
June 08 Slide 1

Combining Optimization and
Constraint Programming

John Hooker
Carnegie Mellon University

June 2008

June 08 Slide 2

Optimization and Constraint Programming

• Optimization: focus on mathematical programming.

– 50+ years old

• Constraint programming

– 20 years old

– Developed in computer science/AI community

June 08 Slide 3

Optimization & Constraint programming

• Optimization methods rely heavily on numerical calculation .

– Linear programming (LP)

– Mixed integer/linear programming (MILP)
– Nonlinear programming (NLP)

• Constraint programming relies heavily on constraint
propagation
– A form of logical inference

June 08 Slide 4

• Container port scheduling
(Hong Kong and Singapore)

• Circuit design (Siemens)

• Real-time control
(Siemens, Xerox)

CP: Early commercial successes

June 08 Slide 5

• Employee scheduling

• Shift planning

• Assembly line smoothing
and balancing

• Cellular frequency
assignment

• Maintenance planning

• Airline crew rostering and scheduling

• Airport gate allocation and stand planning

CP: Applications

June 08 Slide 6

• Production scheduling
chemicals
aviation
oil refining
steel
lumber
photographic plates
tires

• Transport scheduling (food,
nuclear fuel)

• Warehouse management

• Course timetabling

CP: Applications

June 08 Slide 7

Why unify math programming and
constraint programming?

• One-stop shopping.
– One solver does it all.

June 08 Slide 8

Why unify math programming and
constraint programming?

• One-stop shopping.
– One solver does it all.

• Richer modeling framework.

– Natural models, less debugging
& development time.

June 08 Slide 9

Why unify math programming and
constraint programming?

• One-stop shopping.
– One solver does it all.

• Richer modeling framework.

– Natural models, less debugging
& development time.

• Computational speedup.
– A selection of results…

June 08 Slide 10

Computational Advantage of
Integrating MP and CP

Using CP + relaxation from MILP

30 to 40 times
faster than CP,

MILP

Product
configuration

Thorsteinsson &
Ottosson (2001)

4 to 150 times
faster than MILP.

Flow shop
scheduling, etc.

Hooker & Osorio
(1999)

2 to 200 times
faster than MILP

Piecewise linear
costs

Refalo (1999)

2 to 50 times faster
than CP

Lesson
timetabling

Focacci, Lodi,
Milano (1999)

SpeedupProblem

June 08 Slide 11

Computational Advantage of
Integrating MP and CP

Using CP + relaxation from MILP

Solved 67 of 90, CP
solved only 12

Scheduling with
earliness &

tardiness costs

Beck & Refalo
(2003)

Up to 600 times
faster than MILP.

2 problems: <6 min
vs >20 hrs for MILP

Structural design
(nonlinear)

Bollapragada,
Ghattas &
Hooker (2001)

Better than CP in
less time

Stable set
problem

Van Hoeve
(2001)

1 to 10 times faster
than CP, MILP

Automatic
recording

Sellmann &
Fahle (2001)

SpeedupProblem

June 08 Slide 12

Computational Advantage of
Integrating MP and CP

Using CP-based Branch and Price

First to solve
8-team instance

Traveling
tournament
scheduling

Easton,
Nemhauser &
Trick (2002)

Optimal schedule
for 210 trips, vs.

120 for traditional
branch and price

Urban transit
crew scheduling

Yunes, Moura &
de Souza (1999)

SpeedupProblem

June 08 Slide 13

Computational Advantage of
Integrating MP and CP

Using CP/MILP Benders methods

Solved previously
insoluble problem

in 10 min

Polypropylene
batch scheduling

at BASF

Timpe (2002)

10 times faster
than Jain &
Grossmann

Min-cost planning
& scheduling

Thorsteinsson
(2001)

20 to 1000 times
faster than CP,

MILP

Min-cost planning
& scheduing

Jain &
Grossmann
(2001)

SpeedupProblem

June 08 Slide 14

Computational Advantage of
Integrating MP and CP

Using CP/MILP Benders methods

10-1000 times
faster than CP,

MILP

Min tardiness
planning & cumulative

scheduling

Hooker (2005)

100-1000 times
faster than CP,

MILP

Min-cost,
min-makespan

planning & cumulative
scheduling

Hooker (2004)

Solved twice as
many instances

as traditional
Benders

Call center schedulingBenoist, Gaudin,
Rottembourg
(2002)

SpeedupProblem

June 08 Slide 15

An Exercise in Synthesis

• Analysis takes things apart.

• Synthesis looks for commonality.

• I will provide an overview
of several examples.

– Look for common patterns ,
not details.

June 08 Slide 16

Modeling is key

• In math programming, the model
describes the problem but doesn’t
suggest how to solve it.

• In CP, each constraint invokes a procedure that screens out
solutions unacceptable that that constraint.

• This can be extended to a unified framework.

– Model consists of metaconstraints .

– Each metaconstraint “knows” how to combine MP and CP
to exploit its structure.

June 08 Slide 17

The basic algorithm

• Search: Enumerate problem restrictions
– Tree search (branching)

– Constraint-based (nogood-based) search

June 08 Slide 18

The basic algorithm

• Search: Enumerate problem restrictions
– Tree search (branching)

– Constraint-based (nogood-based) search

• Infer: Deduce constraints from current restriction

June 08 Slide 19

The basic algorithm

• Search: Enumerate problem restrictions
– Tree search (branching)

– Constraint-based (nogood-based) search

• Infer: Deduce constraints from current restriction

• Relax : Solve relaxation of current restriction

June 08 Slide 20

Unifying framework

• Existing methods are special cases of this framework.
• Integrated methods are also special cases.

– Select an overall search scheme.

– Select inference methods as needed from CP, OR.
– Select relaxation methods as needed.

June 08 Slide 21

Some existing methods – Branching

• Constraint solvers (CP)
– Search: Branching on domains

– Inference: Constraint propagation, filtering

– Relaxation: Domain store

• Mixed integer programming (OR)

– Search: Branch and bound
– Inference: Cutting planes

– Relaxation: Linear programming

June 08 Slide 22

Some existing methods – Constraint-based search

• SAT solvers (CP)

– Search: Branching on variables

– Inference: Unit clause rule, clause learning (nogoods)
– Relaxation: Conflict clauses

• Benders decomposition (OR)

– Search: Enumeration of subproblems

– Inference: Benders cuts (nogoods)
– Relaxation: Master problem

June 08 Slide 23

Outline
Example problems to illustrate integrated approach

• Simpler modeling

– Lot sizing and scheduling

• Branching search
– Freight transfer – illustration of the algorithm

– Product configuration – easier modeling & faster solution

– Airline crew scheduling – CP-based branch and price

• Constraint-based search
– Machine scheduling – Logic-based Benders algorithm

– Success stories from BASF, Barbot, Peugeot-Citroën

• Software

June 08 Slide 24

Example: Lot sizing and scheduling

Simplified modeling

June 08 Slide 25

Day: 1 2 3 4 5 6 7 8

A B A

Product

• At most one product manufactured on each day.

