Tight Optimization Bounds
from Decision Diagrams

John Hooker

Tepper School of Business
Carnegie Mellon University

INFORMS 2020

Motivation

* Obtain tight bounds for hard problems solved
by heuristics.
« Bounds are needed to judge quality of solutions.

« It'sreally hard to derive tight bounds for combinatorial
problems, except in a branching framework.

Motivation

* Obtain tight bounds for hard problems solved
by heuristics.
« Bounds are needed to judge quality of solutions.
« It'sreally hard to derive tight bounds for combinatorial
problems, except in a branching framework.
* Focus on problems with dynamic programming
formulations.
« A general method for bounding DPs.
« Very different from state space relaxation.

Motivation

 Relaxed decision diagrams can provide bounds.
« But bounds are weak as the problem scales up.

« Lagrangian duality can provide bounds.
« But they are usually weak because of duality gap.

 How about DDs + Lagrangian?
 When can they be combined?

Objectives

» Test bed: job sequencing problems.

« Which problems can be practically bounded with
DP + Lagrangian?

Build on Recent Work

* Tight DD-based bounds for job sequencing with
state-dependent processing times.

 Doesn’t scale up. JH (2017)
* Bounds from DDs+Lagrangian for TSPTW within
CP solver. Bergman, Cire, van Hoeve (2015)

 Not useful for stand-alone DD.

 We need general conditions for combining DDs and
Lagrangian relaxation.

Job Sequencing Example

* Problem: sequence jobs with given processing times
— Minimize tardiness subject to time windows

A

Ot W Ot

Processing time

\4

Release time

«— Due date

J
1
2
3

— = O
DN DN W

Job Sequencing Example

Decision diagram
for job sequencing

L1
o Tardiness
/ of job j
2(2) 1(2)
T3

Each r-t path corresponds

x. = Jthjob in sequence . .
J J] 9 to a feasible solution

Job Sequencing

T1 x.

Tardiness
/ of job j

X3

x; = jthjob in sequence

An optimal solution:
Sequence 2-3-1
Schedule [1,3], [3,5], [5,7]
Tardiness0+0+4 =4

Each r-t path corresponds
to a feasible solution

Building a Decision Diagram

« Our approach:
— Associate dynamic programming states with nodes..
— ...as in a state transition graph.

10

Dynamic Programming Model

« Our approach:
— Associate dynamic programming states with nodes..
— ...as in a state transition graph.

General recursive model

hi(E) =
T

State in stage |

Set of possible
controls

min

xi, €lX; (S5)

Cz’(Siaxi)

T

Immediate

cost

I

State transition
function

v

Pt ((

i

(Siaﬂfz‘))}

T

Costto go

DP Model for Job Sequencing

/

State: S?, — (Vbat’&)

Set of jobs scheduled so far

Initial state = ((), 0)

™ Finish time of last job scheduled
controls: X;(Vi ;) =41,...,n}\V;

Immediate cost: ¢;((V;,t:), ;) = (max{rsy,,t;} + pa; — dw,ﬂ.)+

Transition: ¢; (Vi), ;) = (V; U{z;}, max{ry,, t:} + pa,)

hi(E): min {ci(Si,xi)—l— z+1((gbz(Sz,azz))}

T x; €lX; (S5)
State in stage | Immediate T
Costto go
cost

Set of possible
controls

12

Job Sequencing Diagram

Decision diagram

X, {}0(4) with states and
1 State variable: =\ costs to go
finish time
of last job
2 {1}3(4) {3}3(6)

State variable: 3(9 Cost to go
jobs scheduled
so far

x; = jthjob in sequence

Relaxed Decision Diagram

» Motivation
— Shrink diagram by allowing some infeasible paths.

— Shortest path provides a lower bound on the optimal
value.

Andersen, Hadzi¢, JH, Tiedemanmn (2007)

14

Building a Relaxed Diagram

* Node merger
— Merge some nodes in the exact diagram.

— ...to make the diagram smaller while excluding no
feasible solutions

— ...while introducing some infeasible low-cost solutions.

