A FRAMEWORK FOR INTEGRATING
SOLUTION METHODS

J. N. Hooker

Graduate School of Industrial Administration

Carnegie Mellon University, Pittsburgh, PA 15213 USA
jh38@andrew.cmu.edu

Abstract

‘We describe a modeling framework that integrates mathematical pro-
gramming (MP), constraint programming (CP) and heuristic methods.
It is extendible to other solution methods as well. The problem structure
is mirrored in the model structure, and the solver exploits this structure
in a principled way to combine methods effectively. The approach gen-
eralizes and extends past research on the integration of MP and CP. Six
modeling examples are given. In particular, it is shown that a recent
integration scheme for CP and MP based on Benders decomposition is
a special case of the framework described here.

Solution methods often have complimentary strengths that allow them
to be profitably combined. Yet different problems require solvers to be
combined in different ways, and it is often necessary to write special-
purpose code for each occasion. It would be useful to have a multi-
purpose solver that could recognize which portion of a problem should
be attacked by each method, and that could somehow coordinate these
methods in a principled way.

This aim of the present paper is to outline such a framework that
unifies mathematical programming (MP), constraint programming (CP)
and heuristic methods. Although it combines three specific methods, it
uses an architecture that is generalizable to additional methods.

The proposal described here is based on about a decade of experience
with hybrid methods that combine MP and CP, surveyed in [8, 9]. It
specifically extends ideas in [2, 4, 6, 7, 8, 11, 20, 21, 22, 23, 24, 26].
The main contribution of this paper is to generalize the framework de-
veloped in these papers and add heuristic methods to the mix. This
earlier framework obtained considerable computational success on se-
lected problems, such as processing network design [4], combinatorial

2

scheduling [11], fixed charge network flow [17], piecewise linear costs
[21], and truss design [2]. There are as yet no computational tests, how-
ever, of the expanded framework that includes heuristic methods. The
paper describes work-in-progress that is expected to result eventually in
a software package that will be released for public use.

Section 1 shows how different solution methods have strategies in com-
mon, and how these can serve as a basis for a unified solver. Section 2
explains how this approach can exploit problem structure using the idea
of a global constraint from CP. Sections 4, 5, 6, and 7 use the proposed
framework to formulate traveling salesman, processing network design,
lot sizing, and allocation problems. Section 8 shows how the framework
can be extended to another problem solving context, in this case Benders
decomposition, which combines a master problem solver with a subprob-
lem solver. This allows Section 9 to demonstrate that a very promising
recent scheme for unifying CP and MP, based on generalized Benders
decomposition, is a special case of the framework described here.

1. Exploiting Common Solution Strategies

Different solution methods sometimes use the same general strategies.
This can serve as a basis of unification, since the combined solver can
consist of a module for each general strategy. Each module would adapt
itself to the structure of a particular problem, or portion of a problem.

Three general solution strategies are found in MP, CP and/or heuris-
tic methods: a search over problem restrictions, inference of new con-
straints, and solution of relaxations. For definiteness we will regard
integer linear programming (IP) as representing MP methods, and local
search (LS) as representing heuristic methods.

1.1 Searching over problem restrictions

All three solution methods can be seen as conducting a search over
restrictions of the problem.

m [P branches on values of a variable that has a noninteger value in
the continuous relaxation. Fach branch defines a restriction of the
problem by restricting one of the variables. The search tree as a
whole represents an exhaustive search over problem restrictions.

m CP branches in a similar fashion by splitting the domain of a vari-
able, which is the set of values the variable can take. Typically
a domain is a finite set or an interval of real numbers. Since CP
normally seeks a feasible solution, the search stops when a solution
is found, or when an exhaustive enumeration proves infeasibility.

A Framework for IntegratingSolution Methods 3

CP is easily adapted to optimization by placing a bound on the
objective function that is tightened as one discovers feasible solu-
tions.

m LS typically moves from one complete restriction of the problem to
a “neighboring” restriction. That is, it deals with restrictions that
specify the value of each variable, although one could equally well
design LS to enumerate partial restrictions. The search heuris-
tic may implicitly enforce constraints that are not explicit stated,
opening the possibility of a model that is partly declarative and
partly procedural.

It is evident that all three search regimes can be specified recursively.
The recursive step in IP and CP generate restrictions by splitting a
variable domain in the current restriction, and the recursive step in
heuristics generates a restriction that neighbors the current one. Thus
a unified solver would contain a single recursion that implements the
desired traversal of the solution space.

1.2 Inferring new constraints

IP and CP infer new constraints from the original ones and add them
to the constraint set.

m [P uses cutting plane methods to infer valid inequalities that are
implied by the original constraints. They are chosen to result in
a tighter continuous relaxation (discussed below). Modelers may
also write redundant constraints when formulating the model, for
the same reason.

m CP uses domain reduction methods to infer in-domain constraints,
each of which restricts the domain of a variable. This is accom-
plished by processing each constraint with a domain reduction or
filtering algorithm that is tailored to that type of constraint. The
alm is to eliminate, from each variable domain, values that cannot
be part of any feasible solution of that constraint. If all such values
are eliminated, hyperarc consistency (also known as generalized arc
consistency) is achieved with respect to the constraint in question.