• Demands for each product on each day.

• Minimize setup + holding cost.

Lot sizing and scheduling

June 08 Slide 26

Integer
programming
model

(Wolsey)

Many variables

,

, 1

, 1

, 1

, 1

, 1

min

s.t. , all ,

, all ,

, all ,

1 , all ,

1, all , ,

, all , ,

, all , ,

it it ij ijt
t i j t

i t it it it

it it i t

it it

it i t

ijt i t jt

ijt i t

ijt jt

i

h s q

s x d s i t

z y y i t

z y i t

z y i t

y y i j t

y i j t

y i j t

x

δ

δ
δ
δ

≠

−

−

−

−

−

 
+ 

 

+ = +
≥ −
≤
≤ −
≥ + −
≥
≥

∑ ∑

, all ,

1, all

, , {0,1}

, 0

t it

it
i

it it ijt

it it

Cy i t

y t

y z

x s

δ

≤
=

∈
≥

∑

June 08 Slide 27

() ()

1

, 1

min

s.t. , all ,

0 , 0, all ,

0 , all ,

t ty y i it
t i

i t it it it

it it

t it

q h s

s x d s i t

x C s i t

y i x i t

−

−

 + 
 

+ = +
≤ ≤ ≥

≠ → =

∑ ∑

Integrated model
Minimize holding and setup costs

Inventory balance

Production capacity

June 08 Slide 28

() ()

1

, 1

min

s.t. , all ,

0 , 0, all ,

0 , all ,

t ty y i it
t i

i t it it it

it it

t it

q h s

s x d s i t

x C s i t

y i x i t

−

−

 + 
 

+ = +
≤ ≤ ≥

≠ → =

∑ ∑

Integrated model
Minimize holding and setup costs

Variable indices

Product manufactured in period t

Production level of product i in period t

Inventory balance

Production capacity

June 08 Slide 29

Example: Freight Transfer

Branch-and-bound search with interval
propagation and cutting planes

June 08 Slide 30

• Branching on variables, with pruning based on bounds.

• Propagation based on:

• Interval propagation.

• Cutting planes (knapsack cuts).

• Relaxation based on linear programming.

This example illustrates:

June 08 Slide 31

Freight Transfer

• Transport 42 tons of freight using 8 trucks, which come in
4 sizes…

40334

50433

60532

90731

Cost
per

truck

Capacity

(tons)

Number
available

Truck
size

June 08 Slide 32
40334

50433

60532

90731

Cost
per

truck

Capacity

(tons)

Number
available

Truck
type

+ + +
+ + + ≥

+ + + ≤
∈

1 2 3 4

1 2 3 4

1 2 3 4

min 90 60 50 40

7 5 4 3 42

8

{0,1,2,3}i

x x x x

x x x x

x x x x

x

Number of trucks of type 1

June 08 Slide 33
40334

50433

60532

90731

Cost
per

truck

Capacity

(tons)

Number
available

Truck
type

+ + +
+ + + ≥

+ + + ≤
∈

1 2 3 4

1 2 3 4

1 2 3 4

min 90 60 50 40

7 5 4 3 42

8

{0,1,2,3}i

x x x x

x x x x

x x x x

x

Number of trucks of type 1

Knapsack
metaconstraint
“knows” which
inference and
relaxation
techniques
to use.

June 08 Slide 34
40334

50433

60532

90731

Cost
per

truck

Capacity

(tons)

Number
available

Truck
type

+ + +
+ + + ≥

+ + + ≤
∈

1 2 3 4

1 2 3 4

1 2 3 4

min 90 60 50 40

7 5 4 3 42

8

{0,1,2,3}i

x x x x

x x x x

x x x x

x

Number of trucks of type 1

Domain
metaconstraint
“knows” how
to branch

June 08 Slide 35

+ + +
+ + + ≥

+ + + ≤
∈

1 2 3 4

1 2 3 4

1 2 3 4

min 90 60 50 40

7 5 4 3 42

8

{0,1,2,3}i

x x x x

x x x x

x x x x

x

Bounds propagation

− ⋅ − ⋅ − ⋅ ≥ =  
1

42 5 3 4 3 3 3
1

7
x

June 08 Slide 36

+ + +
+ + + ≥

+ + + ≤
∈ ∈

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

min 90 60 50 40

7 5 4 3 42

8

{1,2,3}, , , {0,1,2,3}

x x x x

x x x x

x x x x

x x x x

Bounds propagation

− ⋅ − ⋅ − ⋅ ≥ =  
1

42 5 3 4 3 3 3
1

7
x

Reduced
domain

June 08 Slide 37

+ + +
+ + + ≥

+ + + ≤
≤ ≤ ≥

1 2 3 4

1 2 3 4

1 2 3 4

1

min 90 60 50 40

7 5 4 3 42

8

0 3, 1i

x x x x

x x x x

x x x x

x x

Continuous relaxation

Replace domains
with bounds

This is a linear programming problem , which is easy
to solve.

Its optimal value provides a lower bound on optimal
value of original problem.

June 08 Slide 38

+ + +
+ + + ≥

+ + + ≤
≤ ≤ ≥

1 2 3 4

1 2 3 4

1 2 3 4

1

min 90 60 50 40

7 5 4 3 42

8

0 3, 1i

x x x x

x x x x

x x x x

x x

Cutting planes (valid inequalities)

We can create a tighter relaxation (larger minimum
value) with the addition of cutting planes .

June 08 Slide 39

+ + +
+ + + ≥

+ + + ≤
≤ ≤ ≥

1 2 3 4

1 2 3 4

1 2 3 4

1

min 90 60 50 40

7 5 4 3 42

8

0 3, 1i

x x x x

x x x x

x x x x

x x

Cutting planes (valid inequalities)

All feasible solutions of the
original problem satisfy a
cutting plane (i.e., it is valid).

But a cutting plane may
exclude (“cut off ”) solutions of
the continuous relaxation.

