Improved Job Sequencing Bounds from Decision Diagrams

John Hooker

CP 2019 University of Connecticut, USA

- Job sequencing problems are usually solved by heuristics.
 - Bounds are needed to judge quality of solutions.
 - It's **really hard** to derive tight bounds for combinatorial problems, except in a branching framework.

- Job sequencing problems are usually solved by heuristics.
 - Bounds are needed to judge quality of solutions.
 - It's **really hard** to derive tight bounds for combinatorial problems, except in a branching framework.
- **Decision diagrams** can provide bounds.
 - But they are **weak** as the problem **scales up**.

- Job sequencing problems are usually solved by heuristics.
 - Bounds are needed to judge quality of solutions.
 - It's **really hard** to derive tight bounds for combinatorial problems, except in a branching framework.
- **Decision diagrams** can provide bounds.
 - But they are **weak** as the problem **scales up**.
- Lagrangian duality can provide bounds.
 - But they are usually **weak** because of **duality gap**.

- Job sequencing problems are usually solved by heuristics.
 - Bounds are needed to judge quality of solutions.
 - It's **really hard** to derive tight bounds for combinatorial problems, except in a branching framework.
- **Decision diagrams** can provide bounds.
 - But they are **weak** as the problem **scales up**.
- Lagrangian duality can provide bounds.
 - But they are usually **weak** because of **duality gap**.
- How about **DDs + Lagrangian**?
 - When can they be combined?

Objectives

- Derive tight bounds for job sequencing problems.
 - Use Lagrangian relaxation to tighten bounds from decision diagrams.

Objectives

- Derive tight bounds for job sequencing problems.
 - Use Lagrangian relaxation to tighten bounds from decision diagrams.
- Generalize to dynamic programming.
 - **General conditions** under which Lagrangian relaxation can **combine** with decision diagrams.

Objectives

- Derive tight bounds for job sequencing problems.
 - Use Lagrangian relaxation to tighten bounds from decision diagrams.
- Generalize to dynamic programming.
 - **General conditions** under which Lagrangian relaxation can **combine** with decision diagrams.
- Apply to specific job-sequencing problems.
 - Which ones are suitable for this kind of bounding?
 - Compute tight bounds for some well-known benchmarks.

Build on Recent Work

- Tight DD-based bounds for job sequencing with state-dependent processing times.
 - Approach doesn't scale up.
 - Add Lagrangian relaxation.

JH (2017)

Build on Recent Work

- Tight DD-based bounds for job sequencing with state-dependent processing times.
 - Approach doesn't scale up.
 - Add Lagrangian relaxation.

JH (2017)

- Bounds from DDs+Lagrangian for TSP with time windows within CP solver.
 - Use stand-alone DD.
 - Extend to other objectives, e.g. min tardiness.
 - Find **general conditions** for combining DDs and Lagrangian relaxation.

Decision Diagrams

- Graphical encoding of a boolean function
 - Historically used for circuit design & verification
 - Binary diagrams easily extended to multivalued diagrams.
 - Unique reduced diagram for a give variable ordering.

Lee (1959), Bryant (1986)

Decision Diagrams

- Adapt to optimization and constraint programming
 - Paths from top to T represent feasible solutions
 - Can delete paths to F
 - Path lengths represent costs.
 - **Shortest** path is **optimal** solution.

Hadžić and JH (2006, 2007)

- Problem: sequence jobs with given processing times
 - Minimize tardiness subject to time windows.

$$\begin{array}{c|c|cccc} j & r_j & p_j & d_j \\ \hline 1 & 0 & 3 & 5 \\ 2 & 1 & 2 & 3 \\ 3 & 1 & 2 & 5 \end{array}$$

- Problem: sequence jobs with given processing times
 - Minimize tardiness subject to time windows

- Problem: sequence jobs with given processing times
 - Minimize tardiness subject to time windows

- Problem: sequence jobs with given processing times
 - Minimize tardiness subject to time windows

Job Sequencing

Building a Decision Diagram

- Our approach:
 - Associate dynamic programming **states** with nodes..
 - ...as in a state transition graph.

- Our approach:
 - Associate dynamic programming states with nodes..
 - ...as in a state transition graph.