The reduced domains are passed on to the next constraint in a
process called constraint propagation. There are various schemes
for cycling through the constraints and updating the domains, per-
haps until a fixed point is reached. (This process generally does not
achieve hyperarc consistency with respect to the entire constraint
set, even if it achieved with respect to each individual constraint.)

1.3

As in IP, modelers may also add redundant constraints by hand,
but in this case the constraints are designed to result in more
effective constraint propagation. Sometimes two models of the
same problem are used in the formulation.

Creating and solving relaxations

Both IP and CP create a relaxation of the restricted problem at each
node of the search tree. Its solution contains information that can help to
guide the search and possibly create a stronger relaxation. The solution
may also happen to be feasible for the original problem. The constraints
in the relaxation are structured in such a way that the relaxation is easy
to solve.

IP generally builds a relaxation, at each node of the search tree,
that consists of the linear inequalities in the current problem re-
striction. Its optimal value provides a bound on the value of the
original problem that can be used to prune the search tree (branch
and bound). If the relaxation is infeasible, the search backtracks.
If a solution exists and all variables are integral, the incumbent
solution is updated (if necessary) and the search backtracks. Oth-
erwise the search branches on a variable with a nonintegral value
and possibly generates separating cuts with respect to the solution
of the relaxation.

CP builds a relaxation that is called the constraint store, by gener-
ating in-domain (and possibly other) constraints. The relaxation
can be trivially solved by selecting an arbitrary value from each
domain. This solution may be infeasible in the original problem,
even if hyperarc consistency is achieved with respect to the en-
tire constraint set. This is because variable assignments that are
individually feasible need not be feasible when assembled into a
complete solution.

CP methods normally do not actually solve the constraint store,
but they extract useful information from the domains. If a do-
main is empty, the constraint store is infeasible and the search
backtracks. If all domains are singletons, the search terminates
with a feasible solution (in this case the constraint store is actu-
ally solved). Otherwise further branching is necessary, and the
search typically branches by splitting the smallest domain in what
is known as a first-fail branching strategy.

A Framework for IntegratingSolution Methods)

The relaxation can be solved by any number of methods, such as lin-
ear programming or even heuristic methods. This provides a secondary
mechanism for combining solution methods.

2. Exploiting Problem Structure

We now have the basic outline for an integrated solver. It contains

m a recursion that specifies the search by moving from one problem
restriction to another,

m an inference engine that derives valid constraints for each problem
restriction, and

m a mechanism for generating and solving a relazation of each re-
striction.

Note that inference and relaxation can be used in the context of a heuris-
tic search as well as an exhaustive search, even if this is not often done.

The basic question remains, however, as to how one can take advan-
tage of an integrated solver to exploit the peculiar characteristics of a
given problem. CP provides a valuable clue as to how this might be
done. Very often subsets of constraints in a problem exhibit a structure
that can be exploited by a specialized filtering algorithm. The solver
must somehow recognize these subsets, however.

This might be done by equipping the solver with automatic pattern
recognition, as is commonly done for network structure in MP solvers.
Yet the modeler is generally already aware of a problem’s special struc-
ture, because it is on this basis that the model is formulated. One
generally writes a model by assembling some flow balance constraints,
some hamiltonian path constraints, some capital budgeting constraints,
and so forth. The modeler can inform the solver about these substruc-
tures, rather than putting them into an undifferentiated constraint set
and expecting the solver to rediscover them.

2.1 The principle of global constraints

CP allows the modeler to indicate structure by writing a single global
constraint in place of a structured subset of constraints. It is called a
global constraint because it captures the global structure of the con-
straints it represents. The solver is equipped with filtering algorithms
that are specialized to each type of global constraint.

An example is the global constraint all-different, which is very
important in the formulation of scheduling problems. Let y1,...,y, be
discrete variables, where each y; has a finite domain D;. The constraint

6

all-different(yi,...,yn) imposes all the pairwise inequations y; # y;
for i+ < j. The variable y; might be the machine assigned to job 7,
and the all-different constraint would say that each job is assigned
to a different machine. To illustrate domain reduction suppose that
n=4. If Dj = Dy = {1,2} and D3 = Dy = {1,2,3,4}, none of
the pairwise inequations imply any domain reduction when considered
individually. Yet the all-different constraint reduces D3 and Dy
to {3,4}, due to the fact that {y1,y2} = {1,2}. A complete filtering
algorithm for this particular constraint is Regin’s [|, which is based on
maximum cardinality bipartite matching and a theorem of Berge.