Andersen, Hadzi¢, JH, Tiedemanmn (2007)

Ciré and van Hoeve (2013)

Bergman, Ciré, van Hoeve, JH (2013)

15

Node Merger

* Merge nodes as the diagram is constructed

— Combine states of the merged nodes in a way that yields a
valid relaxation.

— This may require additional state variables.

JH (2017)

Bergman, Ciré, van Hoeve, JH (2013, 2016)

Relaxed DP Model

* In the example, no new states needed
— Transition function same as before.

Reflects node merger in layeri+ 1
Recursion: l

/

hi(S;) = xe%l(I?S) {ci(Sf,;, i) + hit (\pz‘+1 (057:(51'; xz)))}

Relaxed DP Model

Set of jobs scheduled in all feasible
/ solutions so far

8@' — (‘/7, ts)\ Initial state = (@, 0)

Earliest possible finish time of
Immediately previous job

Transition:
¢%((‘/Za ti)axj) — (Vt& U {.GC,,,}, max{rmi,t,,;} _i_pfl?z)

Recursion:

hi(S;) = a:iergl(if(lsi) {ci(Sf,;, ;) + hit1 (;Oz:+1 (Cbi(Si; %))) }

Node Merger in Relaxation

* Merge states as the diagram is constructed
— States S, T merge to form state S & 1T

* Merger operation must yield valid relaxation

— There are sufficient conditions for this. | JH (2017)

— In state-dependent job sequencing,
(V.t)ye (V',¢') = (VN V' min{t,'})

19

Job Sequencing Diagram

Decision diagram

{}0(4) with states and
T1 r costs to go
3(0)
To {3}3(6)
3(0)
2(2) 1(2)
v 412)6(3) yzg}s;(zl) {13}6(5)
10
2(5)

X; = ith job in sequence Example: merge these nodes

Job Sequencing Relaxed Diagram

Relaxed decision
diagram
with states and

costs to go
1
T2 {1}3(4) {3}3(4)
2(2) 1(2)
3 {12}5(2) {13}6(5)

State variable:

min finish time
of last jobs

on paths from root

State variable:
Jobs scheduled
along all paths from root

Job Sequencing Node Merger

Without merger With merger
{2}3 {2}3
A
{12}6 {23}5 {2}5

{12}m{23} mln{5,6}

L1

L2

Job Sequencing Relaxed Diagram

Relaxed decision

: dlag ram Shortest path yields a
with states and 0(2 lower bound of 2 on
costs to go 1J0(2) optimal value of 4.

Lagrangian Relaxation

 “Dualize” hard constraints.
— By moving them into the objective functions

Consider a problem:

min {f(z) | g(x) = 0}

24

Lagrangian Relaxation

 “Dualize” hard constraints.
— By moving them into the objective functions

Consider a problem:

min {f(z) | g(x) = 0}

Lagrangian relaxation:

6(A) = min {f(x) + X" g(z)}

25

Lagrangian Relaxation

 “Dualize” hard constraints.
— By moving them into the objective functions

Consider a problem:

min {f(z) | g(x) = 0}

Lagrangian relaxation:

6(A) = min {f(x) + X" g(z)}

Lagrangian dual:
max {6(N)}

26

Lagrangian Relaxation on DD

 “Dualize” hard constraints.
— By moving them into the objective functions

In our example:

glx) =0 <« alldiff(xq,....,.z,)

To formulate this, let

1=1
Bergman, Cire, van Hoeve (2015) \ L 1 if L =]
0 otherwise =

Lagrangian Relaxation on DD

Lagrange penalties

included in arc Path length now includes

total Lagrange penalty

costs
1
304+ A3 —> . \i)
T
2(2 + \2) L2+ A1)
3

3(2 4+ As) 2(5+ Xo)

Bergman, Cire, van Hoeve (2015)

Solvilng the Lagrangian Dual

« Solve by subgradient optimization
— Use Polyak’s method to determine stepsize

AHL = X 4oy, lg ()

