Improved Job Sequencing Bounds
from Decision Diagrams

John Hooker

CP 2019
University of Connecticut, USA

Motivation

« Job sequencing problems are usually solved by
heuristics.
« Bounds are needed to judge quality of solutions.

« It'sreally hard to derive tight bounds for combinatorial
problems, except in a branching framework.

Motivation

Job sequencing problems are usually solved by
heuristics.
« Bounds are needed to judge quality of solutions.

« It'sreally hard to derive tight bounds for combinatorial
problems, except in a branching framework.

Decision diagrams can provide bounds.
« But they are weak as the problem scales up.

Motivation

Job sequencing problems are usually solved by
heuristics.

« Bounds are needed to judge quality of solutions.

« It'sreally hard to derive tight bounds for combinatorial
problems, except in a branching framework.

Decision diagrams can provide bounds.
« But they are weak as the problem scales up.

Lagrangian duality can provide bounds.
« But they are usually weak because of duality gap.

Motivation

Job sequencing problems are usually solved by
heuristics.

« Bounds are needed to judge quality of solutions.

« It'sreally hard to derive tight bounds for combinatorial
problems, except in a branching framework.

Decision diagrams can provide bounds.
« But they are weak as the problem scales up.

Lagrangian duality can provide bounds.
« But they are usually weak because of duality gap.

How about DDs + Lagrangian?
 When can they be combined?

Objectives

* Derive tight bounds for job sequencing problems.

« Use Lagrangian relaxation to tighten bounds from
decision diagrams.

Objectives

* Derive tight bounds for job sequencing problems.

« Use Lagrangian relaxation to tighten bounds from
decision diagrams.

* Generalize to dynamic programming.

« General conditions under which Lagrangian relaxation
can combine with decision diagrams.

Objectives

* Derive tight bounds for job sequencing problems.

« Use Lagrangian relaxation to tighten bounds from
decision diagrams.

* Generalize to dynamic programming.

« General conditions under which Lagrangian relaxation
can combine with decision diagrams.

* Apply to specific job-sequencing problems.
 Which ones are suitable for this kind of bounding?
« Compute tight bounds for some well-known benchmarks.

Build on Recent Work

« Tight DD-based bounds for job sequencing with
state-dependent processing times.

« Approach doesn’t scale up.

 Add Lagrangian relaxation.

JH (2017)

Build on Recent Work

« Tight DD-based bounds for job sequencing with
state-dependent processing times.

« Approach doesn’t scale up.

. Add Lagrangian relaxation. JH (2017)

* Bounds from DDs+Lagrangian for TSP with time
windows within CP solver.
« Use stand-alone DD.
« Extend to other objectives, e.g. min tardiness.

« Find general conditions for combining DDs and
Lagrangian relaxation.

Bergman, Cire, van Hoeve (2015)

10

Decision Diagrams

« Graphical encoding of a “
boolean function '-

— Historically used for circuit design 3
& verification

— Binary diagrams easily extended 2)) 2
to multivalued diagrams.

— Unique reduced diagram for | ‘ x._1 |
a give variable ordering. | . : 2

Lee (1959), Bryant (1986)

11

Decision Diagrams

« Adapt to optimization and ”
constraint programming |

— Paths from top to T represent e
feasible solutions !

— Can delete paths to F
— Path lengths represent costs.
— Shortest path is optimal solution.

x1 x1

Hadzi¢ and JH (2006, 2007)

12

Job Sequencing Example

* Problem: sequence jobs with given processing times
— Minimize tardiness subject to time windows.

W N = .

13

Job Sequencing Example

* Problem: sequence jobs with given processing times
— Minimize tardiness subject to time windows

ﬁ
<
ks
Ry

¥
S

Release time

J
1
2
3

— = O
DN DN W
ot W Ot

14

Job Sequencing Example

* Problem: sequence jobs with given processing times
— Minimize tardiness subject to time windows

Release time

Pj

¥
<.

J
1
2
3

\4

— = O

N DN W

A

Ot W Ot

Processing time

15

Job Sequencing Example

* Problem: sequence jobs with given processing times
— Minimize tardiness subject to time windows

Release time

Pj

¥
<.

