along all paths from root

State variable:

min finish time

of last jobs

on paths from root

Relaxed decision

diagram

with states and

costs to go

Job Sequencing Node Merger

{2}3

{12}6 {23}5

Without merger With merger

1 3

{2}5

{2}3

1 3

{12}{23} min{5,6}

Job Sequencing Relaxed Diagram

Relaxed decision

diagram

with states and

costs to go

Shortest path yields a

lower bound of 2 on

optimal value of 4.

Lagrangian Relaxation

• “Dualize” hard constraints.

– By moving them into the objective functions

41

Consider a problem:

Lagrangian Relaxation

• “Dualize” hard constraints.

– By moving them into the objective functions

42

Consider a problem:

Lagrangian relaxation:

Lagrangian Relaxation

• “Dualize” hard constraints.

– By moving them into the objective functions

43

Consider a problem:

Lagrangian relaxation:

Lagrangian dual:

Lagrangian Relaxation on DD

• “Dualize” hard constraints.

– By moving them into the objective functions

44

In our example:

To formulate this, let

Bergman, Cire, van Hoeve (2015)

Lagrangian Relaxation on DD

Lagrange penalties

included in arc

costs

Path length now includes

total Lagrange penalty

Bergman, Cire, van Hoeve (2015)

Solvilng the Lagrangian Dual

• Solve by subgradient optimization

– Use Polyak’s method to determine stepsize

46

Subgradient, where xk is

value of x obtained when

computing θ(λk)

Stepsize, given by

where θ* = known upper bound on optimal value.

Let θ* be value of best known job sequence

Previous DD-based Bounds

• Job sequencing with state-dependent processing

times

– Processing time depends on which jobs have already

been processed.

– Relaxed DD requires an additional state variable.

47

Transition:

Node merger:

JH (2017)

12 jobs

Using finish time heuristic

JH (2017)

Previous DD-based Bounds

14 jobs

Using finish time heuristic

JH (2017)

Previous DD-based Bounds

Previous DD-based Bounds

• Tight bounds, but it doesn’t scale

– Can get optimal value using 10% width of exact DD.

– But 10% of exact DD grows exponentially.

– Lower tail is weak.

50

Transition:

Node merger:

JH (2017)

Previous DD-based Bounds

• Traveling salesman with time windows.

– Objective is total travel time

– DD represents only alldiff, does not incorporate time

windows or measure tardiness.

– Add Lagrange multipliers to DD

– Use inside CP solver.

51

Transition:

Node merger:

Bergman, Cire, van Hoeve (2015)

Previous DD-based Bounds

Bergman, Cire, van Hoeve (2015)

Previous DD-based Bounds

• Need stand-alone DD that bounds other objectives.

– Tardiness requires one or more additional state variables

– How to use more state variables and still implement

Lagrangian relaxation in a relaxed DD of practical size?

– How to get tighter bounds, e.g. 1-2% (without branching)?

53

Transition:

Node merger:

Bergman, Cire, van Hoeve (2015)

Combining DD & Lagrangian Duality

• Express g(x) in terms of immediate penalty

functions

– In our example,

54

Subset of state variables

Here,

Combining DD & Lagrangian Duality

• Identify state variables on which immediate cost

depends.

– In our example, cost depends on xi and state variable ti

• Identify state variables on which immediate penalty

functions depend

– In our example, they depend only on xi and no state

variables

55

Combining DD & Lagrangian Duality

Theorem. Lagrangian relaxation can be implemented

in a relaxed DD if nodes are merged only when their

states agree on the values of the state variables on

which the immediate cost functions and the immediate

penalty functions depend.

This can be applied to dynamic programming

models in general.

56

Survey of Job Sequencing Problems

• Use the theorem to determine for which problems

it is practical to implement Lagrangian relaxation

on DDs.

– In all problems we consider, the immediate Lagrangian

penalty depends only on xi and not on any state

variables.

– So we can merge states whenever they agree on state

variables on which the immediate cost depends.

– We will merge all such states to keep the relaxed DD as

small as possible.

57

Survey of Job Sequencing Problems

• Minimizing tardiness subject to time windows

– In our example, cost depends on xi and state variable ti

– We can merge states that agree on ti. The other state

variable Vi will lose information, but perhaps retain enough

to generate a good bound.

– This is practical, as it results in a relaxed DD of

reasonable size.

– We will experiment with Crauwells-Potts-Wassenhove

(CPW) instances.

58

Survey of Job Sequencing Problems

• Minimizing earliness + tardiness wrt time windows

– Measure lateness by due date dj and earliness by desired

release date ej.

– Cost now depends on xi and 2 state variables si, ti

– We only can merge states that agree on si and ti. But

these states are initially equal. So they remain equal

throughout the relaxed DD. So in effect, cost depends

on only one state variable.

– This is practical, as it results in a relaxed DD of

reasonable size.

– We will experiment with Biskup-Feldman instances.
59

Survey of Job Sequencing Problems

• Minimizing tardiness with time-dependent costs or

processing times

– Two senses:

– Dependent on position of each job in the sequence.