Subgradient, where xk is
Stepsize, given by value of x obtained when

i K
gr _ O(Ak) computing 6(A¥)

~ g(a®)]]2

where 6* = known upper bound on optimal value.
Let 6* be value of best known heuristic solution

Ok

29

Combining DD & Lagrangian Duality

* Express g(x) in terms of immediate penalty

functions n —
1=1

— In our example,

g(zc):Z(—[izl]—l—[a?i:l], ooy =i = 1]+ [2; = n])

30

Combining DD & Lagrangian Duality

* |dentify state variables on which immediate cost
depends.

— In our example, cost depends on x; and state variable t,

Ci((vtiat’i)aajj) - (max{rm,t,,;} + Py — dwz)—l_

 ldentify state variables on which immediate penalty

functions depend

— In our example, they depend only on x; and no state
variables

vi=(—li=14[x;=1], ..., —[i=1]+ [z; = n])

31

Combining DD & Lagrangian Duality

Theorem. Lagrangian relaxation can be implemented
In a relaxed DD if nodes are merged only when their
states agree on the values of the state variables on
which the immediate cost functions and the immediate
penalty functions depend.

— Applies to dynamic programming in general.
— Useful when immediate cost and penalty functions
depend on only a few state variables.

32

Survey of Job Sequencing Problems

* Minimizing tardiness subject to time windows
— In our example, cost depends on x; and state variable t;

ci((Viti),z;) = (max{ra,, ti} + po, — da,) "

— Immediate penalty depends only on control (true of all
sequencing problems)

— We can merge states that agree on t..
— Relaxed DD has reasonable size.

— We will experiment with Crauwells-Potts-Wassenhove
(CPW) instances.

33

Survey of Job Sequencing Problems

* Minimizing earliness + tardiness wrt time windows

— Measure lateness by due date d; and earliness by desired
release date e;.
— Cost now depends on x; and 2 state variables s;, t;

(Vi,ti),ﬂfj) — Qg (S’i — Pz, T eﬂﬂ'i)—i— + /893@ (t"? ‘|‘pa:%- - di’?i)+

— Merge states that agree on s; and t;, which remain equal
throughout the relaxed DD.

— In effect, cost depends on only one state variable.
— We will experiment with Biskup-Feldman instances.

34

Survey of Job Sequencing Problems

* Minimizing tardiness with time-dependent costs or
processing times
— Two senses:
— Dependent on position of each job in the sequence.
— Dependent on clock time when job is processed.

— Easy to check that in either case, costs depends only on
current stage (not a state variable) and state variable t;

— This is practical, and similar to previous problems.

35

Survey of Job Sequencing Problems

* Traveling salesman problem
— ...without time windows.

— Cost depends only on a state variable y, representing

previous job.
Ci ((‘/za yi)a xj) = Py;x;

— This is practical and used in

Bergman, Cire, van Hoeve (2015)

36

Survey of Job Sequencing Problems

* Traveling salesman problem with time windows
— Cost depends on state variables t; and vy;.

Cz((mayutz)axj) — (Tsz’ o t’é)—'_ _|_py1,937,

— Mergers must agree on two state variables and can
result in huge relaxed DD.

— This is confirmed by experiments on Dumas instances.
— Not practical for stand-alone DD.

37

Survey of Job Sequencing Problems

* Minimizing tardiness with state-dependent
processing times.
— Cost depends on state variables t, and U..

I
¢i((Vi, U ty),) = (max{’r'xi,ti} + s, (U;) — dwi)

— Mergers must agree on two state variables and can
result in huge relaxed DD.

— Not practical.

38

Computational Results

* To test quality of bound...

— We need instances with known optimal solutions or
very good heuristic solutions.

39

Computational Results

« 50 Crauwels-Potts-Wassenhove (CPW) instances
— Only a handful solved to optimality in 1998
— Most have been solved to proven optimality since then.

40

Computational Results

« 50 Crauwels-Potts-Wassenhove (CPW) instances
— Only a handful solved to optimality in 1998
— Most have been solved to proven optimality since then.

