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Motivation

• Job sequencing problems are usually solved by 

heuristics.

• Bounds are needed to judge quality of solutions.

• It’s really hard to derive tight bounds for combinatorial 

problems, except in a branching framework.
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Motivation

• Job sequencing problems are usually solved by 

heuristics.

• Bounds are needed to judge quality of solutions.

• It’s really hard to derive tight bounds for combinatorial 

problems, except in a branching framework.

• Decision diagrams can provide bounds.

• But they are weak as the problem scales up.

• Lagrangian duality can provide bounds.

• But they are usually weak because of duality gap.

• How about DDs + Lagrangian?

• When can they be combined?
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Objectives

• Derive tight bounds for job sequencing problems.

• Use Lagrangian relaxation to tighten bounds from 

decision diagrams.
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Objectives

• Derive tight bounds for job sequencing problems.

• Use Lagrangian relaxation to tighten bounds from 

decision diagrams.

• Generalize to dynamic programming.

• General conditions under which Lagrangian relaxation 

can combine with decision diagrams.

• Apply to specific job-sequencing problems.

• Which ones are suitable for this kind of bounding?

• Compute tight bounds for some well-known benchmarks.
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Build on Recent Work

• Tight DD-based bounds for job sequencing with 

state-dependent processing times.

• Approach doesn’t scale up.

• Add Lagrangian relaxation.
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Build on Recent Work

• Tight DD-based bounds for job sequencing with 

state-dependent processing times.

• Approach doesn’t scale up.

• Add Lagrangian relaxation.

• Bounds from DDs+Lagrangian for TSP with time 

windows within CP solver.

• Use stand-alone DD.

• Extend to other objectives, e.g. min tardiness.

• Find general conditions for combining DDs and 

Lagrangian relaxation.
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JH (2017)

Bergman, Cire, van Hoeve (2015)



Decision Diagrams

• Graphical encoding of a 

boolean function

– Historically used for circuit design 

& verification

– Binary diagrams easily extended 

to multivalued diagrams.

– Unique reduced diagram for 

a give variable ordering.
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Decision Diagrams

• Adapt to optimization and

constraint programming

– Paths from top to T represent

feasible solutions

– Can delete paths to F

– Path lengths represent costs.

– Shortest path is optimal solution.
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Hadžić and JH (2006, 2007)



Job Sequencing Example

• Problem: sequence jobs with given processing times 

– Minimize tardiness subject to time windows.
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Job Sequencing Example

• Problem: sequence jobs with given processing times 

– Minimize tardiness subject to time windows
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Job Sequencing Example

𝑥𝑗 = j th job in sequence

Decision diagram 

for job sequencing

𝑥𝑗

Each r-t path corresponds 

to a feasible solution

Tardiness 

of job j



Job Sequencing

𝑥𝑗 = j th job in sequence

An optimal solution:

Sequence 2-3-1

Schedule [1,3], [3,5], [5,7]

Tardiness 0 + 0 + 4 = 4𝑥𝑗

Each r-t path corresponds 

to a feasible solution

Tardiness 

of job j



Building a Decision Diagram

• Our approach:

– Associate dynamic programming states with nodes..

– …as in a state transition graph.
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Dynamic Programming Model

• Our approach:

– Associate dynamic programming states with nodes..

– …as in a state transition graph.
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General recursive model

Cost to go

State transition 

function

Immediate

cost
Set of possible 

controls

State in stage i



DP Model for Job Sequencing

State:
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State:

Controls:
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Cost to go
Immediate

cost
Set of possible 

controls

State in stage i

Set of jobs scheduled so far

Finish time of last job scheduled

Initial state = 



State:

Controls:

Immediate cost:

Transition:
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Set of jobs scheduled so far

Finish time of last job scheduled

Initial state = 

DP Model for Job Sequencing

Cost to go
Immediate

cost
Set of possible 

controls

State in stage i



Job Sequencing Diagram

𝑥𝑗 = j th job in sequence

𝑥𝑗
State variable:

finish time 

of last job

State variable:

jobs scheduled 

so far

Cost to go

Decision diagram 

with states and

costs to go



Relaxed Decision Diagram

• Definition

– Every r-t path of the original diagram appears in the 

relaxed diagram with equal or smaller cost.