General recursive model

$$h_i(\mathbf{S}_i) = \min_{x_i \in X_i(\mathbf{S}_i)} \left\{ c_i(\mathbf{S}_i, x_i) + h_{i+1} \left((\phi_i(\mathbf{S}_i, x_i)) \right) \right\}$$

State in stage *i*

$$\boldsymbol{S}_i = \left(S_{i1}, \dots, S_{ik}\right)$$

- Our approach:
 - Associate dynamic programming states with nodes..
 - ...as in a state transition graph.

General recursive model

$$h_{i}(\mathbf{S}_{i}) = \min_{\substack{x_{i} \in X_{i}(\mathbf{S}_{i}) \\ \uparrow}} \left\{ c_{i}(\mathbf{S}_{i}, x_{i}) + h_{i+1} \left((\phi_{i}(\mathbf{S}_{i}, x_{i})) \right) \right\}$$

State in stage *i*
Set of possible controls

- Our approach:
 - Associate dynamic programming states with nodes..
 - ...as in a state transition graph.

General recursive model

$$h_{i}(\mathbf{S}_{i}) = \min_{\substack{x_{i} \in X_{i}(\mathbf{S}_{i}) \\ \uparrow}} \left\{ \begin{array}{c} c_{i}(\mathbf{S}_{i}, x_{i}) \\ \uparrow \\ \text{Immediate} \\ \text{Set of possible} \\ \text{controls} \end{array} \right\} + h_{i+1} \left(\left(\phi_{i}(\mathbf{S}_{i}, x_{i}) \right) \right\}$$

- Our approach:
 - Associate dynamic programming states with nodes..
 - ...as in a state transition graph.

- Our approach:
 - Associate dynamic programming states with nodes..
 - ...as in a state transition graph.

Set of jobs scheduled so far

Initial state = $(\emptyset, 0)$

State: $S_i = (V_i, t_i)$ Finish time of last job scheduled

Set of jobs scheduled so far

Initial state = $(\emptyset, 0)$

 (V_i, t_i) Finish time of last job scheduled

Controls: $X_i(V_i, t_i) = \{1, \ldots, n\} \setminus V_i$

State: $S_i =$

Set of jobs scheduled so far

Initial state = $(\emptyset, 0)$

State: $S_i = (V_i, t_i)$ Finish time of last job scheduled

Controls: $X_i(V_i, t_i) = \{1, ..., n\} \setminus V_i$

Immediate cost: $c_i((V_i, t_i), x_j) = (\max\{r_{x_i}, t_i\} + p_{x_i} - d_{x_i})^+$

Set of jobs scheduled so far

Initial state = $(\emptyset, 0)$

State: $S_i = (V_i, t_i)$ Finish time of last job scheduled

Controls: $X_i(V_i, t_i) = \{1, \ldots, n\} \setminus V_i$

Immediate cost: $c_i((V_i, t_i), x_j) = (\max\{r_{x_i}, t_i\} + p_{x_i} - d_{x_i})^+$ Transition: $\phi_i((V_i, t_i), x_i) = (V_i \cup \{x_i\}, \max\{r_{x_i}, t_i\} + p_{x_i})$

Job Sequencing Diagram

Relaxed Decision Diagram

- Definition
 - Every *r*-*t* path of the original diagram appears in the relaxed diagram with equal or smaller cost.
 - So a relaxed diagram may represent some infeasible solutions.
- Motivation
 - Shortest path in the relaxed diagram provides a lower bound on the optimal value.

Andersen, Hadžić, JH, Tiedemanmn (2007)

Building a Relaxed Diagram

- Node splitting
 - Start with a diagram that represents all solutions (feasible and infeasible) and refine it.

Andersen, Hadžić, JH, Tiedemanmn (2007)

Ciré and van Hoeve (2013)

Building a Relaxed Diagram

- Node splitting
 - Start with a diagram that represents all solutions (feasible and infeasible) and refine it.
- Node merger used here
 - Merge some nodes in the exact diagram.
 - ...to make the diagram smaller while excluding no feasible solutions and introducing some infeasible low-cost solutions.