Cutting
plane

Feasible solutions

Continuous
relaxation

June 08 Slide 40

+ + +
+ + + ≥

+ + + ≤
≤ ≤ ≥

1 2 3 4

1 2 3 4

1 2 3 4

1

min 90 60 50 40

7 5 4 3 42

8

0 3, 1i

x x x x

x x x x

x x x x

x x

Cutting planes (valid inequalities)

{1,2} is a packing

…because 7x1 + 5x2 alone cannot satisfy the inequality,
even with x1 = x2 = 3.

June 08 Slide 41

+ + +
+ + + ≥

+ + + ≤
≤ ≤ ≥

1 2 3 4

1 2 3 4

1 2 3 4

1

min 90 60 50 40

7 5 4 3 42

8

0 3, 1i

x x x x

x x x x

x x x x

x x

Cutting planes (valid inequalities)

{1,2} is a packing

So, + ≥ − ⋅ + ⋅3 44 3 42 (7 3 5 3)x x

June 08 Slide 42

+ + +
+ + + ≥

+ + + ≤
≤ ≤ ≥

1 2 3 4

1 2 3 4

1 2 3 4

1

min 90 60 50 40

7 5 4 3 42

8

0 3, 1i

x x x x

x x x x

x x x x

x x

Cutting planes (valid inequalities)

{1,2} is a packing

{ }
 − ⋅ + ⋅+ ≥ = 
 

3 4

42 (7 3 5 3)
2

max 4,3
x x

So, + ≥ − ⋅ + ⋅3 44 3 42 (7 3 5 3)x x

which implies

Knapsack cut

June 08 Slide 43

+ + +
+ + + ≥

+ + + ≤
≤ ≤ ≥

1 2 3 4

1 2 3 4

1 2 3 4

1

min 90 60 50 40

7 5 4 3 42

8

0 3, 1i

x x x x

x x x x

x x x x

x x

Cutting planes (valid inequalities)

x2 + x3 ≥ 3{1,4}

x2 + x4 ≥ 2{1,3}

x3 + x4 ≥ 2{1,2}

Knapsack cutsMaximal Packings

Knapsack cuts corresponding to nonmaximal
packings can be nonredundant.

June 08 Slide 44

+ + +
+ + + ≥

+

+ ≥
+ ≥
+ ≥

+ + ≤
≤ ≤ ≥

1 2 3 4

1 2 3 4

1

3 4

2 3

2

1

2 3

4

4

min 90 60 50 40

7 5 4 3 42

8

0 3, 1

2

2

3

i

x x x x

x x x x

x x x

x x

x x

x x

x

x x

Continuous relaxation with cuts

Optimal value of 523.3 is a lower bound on optimal value
of original problem.

Knapsack cuts

June 08 Slide 45

Branch-infer-
and-relax tree

Propagate bounds
and solve
relaxation of
original problem.

x1 ∈ { 123}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (2⅓,3,2⅔,0)
value = 523⅓

June 08 Slide 46

Branch on a
variable with
nonintegral value
in the relaxation.

x1 ∈ { 123}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (2⅓,3,2⅔,0)
value = 523⅓

x1 ∈ {1,2}
x1 = 3

Branch-infer-
and-relax tree

June 08 Slide 47

Propagate bounds
and solve
relaxation.

Since relaxation
is infeasible,
backtrack.

x1 ∈ { 123}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (2⅓,3,2⅔,0)
value = 523⅓

x1 ∈ { 12 }
x2 ∈ { 23}
x3 ∈ { 123}
x4 ∈ { 123}
infeasible
relaxation

x1 ∈ {1,2}
x1 = 3

Branch-infer-
and-relax tree

June 08 Slide 48

Propagate bounds
and solve
relaxation.

Branch on
nonintegral
variable.

x1 ∈ { 123}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (2⅓,3,2⅔,0)
value = 523⅓

x1 ∈ { 12 }
x2 ∈ { 23}
x3 ∈ { 123}
x4 ∈ { 123}
infeasible
relaxation

x1 ∈ { 3}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (3,2.6,2,0)
value = 526

x1 ∈ {1,2}
x1 = 3

x2 ∈ {0,1,2}

x2 = 3

Branch-infer-
and-relax tree

June 08 Slide 49

Branch again.

x1 ∈ { 123}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (2⅓,3,2⅔,0)
value = 523⅓

x1 ∈ { 12 }
x2 ∈ { 23}
x3 ∈ { 123}
x4 ∈ { 123}
infeasible
relaxation

x1 ∈ { 3}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (3,2.6,2,0)
value = 526

x1 ∈ { 3}
x2 ∈ {012 }
x3 ∈ { 123}
x4 ∈ {0123}

x = (3,2,2¾,0)
value = 527½

x1 ∈ {1,2}
x1 = 3

x2 ∈ {0,1,2}

x2 = 3

x3 ∈ {1,2}
x3 = 3

Branch-infer-
and-relax tree

June 08 Slide 50

Solution of
relaxation
is integral and
therefore feasible
in the original
problem.

This becomes the
incumbent
solution .

x1 ∈ { 123}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (2⅓,3,2⅔,0)
value = 523⅓

x1 ∈ { 12 }
x2 ∈ { 23}
x3 ∈ { 123}
x4 ∈ { 123}
infeasible
relaxation

x1 ∈ { 3}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (3,2.6,2,0)
value = 526

x1 ∈ { 3}
x2 ∈ {012 }
x3 ∈ { 123}
x4 ∈ {0123}

x = (3,2,2¾,0)
value = 527½

x1 ∈ { 3}
x2 ∈ { 12 }
x3 ∈ { 12 }
x4 ∈ { 123}
x = (3,2,2,1)
value = 530

feasible solution

x1 ∈ {1,2}
x1 = 3

x2 ∈ {0,1,2}

x2 = 3

x3 ∈ {1,2}
x3 = 3

Branch-infer-
and-relax tree

June 08 Slide 51

Solution is
nonintegral, but
we can backtrack
because value of
relaxation is
no better than
incumbent solution.

x1 ∈ { 123}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (2⅓,3,2⅔,0)
value = 523⅓

x1 ∈ { 12 }
x2 ∈ { 23}
x3 ∈ { 123}
x4 ∈ { 123}
infeasible
relaxation

x1 ∈ { 3}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (3,2.6,2,0)
value = 526

x1 ∈ { 3}
x2 ∈ {012 }
x3 ∈ { 123}
x4 ∈ {0123}

x = (3,2,2¾,0)
value = 527½

x1 ∈ { 3}
x2 ∈ { 12 }
x3 ∈ { 12 }
x4 ∈ { 123}
x = (3,2,2,1)
value = 530

feasible solution

x1 ∈ { 3}
x2 ∈ {012 }
x3 ∈ { 3}
x4 ∈ {012 }

x = (3,1½,3,½)
value = 530
backtrack

due to bound

x1 ∈ {1,2}
x1 = 3

x2 ∈ {0,1,2}

x2 = 3

x3 ∈ {1,2}
x3 = 3

Branch-infer-
and-relax tree

June 08 Slide 52

Another feasible
solution found.