– So a relaxed diagram may represent some infeasible 

solutions.

• Motivation

– Shortest path in the relaxed diagram provides a lower 

bound on the optimal value.

30

Andersen, Hadžić, JH, Tiedemanmn (2007) 



Building a Relaxed Diagram

• Node splitting

– Start with a diagram that represents all solutions (feasible 

and infeasible) and refine it.
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Building a Relaxed Diagram

• Node splitting

– Start with a diagram that represents all solutions (feasible 

and infeasible) and refine it.

• Node merger – used here

– Merge some nodes in the exact diagram.

– …to make the diagram smaller while excluding no 

feasible solutions and introducing some infeasible low-cost 

solutions.
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Andersen, Hadžić, JH, Tiedemanmn (2007) 

Bergman, Ciré, van Hoeve, JH (2013) 

Ciré and van Hoeve (2013) 



Node Merger

• Don’t begin with exact diagram

– It is too large

• Merge nodes as the diagram is constructed

– Combine states of the merged nodes in a way that yields a 

valid relaxation.

– This may require additional state variables.
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Bergman, Ciré, van Hoeve, JH (2013, 2016) 

JH (2017)



Relaxed DP Model

• In the example, no new states needed

– Transition function same as before.

Reflects node merger in layer i + 1

Recursion:



Relaxed DP Model

Transition:

Set of jobs scheduled in all feasible 

solutions so far

Earliest possible finish time of 

immediately previous job

Initial state = 

Recursion:



Node Merger in Relaxation

• Merge states as the diagram is constructed

– States S, T merge to form state

• Merger operation must yield valid relaxation

– There are sufficient conditions for this.

– In state-dependent job sequencing,

36

JH (2017)



Job Sequencing Diagram

𝑥𝑖 = i th job in sequence

Decision diagram 

with states and

costs to go

Example: merge these nodes



Job Sequencing Relaxed Diagram

State variable:

Jobs scheduled

along all paths from root

State variable:

min finish time 

of last jobs 

on paths from root

Relaxed decision 

diagram 

with states and

costs to go



Job Sequencing Node Merger

{2}3

{12}6 {23}5

Without merger With merger

1 3

{2}5

{2}3

1 3

{12}{23} min{5,6}



Job Sequencing Relaxed Diagram

Relaxed decision 

diagram 

with states and

costs to go

Shortest path yields a 

lower bound of 2 on 

optimal value of 4.



Lagrangian Relaxation

• “Dualize”  hard constraints.

– By moving them into the objective functions
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Lagrangian Relaxation
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Consider a problem:

Lagrangian relaxation:

Lagrangian dual:



Lagrangian Relaxation on DD

• “Dualize”  hard constraints.

– By moving them into the objective functions

44

In our example:

To formulate this, let

Bergman, Cire, van Hoeve (2015)



Lagrangian Relaxation on DD

Lagrange penalties 

included in arc 

costs

Path length now includes 

total Lagrange penalty

Bergman, Cire, van Hoeve (2015)



Solvilng the Lagrangian Dual

• Solve by subgradient optimization

– Use Polyak’s method to determine stepsize

46

Subgradient, where xk is 

value of x obtained when 

computing θ(λk)

Stepsize, given by

where θ* = known upper bound on optimal value.

Let θ* be value of best known job sequence



Previous DD-based Bounds

• Job sequencing with state-dependent processing 

times

– Processing time depends on which jobs have already 

been processed.

– Relaxed DD requires an additional state variable.