* 60 Biskup-Feldman instances
— None solved to proven optimality

— No useful bounds known
— Compare with best known solutions (Ying, Lin, Lu 2017)

41

Computational Results

« 50 Crauwels-Potts-Wassenhove (CPW) instances
— Only a handful solved to optimality in 1998
— Most have been solved to proven optimality since then.
* 60 Biskup-Feldman instances
— None solved to proven optimality
— No useful bounds known
— Compare with best known solutions (Ying, Lin, Lu 2017)

— We need a gap < 1% or 2% to be really useful

42

Implementation

 Code written in C++
— Run on my laptop.

« Solving the Lagrangean dual
— Convergence typically slow for Lagrangian duality.
— Let it run for 50,000 iterations
— Bound almost as good if truncated earlier.

— Almost all reported computation time is due to
solving Lagrangian dual.

43

Computational Results
CPW instances, 40 jobs

40 jobs 40 jobs
Instance Target Bound Gap |Percent Instance Target Bound Gap | Percent
gap gap
1 913 883 30| 3.29% 14 *14377 14100 277| 1.93%
2 1225 1179 46 | 3.76% 15 26914 26755 159 0.59%
3 537 483 54 | 10.06% 16 72317 72120 197| 0.27%
4 2094 2047 47 | 2.24% 17 78623 78501 122| 0.16%
5) 990 980 10 | 1.01% 18 74310 74131 179 0.24%
6 6955 6939 16 | 0.23% 19 77122 77083 39| 0.05%
7T 6324 6299 25 | 0.40% 20 63229 63217 121 0.02%
8 6865 6743 122 | 1.78% 21 77774 77754 201 0.03%
9 16225 16049 176 | 1.08% 22 100484 100456 281 0.03%
10 9737 9591 146 | 1.50% 23 135618 135617 1] 0.001%
11 17465 17417 48 | 0.27% 24 119947 119914 33| 0.03%
12 19312 19245 67 | 0.35% 25 128747 128705 42| 0.03%
13 29256 29003 253 | 0.86% *Best known solution
*Best known solution

Time = about 20 minutes per instance 44

Computational Results
CPW instances, 50 jobs

50 jobs
Instance Target Bound Gap | Percent
gap
1 2134 2100 341 1.59%
2 1996 1864 132| 6.61%
3 2583 2552 311 1.20%
4 2691 2673 181 0.67%
5 1518 1342 176 | 11.59%
6 26276 26054 222| 0.84%
7 11403 11128 275| 2.41%
8 8499 8490 91 0.11%
9 9884 9507 377| 3.81%
10 10655 10594 61| 0.57%
11 *43504 43472 32| 0.07%
12 *36378 36303 751 0.21%
13 45383 45310 73| 0.16%

50 jobs

Instance Target Bound Gap| Percent
gap

14 *51785 51702 3| 0.16%
15 38934 38910 471 0.12%
16 87902 87512 390| 0.44%
17 84260 84066 194| 0.23%
18 104795 104633 162 0.15%
19 *89299 89163 136| 0.15%
20 72316 72222 94| 0.13%
21 214546 214476 701 0.03%
22 150800 150800 0 0%
23 224025 223922 103| 0.05%
24 116015 115990 251 0.02%
25 240179 240172 7| 0.003%

*Best known solution

*Best known solution

Time = about 40 minutes per instance

45

Computational Results

CPW results

Bounds are reasonably tight.

42 of 50 bounds < 2%

35 of 50 bounds < 1%.

13 of 50 bounds < 0.1%

3 bounds really bad

Optimality proved for 1 instance.