No better than
incumbent solution,
which is optimal
because search
has finished.

x1 ∈ { 123}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (2⅓,3,2⅔,0)
value = 523⅓

x1 ∈ { 12 }
x2 ∈ { 23}
x3 ∈ { 123}
x4 ∈ { 123}
infeasible
relaxation

x1 ∈ { 3}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (3,2.6,2,0)
value = 526

x1 ∈ { 3}
x2 ∈ {012 }
x3 ∈ { 123}
x4 ∈ {0123}

x = (3,2,2¾,0)
value = 527½

x1 ∈ { 3}
x2 ∈ { 3}
x3 ∈ {012 }
x4 ∈ {012 }
x = (3,3,0,2)
value = 530

feasible solution

x1 ∈ { 3}
x2 ∈ { 12 }
x3 ∈ { 12 }
x4 ∈ { 123}
x = (3,2,2,1)
value = 530

feasible solution

x1 ∈ { 3}
x2 ∈ {012 }
x3 ∈ { 3}
x4 ∈ {012 }

x = (3,1½,3,½)
value = 530
backtrack

due to bound

x1 ∈ {1,2}
x1 = 3

x2 ∈ {0,1,2}

x2 = 3

x3 ∈ {1,2}
x3 = 3

Branch-infer-
and-relax tree

June 08 Slide 53

Two optimal
solutions found.

In general, not all
optimal solutions
are found,

x1 ∈ { 123}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (2⅓,3,2⅔,0)
value = 523⅓

x1 ∈ { 12 }
x2 ∈ { 23}
x3 ∈ { 123}
x4 ∈ { 123}
infeasible
relaxation

x1 ∈ { 3}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (3,2.6,2,0)
value = 526

x1 ∈ { 3}
x2 ∈ {012 }
x3 ∈ { 123}
x4 ∈ {0123}

x = (3,2,2¾,0)
value = 527½

x1 ∈∈∈∈ { 3}
x2 ∈∈∈∈ { 3}
x3 ∈∈∈∈ {012 }
x4 ∈∈∈∈ {012 }
x = (3,3,0,2)
value = 530

optimal solution

x1 ∈∈∈∈ { 3}
x2 ∈∈∈∈ { 12 }
x3 ∈∈∈∈ { 12 }
x4 ∈∈∈∈ { 123}
x = (3,2,2,1)
value = 530

optimal solution

x1 ∈ { 3}
x2 ∈ {012 }
x3 ∈ { 3}
x4 ∈ {012 }

x = (3,1½,3,½)
value = 530
backtrack

due to bound

x1 ∈ {1,2}
x1 = 3

x2 ∈ {0,1,2}

x2 = 3

x3 ∈ {1,2}
x3 = 3

Branch-infer-
and-relax tree

June 08 Slide 54

Other types of cutting planes

• Lifted 0-1 knapsack inequalities

• Clique inequalities

• Gomory cuts

• Mixed integer rounding cuts

• Disjunctive cuts
• Specialized cuts

– Flow cuts (fixed charge network flow problem)
– Comb inequalities (traveling salesman problem)
– Many, many others

June 08 Slide 55

Example: Product Configuration

Branch-and-bound search with propagation
and relaxation of variable indices .

From: Thorsteinsson and Ottosson (2001)

June 08 Slide 56

• This example illustrates:

• Propagation of variable indices.
– Variable index is converted to a specially structured

element constraint.

– Specially structured filtering for element.

– Valid knapsack cuts are derived and propagated.

June 08 Slide 57

• This example illustrates:

• Propagation of variable indices.
– Variable index is converted to a specially structured

element constraint.

– Specially structured filtering for element.

– Valid knapsack cuts are derived and propagated.

• Relaxation of variable indices.
– Element is interpreted as a disjunction of linear systems.

– Convex hull relaxation for disjunction is used.

June 08 Slide 58

Memory

Memory

Memory

Memory

Memory

Memory

Power
supply

Power
supply

Power
supply

Power
supply

Disk
drive

Disk
drive

Disk
drive

Disk
drive

Disk
drive

Choose what type of each component, and how many

Personal computer

The problem

June 08 Slide 59

Problem data

June 08 Slide 60

min

, all

, all

i

j j
j

j i ijt
ik

j j j

c v

v q A j

L v U j

=

≤ ≤

∑

∑

Amount of attribute j
produced

(< 0 if consumed):
memory, heat, power,

weight, etc.

Quantity of
component i

installed

Model of the problem

Amount of attribute j
produced by type ti

of component i

ti is a variable
index

Unit cost of producing
attribute j

June 08 Slide 61

min

, all

, all

i

j j
j

j i ijt
ik

j j j

c v

v q A j

L v U j

=

≤ ≤

∑

∑

Linear inequality
metaconstraint

Model of the problem

June 08 Slide 62

min

, all

, all

i

j j
j

j i ijt
ik

j j j

c v

v q A j

L v U j

=

≤ ≤

∑

∑Indexed linear
metaconstraint

Model of the problem

June 08 Slide 63

To solve it:

• Branch on domains of ti and qi.

• Propagate element constraints and bounds on vj.

– Derive and propagate knapsack cuts.
• Relax element.

– Convex hull relaxation for disjunction.

June 08 Slide 64

min

, all

, all

i

j j
j

j i ijt
ik

j j j

c v

v q A j

L v U j

=

≤ ≤

∑

∑

Propagation

This is propagated
in the usual way

June 08 Slide 65

This is rewritten as

Propagation

min

, all

, all

i

j j
j

j i ijt
ik

j j j

c v

v q A j

L v U j

=

≤ ≤

∑

∑
This is propagated
in the usual way

()1

, all

element ,(, , ,), , all ,

j i
i

i i ij i ijn i

v z j

t q A q A z i j

=∑

…

June 08 Slide 66

This can be propagated by
(a) using specialized filters for element constraints of this form…

Propagation

()1

, all

element ,(, , ,), , all ,

j i
i

i i ij i ijn i

v z j

t q A q A z i j

=∑

…

June 08 Slide 67

This is propagated by
(a) using specialized filters for element constraints of this form,
(b) adding knapsack cuts for the valid inequalities:

is current
domain of vj

Propagation

()1

, all

element ,(, , ,), , all ,

j i
i

i i ij i ijn i

v z j

t q A q A z i j

=∑

…

{ }
{ }

max , all

min , all

ti

ti

jijk ik D
i

ijk i jk D
i

A q v j

A q v j

∈

∈

≥

≤

∑

∑

[,]j jv vand (c) propagating the knapsack cuts.