J
1
2
3

\4

— = O

N DN W

A

Ot W Ot

Processing time

«— Due date

16

Job Sequencing Example

Decision diagram
for job sequencing

L1
o Tardiness
/ of job j
2(2) 1(2)
T3

Each r-t path corresponds

x. = Jthjob in sequence . .
J J] 9 to a feasible solution

Job Sequencing

T1 x.

Tardiness
/ of job j

X3

x; = jthjob in sequence

An optimal solution:
Sequence 2-3-1
Schedule [1,3], [3,5], [5,7]
Tardiness0+0+4 =4

Each r-t path corresponds
to a feasible solution

Building a Decision Diagram

« Our approach:
— Associate dynamic programming states with nodes..
— ...as in a state transition graph.

19

Dynamic Programming Model

* Qur approach:
— Associate dynamic programming states with nodes..
— ...as in a state transition graph.

General recursive model

hils) = min_ {ei(Si,w) + hisa ((6:(S:,2)) |

x; €X;(8S;)
T

State in stage |

Si = (Si1,---,Sik)

Dynamic Programming Model

« Our approach:
— Associate dynamic programming states with nodes..
— ...as in a state transition graph.

General recursive model

hils) = mi
() $¢€T?(]¢?Si)

T

State in stage |

{ci(S’@', ;) + hiv1 ((:(Si, 93@))}

Set of possible

controls

Dynamic Programming Model

« Our approach:
— Associate dynamic programming states with nodes..
— ...as in a state transition graph.

General recursive model

h@'(E) =
T

State in stage |

Set of possible
controls

min

T; <

X (S5)

ci(S;, x;)

T

Immediate

cost

+ hiv1((:i(Si, x;)) }

Dynamic Programming Model

« Our approach:
— Associate dynamic programming states with nodes..
— ...as in a state transition graph.

_ State transition
General recursive model function

|

hils]) = min__{i(S @)+ b (6] Sivi)) }

x; €1X;(S5)

! |

State in stage | Immediate
cost

Set of possible
controls

23

Dynamic Programming Model

« Our approach:
— Associate dynamic programming states with nodes..
— ...as in a state transition graph.

General recursive model

hi(E) =
T

State in stage |

Set of possible
controls

min

xi, €lX; (S5)

Cz’(Siaxi)

T

Immediate

cost

I

State transition
function

v

Pt ((

i

(Siaﬂfz‘))}

T

Costto go

DP Model for Job Sequencing

State: S, =

(Dgati

)

hils) = mi
() $¢€T?(]¢?Si)

T

State in stage |

Set of possible
controls

Set of jobs scheduled so far

Initial state = ((), 0)

™ Finish time of last job scheduled

{c@:(Si,x@-)

T

Immediate

cost

I

i+1 ((Cbz(sza x%)) }

T

Costto go

DP Model for Job Sequencing

State: S, =

controls: X;(Vi, ti) ={1,...

/

(Vbat’&

)

hils) = mi
() x; Eryfli?si)

T

State in stage |

Set of possible
controls

Set of jobs scheduled so far

Initial state = ((), 0)

™ Finish time of last job scheduled

cost

np\ Vi
{C@:(S@‘, 33@) +|h 1+1 ((¢Z(SZ? 937,)) }
I T
Immediate

Costto go

DP Model for Job Sequencing

/

State: S?, — (thz)

Set of jobs scheduled so far

Initial state = ((), 0)

™ Finish time of last job scheduled
Controls: X;(Vi,t:) ={1,...,n}\ 'V
Immediate cost: ¢;((V;,t:), ;) = (max{rsy,,t;} + pa; — dwi)+

hi(E): min {CZ‘(S@',ﬁi)—F z+1((gbz(Sz,azz))}

T x; €lX; (S5)
State in stage | Immediate T
Costto go
cost

Set of possible
controls

27

DP Model for Job Sequencing

/

State: S?, — (Vbat’&)

Set of jobs scheduled so far

Initial state = ((), 0)

™ Finish time of last job scheduled
controls: X;(Vi ;) =41,...,n}\V;