Andersen, Hadžić, JH, Tiedemanmn (2007)

Ciré and van Hoeve (2013)

Bergman, Ciré, van Hoeve, JH (2013)

Node Merger

- Don't begin with exact diagram
 - It is too large
- Merge nodes as the diagram is constructed
 - Combine states of the merged nodes in a way that yields a valid relaxation.
 - This may require **additional state variables**.

Bergman, Ciré, van Hoeve, JH (2013, 2016)

Relaxed DP Model

- In the example, no new states needed
 - Transition function same as before.

Reflects node merger in layer i + 1

Recursion:

$$\bar{h}_i(\boldsymbol{S}_i) = \min_{x_i \in X_i(\boldsymbol{S}_i)} \left\{ c_i(\boldsymbol{S}_i, x_i) + \bar{h}_{i+1} \left(\rho_{i+1} \left(\phi_i(\boldsymbol{S}_i, x_i) \right) \right) \right\}$$

Relaxed DP Model

Set of jobs scheduled in **all** feasible solutions so far

Initial state = $(\emptyset, 0)$

Earliest possible finish time of immediately previous job

Transition:

 S_i

$$\phi_i((V_i, t_i), x_j) = (V_i \cup \{x_i\}, \max\{r_{x_i}, t_i\} + p_{x_i})$$

Recursion:

$$\bar{h}_i(\boldsymbol{S}_i) = \min_{x_i \in X_i(\boldsymbol{S}_i)} \left\{ c_i(\boldsymbol{S}_i, x_i) + \bar{h}_{i+1} \left(\rho_{i+1} \left(\phi_i(\boldsymbol{S}_i, x_i) \right) \right) \right\}$$

Node Merger in Relaxation

- Merge states as the diagram is constructed
 - States S, T merge to form state $S\oplus T$
- Merger operation must yield valid relaxation
 - There are sufficient conditions for this.

JH (2017)

- In state-dependent job sequencing,

 $(V,t) \oplus (V',t') = (V \cap V',\min\{t,t'\})$
Job Sequencing Diagram

Job Sequencing Relaxed Diagram

Job Sequencing Node Merger

Without merger

Job Sequencing Relaxed Diagram

Lagrangian Relaxation

- "Dualize" hard constraints.
 - By moving them into the objective functions

Consider a problem:

$$\min_{\boldsymbol{x} \in \boldsymbol{X}} \left\{ f(\boldsymbol{x}) \mid \boldsymbol{g}(\boldsymbol{x}) = \boldsymbol{0} \right\}$$

Lagrangian Relaxation

- "Dualize" hard constraints.
 - By moving them into the objective functions

Consider a problem:

$$\min_{\boldsymbol{x} \in \boldsymbol{X}} \left\{ f(\boldsymbol{x}) \mid \boldsymbol{g}(\boldsymbol{x}) = \boldsymbol{0} \right\}$$

Lagrangian relaxation:

$$\theta(\boldsymbol{\lambda}) = \min_{\boldsymbol{x} \in \boldsymbol{X}} \left\{ f(\boldsymbol{x}) + \boldsymbol{\lambda}^T \boldsymbol{g}(\boldsymbol{x}) \right\}$$

Lagrangian Relaxation

- "Dualize" hard constraints.
 - By moving them into the objective functions

Consider a problem:

$$\min_{\boldsymbol{x} \in \boldsymbol{X}} \left\{ f(\boldsymbol{x}) \mid \boldsymbol{g}(\boldsymbol{x}) = \boldsymbol{0} \right\}$$

Lagrangian relaxation:

$$\theta(\boldsymbol{\lambda}) = \min_{\boldsymbol{x} \in \boldsymbol{X}} \left\{ f(\boldsymbol{x}) + \boldsymbol{\lambda}^T \boldsymbol{g}(\boldsymbol{x}) \right\}$$

Lagrangian dual:

$$\max_{\boldsymbol{\lambda}} \left\{ \theta(\boldsymbol{\lambda}) \right\}$$

Lagrangian Relaxation on DD

- "Dualize" hard constraints.
 - By moving them into the objective functions

In our example:

$$\boldsymbol{g}(\boldsymbol{x}) = \boldsymbol{0} \iff \text{alldiff}(x_1, \dots, x_n)$$

