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Optimization and Constraint Programming

• Optimization: focus on mathematical programming.

– 50+ years old

• Constraint programming

– 20 years old

– Developed in computer science/AI community
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Optimization & Constraint programming

• Optimization methods rely heavily on numerical calculation .

– Linear programming (LP)

– Mixed integer/linear programming (MILP)
– Nonlinear programming (NLP)

• Constraint programming relies heavily on constraint 
propagation
– A form of logical inference
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• Container port scheduling 
(Hong Kong and Singapore)

• Circuit design (Siemens)

• Real-time control 
(Siemens, Xerox)

CP: Early commercial successes
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• Employee scheduling

• Shift planning

• Assembly line smoothing 
and balancing 

• Cellular frequency 
assignment

• Maintenance planning

• Airline crew rostering and scheduling

• Airport gate allocation and stand planning

CP: Applications
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• Production scheduling
chemicals
aviation
oil refining
steel
lumber
photographic plates
tires

• Transport scheduling (food, 
nuclear fuel)

• Warehouse management

• Course timetabling

CP: Applications
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Why unify math programming and 
constraint programming?

• One-stop shopping.
– One solver does it all.
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Why unify math programming and 
constraint programming?

• One-stop shopping.
– One solver does it all.

• Richer modeling framework.

– Natural models, less debugging 
& development time.

• Computational speedup.
– A selection of results…
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Computational Advantage of 
Integrating MP and CP

Using CP + relaxation from MILP

30 to 40 times 
faster than CP, 

MILP

Product 
configuration

Thorsteinsson & 
Ottosson (2001)

4 to 150 times 
faster than MILP.

Flow shop 
scheduling, etc.

Hooker & Osorio 
(1999)

2 to 200 times 
faster than MILP

Piecewise linear 
costs

Refalo (1999)

2 to 50 times faster 
than CP

Lesson 
timetabling

Focacci, Lodi, 
Milano (1999)

SpeedupProblem
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Computational Advantage of 
Integrating MP and CP

Using CP + relaxation from MILP

Solved 67 of 90, CP 
solved only 12

Scheduling with 
earliness & 

tardiness costs

Beck & Refalo
(2003)

Up to 600 times 
faster than MILP.

2 problems: <6 min 
vs >20 hrs for MILP 

Structural design 
(nonlinear)

Bollapragada, 
Ghattas & 
Hooker (2001)

Better than CP in 
less time

Stable set 
problem

Van Hoeve
(2001)

1 to 10 times faster 
than CP, MILP

Automatic 
recording

Sellmann & 
Fahle (2001)

SpeedupProblem
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Computational Advantage of 
Integrating MP and CP

Using CP-based Branch and Price

First to solve 
8-team instance

Traveling 
tournament 
scheduling

Easton, 
Nemhauser & 
Trick (2002)

Optimal schedule 
for 210 trips, vs. 

120 for traditional 
branch and price

Urban transit 
crew scheduling

Yunes, Moura & 
de Souza (1999)

SpeedupProblem
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Computational Advantage of 
Integrating MP and CP

Using CP/MILP Benders methods

Solved previously 
insoluble problem 

in 10 min

Polypropylene 
batch scheduling 

at  BASF

Timpe (2002)

10 times faster 
than Jain & 
Grossmann

Min-cost planning 
& scheduling

Thorsteinsson
(2001)

20 to 1000 times 
faster than CP, 

MILP

Min-cost planning 
& scheduing

Jain & 
Grossmann 
(2001)

SpeedupProblem
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Computational Advantage of 
Integrating MP and CP

Using CP/MILP Benders methods

10-1000 times 
faster than CP, 

MILP

Min tardiness 
planning & cumulative 

scheduling

Hooker (2005)

100-1000 times 
faster than CP, 

MILP

Min-cost, 
min-makespan

planning & cumulative 
scheduling

Hooker (2004)

Solved twice as 
many instances 

as traditional 
Benders

Call center schedulingBenoist, Gaudin, 
Rottembourg
(2002)

SpeedupProblem
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An Exercise in Synthesis

• Analysis takes things apart.

• Synthesis looks for commonality.

• I will provide an overview 
of several examples.

– Look for common patterns , 
not details.
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Modeling is key

• In math programming, the model 
describes the problem but doesn’t
suggest how to solve it.

• In CP, each constraint invokes a procedure that screens out 
solutions unacceptable that that constraint.

• This can be extended to a unified framework.

– Model consists of metaconstraints .

– Each metaconstraint “knows” how to combine MP and CP 
to exploit its structure.
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The basic algorithm

• Search: Enumerate problem restrictions
– Tree search (branching)

– Constraint-based (nogood-based) search



June 08  Slide 18

The basic algorithm

• Search: Enumerate problem restrictions
– Tree search (branching)

– Constraint-based (nogood-based) search

• Infer:  Deduce constraints from current restriction



June 08  Slide 19

The basic algorithm

• Search: Enumerate problem restrictions
– Tree search (branching)

– Constraint-based (nogood-based) search

• Infer:  Deduce constraints from current restriction

• Relax :  Solve relaxation of current restriction
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Unifying framework

• Existing methods are special cases of this framework.
• Integrated methods are also special cases.

– Select an overall search scheme.

– Select inference methods as needed from CP, OR.
– Select relaxation methods as needed.
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Some existing methods – Branching

• Constraint solvers (CP)
– Search: Branching on domains

– Inference: Constraint propagation, filtering

– Relaxation:  Domain store

• Mixed integer programming (OR)

– Search: Branch and bound
– Inference: Cutting planes

– Relaxation: Linear programming
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Some existing methods – Constraint-based search

• SAT solvers (CP)

– Search: Branching on variables

– Inference: Unit clause rule, clause learning (nogoods)
– Relaxation:  Conflict clauses

• Benders decomposition (OR)

– Search: Enumeration of subproblems

– Inference: Benders cuts (nogoods)
– Relaxation: Master problem
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Outline
Example problems to illustrate integrated approach

• Simpler modeling

– Lot sizing and scheduling

• Branching search
– Freight transfer – illustration of the algorithm

– Product configuration – easier modeling & faster solution

– Airline crew scheduling – CP-based branch and price

• Constraint-based search
– Machine scheduling – Logic-based Benders algorithm

– Success stories from BASF, Barbot, Peugeot-Citroën

• Software



June 08  Slide 24

Example: Lot sizing and scheduling

Simplified modeling
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Day: 1         2         3         4         5         6         7   8

A B A

Product

• At most one product manufactured on each day.