Immediate cost: ¢;((V;,t:), ;) = (max{rsy,,t;} + pa; — dw,ﬂ.)+

Transition: ¢; (Vi), ;) = (V; U{z;}, max{ry,, t:} + pa,)

hi(E): min {ci(Si,xi)—l— z+1((gbz(Sz,azz))}

T x; €lX; (S5)
State in stage | Immediate T
Costto go
cost

Set of possible
controls

28

Job Sequencing Diagram

Decision diagram

X, {}0(4) with states and
1 State variable: =\ costs to go
finish time
of last job
2 {1}3(4) {3}3(6)

State variable: 3(2 Cost to go
jobs scheduled
so far

x; = jthjob in sequence

Relaxed Decision Diagram

* Definition
— Every r-t path of the original diagram appears in the
relaxed diagram with equal or smaller cost.
— So a relaxed diagram may represent some infeasible
solutions.
* Motivation

— Shortest path in the relaxed diagram provides a lower
bound on the optimal value.

Andersen, Hadzi¢, JH, Tiedemanmn (2007)

30

Building a Relaxed Diagram

* Node splitting
— Start with a diagram that represents all solutions (feasible
and infeasible) and refine it.

Andersen, Hadzi¢, JH, Tiedemanmn (2007)

Ciré and van Hoeve (2013)

31

Building a Relaxed Diagram

* Node splitting
— Start with a diagram that represents all solutions (feasible
and infeasible) and refine it.
 Node merger — used here
— Merge some nodes in the exact diagram.

— ...to make the diagram smaller while excluding no
feasible solutions and introducing some infeasible low-cost
solutions.

Andersen, Hadzi¢, JH, Tiedemanmn (2007)

Ciré and van Hoeve (2013)

Bergman, Ciré, van Hoeve, JH (2013)

32

Node Merger

* Don'’t begin with exact diagram
— Itis too large

* Merge nodes as the diagram is constructed

— Combine states of the merged nodes in a way that yields a

valid relaxation.

— This may require additional state variables.

Bergman, Ciré, van Hoeve, JH (2013, 2016)

JH (2017)

33

Relaxed DP Model

* In the example, no new states needed
— Transition function same as before.

Reflects node merger in layeri+ 1
Recursion: l

/

hi(S;) = xe%l(I?S) {ci(Sf,;, i) + hit (\pz‘+1 (057:(51'; xz)))}

Relaxed DP Model

Set of jobs scheduled in all feasible
/ solutions so far

8@' — (‘/7, ts)\ Initial state = (@, 0)

Earliest possible finish time of
Immediately previous job

Transition:
¢%((‘/Za ti)axj) — (Vt& U {.GC,,,}, max{rmi,t,,;} _i_pfl?z)

Recursion:

hi(S;) = a:iergl(if(lsi) {ci(Sf,;, ;) + hit1 (;Oz:+1 (Cbi(Si; %))) }

Node Merger in Relaxation

* Merge states as the diagram is constructed
— States S, T merge to form state S & 1T

* Merger operation must yield valid relaxation

— There are sufficient conditions for this. | JH (2017)

— In state-dependent job sequencing,
(V.t)ye (V',¢') = (VN V' min{t,'})

36

Job Sequencing Diagram

Decision diagram

{}0(4) with states and
T1 r costs to go
3(0)
To {3}3(6)
3(0)
2(2) 1(2)
v 412)6(3) >/{23}5<4) (13}6(5)
10
2(5)

X; = ith job in sequence Example: merge these nodes

Job Sequencing Relaxed Diagram

Relaxed decision
diagram
with states and

costs to go
1
T2 {1}3(4) {3}3(4)
2(2) 1(2)
3 {12}5(2) {13}6(5)

State variable:

min finish time
of last jobs

on paths from root

State variable:
Jobs scheduled
along all paths from root

Job Sequencing Node Merger

Without merger With merger
{2}3 {2}3
A
{12}6 {23}5 {2}5

{12}m{23} mln{5,6}

L1

L2

Job Sequencing Relaxed Diagram

Relaxed decision

: dlag ram Shortest path yields a
with states and 0(2 lower bound of 2 on
costs to go 1J0(2) optimal value of 4.