To formulate this, let

$$g(\boldsymbol{x}) = \left(g_1(\boldsymbol{x}), \dots, g_n(\boldsymbol{x})\right)$$
$$g_j(\boldsymbol{x}) = -1 + \sum_{i=1}^n [x_i = j]$$
Bergman, Cire, van Hoeve (2015)
$$= \begin{cases} 1 & \text{if } x_i = j \\ 0 & \text{otherwise} \end{cases}$$

44

Lagrangian Relaxation on DD

Lagrange penalties included in arc costs

Path length now includes total Lagrange penalty

Solvilng the Lagrangian Dual

- Solve by subgradient optimization
 - Use Polyak's method to determine stepsize

$$\boldsymbol{\lambda}^{k+1} = \boldsymbol{\lambda}^k + \sigma_k \boldsymbol{g}(\boldsymbol{x}^k)$$

Stepsize, given by

$$\sigma_k = \frac{\theta^* - \theta(\boldsymbol{\lambda}^k)}{||\boldsymbol{g}(\boldsymbol{x}^k)||_2^2}$$

Subgradient, where \mathbf{x}^k is value of \mathbf{x} obtained when computing $\theta(\mathbf{\lambda}^k)$

where $\theta^* =$ known upper bound on optimal value. Let θ^* be value of best known job sequence

JH (2017)

- Job sequencing with state-dependent processing times
 - Processing time depends on which jobs have already been processed.
 - Relaxed DD requires an additional state variable.

Transition:

 $\phi_i((V_i, U_i, t_i), x_i) = (V_i \cup \{x_i\}, U_i \cup \{x_i\}, \max\{r_{x_i}, t_i\} + p_{x_j}(U_i))$

Node merger:

$$(V, U, t) \oplus (V', U', t') = (V \cap V', U \cup U', \min\{t, t'\})$$

Using finish time heuristic

JH (2017)

- Tight bounds, but it doesn't scale
 - Can get optimal value using 10% width of exact DD.
 - But 10% of exact DD grows exponentially.
 - Lower tail is weak.

Transition:

$$\phi_i((V_i, U_i, t_i), x_i) = (V_i \cup \{x_i\}, U_i \cup \{x_i\}, \max\{r_{x_i}, t_i\} + p_{x_j}(U_i))$$

Node merger:

$$(V, U, t) \oplus (V', U', t') = (V \cap V', U \cup U', \min\{t, t'\})$$

Bergman, Cire, van Hoeve (2015)

- Traveling salesman with time windows.
 - Objective is total travel time
 - DD represents only alldiff, does not incorporate time windows or measure tardiness.
 - Add Lagrange multipliers to DD
 - Use inside CP solver.

Transition:

 $\phi_i(V_i, x_i) = (V_i \cup \{x_i\})$

Node merger:

 $V \oplus V' = V \cap V'$

Bergman, Cire, van Hoeve (2015)

- Need stand-alone DD that bounds other objectives.
 - Tardiness requires one or more additional state variables
 - How to use more state variables and still implement Lagrangian relaxation in a relaxed DD of practical size?
 - How to get tighter bounds, e.g. 1-2% (without branching)?

Transition:

$$\phi_i(V_i, x_i) = (V_i \cup \{x_i\})$$

Node merger:

 $V\oplus V'=V\cap V'$

Combining DD & Lagrangian Duality

• Express g(x) in terms of immediate penalty functions $g(x) = \sum_{i=1}^{n} \gamma_i (\bar{S}', x_i)$ Subset of state variables

- In our example,

$$\boldsymbol{g}(\boldsymbol{x}) = \sum_{i=1}^{n} \left(-[i=1] + [x_i=1], \dots, -[i=1] + [x_i=n] \right)$$

Here, $ar{S}_i'=\emptyset$

Combining DD & Lagrangian Duality

- Identify state variables on which immediate cost depends.
 - In our example, cost depends on x_i and state variable t_i

$$c_i((V_i, t_i), x_j) = (\max\{r_{x_i}, t_i\} + p_{x_i} - d_{x_i})^+$$

- Identify state variables on which immediate penalty functions depend
 - In our example, they depend only on x_i and no state variables

$$\boldsymbol{\gamma}_i = \left(-[i=1] + [x_i=1], \ldots, -[i=1] + [x_i=n]\right)$$

Combining DD & Lagrangian Duality

Theorem. Lagrangian relaxation can be implemented in a relaxed DD if nodes are merged **only when** their states **agree** on the values of the state variables on which the immediate cost functions and the immediate penalty functions depend.