• Demands for each product on each day.

• Minimize setup + holding cost.

Lot sizing and scheduling
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Integer
programming
model

(Wolsey)

Many variables
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Integrated model
Minimize holding and setup costs

Inventory balance

Production capacity
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Integrated model
Minimize holding and setup costs

Variable indices

Product manufactured in period t

Production level of product i in period t

Inventory balance

Production capacity
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Example: Freight Transfer

Branch-and-bound search with interval 
propagation and cutting planes
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• Branching on variables, with pruning based on bounds.

• Propagation based on:

• Interval propagation.

• Cutting planes (knapsack cuts ).

• Relaxation based on linear programming.

This example illustrates:
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Freight Transfer

• Transport 42 tons of freight using 8 trucks, which come in 
4 sizes…

40334

50433

60532

90731

Cost 
per 

truck

Capacity

(tons)

Number 
available

Truck 
size
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40334

50433

60532

90731

Cost 
per 

truck

Capacity

(tons)

Number 
available

Truck 
type

+ + +
+ + + ≥

+ + + ≤
∈

1 2 3 4

1 2 3 4

1 2 3 4

min 90 60 50 40

7 5 4 3 42

8

{0,1,2,3}i

x x x x

x x x x

x x x x

x

Number of trucks of type 1
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40334

50433

60532

90731

Cost 
per 

truck

Capacity

(tons)

Number 
available

Truck 
type

+ + +
+ + + ≥

+ + + ≤
∈

1 2 3 4

1 2 3 4

1 2 3 4

min 90 60 50 40

7 5 4 3 42

8

{0,1,2,3}i

x x x x

x x x x

x x x x

x

Number of trucks of type 1

Knapsack 
metaconstraint
“knows” which 
inference and 
relaxation 
techniques 
to use.
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40334

50433

60532

90731

Cost 
per 

truck

Capacity

(tons)

Number 
available

Truck 
type

+ + +
+ + + ≥

+ + + ≤
∈

1 2 3 4

1 2 3 4

1 2 3 4

min 90 60 50 40

7 5 4 3 42

8

{0,1,2,3}i

x x x x

x x x x

x x x x

x

Number of trucks of type 1

Domain
metaconstraint
“knows” how 
to branch
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+ + +
+ + + ≥

+ + + ≤
∈

1 2 3 4

1 2 3 4

1 2 3 4

min 90 60 50 40

7 5 4 3 42

8

{0,1,2,3}i

x x x x

x x x x

x x x x

x

Bounds propagation

− ⋅ − ⋅ − ⋅ ≥ =  
1

42 5 3 4 3 3 3
1

7
x
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+ + +
+ + + ≥

+ + + ≤
∈ ∈

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

min 90 60 50 40

7 5 4 3 42

8

{1,2,3}, , , {0,1,2,3}

x x x x

x x x x

x x x x

x x x x

Bounds propagation

− ⋅ − ⋅ − ⋅ ≥ =  
1

42 5 3 4 3 3 3
1

7
x

Reduced 
domain
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+ + +
+ + + ≥

+ + + ≤
≤ ≤ ≥

1 2 3 4

1 2 3 4

1 2 3 4

1

min 90 60 50 40

7 5 4 3 42

8

0 3, 1i

x x x x

x x x x

x x x x

x x

Continuous relaxation

Replace domains 
with bounds

This is a linear programming problem , which is easy 
to solve.

Its optimal value provides a lower bound on optimal 
value of original problem.
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+ + +
+ + + ≥

+ + + ≤
≤ ≤ ≥

1 2 3 4

1 2 3 4

1 2 3 4

1

min 90 60 50 40

7 5 4 3 42

8

0 3, 1i

x x x x

x x x x

x x x x

x x

Cutting planes (valid inequalities)

We can create a tighter relaxation (larger minimum 
value) with the addition of cutting planes .
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+ + +
+ + + ≥

+ + + ≤
≤ ≤ ≥

1 2 3 4

1 2 3 4

1 2 3 4

1

min 90 60 50 40

7 5 4 3 42

8

0 3, 1i

x x x x

x x x x

x x x x

x x

Cutting planes (valid inequalities)

All feasible solutions of the 
original problem satisfy a 
cutting plane (i.e., it is valid ).

But a cutting plane may 
exclude (“cut off ”) solutions of 
the continuous relaxation.

Cutting 
plane

Feasible solutions

Continuous 
relaxation
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+ + +
+ + + ≥

+ + + ≤
≤ ≤ ≥

1 2 3 4

1 2 3 4

1 2 3 4

1

min 90 60 50 40

7 5 4 3 42

8

0 3, 1i

x x x x

x x x x

x x x x

x x

Cutting planes (valid inequalities)

{1,2} is a packing

…because 7x1 + 5x2 alone cannot satisfy the inequality, 
even with x1 = x2 = 3.
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+ + +
+ + + ≥

+ + + ≤
≤ ≤ ≥

1 2 3 4

1 2 3 4

1 2 3 4

1

min 90 60 50 40

7 5 4 3 42

8

0 3, 1i

x x x x

x x x x

x x x x

x x

Cutting planes (valid inequalities)

{1,2} is a packing

So, + ≥ − ⋅ + ⋅3 44 3 42 (7 3 5 3)x x
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+ + +
+ + + ≥

+ + + ≤
≤ ≤ ≥

1 2 3 4

1 2 3 4

1 2 3 4

1

min 90 60 50 40

7 5 4 3 42

8

0 3, 1i

x x x x

x x x x

x x x x

x x

Cutting planes (valid inequalities)