Lagrangian Relaxation

 “Dualize” hard constraints.
— By moving them into the objective functions

Consider a problem:

min {f(z) | g(x) = 0}

41

Lagrangian Relaxation

 “Dualize” hard constraints.
— By moving them into the objective functions

Consider a problem:

min {f(z) | g(x) = 0}

Lagrangian relaxation:

6(A) = min {f(x) + X" g(z)}

42

Lagrangian Relaxation

 “Dualize” hard constraints.
— By moving them into the objective functions

Consider a problem:

min {f(z) | g(x) = 0}

Lagrangian relaxation:

6(A) = min {f(x) + X" g(z)}

Lagrangian dual:
max {6(N)}

43

Lagrangian Relaxation on DD

 “Dualize” hard constraints.
— By moving them into the objective functions

In our example:

glx) =0 <« alldiff(xq,....,.z,)

To formulate this, let

1=1
Bergman, Cire, van Hoeve (2015) \ L 1 if L =]
0 otherwise «

Lagrangian Relaxation on DD

Lagrange penalties

included in arc Path length now includes

total Lagrange penalty

costs
1
1(0+ A1 — ZA) 300+ A3 =2, i)
T2
2(2—|—)\Q) 1 1(24‘)\1)
3
3(2+ A3) 2(5+ As)

Bergman, Cire, van Hoeve (2015)

Solvilng the Lagrangian Dual

« Solve by subgradient optimization
— Use Polyak’s method to determine stepsize

AHL = X 4oy, lg ()

Subgradient, where xk is
Stepsize, given by value of x obtained when

i K
gr _ O(Ak) computing 6(A¥)

~ g(a®)]]2

where 6* = known upper bound on optimal value.
Let 6* be value of best known job sequence

Ok

46

Previous DD-based Bounds

JH (2017)

« Job sequencing with state-dependent processing
times

— Processing time depends on which jobs have already
been processed.

— Relaxed DD requires an additional state variable.

Transition: /

i (Vi Uisti),) = (Vi U HU|U {2}, masc{ra,, i} + pa, (U5))

Node merger:

VU, t) e (V.U ¢') = (VNV',UUU,min{t,t'})

47

Previous DD-based Bounds

JH (2017) 12 jobs

80

70 3.2s 27 s

60

50 41 s

Bound
5

30
30s

20
46 s

10

39s
0

10 100 1000 10000 100000

Using finish time heuristic Maximum width

Previous DD-based Bounds

JH (2017) 14 jobs
60
142 s 1297 s
50
40
39s 956 s
e
S 30 17 s
(@]
o \
72s 1568 s
20
136 s 1003 s
L,
10 56s
932 s
0 /4
100 1000 10000 100000

Maximum width

Using finish time heuristic

Previous DD-based Bounds

JH (2017)

* Tight bounds, but it doesn't scale
— Can get optimal value using 10% width of exact DD.
— But 10% of exact DD grows exponentially.
— Lower tail is weak.

Transition:
¢i(Vi, Ui, i),) = (Vi U{x;}, Uy U {z;}, max{ry,, t; } + ps, (U;))

Node merger:

VU, t) e (V.U ¢') = (VNV',UUU,min{t,t'})

50

Previous DD-based Bounds

Bergman, Cire, van Hoeve (2015)

» Traveling salesman with time windows.

— Objective is total travel time

— DD represents only alldiff, does not incorporate time
windows or measure tardiness.

— Add Lagrange multipliers to DD
— Use inside CP solver.

Transition:

oi(Vi,zi) = (Vi U{z;})

Node merger:

VeV =vnVv

51

Previous DD-based Bounds

Scatter plot of optimality gap at the root node
35 I I T I I I

With Lagrange multipliers

Without Lagrange multipliers

Bergman, Cire, van Hoeve (2015)

Previous DD-based Bounds

Bergman, Cire, van Hoeve (2015)

* Need stand-alone DD that bounds other objectives.
— Tardiness requires one or more additional state variables

— How to use more state variables and still implement
Lagrangian relaxation in a relaxed DD of practical size?

— How to get tighter bounds, e.g. 1-2% (without branching)?

Transition:

oi(Vi,zi) = (Vi U{z;})

Node merger:
VeV =vnV

53

Combining DD & Lagrangian Duality

* Express g(x) in terms of immediate penalty

functions n —
1=1

— In our example,

g(zc):Z(—[izl]—l—[a?i:l], ooy =i = 1]+ [2; = n])

54

Combining DD & Lagrangian Duality

* |dentify state variables on which immediate cost
depends.