47

Transition:

Node merger:

JH (2017)



12 jobs

Using finish time heuristic

JH (2017)

Previous DD-based Bounds



14 jobs

Using finish time heuristic

JH (2017)

Previous DD-based Bounds



Previous DD-based Bounds

• Tight bounds, but it doesn’t scale

– Can get optimal value using 10% width of exact DD.

– But 10% of exact DD grows exponentially.

– Lower tail is weak.

50

Transition:

Node merger:

JH (2017)



Previous DD-based Bounds

• Traveling salesman with time windows.

– Objective is total travel time

– DD represents only alldiff, does not incorporate time 

windows or measure tardiness.

– Add Lagrange multipliers to DD

– Use inside CP solver.

51

Transition:

Node merger:

Bergman, Cire, van Hoeve (2015)



Previous DD-based Bounds

Bergman, Cire, van Hoeve (2015)



Previous DD-based Bounds

• Need stand-alone DD that bounds other objectives.

– Tardiness requires one or more additional state variables

– How to use more state variables and still implement 

Lagrangian relaxation in a relaxed DD of practical size?

– How to get tighter bounds, e.g. 1-2% (without branching)?

53

Transition:

Node merger:

Bergman, Cire, van Hoeve (2015)



Combining DD & Lagrangian Duality

• Express g(x) in terms of immediate penalty 

functions

– In our example, 

54

Subset of state variables

Here, 



Combining DD & Lagrangian Duality

• Identify state variables on which immediate cost 

depends.

– In our example, cost depends on xi and state variable ti

• Identify state variables on which immediate penalty 

functions depend

– In our example, they depend only on xi and no state 

variables
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Combining DD & Lagrangian Duality

Theorem. Lagrangian relaxation can be implemented 

in a relaxed DD if nodes are merged only when their 

states agree on the values of the state variables on 

which the immediate cost functions and the immediate 

penalty functions depend.

This can be applied to dynamic programming 

models in general.
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Survey of Job Sequencing Problems

• Use the theorem to determine for which problems 

it is practical to implement Lagrangian relaxation 

on DDs.

– In all problems we consider, the immediate Lagrangian

penalty depends only on xi and not on any state 

variables.

– So we can merge states whenever they agree on state 

variables on which the immediate cost depends.

– We will merge all such states to keep the relaxed DD as 

small as possible.
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Survey of Job Sequencing Problems

• Minimizing tardiness subject to time windows

– In our example, cost depends on xi and state variable ti

– We can merge states that agree on ti.  The other state 

variable Vi will lose information, but perhaps retain enough 

to generate a good bound.

– This is practical, as it results in a relaxed DD of 

reasonable size.

– We will experiment with Crauwells-Potts-Wassenhove

(CPW) instances.
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Survey of Job Sequencing Problems

• Minimizing earliness + tardiness wrt time windows

– Measure lateness by due date dj and earliness by desired 

release date ej.

– Cost now depends on xi and 2 state variables si, ti

– We only can merge states that agree on si and ti.  But 

these states are initially equal.  So they remain equal 

throughout the relaxed DD.  So in effect, cost depends 

on only one state variable.

– This is practical, as it results in a relaxed DD of 

reasonable size.

– We will experiment with Biskup-Feldman instances.
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Survey of Job Sequencing Problems

• Minimizing tardiness with time-dependent costs or 

processing times

– Two senses:

– Dependent on position of each job in the sequence.

– Dependent on clock time when job is processed.

– Easy to check that in either case, costs depends only on 

current stage (not a state variable) and state variable ti

– This is practical, and similar to previous problems.
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Survey of Job Sequencing Problems

• Traveling salesman problem

– …without time windows.

– Cost depends only on a state variable yi representing 

previous job.

– This is practical and used in 
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Bergman, Cire, van Hoeve (2015)



Survey of Job Sequencing Problems

• Traveling salesman problem with time windows

– Cost depends on state variables ti and yi.

– Mergers must agree on two state variables and can 

result in huge relaxed DD.