{1,2} is a packing

{ }
 − ⋅ + ⋅+ ≥ = 
 

3 4

42 (7 3 5 3)
2

max 4,3
x x

So, + ≥ − ⋅ + ⋅3 44 3 42 (7 3 5 3)x x

which implies

Knapsack cut
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+ + +
+ + + ≥

+ + + ≤
≤ ≤ ≥

1 2 3 4

1 2 3 4

1 2 3 4

1

min 90 60 50 40

7 5 4 3 42

8

0 3, 1i

x x x x

x x x x

x x x x

x x

Cutting planes (valid inequalities)

x2 + x3 ≥ 3{1,4}

x2 + x4 ≥ 2{1,3}

x3 + x4 ≥ 2{1,2}

Knapsack cutsMaximal Packings

Knapsack cuts corresponding to nonmaximal
packings can be nonredundant.
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+ + +
+ + + ≥

+

+ ≥
+ ≥
+ ≥

+ + ≤
≤ ≤ ≥

1 2 3 4

1 2 3 4

1

3 4

2 3

2

1

2 3

4

4

min 90 60 50 40

7 5 4 3 42

8

0 3, 1

2

2

3

i

x x x x

x x x x

x x x

x x

x x

x x

x

x x

Continuous relaxation with cuts

Optimal value of 523.3 is a lower bound on optimal value 
of original problem.

Knapsack cuts
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Branch-infer-
and-relax tree

Propagate bounds 
and solve 
relaxation of 
original problem.

x1 ∈ {  123}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (2⅓,3,2⅔,0)
value = 523⅓
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Branch on a 
variable with 
nonintegral value 
in the relaxation.

x1 ∈ {  123}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (2⅓,3,2⅔,0)
value = 523⅓

x1 ∈ {1,2}
x1 = 3

Branch-infer-
and-relax tree
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Propagate bounds 
and solve 
relaxation.

Since relaxation 
is infeasible, 
backtrack.

x1 ∈ {  123}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (2⅓,3,2⅔,0)
value = 523⅓

x1 ∈ {  12  }
x2 ∈ {    23}
x3 ∈ {  123}
x4 ∈ {  123}
infeasible
relaxation

x1 ∈ {1,2}
x1 = 3

Branch-infer-
and-relax tree
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Propagate bounds 
and solve 
relaxation.

Branch on 
nonintegral
variable.

x1 ∈ {  123}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (2⅓,3,2⅔,0)
value = 523⅓

x1 ∈ {  12  }
x2 ∈ {    23}
x3 ∈ {  123}
x4 ∈ {  123}
infeasible
relaxation

x1 ∈ {      3}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (3,2.6,2,0)
value = 526

x1 ∈ {1,2}
x1 = 3

x2 ∈ {0,1,2}

x2 = 3

Branch-infer-
and-relax tree
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Branch again.

x1 ∈ {  123}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (2⅓,3,2⅔,0)
value = 523⅓

x1 ∈ {  12  }
x2 ∈ {    23}
x3 ∈ {  123}
x4 ∈ {  123}
infeasible
relaxation

x1 ∈ {      3}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (3,2.6,2,0)
value = 526

x1 ∈ {      3}
x2 ∈ {012  }
x3 ∈ {  123}
x4 ∈ {0123}

x = (3,2,2¾,0)
value = 527½

x1 ∈ {1,2}
x1 = 3

x2 ∈ {0,1,2}

x2 = 3

x3 ∈ {1,2}
x3 = 3

Branch-infer-
and-relax tree
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Solution of 
relaxation 
is integral and 
therefore feasible 
in the original 
problem.

This becomes the 
incumbent 
solution .

x1 ∈ {  123}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (2⅓,3,2⅔,0)
value = 523⅓

x1 ∈ {  12  }
x2 ∈ {    23}
x3 ∈ {  123}
x4 ∈ {  123}
infeasible
relaxation

x1 ∈ {      3}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (3,2.6,2,0)
value = 526

x1 ∈ {      3}
x2 ∈ {012  }
x3 ∈ {  123}
x4 ∈ {0123}

x = (3,2,2¾,0)
value = 527½

x1 ∈ {      3}
x2 ∈ {  12  }
x3 ∈ {  12  }
x4 ∈ {  123}
x = (3,2,2,1)
value = 530

feasible solution

x1 ∈ {1,2}
x1 = 3

x2 ∈ {0,1,2}

x2 = 3

x3 ∈ {1,2}
x3 = 3

Branch-infer-
and-relax tree



June 08  Slide 51

Solution is 
nonintegral, but 
we can backtrack 
because value of 
relaxation is 
no better than 
incumbent solution.

x1 ∈ {  123}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (2⅓,3,2⅔,0)
value = 523⅓

x1 ∈ {  12  }
x2 ∈ {    23}
x3 ∈ {  123}
x4 ∈ {  123}
infeasible
relaxation

x1 ∈ {      3}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (3,2.6,2,0)
value = 526

x1 ∈ {      3}
x2 ∈ {012  }
x3 ∈ {  123}
x4 ∈ {0123}

x = (3,2,2¾,0)
value = 527½

x1 ∈ {      3}
x2 ∈ {  12  }
x3 ∈ {  12  }
x4 ∈ {  123}
x = (3,2,2,1)
value = 530

feasible solution

x1 ∈ {      3}
x2 ∈ {012  }
x3 ∈ {      3}
x4 ∈ {012  }

x = (3,1½,3,½)
value = 530
backtrack

due to bound

x1 ∈ {1,2}
x1 = 3

x2 ∈ {0,1,2}

x2 = 3

x3 ∈ {1,2}
x3 = 3

Branch-infer-
and-relax tree
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Another feasible 
solution found.