— In our example, cost depends on x; and state variable t,

Ci((vtiat’i)aajj) - (max{rm,t,,;} + Py — dwz)—l_

 ldentify state variables on which immediate penalty

functions depend

— In our example, they depend only on x; and no state
variables

vi=(—li=14[x;=1], ..., —[i=1]+ [z; = n])

55

Combining DD & Lagrangian Duality

Theorem. Lagrangian relaxation can be implemented
In a relaxed DD if nodes are merged only when their
states agree on the values of the state variables on
which the immediate cost functions and the immediate
penalty functions depend.

This can be applied to dynamic programming
models in general.

56

Survey of Job Sequencing Problems

* Use the theorem to determine for which problems
it IS practical to implement Lagrangian relaxation

on DDs.

— In all problems we consider, the immediate Lagrangian
penalty depends only on x; and not on any state
variables.

— S0 we can merge states whenever they agree on state
variables on which the immediate cost depends.

— We will merge all such states to keep the relaxed DD as
small as possible.

57

Survey of Job Sequencing Problems

* Minimizing tardiness subject to time windows
— In our example, cost depends on x; and state variable t;

ci((Viti),z;) = (max{ra,, ti} + po, — da,) "

— We can merge states that agree on t.. The other state
variable V; will lose information, but perhaps retain enough
to generate a good bound.

— This is practical, as it results in a relaxed DD of
reasonable size.

— We will experiment with Crauwells-Potts-Wassenhove
(CPW) instances.

58

Survey of Job Sequencing Problems

* Minimizing earliness + tardiness wrt time windows

— Measure lateness by due date d; and earliness by desired
release date e;.

— Cost now depends on x; and 2 state variables s;, t;
+ +
(‘/iati)a'rj) — g, (Si — Pz; T eaf;i) + /6931 (t@ T Px; — d:r:z)

— We only can merge states that agree on s, and t.. But
these states are initially equal. So they remain equal
throughout the relaxed DD. So in effect, cost depends
on only one state variable.

— This is practical, as it results in a relaxed DD of
reasonable size.

— We will experiment with Biskup-Feldman instances.

59

Survey of Job Sequencing Problems

* Minimizing tardiness with time-dependent costs or
processing times
— Two senses:
— Dependent on position of each job in the sequence.
— Dependent on clock time when job is processed.

— Easy to check that in either case, costs depends only on
current stage (not a state variable) and state variable t;

— This is practical, and similar to previous problems.

60

Survey of Job Sequencing Problems

* Traveling salesman problem
— ...without time windows.

— Cost depends only on a state variable y, representing

previous job.
Ci ((‘/za yi)a xj) = Py;x;

— This is practical and used in

Bergman, Cire, van Hoeve (2015)

61

Survey of Job Sequencing Problems

* Traveling salesman problem with time windows
— Cost depends on state variables t; and vy;.

Cz((mayutz)axj) — (Tsz’ o t’é)—'_ _|_py1,937,

— Mergers must agree on two state variables and can
result in huge relaxed DD.

— This is confirmed by experiments on Dumas instances.
— Not practical.

— So problem addressed by Bergman, Cire, van Hoeve (2015)
cannot be bounded by DD + Lagrangian that incorporates
time windows.

— Also DD + Lagrangian is impractical
for TSPTW that minimizes total tardiness.

62

Survey of Job Sequencing Problems

* Minimizing stardiness with state-dependent
processing times.
— Cost depends on state variables t, and U..

I
¢i((Vi, U ty),) = (max{’r'xi,ti} + s, (U;) — dwi)

— Mergers must agree on two state variables and can
result in huge relaxed DD.

— Not practical.

— So problem addressed by | JH (2017)
cannot be bounded by DD + Lagrangian.

63

Computational Results

* To test quality of bound...

— We need instances with known optimal solutions or
very good heuristic solutions.

— Instances large enough to be interesting are very hard to
solve exactly.

64

Computational Results

« 50 Crauwels-Potts-Wassenhove (CPW) instances
— Only a handful solved to optimality in 1998
— Most have been solved to proven optimality since then.

65

Computational Results

« 50 Crauwels-Potts-Wassenhove (CPW) instances
— Only a handful solved to optimality in 1998
— Most have been solved to proven optimality since then.

* 60 Biskup-Feldman instances
— Intensely studied problem since Ow and Morton (1989).