This can be applied to **dynamic programming** models in general.

- Use the theorem to determine for which problems it is practical to implement Lagrangian relaxation on DDs.
 - In all problems we consider, the immediate Lagrangian penalty depends only on x_i and not on any state variables.
 - So we can merge states whenever they agree on state variables on which the **immediate cost** depends.
 - We will merge **all** such states to keep the relaxed DD as small as possible.

- Minimizing tardiness subject to time windows
 - In our example, cost depends on x_i and state variable t_i

$$c_i((V_i, t_i), x_j) = (\max\{r_{x_i}, t_i\} + p_{x_i} - d_{x_i})^+$$

- We can merge states that agree on t_i. The other state variable V_i will lose information, but perhaps retain enough to generate a good bound.
- This is practical, as it results in a relaxed DD of reasonable size.
- We will experiment with Crauwells-Potts-Wassenhove (CPW) instances.

- Minimizing earliness + tardiness wrt time windows
 - Measure lateness by due date d_j and earliness by desired release date e_j .
 - Cost now depends on x_i and 2 state variables s_i, t_i

$$V_i, t_i), x_j) = \alpha_{x_i} (s_i - p_{x_i} + e_{x_i})^+ + \beta_{x_i} (t_i + p_{x_i} - d_{x_i})^+$$

- We only can merge states that agree on s_i and t_i. But these states are initially equal. So they remain equal throughout the relaxed DD. So in effect, cost depends on only one state variable.
- This is practical, as it results in a relaxed DD of reasonable size.
- We will experiment with **Biskup-Feldman** instances.

- Minimizing tardiness with time-dependent costs or processing times
 - Two senses:
 - Dependent on **position** of each job in the sequence.

- Dependent on clock time when job is processed.
- Easy to check that in either case, costs depends only on current stage (not a state variable) and state variable t_i
 - This is practical, and similar to previous problems.

• Traveling salesman problem

- ...**without** time windows.
- Cost depends only on a state variable y_i representing previous job.

$$c_i((V_i, y_i), x_j) = p_{y_i x_i}$$

- This is practical and used in Bergman, Cire, van Hoeve (2015)

- Traveling salesman problem with time windows
 - Cost depends on state variables t_i and y_i .

$$c_i((V_i, y_i, t_i), x_j) = (r_{x_i} - t_i)^+ + p_{y_i x_i}$$

 Mergers must agree on two state variables and can result in huge relaxed DD.

- Not practical.
- So problem addressed by Bergman, Cire, van Hoeve (2015) cannot be bounded by DD + Lagrangian that incorporates time windows.
- Also DD + Lagrangian is impractical for TSPTW that minimizes total tardiness.

- Minimizing stardiness with state-dependent processing times.
 - Cost depends on state variables t_i and U_i .

$$c_i((V_i, U_i, t_i), x_j) = \left(\max\{r_{x_i}, t_i\} + p_{x_i}(U_i) - d_{x_i}\right)^{\neg}$$

- Mergers must agree on two state variables and can result in huge relaxed DD.
- Not practical.
- So problem addressed by JH (2017) cannot be bounded by DD + Lagrangian.

- To test quality of bound...
 - We need instances with known optimal solutions or very good heuristic solutions.
 - Instances large enough to be interesting are very hard to solve exactly.

- 50 Crauwels-Potts-Wassenhove (CPW) instances
 - Only a handful solved to optimality in 1998
 - Most have been solved to proven optimality since then.