No better than 
incumbent solution, 
which is optimal 
because search 
has finished.

x1 ∈ {  123}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (2⅓,3,2⅔,0)
value = 523⅓

x1 ∈ {  12  }
x2 ∈ {    23}
x3 ∈ {  123}
x4 ∈ {  123}
infeasible
relaxation

x1 ∈ {      3}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (3,2.6,2,0)
value = 526

x1 ∈ {      3}
x2 ∈ {012  }
x3 ∈ {  123}
x4 ∈ {0123}

x = (3,2,2¾,0)
value = 527½

x1 ∈ {      3}
x2 ∈ {      3}
x3 ∈ {012  }
x4 ∈ {012  }
x = (3,3,0,2)
value = 530

feasible solution

x1 ∈ {      3}
x2 ∈ {  12  }
x3 ∈ {  12  }
x4 ∈ {  123}
x = (3,2,2,1)
value = 530

feasible solution

x1 ∈ {      3}
x2 ∈ {012  }
x3 ∈ {      3}
x4 ∈ {012  }

x = (3,1½,3,½)
value = 530
backtrack

due to bound

x1 ∈ {1,2}
x1 = 3

x2 ∈ {0,1,2}

x2 = 3

x3 ∈ {1,2}
x3 = 3

Branch-infer-
and-relax tree
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Two optimal 
solutions found.

In general, not all 
optimal solutions 
are found,

x1 ∈ {  123}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (2⅓,3,2⅔,0)
value = 523⅓

x1 ∈ {  12  }
x2 ∈ {    23}
x3 ∈ {  123}
x4 ∈ {  123}
infeasible
relaxation

x1 ∈ {      3}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (3,2.6,2,0)
value = 526

x1 ∈ {      3}
x2 ∈ {012  }
x3 ∈ {  123}
x4 ∈ {0123}

x = (3,2,2¾,0)
value = 527½

x1 ∈∈∈∈ {      3}
x2 ∈∈∈∈ {      3}
x3 ∈∈∈∈ {012  }
x4 ∈∈∈∈ {012  }
x = (3,3,0,2)
value = 530

optimal solution

x1 ∈∈∈∈ {      3}
x2 ∈∈∈∈ {  12  }
x3 ∈∈∈∈ {  12  }
x4 ∈∈∈∈ {  123}
x = (3,2,2,1)
value = 530

optimal solution

x1 ∈ {      3}
x2 ∈ {012  }
x3 ∈ {      3}
x4 ∈ {012  }

x = (3,1½,3,½)
value = 530
backtrack

due to bound

x1 ∈ {1,2}
x1 = 3

x2 ∈ {0,1,2}

x2 = 3

x3 ∈ {1,2}
x3 = 3

Branch-infer-
and-relax tree
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Other types of cutting planes

• Lifted 0-1 knapsack inequalities

• Clique inequalities

• Gomory cuts

• Mixed integer rounding cuts

• Disjunctive cuts
• Specialized cuts

– Flow cuts (fixed charge network flow problem)
– Comb inequalities (traveling salesman problem)
– Many, many others
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Example: Product Configuration

Branch-and-bound search with propagation 
and relaxation of variable indices .

From: Thorsteinsson and Ottosson (2001)
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• This example illustrates:

• Propagation of variable indices. 
– Variable index is converted to a specially structured 

element constraint.

– Specially structured filtering for element.

– Valid knapsack cuts are derived and propagated.
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• This example illustrates:

• Propagation of variable indices. 
– Variable index is converted to a specially structured 

element constraint.

– Specially structured filtering for element.

– Valid knapsack cuts are derived and propagated.

• Relaxation of variable indices.
– Element is interpreted as a disjunction of linear systems.

– Convex hull relaxation for disjunction is used.
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Memory

Memory

Memory

Memory

Memory

Memory

Power
supply

Power
supply

Power
supply

Power
supply

Disk 
drive

Disk 
drive

Disk 
drive

Disk 
drive

Disk 
drive

Choose what type of each component, and how many

Personal computer

The problem



June 08  Slide 59

Problem data
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min

, all 

,  all 

i

j j
j

j i ijt
ik

j j j

c v

v q A j

L v U j

=

≤ ≤

∑

∑

Amount of attribute j
produced 

(< 0 if consumed): 
memory, heat, power, 

weight, etc.

Quantity of 
component i

installed

Model of the problem

Amount of attribute j
produced by type ti

of component i

ti is a variable 
index

Unit cost of producing 
attribute j
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min

, all 

,  all 

i

j j
j

j i ijt
ik

j j j

c v

v q A j

L v U j

=

≤ ≤

∑

∑

Linear inequality 
metaconstraint

Model of the problem
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min

, all 

,  all 

i

j j
j

j i ijt
ik

j j j

c v

v q A j

L v U j

=

≤ ≤

∑

∑Indexed linear 
metaconstraint

Model of the problem
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To solve it:

• Branch on domains of ti and qi.

• Propagate element constraints and bounds on vj. 

– Derive and propagate knapsack cuts.
• Relax element.

– Convex hull relaxation for disjunction.
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min

, all 

,  all 

i

j j
j

j i ijt
ik

j j j

c v

v q A j

L v U j

=

≤ ≤

∑

∑

Propagation

This is propagated 
in the usual way
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This is rewritten as

Propagation

min

, all 

,  all 

i

j j
j

j i ijt
ik

j j j

c v

v q A j

L v U j

=

≤ ≤

∑

∑
This is propagated 
in the usual way

( )1

,  all 

element ,( , , , ), ,  all ,

j i
i

i i ij i ijn i

v z j

t q A q A z i j

=∑

…
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This can be propagated by 
(a) using specialized filters for element constraints of this form…

Propagation

( )1

,  all 

element ,( , , , ), ,  all ,

j i
i

i i ij i ijn i

v z j

t q A q A z i j

=∑

…



June 08  Slide 67

This is propagated by 
(a) using specialized filters for element constraints of this form, 
(b) adding knapsack cuts for the valid inequalities:

is current 
domain of vj

Propagation

( )1

,  all 

element ,( , , , ), ,  all ,

j i
i

i i ij i ijn i

v z j

t q A q A z i j

=∑

…

{ }
{ }

max , all 

min , all 

ti

ti

jijk ik D
i

ijk i jk D
i

A q v j

A q v j

∈

∈

≥

≤

∑

∑

[ , ]j jv vand (c) propagating the knapsack cuts.
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This is relaxed as

jjj vvv ≤≤

min

, all 

,  all 

i

j j
j

j i ijt
ik

j j j

c v

v q A j

L v U j

=

≤ ≤

∑

∑

Relaxation
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This is relaxed by relaxing this 
and adding the knapsack cuts.