— Highly refined heuristics developed for these instances
since their introduction in 2001

— None solved to proven optimality
— No useful bounds known
— Compare with best known solutions (Ying, Lin, Lu 2017)

Computational Results

« 50 Crauwels-Potts-Wassenhove (CPW) instances
— Only a handful solved to optimality in 1998
— Most have been solved to proven optimality since then.

* 60 Biskup-Feldman instances
— Intensely studied problem since Ow and Morton (1989).

— Highly refined heuristics developed for these instances
since their introduction in 2001

— None solved to proven optimality
— No useful bounds known
— Compare with best known solutions (Ying, Lin, Lu 2017)

— We need a gap < 1% or 2% to be really useful

67

Implementation

 Code written in C++
— Run on my laptop.

« Solving the Lagrangean dual
— Convergence typically slow for Lagrangian duality.

Let it run for 50,000 iterations

Iterations are fast since each is an easy
shortest-path problem.

Bound almost as good if truncated much earlier.

Almost all reported computation time is due to
solving Lagrangian dual.

Computation time is worth it to get a good bound
on a hard combinatorial problem.

68

Computational Results
CPW instances, 40 jobs

40 jobs 40 jobs
Instance Target Bound Gap |Percent Instance Target Bound Gap | Percent
gap gap
1 913 883 30| 3.29% 14 *14377 14100 277| 1.93%
2 1225 1179 46 | 3.76% 15 26914 26755 159 0.59%
3 537 483 54 | 10.06% 16 72317 72120 197| 0.27%
4 2094 2047 47 | 2.24% 17 78623 78501 122| 0.16%
5 990 980 10 | 1.01% 18 74310 74131 179 0.24%
6 6955 6939 16 | 0.23% 19 77122 77083 39| 0.05%
7T 6324 6299 25 | 0.40% 20 63229 63217 121 0.02%
8 6865 6743 122 | 1.78% 21 77774 77754 201 0.03%
9 16225 16049 176 | 1.08% 22 100484 100456 281 0.03%
10 9737 9591 146 | 1.50% 23 135618 135617 1] 0.001%
11 17465 17417 48 | 0.27% 24 119947 119914 33| 0.03%
12 19312 19245 67 | 0.35% 25 128747 128705 42| 0.03%
13 29256 29003 253 | 0.86% *Best known solution
*Best known solution

Time = about 20 minutes per instance 69

Computational Results
CPW instances, 50 jobs

50 jobs
Instance Target Bound Gap | Percent
gap
1 2134 2100 341 1.59%
2 1996 1864 132| 6.61%
3 2583 2552 31| 1.20%
4 2691 2673 18| 0.67%
5 1518 1342 176 | 11.59%
6 26276 26054 222| 0.84%
7 11403 11128 275 2.41%
8 8499 8490 91 0.11%
9 9884 9507 377| 3.81%
10 10655 10594 61| 0.57%
11 *43504 43472 321 0.07%
12 *36378 36303 75| 0.21%
13 45383 45310 73| 0.16%

50 jobs

Instance Target Bound Gap| Percent
gap

14 *51785 51702 R3] 0.16%
15 38934 38910 471 0.12%
16 87902 87512 390| 0.44%
17 84260 84066 194| 0.23%
18 104795 104633 162 0.15%
19 *89299 89163 136| 0.15%
20 72316 72222 94| 0.13%
21 214546 214476 701 0.03%
22 150800 150800 0 0%
23 224025 223922 103| 0.05%
24 116015 115990 251 0.02%
25 240179 240172 7| 0.003%

*Best known solution

*Best known solution

Time = about 40 minutes per instance

70

Computational Results

CPW results

Bounds are reasonably tight.

42 of 50 bounds < 2%

35 of 50 bounds < 1%.

13 of 50 bounds < 0.1%

3 bounds really bad

Optimality proved for 1 instance.