– Dependent on clock time when job is processed.

– Easy to check that in either case, costs depends only on

current stage (not a state variable) and state variable ti

– This is practical, and similar to previous problems.

60

Survey of Job Sequencing Problems

• Traveling salesman problem

– …without time windows.

– Cost depends only on a state variable yi representing

previous job.

– This is practical and used in

61

Bergman, Cire, van Hoeve (2015)

Survey of Job Sequencing Problems

• Traveling salesman problem with time windows

– Cost depends on state variables ti and yi.

– Mergers must agree on two state variables and can

result in huge relaxed DD.

– This is confirmed by experiments on Dumas instances.

– Not practical.

– So problem addressed by

cannot be bounded by DD + Lagrangian that incorporates

time windows.

– Also DD + Lagrangian is impractical

for TSPTW that minimizes total tardiness.
62

Bergman, Cire, van Hoeve (2015)

Survey of Job Sequencing Problems

• Minimizing stardiness with state-dependent

processing times.

– Cost depends on state variables ti and Ui.

– Mergers must agree on two state variables and can

result in huge relaxed DD.

– Not practical.

– So problem addressed by

cannot be bounded by DD + Lagrangian.

63

JH (2017)

Computational Results

• To test quality of bound…

– We need instances with known optimal solutions or

very good heuristic solutions.

– Instances large enough to be interesting are very hard to

solve exactly.

64

Computational Results

• 50 Crauwels-Potts-Wassenhove (CPW) instances

– Only a handful solved to optimality in 1998

– Most have been solved to proven optimality since then.

65

Computational Results

• 50 Crauwels-Potts-Wassenhove (CPW) instances

– Only a handful solved to optimality in 1998

– Most have been solved to proven optimality since then.

• 60 Biskup-Feldman instances

– Intensely studied problem since Ow and Morton (1989).

– Highly refined heuristics developed for these instances

since their introduction in 2001

– None solved to proven optimality

– No useful bounds known

– Compare with best known solutions (Ying, Lin, Lu 2017)

66

Computational Results

• 50 Crauwels-Potts-Wassenhove (CPW) instances

– Only a handful solved to optimality in 1998

– Most have been solved to proven optimality since then.

• 60 Biskup-Feldman instances

– Intensely studied problem since Ow and Morton (1989).

– Highly refined heuristics developed for these instances

since their introduction in 2001

– None solved to proven optimality

– No useful bounds known

– Compare with best known solutions (Ying, Lin, Lu 2017)

– We need a gap < 1% or 2% to be really useful

67

Implementation

• Code written in C++

– Run on my laptop.

• Solving the Lagrangean dual

– Convergence typically slow for Lagrangian duality.

– Let it run for 50,000 iterations

– Iterations are fast since each is an easy

shortest-path problem.

– Bound almost as good if truncated much earlier.

– Almost all reported computation time is due to

solving Lagrangian dual.

– Computation time is worth it to get a good bound

on a hard combinatorial problem.

68

Computational Results

CPW instances, 40 jobs

69Time = about 20 minutes per instance

Computational Results

CPW instances, 50 jobs

70Time = about 40 minutes per instance

Computational Results

• CPW results

– Bounds are reasonably tight.

– 42 of 50 bounds < 2%

– 35 of 50 bounds < 1%.

– 13 of 50 bounds < 0.1%

– 3 bounds really bad

– Optimality proved for 1 instance.

71

Computational Results

Biskup-Feldman instances, 20 jobs

72Time = about 30 seconds per instance

Computational Results

Biskup-Feldman instances, 50 jobs

73Time = about 8 minutes per instance

Computational Results

Biskup-Feldman instances, 100 jobs

74Time = about 65 minutes per instance

Computational Results

• Biskup-Feldman results

– Bounds are very tight

– perhaps even tighter wrt optimal values

– 60 of 60 bounds < 2%

– 59 of 60 bounds < 1%.

– 44 of 60 bounds < 0.1%

– 12 of 50 bounds < 0.01%

– Optimality proved for 8 instances (closing these instances)

75

Future Work

• Explore DP models for job shop scheduling, etc.

– Check if DD + Lagrangian relaxation is practical

• Extend to other DP models.

• Extend Lagrangian relaxation to stochastic DDs.

– They currently provide weak bounds.

76

Future Work

• Problem: diagrams of a fixed size lose their ability

to generate bounds as instances scale up.

– Bound does not rise above zero until relaxed diagram

width is 1/1000 to 1/25 that of exact diagram

• This suggests a combination with other bounding

techniques

– …that can yield a nonzero bound in smaller relaxed

diagrams.

– Such as Lagrangean relaxation obtained by modifying

costs in the diagram..

77

Bergman, Ciré, van Hoeve (2015)

Future Work

• Bounds for stochastic dynamic programming

– From stochastic diagrams.

– Node merger can again provide a valid relaxation.

– A theoretical result is available.

– Awaiting good merger heuristics and computational tests.

78