This is relaxed as

jjj vvv ≤≤

min

, all 

,  all 

i

j j
j

j i ijt
ik

j j j

c v

v q A j

L v U j

=

≤ ≤

∑

∑

Relaxation

( )1

,  all 

element ,( , , , ), ,  all ,

j i
i

i i ij i ijn i

v z j

t q A q A z i j

=∑

…
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This is relaxed by writing each element constraint as 
a disjunction of linear systems and writing a 

convex hull relaxation of the disjunction:

( )1

,  all 

element ,( , , , ), ,  all ,

j i
i

i i ij i ijn i

v z j

t q A q A z i j

=∑

…

,    
t ti i

i ijk ik i ik
k D k D

z A q q q
∈ ∈

= =∑ ∑

Relaxation
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So the following LP relaxation is solved at each node 
of the search tree to obtain a lower bound:

{ }
{ }

min

,  all 

,  all 

,  all 

,  all 

knapsack cuts for max ,  all 

knapsack cuts for min ,  all 

0, all ,

ti

ti

ti

ti

j j
j

j ijk ik
i k D

j ik
k D

j j j

i i i

ijk i jk D
i

ijk i jk D
i

ik

c v

v A q j

q q i

v v v j

q q q i

A q v j

A q v j

q i k

∈

∈

∈

∈

=

=

≤ ≤
≤ ≤

≥

≤

≥

∑

∑∑

∑

∑

∑

Relaxation
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After propagation, the solution of the relaxation is 
feasible at the root node.  No branching needed.

{ }
{ }

min

,  all 

,  all 

,  all 

,  all 

knapsack cuts for max ,  all 

knapsack cuts for min ,  all 

0, all ,

ti

ti

ti

ti

j j
j

j ijk ik
i k D

j ik
k D

j j j

i i i

ijk i jk D
i

ijk i jk D
i

ik

c v

v A q j

q q i

v v v j

q q q i

A q v j

A q v j

q i k

∈

∈

∈

∈

=

=

≤ ≤
≤ ≤

≥

≤

≥

∑

∑∑

∑

∑

∑

Solution of the example

q1, q1C = 1 → t1 = C

q2, q2A = 2 → t2 = A

q3, q3B = 3 → t3 = B
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After propagation, the solution of the relaxation is 
feasible at the root node.  No branching needed.

{ }
{ }

min

,  all 

,  all 

,  all 

,  all 

knapsack cuts for max ,  all 

knapsack cuts for min ,  all 

0, all ,

ti

ti

ti

ti

j j
j

j ijk ik
i k D

j ik
k D

j j j

i i i

ijk i jk D
i

ijk i jk D
i

ik

c v

v A q j

q q i

v v v j

q q q i

A q v j

A q v j

q i k

∈

∈

∈

∈

=

=

≤ ≤
≤ ≤

≥

≤

≥

∑

∑∑

∑

∑

∑

Solution of the example

q1, q1C = 1 → t1 = C

q2, q2A = 2 → t2 = A

q3, q3B = 3 → t3 = B

q1 is integral, 
only one q1k is positive
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After propagation, the solution of the relaxation is 
feasible at the root node.  No branching needed.

Solution of the example

q1, q1C = 1 → t1 = C

q2, q2A = 2 → t2 = A

q3, q3B = 3 → t3 = B

Memory B

Memory B

Memory B

Power
supply C

Personal computer

Disk 
drive A

Disk 
drive A
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Computational Results

0.01

0.1

1

10

100

1000

8x10 16x20 20x24 20x30

Problem

S
e

co
nd

s CPLEX

CLP

Hybrid
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Example: Airline Crew Scheduling

Branch and price in which a linear relaxation 
of an MILP is solved by CP-based column 

generation

From: Fahle et al. (2002)
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• Overall mixed integer programming framework.

• Linear relaxation solved by CP-based column generation.

This example illustrates:
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Solving an LP by column generation

Suppose the LP relaxation of an integer 
programming problem has a huge number of 
variables:

min

0

cx

Ax b

x

=
≥
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Solving an LP by column generation

Suppose the LP relaxation of an integer 
programming problem has a huge number of 
variables:

min

0

cx

Ax b

x

=
≥

We will solve a restricted master problem , 
which has a small subset of the variables:

( )

min

0

j j
j J

j j
j J

j

c x

A x b

x

λ
∈

∈

=

≥

∑

∑
Column j of A
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Solving an LP by column generation

Suppose the LP relaxation of an integer 
programming problem has a huge number of 
variables:

min

0

cx

Ax b

x

=
≥

We will solve a restricted master problem , 
which has a small subset of the variables:

( )

min

0

j j
j J

j j
j J

j

c x

A x b

x

λ
∈

∈

=

≥

∑

∑
Column j of A

Adding xk to the problem would improve the solution if xk has a 
negative reduced cost : 0k k kr c Aλ= − <

Row vector of dual (Lagrange) multipliers
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Adding xk to the problem would improve the solution if xk has a 
negative reduced cost: 0k k kr c Aλ= − <

Column generation

Computing the reduced cost of xk is known as pricing xk.

min

 is a column of 
yc y

y A

λ−So we solve the pricing problem :

Cost of column y
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Adding xk to the problem would improve the solution if xk has a 
negative reduced cost: 0k k kr c Aλ= − <

Column generation

Computing the reduced cost of xk is known as pricing xk.

min

 is a column of 
yc y

y A

λ−

This can often be solved by CP.

We hope to find an optimal solution before generating too many 
columns.

So we solve the pricing problem :

Cost of column y
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Airline Crew Scheduling

Flight data

Start 
time

Finish 
time

A roster is the sequence of flights assigned to 
a single crew member.

The gap between two consecutive flights in a 
roster must be from 2 to 3 hours.  Total flight 
time for a roster must be between 6 and 10 
hours.

For example, 
flight 1 cannot immediately precede 6 
flight 4 cannot immediately precede 5.