71

Computational Results

Biskup-Feldman instances, 20 jobs

(h1,h2) = (0.1,0.2)

(h1,h2) = (0.2,0.5)

Instance | Target Bound Gap |Percent
gap
20 jobs
1 4089 4089 0 0%
2 8251 8244 71 0.08%
3 5881 5877 4 | 0.07%
4 8977 8971 6 | 0.07%
5 4028 4024 4 1 0.10%
6 6306 6288 18 | 0.29%
71 10204 10204 0 0%
8 3742 3739 31 0.08%
9 3317 3310 71 0.21%
10 4673 4669 4 | 0.09%

Instance | Target Bound Gap |Percent
gap
20 jobs
1 1162 1162 0 0%
2 2770 2766 41 0.14%
3 1675 1669 6 | 0.36%
4 3113 3108 51 0.16%
5 1192 1187 51 0.42%
6 1557 1557 0 0%
71 13573 3569 41 0.11%
8 990 979 11 1.11%
9 1056 1055 1| 0.09%
10 1355 1349 6 | 0.44%

Time = about 30 seconds per instance

72

Computational Results

Biskup-Feldman instances, 50 jobs

(h1,ha) = (0.1,0.2)

(h1,h2) = (0.2,0.5)

Instance | Target Bound Gap | Percent
gap
50 jobs
1 39250 39250 0 0%
21 29043 29043 0 0%
31 33180 33180 0 0%
41 25856 25847 91 0.03%
5| 31456 31439 17| 0.05%
6| 33452 33444 81 0.02%
T 42234 42228 6| 0.01%
8| 42218 42203 15| 0.04%
91 33222 33218 41 0.01%
10| 31492 31481 11 0.03%

Instance | Target Bound Gap |Percent
gap
50 jobs
1| 12754 12752 21 0.02%
2 8468 8463 51 0.06%
3 9935 9935 0 0%
4 7373 7335 38 | 0.52%
5 8947 8938 9| 0.10%
6| 10221 10213 81 0.08%
71 12002 11981 21| 0.17%
8| 11154 11141 13| 0.12%
91 10968 10965 31 0.03%
10 9652 9650 31 0.03%

Time = about 8 minutes per instance

73

Computational Results

Biskup-Feldman instances, 100 jobs

(h1,h2) = (0.1,0.2)

(h1,h2) = (0.2,0.5)

Instance | Target Bound Gap |Percent
gap

100 jobs
1139573 139556 17 | 0.01%
21120484 120465 19 | 0.02%
31124325 124289 36 | 0.03%
41122901 122876 25 |1 0.02%
51119115 119101 14 | 0.01%
6| 133545 133536 9 10.007%
71129849 129830 19 | 0.01%
8| 153965 153958 7 10.005%
91111474 111466 8 10.007%
10 | 112799 112792 7 10.006%

Instance | Target Bound Gap |Percent
gap
100 jobs
1| 39495 39467 28 | 0.07%
2| 35293 35266 27 | 0.08%
3| 38174 38150 24 | 0.06%
4| 35498 35467 31 | 0.09%
5| 34860 34826 34 | 0.10%
6| 35146 35123 23 | 0.07%
71 39336 39303 33 | 0.08%
8| 44963 44927 36 | 0.08%
9| 31270 31231 39| 0.12%
10 | 34068 34048 20 | 0.06%

Time = about 65 minutes per instance

74

Computational Results

* Biskup-Feldman results

Bounds are very tight
— perhaps even tighter wrt optimal values
60 of 60 bounds < 2%
59 of 60 bounds < 1%.
44 of 60 bounds < 0.1%
12 of 50 bounds < 0.01%
Optimality proved for 8 instances (closing these instances)

75

Future Work

« Explore DP models for job shop scheduling, etc.

— Check if DD + Lagrangian relaxation is practical

 Extend to other DP models.

« Extend Lagrangian relaxation to stochastic DDs.

— They currently provide weak bounds.

76

Future Work

* Problem: diagrams of a fixed size lose their ability
to generate bounds as instances scale up.
— Bound does not rise above zero until relaxed diagram
width is 1/1000 to 1/25 that of exact diagram
« This suggests a combination with other bounding

techniques
— ...that can yield a nonzero bound in smaller relaxed
diagrams.

— Such as Lagrangean relaxation obtained by modifying
costs in the diagram..

Bergman, Ciré, van Hoeve (2015)

77

Future Work

* Bounds for stochastic dynamic programming
— From stochastic diagrams.
— Node merger can again provide a valid relaxation.

— Atheoretical result is available.
— Awaiting good merger heuristics and computational tests.

78