46

Computational Results

Biskup-Feldman instances, 20 jobs

(h1,h2) = (0.1,0.2)

(h1,h2) = (0.2,0.5)

Instance | Target Bound Gap |Percent
gap
20 jobs
1 4089 4089 0 0%
2 8251 8244 71 0.08%
3 5881 5877 4 | 0.07%
4 8977 8971 6 | 0.07%
5 4028 4024 4 1 0.10%
6 6306 6288 18 | 0.29%
71 10204 10204 0 0%
8 3742 3739 31 0.08%
9 3317 3310 71 0.21%
10 4673 4669 4 | 0.09%

Instance | Target Bound Gap |Percent
gap
20 jobs
1 1162 1162 0 0%
2 2770 2766 41 0.14%
3 1675 1669 6 | 0.36%
4 3113 3108 51 0.16%
5 1192 1187 51 0.42%
6 1557 1557 0 0%
71 13573 3569 41 0.11%
8 990 979 11 1.11%
9 1056 1055 1| 0.09%
10 1355 1349 6 | 0.44%

Time = about 30 seconds per instance

47

Computational Results

Biskup-Feldman instances, 50 jobs

(h1,ha) = (0.1,0.2)

(h1,h2) = (0.2,0.5)

Instance | Target Bound Gap | Percent
gap
50 jobs
1] 39250 39250 0 0%
21 29043 29043 0 0%
3 33180 33180 0 0%
41 25856 25847 91 0.03%
5| 31456 31439 17| 0.05%
6| 33452 33444 81 0.02%
T 42234 42228 6| 0.01%
8| 42218 42203 15| 0.04%
91 33222 33218 41 0.01%
10| 31492 31481 11 0.03%

Instance | Target Bound Gap |Percent
gap
50 jobs
1| 12754 12752 21 0.02%
2 8468 8463 51 0.06%
3 9935 9935 0 0%
4 7373 7335 38 | 0.52%
5 8947 8938 9| 0.10%
6| 10221 10213 81 0.08%
71 12002 11981 21| 0.17%
8| 11154 11141 13| 0.12%
91 10968 10965 31 0.03%
10 9652 9650 31 0.03%

Time = about 8 minutes per instance

48

Computational Results

Biskup-Feldman instances, 100 jobs

(h1,h2) = (0.1,0.2)

(h1,h2) = (0.2,0.5)

Instance | Target Bound Gap |Percent
gap

100 jobs
1139573 139556 17 | 0.01%
21120484 120465 19 | 0.02%
31124325 124289 36 | 0.03%
41122901 122876 25 |1 0.02%
51119115 119101 14 | 0.01%
6| 133545 133536 9 10.007%
71129849 129830 19 | 0.01%
8| 153965 153958 7 10.005%
91111474 111466 8 10.007%
10 | 112799 112792 7 10.006%

Instance | Target Bound Gap |Percent
gap
100 jobs
1| 39495 39467 28 | 0.07%
2| 35293 35266 27 | 0.08%
3| 38174 38150 24 | 0.06%
4| 35498 35467 31 | 0.09%
5| 34860 34826 34 | 0.10%
6| 35146 35123 23 | 0.07%
71 39336 39303 33 | 0.08%
8| 44963 44927 36 | 0.08%
9| 31270 31231 39| 0.12%
10 | 34068 34048 20 | 0.06%

Time = about 65 minutes per instance

49

Computational Results

* Biskup-Feldman results

Bounds are very tight
— perhaps even tighter wrt optimal values
60 of 60 bounds < 2%
59 of 60 bounds < 1%.
44 of 60 bounds < 0.1%
12 of 50 bounds < 0.01%
Optimality proved for 8 instances (closing these instances)

50

Future Work

« Explore DP models for job shop scheduling, etc.

— Check if DD + Lagrangian relaxation is practical

 Extend to other DP models.

« Extend Lagrangian relaxation to stochastic DDs.

— They currently provide weak bounds.

51

Future Work

« Explore DP models for job shop scheduling, etc.

— Check if DD + Lagrangian relaxation is practical

 Extend to other DP models.

« Extend Lagrangian relaxation to stochastic DDs.

— They currently provide weak bounds.

For more details:
J. N. Hooker, Improved job sequencing bounds from
decision diagrams, Proceedings of Principles and Practice
of Constraint Programming, 2019

52

