
Tight Optimization Bounds

from Decision Diagrams

John Hooker

Tepper School of Business

Carnegie Mellon University

INFORMS 2020



Motivation

• Obtain tight bounds for hard problems solved 

by heuristics.

• Bounds are needed to judge quality of solutions.

• It’s really hard to derive tight bounds for combinatorial 

problems, except in a branching framework.
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Motivation

• Obtain tight bounds for hard problems solved 

by heuristics.

• Bounds are needed to judge quality of solutions.

• It’s really hard to derive tight bounds for combinatorial 

problems, except in a branching framework.

• Focus on problems with dynamic programming 

formulations.

• A general method for bounding DPs.

• Very different from state space relaxation.
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Motivation

• Relaxed decision diagrams can provide bounds.

• But bounds are weak as the problem scales up.

• Lagrangian duality can provide bounds.

• But they are usually weak because of duality gap.

• How about DDs + Lagrangian?

• When can they be combined?
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Objectives

• Test bed: job sequencing problems.

• Which problems can be practically bounded with 

DP + Lagrangian?
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Build on Recent Work

• Tight DD-based bounds for job sequencing with 

state-dependent processing times.

• Doesn’t scale up.

• Bounds from DDs+Lagrangian for TSPTW within 

CP solver.

• Not useful for stand-alone DD.

• We need general conditions for combining DDs and 

Lagrangian relaxation.
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Bergman, Cire, van Hoeve (2015)

JH (2017)



Job Sequencing Example

• Problem: sequence jobs with given processing times 

– Minimize tardiness subject to time windows
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Release time

Due date

Processing time



Job Sequencing Example

𝑥𝑗 = j th job in sequence

Decision diagram 

for job sequencing

𝑥𝑗

Each r-t path corresponds 

to a feasible solution

Tardiness 

of job j



Job Sequencing

𝑥𝑗 = j th job in sequence

An optimal solution:

Sequence 2-3-1

Schedule [1,3], [3,5], [5,7]

Tardiness 0 + 0 + 4 = 4𝑥𝑗

Each r-t path corresponds 

to a feasible solution

Tardiness 

of job j



Building a Decision Diagram

• Our approach:

– Associate dynamic programming states with nodes..

– …as in a state transition graph.
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Dynamic Programming Model

• Our approach:

– Associate dynamic programming states with nodes..

– …as in a state transition graph.
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General recursive model

Cost to go

State transition 

function

Immediate

cost
Set of possible 

controls

State in stage i



State:

Controls:

Immediate cost:

Transition:
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Set of jobs scheduled so far

Finish time of last job scheduled

Initial state = 

DP Model for Job Sequencing

Cost to go
Immediate

cost
Set of possible 

controls

State in stage i



Job Sequencing Diagram

𝑥𝑗 = j th job in sequence

𝑥𝑗
State variable:

finish time 

of last job

State variable:

jobs scheduled 

so far

Cost to go

Decision diagram 

with states and

costs to go



Relaxed Decision Diagram

• Motivation

– Shrink diagram by allowing some infeasible paths.

– Shortest path provides a lower bound on the optimal 

value.
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Andersen, Hadžić, JH, Tiedemanmn (2007) 



Building a Relaxed Diagram

• Node merger 

– Merge some nodes in the exact diagram.

– …to make the diagram smaller while excluding no 

feasible solutions

– …while introducing some infeasible low-cost solutions.
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Andersen, Hadžić, JH, Tiedemanmn (2007) 

Bergman, Ciré, van Hoeve, JH (2013) 

Ciré and van Hoeve (2013) 



Node Merger

• Merge nodes as the diagram is constructed

– Combine states of the merged nodes in a way that yields a 

valid relaxation.

– This may require additional state variables.
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Bergman, Ciré, van Hoeve, JH (2013, 2016) 

JH (2017)



Relaxed DP Model

• In the example, no new states needed

– Transition function same as before.