June 08 Slide 68

This is relaxed as

jjj vvv ≤≤

min

, all

, all

i

j j
j

j i ijt
ik

j j j

c v

v q A j

L v U j

=

≤ ≤

∑

∑

Relaxation

June 08 Slide 69

This is relaxed by relaxing this
and adding the knapsack cuts.

This is relaxed as

jjj vvv ≤≤

min

, all

, all

i

j j
j

j i ijt
ik

j j j

c v

v q A j

L v U j

=

≤ ≤

∑

∑

Relaxation

()1

, all

element ,(, , ,), , all ,

j i
i

i i ij i ijn i

v z j

t q A q A z i j

=∑

…

June 08 Slide 70

This is relaxed by writing each element constraint as
a disjunction of linear systems and writing a

convex hull relaxation of the disjunction:

()1

, all

element ,(, , ,), , all ,

j i
i

i i ij i ijn i

v z j

t q A q A z i j

=∑

…

,
t ti i

i ijk ik i ik
k D k D

z A q q q
∈ ∈

= =∑ ∑

Relaxation

June 08 Slide 71

So the following LP relaxation is solved at each node
of the search tree to obtain a lower bound:

{ }
{ }

min

, all

, all

, all

, all

knapsack cuts for max , all

knapsack cuts for min , all

0, all ,

ti

ti

ti

ti

j j
j

j ijk ik
i k D

j ik
k D

j j j

i i i

ijk i jk D
i

ijk i jk D
i

ik

c v

v A q j

q q i

v v v j

q q q i

A q v j

A q v j

q i k

∈

∈

∈

∈

=

=

≤ ≤
≤ ≤

≥

≤

≥

∑

∑∑

∑

∑

∑

Relaxation

June 08 Slide 72

After propagation, the solution of the relaxation is
feasible at the root node. No branching needed.

{ }
{ }

min

, all

, all

, all

, all

knapsack cuts for max , all

knapsack cuts for min , all

0, all ,

ti

ti

ti

ti

j j
j

j ijk ik
i k D

j ik
k D

j j j

i i i

ijk i jk D
i

ijk i jk D
i

ik

c v

v A q j

q q i

v v v j

q q q i

A q v j

A q v j

q i k

∈

∈

∈

∈

=

=

≤ ≤
≤ ≤

≥

≤

≥

∑

∑∑

∑

∑

∑

Solution of the example

q1, q1C = 1 → t1 = C

q2, q2A = 2 → t2 = A

q3, q3B = 3 → t3 = B

June 08 Slide 73

After propagation, the solution of the relaxation is
feasible at the root node. No branching needed.

{ }
{ }

min

, all

, all

, all

, all

knapsack cuts for max , all

knapsack cuts for min , all

0, all ,

ti

ti

ti

ti

j j
j

j ijk ik
i k D

j ik
k D

j j j

i i i

ijk i jk D
i

ijk i jk D
i

ik

c v

v A q j

q q i

v v v j

q q q i

A q v j

A q v j

q i k

∈

∈

∈

∈

=

=

≤ ≤
≤ ≤

≥

≤

≥

∑

∑∑

∑

∑

∑

Solution of the example

q1, q1C = 1 → t1 = C

q2, q2A = 2 → t2 = A

q3, q3B = 3 → t3 = B

q1 is integral,
only one q1k is positive

June 08 Slide 74

After propagation, the solution of the relaxation is
feasible at the root node. No branching needed.

Solution of the example

q1, q1C = 1 → t1 = C

q2, q2A = 2 → t2 = A

q3, q3B = 3 → t3 = B

Memory B

Memory B

Memory B

Power
supply C

Personal computer

Disk
drive A

Disk
drive A

June 08 Slide 75

Computational Results

0.01

0.1

1

10

100

1000

8x10 16x20 20x24 20x30

Problem

S
e

co
nd

s CPLEX

CLP

Hybrid

June 08 Slide 76

Example: Airline Crew Scheduling

Branch and price in which a linear relaxation
of an MILP is solved by CP-based column

generation

From: Fahle et al. (2002)

June 08 Slide 77

• Overall mixed integer programming framework.

• Linear relaxation solved by CP-based column generation.

This example illustrates:

June 08 Slide 78

Solving an LP by column generation

Suppose the LP relaxation of an integer
programming problem has a huge number of
variables:

min

0

cx

Ax b

x

=
≥

June 08 Slide 79

Solving an LP by column generation

Suppose the LP relaxation of an integer
programming problem has a huge number of
variables:

min

0

cx

Ax b

x

=
≥

We will solve a restricted master problem ,
which has a small subset of the variables:

()

min

0

j j
j J

j j
j J

j

c x

A x b

x

λ
∈

∈

=

≥

∑

∑
Column j of A

June 08 Slide 80

Solving an LP by column generation

Suppose the LP relaxation of an integer
programming problem has a huge number of
variables:

min

0

cx

Ax b

x

=
≥

We will solve a restricted master problem ,
which has a small subset of the variables:

()

min

0

j j
j J

j j
j J

j

c x

A x b

x

λ
∈

∈

=

≥

∑

∑
Column j of A

Adding xk to the problem would improve the solution if xk has a
negative reduced cost : 0k k kr c Aλ= − <

Row vector of dual (Lagrange) multipliers

June 08 Slide 81

Adding xk to the problem would improve the solution if xk has a
negative reduced cost: 0k k kr c Aλ= − <

Column generation

Computing the reduced cost of xk is known as pricing xk.

min

 is a column of
yc y

y A

λ−So we solve the pricing problem :

Cost of column y

June 08 Slide 82

Adding xk to the problem would improve the solution if xk has a
negative reduced cost: 0k k kr c Aλ= − <

Column generation

Computing the reduced cost of xk is known as pricing xk.

min

 is a column of
yc y

y A

λ−

This can often be solved by CP.