The possible rosters are:

(1,3,5), (1,4,6), (2,3,5), (2,4,6)

We want to assign crew members to flights to minimize 
cost while covering the flights and observing complex 
work rules.
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Airline Crew Scheduling

There are 2 crew members, and the possible rosters are:
1           2          3           4

(1,3,5), (1,4,6), (2,3,5), (2,4,6)

The LP relaxation of the problem is:

= 1 if we assign crew member 1 
to roster 2, = 0 otherwise.

Cost of assigning crew member 1 to roster 2

Each crew member is assigned to 
exactly 1 roster. 

Each flight is assigned at least 1 
crew member.
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Airline Crew Scheduling

There are 2 crew members, and the possible rosters are:
1           2          3           4

(1,3,5), (1,4,6), (2,3,5), (2,4,6)

The LP relaxation of the problem is:

= 1 if we assign crew member 1 
to roster 2, = 0 otherwise.

Cost of assigning crew member 1 to roster 2

Each crew member is assigned to 
exactly 1 roster. 

Each flight is assigned at least 1 
crew member.

Rosters that cover flight 1.
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Airline Crew Scheduling

There are 2 crew members, and the possible rosters are:
1           2          3           4

(1,3,5), (1,4,6), (2,3,5), (2,4,6)

The LP relaxation of the problem is:

= 1 if we assign crew member 1 
to roster 2, = 0 otherwise.

Cost of assigning crew member 1 to roster 2

Each crew member is assigned to 
exactly 1 roster. 

Each flight is assigned at least 1 
crew member.

Rosters that cover flight 2.
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Airline Crew Scheduling

There are 2 crew members, and the possible rosters are:
1           2          3           4

(1,3,5), (1,4,6), (2,3,5), (2,4,6)

The LP relaxation of the problem is:

= 1 if we assign crew member 1 
to roster 2, = 0 otherwise.

Cost of assigning crew member 1 to roster 2

Each crew member is assigned to 
exactly 1 roster. 

Each flight is assigned at least 1 
crew member.

Rosters that cover flight 3.
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Airline Crew Scheduling

There are 2 crew members, and the possible rosters are:
1           2          3           4

(1,3,5), (1,4,6), (2,3,5), (2,4,6)

The LP relaxation of the problem is:

= 1 if we assign crew member 1 
to roster 2, = 0 otherwise.

Cost of assigning crew member 1 to roster 2

Each crew member is assigned to 
exactly 1 roster. 

Each flight is assigned at least 1 
crew member.

Rosters that cover flight 4.
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Airline Crew Scheduling

There are 2 crew members, and the possible rosters are:
1           2          3           4

(1,3,5), (1,4,6), (2,3,5), (2,4,6)

The LP relaxation of the problem is:

= 1 if we assign crew member 1 
to roster 2, = 0 otherwise.

Cost of assigning crew member 1 to roster 2

Each crew member is assigned to 
exactly 1 roster. 

Each flight is assigned at least 1 
crew member.

Rosters that cover flight 5.
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Airline Crew Scheduling

There are 2 crew members, and the possible rosters are:
1           2          3           4

(1,3,5), (1,4,6), (2,3,5), (2,4,6)

The LP relaxation of the problem is:

= 1 if we assign crew member 1 
to roster 2, = 0 otherwise.

Cost of assigning crew member 1 to roster 2

Each crew member is assigned to 
exactly 1 roster. 

Each flight is assigned at least 1 
crew member.

Rosters that cover flight 6.
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Airline Crew Scheduling

There are 2 crew members, and the possible rosters are:
1           2          3           4

(1,3,5), (1,4,6), (2,3,5), (2,4,6)

The LP relaxation of the problem is:

= 1 if we assign crew member 1 
to roster 2, = 0 otherwise.

Cost c12 of assigning crew member 1 to roster 2

Each crew member is assigned to 
exactly 1 roster. 

Each flight is assigned at least 1 
crew member.

In a real problem, there can be millions of rosters.



June 08  Slide 92

Airline Crew Scheduling

We start by solving the problem with a subset 
of the columns:

Optimal 
dual 

solution

u1
u2
v1
v2
v3
v4
v5
v6
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Airline Crew Scheduling

We start by solving the problem with a subset 
of the columns:

Dual 
variables

u1
u2
v1
v2
v3
v4
v5
v6
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Airline Crew Scheduling

We start by solving the problem with a subset 
of the columns:

The reduced cost of an 
excluded roster k for 
crew member i is

 in roster k
ik i j

j

c u v− − ∑

We will formulate the 
pricing problem as a 
shortest path problem.

Dual 
variables

u1
u2
v1
v2
v3
v4
v5
v6
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Pricing problem

2

Crew 
member 1

Crew 
member 2
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Pricing problem
Each s-t path corresponds to a roster, 
provided the flight time is within bounds.

2

Crew 
member 1

Crew 
member 2
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Pricing problem
Cost of flight 3 if it immediately follows 
flight 1, offset by dual multiplier for flight 1

2

Crew 
member 1

Crew 
member 2
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Pricing problem
Cost of transferring from home to flight 1, 
offset by dual multiplier for crew member 1

Dual multiplier 
omitted to break 
symmetry

2

Crew 
member 1

Crew 
member 2
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Pricing problem
Length of a path is reduced cost of the 
corresponding roster.

2

Crew 
member 1

Crew 
member 2
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Crew 
member 1

Crew 
member 2

Pricing problem
Arc lengths using dual solution of LP 
relaxation

−10
5 2

2

0

3

4

5 6
−1

0
5 2

2

-9

3

4

5 6
−1

2
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Crew 
member 1

Crew 
member 2

Pricing problem

Solution of shortest path problems

−10
5 2

2

0

3

4

5 6
−1

0
5 2

2

-9

3

4

5 6
−1

2

Reduced cost = −1
Add x12 to problem. 

Reduced cost = −2
Add x23 to problem.

After x12 and x23 are added to the problem, no 
remaining variable has negative reduced cost.
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Pricing problem

The shortest path problem cannot be solved by traditional shortest 
path algorithms, due to the bounds on total path length.  