Reflects node merger in layer i + 1

Recursion:



Relaxed DP Model

Transition:

Set of jobs scheduled in all feasible 

solutions so far

Earliest possible finish time of 

immediately previous job

Initial state = 

Recursion:



Node Merger in Relaxation

• Merge states as the diagram is constructed

– States S, T merge to form state

• Merger operation must yield valid relaxation

– There are sufficient conditions for this.

– In state-dependent job sequencing,

19

JH (2017)



Job Sequencing Diagram

𝑥𝑖 = i th job in sequence

Decision diagram 

with states and

costs to go

Example: merge these nodes



Job Sequencing Relaxed Diagram

State variable:

Jobs scheduled

along all paths from root

State variable:

min finish time 

of last jobs 

on paths from root

Relaxed decision 

diagram 

with states and

costs to go



Job Sequencing Node Merger

{2}3

{12}6 {23}5

Without merger With merger

1 3

{2}5

{2}3

1 3

{12}{23} min{5,6}



Job Sequencing Relaxed Diagram

Relaxed decision 

diagram 

with states and

costs to go

Shortest path yields a 

lower bound of 2 on 

optimal value of 4.



Lagrangian Relaxation

• “Dualize”  hard constraints.

– By moving them into the objective functions
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Consider a problem:



Lagrangian Relaxation

• “Dualize”  hard constraints.

– By moving them into the objective functions
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Consider a problem:

Lagrangian relaxation:



Lagrangian Relaxation

• “Dualize”  hard constraints.

– By moving them into the objective functions
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Consider a problem:

Lagrangian relaxation:

Lagrangian dual:



Lagrangian Relaxation on DD

• “Dualize”  hard constraints.

– By moving them into the objective functions
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In our example:

To formulate this, let

Bergman, Cire, van Hoeve (2015)



Lagrangian Relaxation on DD

Lagrange penalties 

included in arc 

costs

Path length now includes 

total Lagrange penalty

Bergman, Cire, van Hoeve (2015)



Solvilng the Lagrangian Dual

• Solve by subgradient optimization

– Use Polyak’s method to determine stepsize
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Subgradient, where xk is 

value of x obtained when 

computing θ(λk)

Stepsize, given by

where θ* = known upper bound on optimal value.

Let θ* be value of best known heuristic solution



Combining DD & Lagrangian Duality

• Express g(x) in terms of immediate penalty 

functions

– In our example, 
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Subset of state variables

Here, 



Combining DD & Lagrangian Duality

• Identify state variables on which immediate cost 

depends.

– In our example, cost depends on xi and state variable ti

• Identify state variables on which immediate penalty 

functions depend

– In our example, they depend only on xi and no state 

variables
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Combining DD & Lagrangian Duality

Theorem. Lagrangian relaxation can be implemented 

in a relaxed DD if nodes are merged only when their 

states agree on the values of the state variables on 

which the immediate cost functions and the immediate 

penalty functions depend.
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– Applies to dynamic programming in general.

– Useful when immediate cost and penalty functions 

depend on only a few state variables.



Survey of Job Sequencing Problems

• Minimizing tardiness subject to time windows

– In our example, cost depends on xi and state variable ti

– Immediate penalty depends only on control (true of all 

sequencing problems)

– We can merge states that agree on ti.

– Relaxed DD has reasonable size.

– We will experiment with Crauwells-Potts-Wassenhove

(CPW) instances.
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Survey of Job Sequencing Problems

• Minimizing earliness + tardiness wrt time windows

– Measure lateness by due date dj and earliness by desired 

release date ej.

– Cost now depends on xi and 2 state variables si, ti

– Merge states that agree on si and ti, which remain equal 

throughout the relaxed DD.  

– In effect, cost depends on only one state variable.

– We will experiment with Biskup-Feldman instances.
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Survey of Job Sequencing Problems

• Minimizing tardiness with time-dependent costs or 

processing times

– Two senses:

– Dependent on position of each job in the sequence.