We hope to find an optimal solution before generating too many
columns.

So we solve the pricing problem :

Cost of column y

June 08 Slide 83

Airline Crew Scheduling

Flight data

Start
time

Finish
time

A roster is the sequence of flights assigned to
a single crew member.

The gap between two consecutive flights in a
roster must be from 2 to 3 hours. Total flight
time for a roster must be between 6 and 10
hours.

For example,
flight 1 cannot immediately precede 6
flight 4 cannot immediately precede 5.

The possible rosters are:

(1,3,5), (1,4,6), (2,3,5), (2,4,6)

We want to assign crew members to flights to minimize
cost while covering the flights and observing complex
work rules.

June 08 Slide 84

Airline Crew Scheduling

There are 2 crew members, and the possible rosters are:
1 2 3 4

(1,3,5), (1,4,6), (2,3,5), (2,4,6)

The LP relaxation of the problem is:

= 1 if we assign crew member 1
to roster 2, = 0 otherwise.

Cost of assigning crew member 1 to roster 2

Each crew member is assigned to
exactly 1 roster.

Each flight is assigned at least 1
crew member.

June 08 Slide 85

Airline Crew Scheduling

There are 2 crew members, and the possible rosters are:
1 2 3 4

(1,3,5), (1,4,6), (2,3,5), (2,4,6)

The LP relaxation of the problem is:

= 1 if we assign crew member 1
to roster 2, = 0 otherwise.

Cost of assigning crew member 1 to roster 2

Each crew member is assigned to
exactly 1 roster.

Each flight is assigned at least 1
crew member.

Rosters that cover flight 1.

June 08 Slide 86

Airline Crew Scheduling

There are 2 crew members, and the possible rosters are:
1 2 3 4

(1,3,5), (1,4,6), (2,3,5), (2,4,6)

The LP relaxation of the problem is:

= 1 if we assign crew member 1
to roster 2, = 0 otherwise.

Cost of assigning crew member 1 to roster 2

Each crew member is assigned to
exactly 1 roster.

Each flight is assigned at least 1
crew member.

Rosters that cover flight 2.

June 08 Slide 87

Airline Crew Scheduling

There are 2 crew members, and the possible rosters are:
1 2 3 4

(1,3,5), (1,4,6), (2,3,5), (2,4,6)

The LP relaxation of the problem is:

= 1 if we assign crew member 1
to roster 2, = 0 otherwise.

Cost of assigning crew member 1 to roster 2

Each crew member is assigned to
exactly 1 roster.

Each flight is assigned at least 1
crew member.

Rosters that cover flight 3.

June 08 Slide 88

Airline Crew Scheduling

There are 2 crew members, and the possible rosters are:
1 2 3 4

(1,3,5), (1,4,6), (2,3,5), (2,4,6)

The LP relaxation of the problem is:

= 1 if we assign crew member 1
to roster 2, = 0 otherwise.

Cost of assigning crew member 1 to roster 2

Each crew member is assigned to
exactly 1 roster.

Each flight is assigned at least 1
crew member.

Rosters that cover flight 4.

June 08 Slide 89

Airline Crew Scheduling

There are 2 crew members, and the possible rosters are:
1 2 3 4

(1,3,5), (1,4,6), (2,3,5), (2,4,6)

The LP relaxation of the problem is:

= 1 if we assign crew member 1
to roster 2, = 0 otherwise.

Cost of assigning crew member 1 to roster 2

Each crew member is assigned to
exactly 1 roster.

Each flight is assigned at least 1
crew member.

Rosters that cover flight 5.

June 08 Slide 90

Airline Crew Scheduling

There are 2 crew members, and the possible rosters are:
1 2 3 4

(1,3,5), (1,4,6), (2,3,5), (2,4,6)

The LP relaxation of the problem is:

= 1 if we assign crew member 1
to roster 2, = 0 otherwise.

Cost of assigning crew member 1 to roster 2

Each crew member is assigned to
exactly 1 roster.

Each flight is assigned at least 1
crew member.

Rosters that cover flight 6.

June 08 Slide 91

Airline Crew Scheduling

There are 2 crew members, and the possible rosters are:
1 2 3 4

(1,3,5), (1,4,6), (2,3,5), (2,4,6)

The LP relaxation of the problem is:

= 1 if we assign crew member 1
to roster 2, = 0 otherwise.

Cost c12 of assigning crew member 1 to roster 2

Each crew member is assigned to
exactly 1 roster.

Each flight is assigned at least 1
crew member.

In a real problem, there can be millions of rosters.

June 08 Slide 92

Airline Crew Scheduling

We start by solving the problem with a subset
of the columns:

Optimal
dual

solution

u1
u2
v1
v2
v3
v4
v5
v6

June 08 Slide 93

Airline Crew Scheduling

We start by solving the problem with a subset
of the columns:

Dual
variables

u1
u2
v1
v2
v3
v4
v5
v6

June 08 Slide 94

Airline Crew Scheduling

We start by solving the problem with a subset
of the columns:

The reduced cost of an
excluded roster k for
crew member i is

 in roster k
ik i j

j

c u v− − ∑

We will formulate the
pricing problem as a
shortest path problem.

Dual
variables

u1
u2
v1
v2
v3
v4
v5
v6

June 08 Slide 95

Pricing problem

2

Crew
member 1

Crew
member 2

June 08 Slide 96

Pricing problem
Each s-t path corresponds to a roster,
provided the flight time is within bounds.

2

Crew
member 1

Crew
member 2

June 08 Slide 97

Pricing problem
Cost of flight 3 if it immediately follows
flight 1, offset by dual multiplier for flight 1

2

Crew
member 1

Crew
member 2

June 08 Slide 98

Pricing problem
Cost of transferring from home to flight 1,
offset by dual multiplier for crew member 1

Dual multiplier
omitted to break
symmetry

2

Crew
member 1

Crew
member 2

June 08 Slide 99

Pricing problem
Length of a path is reduced cost of the
corresponding roster.

2

Crew
member 1

Crew
member 2

June 08 Slide 100

Crew
member 1

Crew
member 2

Pricing problem
Arc lengths using dual solution of LP
relaxation

−10
5 2

2

0

3

4

5 6
−1

0
5 2

2

-9

3

4

5 6
−1

2

June 08 Slide 101

Crew
member 1

Crew
member 2

Pricing problem

Solution of shortest path problems

−10
5 2

2

0

3

4

5 6
−1

0
5 2

2

-9

3

4

5 6
−1

2

Reduced cost = −1
Add x12 to problem.