- 50 Crauwels-Potts-Wassenhove (CPW) instances
 - Only a handful solved to optimality in 1998
 - Most have been solved to proven optimality since then.
- 60 Biskup-Feldman instances
 - Intensely studied problem since Ow and Morton (1989).
 - Highly refined heuristics developed for these instances since their introduction in 2001
 - **None solved** to proven optimality
 - No useful bounds known
 - Compare with best known solutions (Ying, Lin, Lu 2017)

- 50 Crauwels-Potts-Wassenhove (CPW) instances
 - Only a handful solved to optimality in 1998
 - Most have been solved to proven optimality since then.
- 60 Biskup-Feldman instances
 - Intensely studied problem since Ow and Morton (1989).
 - Highly refined heuristics developed for these instances since their introduction in 2001
 - **None solved** to proven optimality
 - No useful bounds known
 - Compare with best known solutions (Ying, Lin, Lu 2017)

- We need a gap < 1% or 2% to be really useful

Implementation

- Code written in C++
 - Run on my laptop.
- Solving the Lagrangean dual
 - Convergence typically slow for Lagrangian duality.
 - Let it run for 50,000 iterations
 - Iterations are fast since each is an easy shortest-path problem.
 - Bound almost as good if truncated much earlier.
 - Almost all reported computation time is due to solving Lagrangian dual.
 - Computation time is worth it to get a good bound on a hard combinatorial problem.

CPW instances, 40 jobs

40 jobs					40 jobs						
Instance	Target	Bound	Gap	Percent	Instance	Target	Bound	Gap	Percent		
				gap					gap		
1	913	883	30	3.29%	14	*14377	14100	277	1.93%		
2	1225	1179	46	3.76%	15	26914	26755	159	0.59%		
3	537	483	54	10.06%	16	72317	72120	197	0.27%		
4	2094	2047	47	2.24%	17	78623	78501	122	0.16%		
5	990	980	10	1.01%	18	74310	74131	179	0.24%		
6	6955	6939	16	0.23%	19	77122	77083	39	0.05%		
7	6324	6299	25	0.40%	20	63229	63217	12	0.02%		
8	6865	6743	122	1.78%	21	77774	77754	20	0.03%		
9	16225	16049	176	1.08%	22	100484	100456	28	0.03%		
10	9737	9591	146	1.50%	23	135618	135617	1	0.001%		
11	17465	17417	48	0.27%	24	119947	119914	33	0.03%		
12	19312	19245	67	0.35%	25	128747	128705	42	0.03%		
13	29256	29003	253	0.86%	*Best k	nown sol	ution				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											

*Best known solution

Time = about 20 minutes per instance

CPW instances, 50 jobs

50 jobs						50 jobs						
Instance	Target	Bound	Gap	Percent		Instance	Target	Bound	Gap	Percent		
				gap						gap		
1	2134	2100	34	1.59%		14	*51785	51702	83	0.16%		
2	1996	1864	132	6.61%		15	38934	38910	47	0.12%		
3	2583	2552	31	1.20%		16	87902	87512	390	0.44%		
4	2691	2673	18	0.67%		17	84260	84066	194	0.23%		
5	1518	1342	176	11.59%		18	104795	104633	162	0.15%		
6	26276	26054	222	0.84%		19	*89299	89163	136	0.15%		
7	11403	11128	275	2.41%		20	72316	72222	94	0.13%		
8	8499	8490	9	0.11%		21	214546	214476	70	0.03%		
9	9884	9507	377	3.81%		22	150800	150800	0	0%		
10	10655	10594	61	0.57%		23	224025	223922	103	0.05%		
11	*43504	43472	32	0.07%		24	116015	115990	25	0.02%		
12	*36378	36303	75	0.21%		25	240179	240172	7	0.003%		
13	45383	45310	73	0.16%		*Best k	nown sol	ution				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												

*Best known solution

Time = about 40 minutes per instance

CPW results

- Bounds are reasonably tight.
- 42 of 50 bounds < 2%</p>
- 35 of 50 bounds < 1%.</p>
- 13 of 50 bounds < 0.1%</p>
- 3 bounds really bad
- Optimality proved for 1 instance.