– This is confirmed by experiments on Dumas instances.

– Not practical.

– So problem addressed by

cannot be bounded by DD + Lagrangian that incorporates 

time windows.

– Also DD + Lagrangian is impractical 

for TSPTW that minimizes total tardiness.
62

Bergman, Cire, van Hoeve (2015)



Survey of Job Sequencing Problems

• Minimizing stardiness with state-dependent 

processing times.

– Cost depends on state variables ti and Ui.

– Mergers must agree on two state variables and can 

result in huge relaxed DD.

– Not practical.

– So problem addressed by 

cannot be bounded by DD + Lagrangian.
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JH (2017)



Computational Results

• To test quality of bound… 

– We need instances with known optimal solutions or 

very good heuristic solutions.

– Instances large enough to be interesting are very hard to 

solve exactly.
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Computational Results

• 50 Crauwels-Potts-Wassenhove (CPW) instances

– Only a handful solved to optimality in 1998

– Most have been solved to proven optimality since then.
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Computational Results

• 50 Crauwels-Potts-Wassenhove (CPW) instances

– Only a handful solved to optimality in 1998

– Most have been solved to proven optimality since then.

• 60 Biskup-Feldman instances

– Intensely studied problem since Ow and Morton (1989).

– Highly refined heuristics developed for these instances 

since their introduction in 2001

– None solved to proven optimality

– No useful bounds known

– Compare with best known solutions (Ying, Lin, Lu 2017)

– We need a gap < 1% or 2% to be really useful
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Implementation

• Code written in C++

– Run on my laptop.

• Solving the Lagrangean dual

– Convergence typically slow for Lagrangian duality.

– Let it run for 50,000 iterations

– Iterations are fast since each is an easy 

shortest-path problem.

– Bound almost as good if truncated much earlier.

– Almost all reported computation time is due to 

solving Lagrangian dual.

– Computation time is worth it to get a good bound 

on a hard combinatorial problem.
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Computational Results

CPW instances, 40 jobs

69Time = about 20 minutes per instance
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Computational Results

• CPW results

– Bounds are reasonably tight.

– 42 of 50 bounds < 2%

– 35 of 50 bounds < 1%.

– 13 of 50 bounds < 0.1%

– 3 bounds really bad

– Optimality proved for 1 instance.
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Computational Results

Biskup-Feldman instances, 20 jobs

72Time = about 30 seconds per instance



Computational Results

Biskup-Feldman instances, 50 jobs

73Time = about 8 minutes per instance



Computational Results

Biskup-Feldman instances, 100 jobs

74Time = about 65 minutes per instance



Computational Results

• Biskup-Feldman results

– Bounds are very tight 

– perhaps even tighter wrt optimal values

– 60 of 60 bounds < 2%

– 59 of 60 bounds < 1%.

– 44 of 60 bounds < 0.1%

– 12 of 50 bounds < 0.01%

– Optimality proved for 8 instances (closing these instances)
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Future Work

• Explore DP models for job shop scheduling, etc.

– Check if DD + Lagrangian relaxation is practical

• Extend to other DP models.

• Extend Lagrangian relaxation to stochastic DDs.

– They currently provide weak bounds.
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Future Work

• Problem:  diagrams of a fixed size lose their ability 

to generate bounds as instances scale up.

– Bound does not rise above zero until relaxed diagram 

width is 1/1000 to 1/25 that of exact diagram

• This suggests a combination with other bounding 

techniques

– …that can yield a nonzero bound in smaller relaxed 

diagrams.

– Such as Lagrangean relaxation obtained by modifying 

costs in the diagram..
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Bergman, Ciré, van Hoeve (2015) 



Future Work

• Bounds for stochastic dynamic programming

– From stochastic diagrams.

– Node merger can again provide a valid relaxation.

– A theoretical result is available.

– Awaiting good merger heuristics and computational tests.
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