Reduced cost = −2
Add x23 to problem.

After x12 and x23 are added to the problem, no
remaining variable has negative reduced cost.

June 08 Slide 102

Pricing problem

The shortest path problem cannot be solved by traditional shortest
path algorithms, due to the bounds on total path length.

It can be solved by CP:

()
{ }

min max

Path(, ,), all flights

flights , 0, all
i

i i

j j
j X

i i

X z G i

T f s T

X z i
∈

≤ − ≤

⊂ <

∑

Set of flights
assigned to crew
member i

Path
length Graph

Path global constraint

Setsum global constraint

Duration of flight j

June 08 Slide 103

Example: Machine Scheduling

Constraint-directed search using
logic-based Benders decomposition

June 08 Slide 104

• Constraint-based search as Benders decomposition

• Nogoods are Benders cuts .

• Solution of the master problem by MILP.

• Allocate jobs to machines.

• Solution of the subproblem by CP.

• Schedule jobs on each machine

This example illustrates:

June 08 Slide 105

Constraint-directed search in which
the master problem contains a fixed
set of variables x.

Benders decomposition

Applied to problems of
the form

min (,)

(,)

,x y

f x y

S x y

x D y D∈ ∈

When x is fixed to some
value, the resulting
subproblem is much
easier:

min (,)

(,)

y

f x y

S x y

y D∈

…perhaps
because it
decouples into
smaller problems.

June 08 Slide 106

Constraint-directed search in which
the master problem contains a fixed
set of variables x.

Benders decomposition

Applied to problems of
the form

min (,)

(,)

,x y

f x y

S x y

x D y D∈ ∈

When x is fixed to some
value, the resulting
subproblem is much
easier:

min (,)

(,)

y

f x y

S x y

y D∈

…perhaps
because it
decouples into
smaller problems.

Nogoods are Benders cuts and exclude solutions no better than x.

The Benders cut is obtained by solving the inference dual of the
subproblem (classically , the linear programming dual).

June 08 Slide 107

Machine Scheduling

• Assign 5 jobs to 2 machines (A and B), and schedule the
machines assigned to each machine within time windows.

• The objective is to minimize makespan .

• Assign the jobs in the master
problem , to be solved by MILP.

• Schedule the jobs in the
subproblem , to be solved by CP.

Time lapse between
start of first job and
end of last job.

June 08 Slide 108

Machine Scheduling

Job Data Once jobs are assigned, we can
minimize overall makespan by
minimizing makespan on each
machine individually.

So the subproblem decouples.

Machine A

Machine B

June 08 Slide 109

Machine Scheduling

Job Data Once jobs are assigned, we can
minimize overall makespan by
minimizing makespan on each
machine individually.

So the subproblem decouples.

Minimum makespan
schedule for jobs 1, 2, 3, 5

on machine A

June 08 Slide 110

Machine Scheduling

()

min

, all

, all

disjunctive (),() , all

j

j

j x j

j j j x j

j j ij j

M

M s p j

r s d p j

s x i p x i i

≥ +

≤ ≤ −

= =

Start time of job j

Time windows
Jobs cannot overlap

The problem is

June 08 Slide 111

Machine Scheduling

()

min

, all

, all

disjunctive (),() , all

j

j

j x j

j j j x j

j j ij j

M

M s p j

r s d p j

s x i p x i i

≥ +

≤ ≤ −

= =

The problem is

Indexed linear
metaconstraint

June 08 Slide 112

Machine Scheduling

()

min

, all

, all

disjunctive (),() , all

j

j

j x j

j j j x j

j j ij j

M

M s p j

r s d p j

s x i p x i i

≥ +

≤ ≤ −

= =

The problem is

Specially-structured
indexed linear
metaconstraint

Disjunctive scheduling
metaconstraint

June 08 Slide 113

Machine Scheduling

()

min

, all

, all

disjunctive (),() , all

j

j

j x j

j j j x j

j j ij j

M

M s p j

r s d p j

s x i p x i i

≥ +

≤ ≤ −

= =

Start time of job j

Time windows
Jobs cannot overlap

The problem is

For a fixed assignment the subproblem on each machine i is

()

min

, all with

, all with

disjunctive (),()

j

j

j x j j

j j j x j j

j j ij j

M

M s p j x i

r s d p j x i

s x i p x i

≥ + =

≤ ≤ − =

= =

x

June 08 Slide 114

Benders cuts

Suppose we assign jobs 1,2,3,5 to machine A in iteration k.

We can prove that 10 is the optimal makespan by proving that the
schedule is infeasible with makespan 9.

Edge finding derives infeasibility by reasoning only with jobs 2,3,5.
So these jobs alone create a minimum makespan of 10.

So we have a Benders cut
2 3 4

1

10 if
()

0 otherwisek

x x x A
v B x+

= = =≥ = 


June 08 Slide 115

Benders cuts

We want the master problem to be an MILP, which is good for
assignment problems.

So we write the Benders cut
2 3 4

1

10 if
()

0 otherwisek

x x x A
v B x+

= = =≥ = 


Using 0-1 variables: ()2 3 510 2

0
A A Av x x x

v

≥ + + −
≥ = 1 if job 5 is

assigned to
machine A

June 08 Slide 116

Master problem

The master problem is an MILP:

{ }

5

1

5

1

5 5

1 3

2 3 5

4

min

10, etc.

10, etc.

, 2 , etc., ,

v 10(2)

8

0,1

Aj Aj
j

Bj Bj
j

ij ij ij ij
j j

A A A

B

ij

v

p x

p x

v p x v p x i A B

x x x

v x

x

=

=

= =

≤

≤

≥ ≥ + =

≥ + + −
≥
∈

∑

∑

∑ ∑

Constraints derived from time windows

Constraints derived from release times

Benders cut from machine A

Benders cut from machine B

June 08 Slide 117

Computational Results

0.01

0.1

1

10

100

1000

10000

100000

1 2 3 4 5

Problem size

S
e

co
nd

s MILP

CP

OPL

Hybrid

Problem sizes
(jobs, machines)
1 - (3,2)
2 - (7,3)

3 - (12,3)
4 - (15,5)
5 - (20,5)

Each data point
represents an average

of 2 instances

MILP and CP ran out
of memory on 1 of the
largest instances

June 08 Slide 118

Stronger Benders cuts

If all release times are the same, we can strengthen the Benders cuts.