– Dependent on clock time when job is processed.

– Easy to check that in either case, costs depends only on 

current stage (not a state variable) and state variable ti

– This is practical, and similar to previous problems.
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Survey of Job Sequencing Problems

• Traveling salesman problem

– …without time windows.

– Cost depends only on a state variable yi representing 

previous job.

– This is practical and used in 
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Bergman, Cire, van Hoeve (2015)



Survey of Job Sequencing Problems

• Traveling salesman problem with time windows

– Cost depends on state variables ti and yi.

– Mergers must agree on two state variables and can 

result in huge relaxed DD.

– This is confirmed by experiments on Dumas instances.

– Not practical for stand-alone DD.
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Survey of Job Sequencing Problems

• Minimizing tardiness with state-dependent 

processing times.

– Cost depends on state variables ti and Ui.

– Mergers must agree on two state variables and can 

result in huge relaxed DD.

– Not practical.
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Computational Results

• To test quality of bound… 

– We need instances with known optimal solutions or 

very good heuristic solutions.

39



Computational Results

• 50 Crauwels-Potts-Wassenhove (CPW) instances

– Only a handful solved to optimality in 1998

– Most have been solved to proven optimality since then.
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Computational Results

• 50 Crauwels-Potts-Wassenhove (CPW) instances

– Only a handful solved to optimality in 1998

– Most have been solved to proven optimality since then.

• 60 Biskup-Feldman instances

– None solved to proven optimality

– No useful bounds known

– Compare with best known solutions (Ying, Lin, Lu 2017)
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Computational Results

• 50 Crauwels-Potts-Wassenhove (CPW) instances

– Only a handful solved to optimality in 1998

– Most have been solved to proven optimality since then.

• 60 Biskup-Feldman instances

– None solved to proven optimality

– No useful bounds known

– Compare with best known solutions (Ying, Lin, Lu 2017)

– We need a gap < 1% or 2% to be really useful
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Implementation

• Code written in C++

– Run on my laptop.

• Solving the Lagrangean dual

– Convergence typically slow for Lagrangian duality.

– Let it run for 50,000 iterations

– Bound almost as good if truncated earlier.

– Almost all reported computation time is due to 

solving Lagrangian dual.
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Computational Results

CPW instances, 40 jobs

44Time = about 20 minutes per instance



Computational Results

CPW instances, 50 jobs

45Time = about 40 minutes per instance



Computational Results

• CPW results

– Bounds are reasonably tight.

– 42 of 50 bounds < 2%

– 35 of 50 bounds < 1%.

– 13 of 50 bounds < 0.1%

– 3 bounds really bad

– Optimality proved for 1 instance.
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Computational Results

Biskup-Feldman instances, 20 jobs

47Time = about 30 seconds per instance



Computational Results

Biskup-Feldman instances, 50 jobs

48Time = about 8 minutes per instance



Computational Results

Biskup-Feldman instances, 100 jobs

49Time = about 65 minutes per instance



Computational Results

• Biskup-Feldman results

– Bounds are very tight 

– perhaps even tighter wrt optimal values

– 60 of 60 bounds < 2%

– 59 of 60 bounds < 1%.

– 44 of 60 bounds < 0.1%

– 12 of 50 bounds < 0.01%

– Optimality proved for 8 instances (closing these instances)
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Future Work

• Explore DP models for job shop scheduling, etc.

– Check if DD + Lagrangian relaxation is practical

• Extend to other DP models.

• Extend Lagrangian relaxation to stochastic DDs.

– They currently provide weak bounds.
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Future Work

• Explore DP models for job shop scheduling, etc.

– Check if DD + Lagrangian relaxation is practical

• Extend to other DP models.

• Extend Lagrangian relaxation to stochastic DDs.

– They currently provide weak bounds.
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For more details:

J. N. Hooker, Improved job sequencing bounds from 

decision diagrams, Proceedings of Principles and Practice 

of Constraint Programming, 2019