Biskup-Feldman instances, 20 jobs

	($h_1,h_2)$ =	= (0.1,0	0.2)		$(h_1, h_2) = (0.2, 0.5)$				_
Instance	Target	Bound	Gap	Percent	Instance	Target	Bound	Gap	Percent	
				gap					gap	
20 jobs					20 jobs					Π
1	4089	4089	0	0%	1	1162	1162	0	0%	 '
2	8251	8244	7	0.08%	2	2770	2766	4	0.14%	
3	5881	5877	4	0.07%	3	1675	1669	6	0.36%	
4	8977	8971	6	0.07%	4	3113	3108	5	0.16%	L
5	4028	4024	4	0.10%	5	1192	1187	5	0.42%	
6	6306	6288	18	0.29%	6	1557	1557	0	0%	
7	10204	10204	0	0%	7	13573	3569	4	0.11%	
8	3742	3739	3	0.08%	8	990	979	11	1.11%	
9	3317	3310	7	0.21%	9	1056	1055	1	0.09%	
10	4673	4669	4	0.09%	10	1355	1349	6	0.44%	L

Time = about 30 seconds per instance
Computational Results

Biskup-Feldman instances, 50 jobs

	$(h_1, h_2) = (0.1, 0.2)$						$(h_1, h_2) = (0.2, 0.5)$				_
Instance	Target	Bound	Gap	Percent		Instance	Target	Bound	Gap	Percent	
				gap						gap	
50 jobs						50 jobs					
1	39250	39250	0	0%		1	12754	12752	2	0.02%	Ľ
2	29043	29043	0	0%		2	8468	8463	5	0.06%	
3	33180	33180	0	0%		3	9935	9935	0	0%	
4	25856	25847	9	0.03%		4	7373	7335	38	0.52%	
5	31456	31439	17	0.05%		5	8947	8938	9	0.10%	
6	33452	33444	8	0.02%		6	10221	10213	8	0.08%	
7	42234	42228	6	0.01%		7	12002	11981	21	0.17%	
8	42218	42203	15	0.04%		8	11154	11141	13	0.12%	
9	33222	33218	4	0.01%		9	10968	10965	3	0.03%	
10	31492	31481	11	0.03%		10	9652	9650	3	0.03%	
					Γ						

Time = about 8 minutes per instance

Computational Results

Biskup-Feldman instances, 100 jobs

	$(h_1, h_2) = (0.1, 0.2)$					(0.5)		
Instance	Target	Bound	Gap	Percent	Instance	Target	Bound	Gap	Percent
				gap					gap
100 jobs					100 jobs				
1	139573	139556	17	0.01%	1	39495	39467	28	0.07%
2	120484	120465	19	0.02%	2	35293	35266	27	0.08%
3	124325	124289	36	0.03%	3	38174	38150	24	0.06%
4	122901	122876	25	0.02%	4	35498	35467	31	0.09%
5	119115	119101	14	0.01%	5	34860	34826	34	0.10%
6	133545	133536	9	0.007%	6	35146	35123	23	0.07%
7	129849	129830	19	0.01%	7	39336	39303	33	0.08%
8	153965	153958	7	0.005%	8	44963	44927	36	0.08%
9	111474	111466	8	0.007%	9	31270	31231	39	0.12%
10	112799	112792	7	0.006%	10	34068	34048	20	0.06%

Time = about 65 minutes per instance

Computational Results

Biskup-Feldman results

- Bounds are very tight
 - perhaps even tighter wrt optimal values
- 60 of 60 bounds < 2%</p>
- 59 of 60 bounds < 1%.</p>
- 44 of 60 bounds < 0.1%</p>
- 12 of 50 bounds < 0.01%</p>
- Optimality proved for 8 instances (closing these instances)

Future Work

- Explore DP models for job shop scheduling, etc.
 Check if DD + Lagrangian relaxation is practical
- Extend to other DP models.
- Extend Lagrangian relaxation to stochastic DDs.
 - They currently provide weak bounds.

Future Work

- Problem: diagrams of a **fixed size** lose their ability to generate bounds as instances scale up.
 - Bound does not rise above zero until relaxed diagram width is 1/1000 to 1/25 that of exact diagram
- This suggests a combination with other bounding techniques
 - ...that can yield a nonzero bound in smaller relaxed diagrams.
 - Such as Lagrangean relaxation obtained by modifying costs in the diagram..

Bergman, Ciré, van Hoeve (2015)

Future Work

Bounds for stochastic dynamic programming

- From stochastic diagrams.
- Node merger can again provide a valid relaxation.
- A theoretical result is available.
- Awaiting good merger heuristics and computational tests.