We are now using the cut
1

ik

ik ij ik
j J

v M x J
∈

 
≥ − + 

 
∑

Min makespan
on machine i
in iteration k

Set of jobs
assigned to
machine i in
iteration k

A stronger cut provides a useful bound even if only some of the jobs in
Jik are assigned to machine i: (1)

ik

ik ij ij
j J

v M x p
∈

≥ − −∑

These results can be generalized to cumulative scheduling .

June 08 Slide 119

• These are chosen because:

• They illustrate how scheduling interacts with other
aspects of supply chain.

• And thus how CP can interact with other methods.

• Since they were part of a government (EU) supported
project (LISCOS), a fair amount of detail was released to
public.

• All were solved with help of Dash’s Mosel system.

Three success stories

June 08 Slide 120

Manufacture of polypropylenes in 3 stages

polymerization

intermediate
storage

extrusion

Process scheduling and lot sizing at BASF

June 08 Slide 121

• Manual planning (old method)

• Required 3 days

• Limited flexibility and quality control

• 24/7 continuous production

• Variable batch size.

• Sequence-dependent changeover times.

Process scheduling and lot sizing at BASF

June 08 Slide 122

• Intermediate storage

• Limited capacity

• One product per silo

• Extrusion

• Production rate depends on product and machine

Process scheduling and lot sizing at BASF

June 08 Slide 123

• Three problems in one

• Lot sizing – based on customer demand forecasts

• Assignment – put each batch on a particular
machine

• Sequencing – decide the order in which each
machine processes batches assigned to it

Process scheduling and lot sizing at BASF

June 08 Slide 124

• The problems are interdependent

• Lot sizing depends on assignment, because
machines run at different speeds

• Assignment depends on sequencing, due to
restrictions on changeovers

• Sequencing depends on lot sizing, due to limited
intermediate storage

Process scheduling and lot sizing at BASF

June 08 Slide 125

• Solve the problems simultaneously

• Lot sizing: solve with MIP (using XPRESS-MP)

• Assignment: solve with MIP

• Sequencing: solve with CP (using CHIP)

• The MIP and CP are linked mathematically.

• Use logic-based Benders decomposition.

Process scheduling and lot sizing at BASF

June 08 Slide 126

Sample schedule, illustrated with Visual Scheduler (AviS/3)

Source: BASF

June 08 Slide 127

• Benefits

• Optimal solution obtained in 10 mins.

• Entire planning process (data gathering, etc.) requires
a few hours.

• More flexibility

• Faster response to customers

• Better quality control

Process scheduling and lot sizing at BASF

June 08 Slide 128

• Two problems to solve simultaneously

• Lot sizing

• Machine scheduling

• Focus on solvent-based paints, for which
there are fewer stages.

• Barbot is a Portuguese paint manufacturer.

Several machines
of each type

Paint production at Barbot

June 08 Slide 129

• Solution method similar to BASF case (MIP + CP).

• Benefits

• Optimal solution obtained in a few minutes for 20
machines and 80 products.

• Product shortages eliminated.

• 10% increase in output.

• Fewer cleanup materials.

• Customer lead time reduced.

Paint production at Barbot

June 08 Slide 130

• The Peugeot 206 can be
manufactured with 12,000 option
combinations.

• Planning horizon is 5 days

Production line sequencing at Peugeot-Citroën

June 08 Slide 131

• Each car passes through 3 shops.

• Objectives

• Group similar cars (e.g. in paint shop).

• Reduce setups.

• Balance work station loads.

Production line sequencing at Peugeot-Citroën

June 08 Slide 132

• Special constraints

• Cars with a sun roof should be grouped
together in assembly.

• Air-conditioned cars should not be
assembled consecutively.

• Etc.

Production line sequencing at Peugeot-Citroën

June 08 Slide 133

• Problem has two parts

• Determine number of cars of each type
assigned to each line on each day.

• Determine sequencing for each line on
each day.

• Problems are solved simultaneously.

• Again by MIP + CP.

Production line sequencing at Peugeot-Citroën

June 08 Slide 134

Sample schedule

Source: Peugeot/Citroën

June 08 Slide 135

• Benefits

• Greater ability to balance such
incompatible benefits as fewer setups and
faster customer service.

• Better schedules.

Production line sequencing at Peugeot-Citroën

June 08 Slide 136

A classic production sequencing problem

Source: Peugeot/Citroën

Line balancing at Peugeot-Citroën

June 08 Slide 137

• Objective

• Equalize load at work stations.

• Keep each worker on one side of the car

• Constraints

• Precedence constraints between some operations.

• Ergonomic requirements.

• Right equipment at stations (e.g. air socket)

Line balancing at Peugeot-Citroën

June 08 Slide 138

• Solution again obtained by an integrated method.

• MIP: obtain solution without regard to precedence
constraints.

• CP: Reschedule to enforce precedence constraints.

• The two methods interact.

Line balancing at Peugeot-Citroën

June 08 Slide 139

Source: Peugeot/Citroën

June 08 Slide 140

• Benefits

• Better equalization of load.

• Some stations could be closed, reducing labor.

• Improvements needed

• Reduce trackside clutter.

• Equalize space requirements.

• Keep workers on one side of car.

Line balancing at Peugeot-Citroën

June 08 Slide 141

• Mixed integer programming

• Commercial

• CPLEX, OSL, Xpress-MP, Excel solver, LINDO

• Non-commercial

• ABACUS, BCP, BonsaiG, CBC, GLPK, lp_solve, MINTO,
SCIP, SYMPHONY

• Global optimization

• BARON, LGO

Mathematical Programming Solvers

June 08 Slide 142

Mathematical Programming Solvers

• Modeling systems

• Commercial

• AMPL, GAMS, AIMMS, OPL Studio

• Non-commercial

• ZIMPL, GMPL

June 08 Slide 143

CP Systems

• Solvers

• Commercial

• ILOG Solver/Scheduler, CHIP, Xpress-Kalis

• Non-commercial

• ECLiPSe, SCIP

• Modeling Systems

• Mosel (runs Xpress-Kalis), ECLiPSe, Mozart,
OPL Studio (runs ILOG solver/scheduler)

June 08 Slide 144

Integrated Systems

• Cooperating solvers

• OPL Studio (runs CPLEX, ILOG Solver/Scheduler)

• ECLiPSe (runs ECLiPSe CP solver, Xpress-MP)

• Integration with low-level modeling

• Mosel (runs Xpress-MP, Xpress-Kalis)

• Integration with high-level modeling

• BARON (partial integration for global optimization)

• SIMPL (just released, non-commercial)

June 08 Slide 145