It can be solved by CP:

( )
{ }

min max

Path( , , ),  all flights 

flights ,   0,  all 
i

i i

j j
j X

i i

X z G i

T f s T

X z i
∈

≤ − ≤

⊂ <

∑

Set of flights 
assigned to crew 
member i

Path 
length Graph

Path global constraint

Setsum global constraint

Duration of flight j
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Example: Machine Scheduling

Constraint-directed search using 
logic-based Benders decomposition
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• Constraint-based search as Benders decomposition

• Nogoods are Benders cuts .

• Solution of the master problem by MILP.

• Allocate jobs to machines.

• Solution of the subproblem by CP.

• Schedule jobs on each machine

This example illustrates:
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Constraint-directed search in which 
the master problem contains a fixed 
set of variables x.

Benders decomposition

Applied to problems of 
the form

min ( , )

( , )

,x y

f x y

S x y

x D y D∈ ∈

When x is fixed to some 
value, the resulting 
subproblem is much 
easier:

min ( , )

( , )

y

f x y

S x y

y D∈

…perhaps 
because it 
decouples into 
smaller problems.
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Constraint-directed search in which 
the master problem contains a fixed 
set of variables x.

Benders decomposition

Applied to problems of 
the form

min ( , )

( , )

,x y

f x y

S x y

x D y D∈ ∈

When x is fixed to some 
value, the resulting 
subproblem is much 
easier:

min ( , )

( , )

y

f x y

S x y

y D∈

…perhaps 
because it 
decouples into 
smaller problems.

Nogoods are Benders cuts and exclude solutions no better than x.

The Benders cut is obtained by solving the inference dual of the 
subproblem (classically , the linear programming dual).
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Machine Scheduling

• Assign 5 jobs to 2 machines (A and B), and schedule the 
machines assigned to each machine within time windows.

• The objective is to minimize makespan .

• Assign the jobs in the master 
problem , to be solved by MILP.

• Schedule the jobs in the 
subproblem , to be solved by CP.

Time lapse between 
start of first job and 
end of last job.
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Machine Scheduling

Job Data Once jobs are assigned, we can 
minimize overall makespan by 
minimizing makespan on each 
machine individually.

So the subproblem decouples.

Machine A

Machine B
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Machine Scheduling

Job Data Once jobs are assigned, we can 
minimize overall makespan by 
minimizing makespan on each 
machine individually.

So the subproblem decouples.

Minimum makespan
schedule for jobs 1, 2, 3, 5 

on machine A
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Machine Scheduling

( )

min

, all 

,  all 

disjunctive ( ),( ) ,  all 

j

j

j x j

j j j x j

j j ij j

M

M s p j

r s d p j

s x i p x i i

≥ +

≤ ≤ −

= =

Start time of job j

Time windows
Jobs cannot overlap

The problem is
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Machine Scheduling

( )

min

, all 

,  all 

disjunctive ( ),( ) ,  all 

j

j

j x j

j j j x j

j j ij j

M

M s p j

r s d p j

s x i p x i i

≥ +

≤ ≤ −

= =

The problem is

Indexed linear 
metaconstraint
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Machine Scheduling

( )

min

, all 

,  all 

disjunctive ( ),( ) ,  all 

j

j

j x j

j j j x j

j j ij j

M

M s p j

r s d p j

s x i p x i i

≥ +

≤ ≤ −

= =

The problem is

Specially-structured 
indexed linear 
metaconstraint

Disjunctive scheduling 
metaconstraint



June 08  Slide 113

Machine Scheduling

( )

min

, all 

,  all 

disjunctive ( ),( ) ,  all 

j

j

j x j

j j j x j

j j ij j

M

M s p j

r s d p j

s x i p x i i

≥ +

≤ ≤ −

= =

Start time of job j

Time windows
Jobs cannot overlap

The problem is

For a fixed assignment      the subproblem on each machine i is

( )

min

, all  with 

,  all  with 

disjunctive ( ),( )

j

j

j x j j

j j j x j j

j j ij j

M

M s p j x i

r s d p j x i

s x i p x i

≥ + =

≤ ≤ − =

= =

x
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Benders cuts

Suppose we assign jobs 1,2,3,5 to machine A in iteration k.  

We can prove that 10 is the optimal makespan by proving that the 
schedule is infeasible with makespan 9.

Edge finding derives infeasibility by reasoning only with jobs 2,3,5.  
So these jobs alone create a minimum makespan of 10.

So we have a Benders cut
2 3 4

1

10 if 
( )

0 otherwisek

x x x A
v B x+

= = =≥ = 

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Benders cuts

We want the master problem to be an MILP, which is good for 
assignment problems.

So we write the Benders cut
2 3 4

1

10 if 
( )

0 otherwisek

x x x A
v B x+

= = =≥ = 


Using 0-1 variables: ( )2 3 510 2

0
A A Av x x x

v

≥ + + −
≥ = 1 if job 5 is 

assigned to 
machine A
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Master problem

The master problem is an MILP:

{ }

5

1

5

1

5 5

1 3

2 3 5

4

min

10, etc.

10, etc.

,  2 , etc.,  ,

v 10( 2)

8

0,1

Aj Aj
j

Bj Bj
j

ij ij ij ij
j j

A A A

B

ij

v

p x

p x

v p x v p x i A B

x x x

v x

x

=

=

= =

≤

≤

≥ ≥ + =

≥ + + −
≥
∈

∑

∑

∑ ∑

Constraints derived from time windows

Constraints derived from release times

Benders cut from machine A

Benders cut from machine B
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Computational Results

0.01

0.1

1

10

100

1000

10000

100000

1 2 3 4 5

Problem size

S
e

co
nd

s MILP

CP

OPL

Hybrid

Problem sizes 
(jobs, machines)
1 - (3,2)
2 - (7,3)

3 - (12,3)
4 - (15,5)
5 - (20,5)

Each data point 
represents an average 

of 2 instances

MILP and CP ran out 
of memory on 1 of the 
largest instances
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Stronger Benders cuts

If all release times are the same, we can strengthen the Benders cuts. 

We are now using the cut 
1

ik

ik ij ik
j J

v M x J
∈

 
≥ − + 

 
∑

Min makespan
on machine i
in iteration k

Set of jobs 
assigned to 
machine i in 
iteration k

A stronger cut provides a useful bound even if only some of the jobs in 
Jik are assigned to machine i: (1 )

ik

ik ij ij
j J

v M x p
∈

≥ − −∑

These results can be generalized to cumulative scheduling .
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• These are chosen because:

• They illustrate how scheduling interacts with other 
aspects of supply chain.

• And thus how CP can interact with other methods.

• Since they were part of a government (EU) supported 
project (LISCOS), a fair amount of detail was released to 
public.

• All were solved with help of Dash’s Mosel system.

Three success stories
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Manufacture of polypropylenes in 3 stages

polymerization

intermediate 
storage

extrusion

Process scheduling and lot sizing at BASF
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• Manual planning (old method)

• Required 3 days

• Limited flexibility and quality control

• 24/7 continuous production

• Variable batch size.

• Sequence-dependent changeover times.

Process scheduling and lot sizing at BASF
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• Intermediate storage

• Limited capacity

• One product per silo

• Extrusion

• Production rate depends on product and machine

Process scheduling and lot sizing at BASF
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• Three problems in one

• Lot sizing – based on customer demand forecasts

• Assignment – put each batch on a particular 
machine

• Sequencing – decide the order in which each 
machine processes batches assigned to it

Process scheduling and lot sizing at BASF
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• The problems are interdependent

• Lot sizing depends on assignment, because  
machines run at different speeds

• Assignment depends on sequencing, due to 
restrictions on changeovers

• Sequencing depends on lot sizing, due to limited 
intermediate storage

Process scheduling and lot sizing at BASF
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• Solve the problems simultaneously

• Lot sizing: solve with MIP (using XPRESS-MP)

• Assignment: solve with MIP

• Sequencing: solve with CP (using CHIP)

• The MIP and CP are linked mathematically.

• Use logic-based Benders decomposition.

Process scheduling and lot sizing at BASF
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Sample schedule, illustrated with Visual Scheduler (AviS/3)

Source: BASF
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• Benefits

• Optimal solution obtained in 10 mins.

• Entire planning process (data gathering, etc.) requires 
a few hours.

• More flexibility

• Faster response to customers

• Better quality control

Process scheduling and lot sizing at BASF
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• Two problems to solve simultaneously

• Lot sizing

• Machine scheduling

• Focus on solvent-based paints, for which 
there are fewer stages.

• Barbot is a Portuguese paint manufacturer.

Several machines 
of each type

Paint production at Barbot



June 08  Slide 129

• Solution method similar to BASF case (MIP + CP).

• Benefits

• Optimal solution obtained in a few minutes for 20 
machines and 80 products.

• Product shortages eliminated.

• 10% increase in output.

• Fewer cleanup materials.

• Customer lead time reduced.

Paint production at Barbot
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• The Peugeot 206 can be 
manufactured with 12,000 option 
combinations.

• Planning horizon is 5 days

Production line sequencing at Peugeot-Citroën
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• Each car passes through 3 shops.

• Objectives

• Group similar cars (e.g. in paint shop).

• Reduce setups.

• Balance work station loads.

Production line sequencing at Peugeot-Citroën
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• Special constraints

• Cars with a sun roof should be grouped 
together in assembly.

• Air-conditioned cars should not be 
assembled consecutively.

• Etc.

Production line sequencing at Peugeot-Citroën
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• Problem has two parts

• Determine number of cars of each type 
assigned to each line on each day.

• Determine sequencing for each line on 
each day.

• Problems are solved simultaneously.

• Again by MIP + CP.

Production line sequencing at Peugeot-Citroën
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Sample schedule

Source: Peugeot/Citroën
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• Benefits

• Greater ability to balance such 
incompatible benefits as fewer setups and 
faster customer service.

• Better schedules.

Production line sequencing at Peugeot-Citroën
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A classic production sequencing problem

Source: Peugeot/Citroën

Line balancing at Peugeot-Citroën
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• Objective

• Equalize load at work stations.

• Keep each worker on one side of the car

• Constraints

• Precedence constraints between some operations.

• Ergonomic requirements.

• Right equipment at stations (e.g. air socket)

Line balancing at Peugeot-Citroën
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• Solution again obtained by an integrated method.

• MIP: obtain solution without regard to precedence 
constraints.

• CP: Reschedule to enforce precedence constraints.

• The two methods interact.

Line balancing at Peugeot-Citroën
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Source: Peugeot/Citroën
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• Benefits

• Better equalization of load.

• Some stations could be closed, reducing labor.

• Improvements needed

• Reduce trackside clutter.

• Equalize space requirements.

• Keep workers on one side of car.

Line balancing at Peugeot-Citroën
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• Mixed integer programming

• Commercial 

• CPLEX, OSL, Xpress-MP, Excel solver, LINDO

• Non-commercial 

• ABACUS, BCP, BonsaiG, CBC, GLPK, lp_solve, MINTO, 
SCIP, SYMPHONY

• Global optimization

• BARON, LGO

Mathematical Programming Solvers
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Mathematical Programming Solvers

• Modeling systems

• Commercial

• AMPL, GAMS, AIMMS, OPL Studio

• Non-commercial

• ZIMPL, GMPL
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CP Systems

• Solvers

• Commercial

• ILOG Solver/Scheduler, CHIP, Xpress-Kalis

• Non-commercial

• ECLiPSe, SCIP

• Modeling Systems

• Mosel (runs Xpress-Kalis), ECLiPSe, Mozart, 
OPL Studio (runs ILOG solver/scheduler)
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Integrated Systems

• Cooperating solvers

• OPL Studio (runs CPLEX, ILOG Solver/Scheduler)

• ECLiPSe (runs ECLiPSe CP solver, Xpress-MP)

• Integration with low-level modeling

• Mosel (runs Xpress-MP, Xpress-Kalis)

• Integration with high-level modeling

• BARON (partial integration for global optimization) 

• SIMPL (just released, non-commercial)
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