Although CP uses global constraints to trigger specialized filtering
algorithms, they can also be used to generate cutting planes and to cre-
ate relaxations. For instance, a subset of constraints might consist of
inequalities for which specialized cutting planes have been developed.
The constraints could be represented by a global constraint that gen-
erates the appropriate cutting planes. Currently much cutting plane
technology is underutilized because there is no convenient way to incor-
porate it in a general-purpose solver. Global constraints could overcome
this obstacle.

Global constraints can also trigger the creation of a relaxation, per-
haps simultaneously with filtering. A particularly useful constraint is
element(y, (x1,...,%n), 2), where y is an integer-valued variable, the
x;’s are variables of any sort, and z is a variable of the same sort as the
zi’s. The constraint imposes the equation z, = z whenever the value
of y is determined. One can therefore implement an expression of the
form z, by replacing z, with z and adding the element constraint to
the model. There is a special-purpose filtering algorithm that can be
applied to element, as well as the convex hull relaxation [8, 13]:

SNai—(IDy| - 1)m <2< Y

1€Dy, 1€Dy

where D, is the current domain of y and m is an upper bound on all
of the x;’s. Both the filter and the relaxation would be invoked by the
appearance of element.

2.2 The underlying data structure

So far it is proposed that modelers exploit problem structure by using
global constraints, so that the solver knows where the structure is. Each
global constraint invokes special purpose inference algorithms (for do-
main reduction, cutting plane generation, etc.) and/or a special-purpose
relaxation.

A Framework for IntegratingSolution Methods 7

At this point we know how to deal with portions of the problem, but
it is unclear how to assemble the results to solve the problem as a whole.
CP does this by propagation through the constraint store. Each filtering
algorithm refines the constraint store by further reducing the domains.
When all the constraints have been processed, branching is based on
information in the current constraint store.

The constraint store is essentially an easily-solved relaxation. This
suggests that, in a more general setting, the solver’s various routines
could be linked through one or more relaxations, and search could pro-
ceed on the basis of information in the relaxations. Fach relaxation
would be stored in an appropriate data structure. There would also be
a data structure to hold the current problem restriction.

Two obvious relaxations are a constraint store and a set of linear in-
equalities. The former is updated by domain reduction, and the later by
generating continuous relaxations for constraints. The search proceeds
on the basis of information from the constraint store (whether all do-
mains are singletons, and whether there is an empty domain), as well as
information from the linear relaxations (the value of the relaxation, and
which variables have noninteger values in the solution of the relaxation).

3. A General Modeling Framework

We propose to implement the above scheme in a very simple overall
modeling framework. It consists of modeling windows that contain vari-
able declarations, the objective function, constraints, relaxations, and
search instructions. When creating a model, one might literally open
a new window on the computer screen for each new modeling window.
Each window is a modeling box within which one uses an appropriate
modeling sublanguage.

3.1 Types of windows

The various types of windows may be described as follows.

Variable declaration window. This window lists the variables and
the initial domains of each. There may be several types of do-
mains (finite sets, intervals of real numbers , etc.) with their own
appropriate data structures.

Constraint windows. The most basic component of a model is a con-
straint window, of which there are many types, depending on what
type of constraint is specified in the window. Some windows specify
linear inequalities, perhaps using a sublanguage resembling AMPL
or GAMS. Others may contain specially structured sets of inequal-

ities, such as network flow constraints, set covering constraints,
or traveling salesman constraints (represented implicitly). Oth-
ers may contain logical propositions or statements involving sets.
Still others may implement a particular global constraint, such as
cumulative or all-different.

A constraint may be associated with such inference procedures as a
specialized filtering algorithm or cutting plane generation, and/or
one or more relaxations.

Objective function window. This window specifies the objective func-
tion for the problem, if any.

Relaxation windows. Each relaxation that links the constraints is
represented by a relaxation window that specifies the type of re-
laxation and the solver to be used. The window sets up a data
structure for the relaxation and its solution, and it initializes the
set of routines that generate relaxations of this sort for each con-
straint window. The window also specifies an objective function,
because it could differ from the objective function of the original
problem.

Relaxations have yet to be developed for a number of popular
constraints, but this poses an interesting research program that
polyhedral theory is well equipped to address. Linear relaxations
have recently been put forward for all-different [8, 28], element
[8, 13], cardinality constraints that count how many variables have
a certain value [30], and the widely-used cumulative constraint
for resource-constrained scheduling [15].

Search window. This window directs the search recursively, whether
it be an exhaustive branching search, a local search, or whatever.
It does so by creating one or more new restrictions of the problem,
using information in the current relaxations. It initiates processing
of each of the new restrictions. The system could provide several
templates for the search window, one for branching search, one
for tabu search, and so forth, each allowing the user to specify
parameters for the search. FEach model has exactly one search
window.

User-defined windows. These windows give the user direct access to
search and constraint solving routines and supplies coded subrou-
tines to be executed at specified points defined by the search win-
dow.

A Framework for IntegratingSolution Methods 9

3.2 The search window

The search window can invoke any of several generic procedures:

m search(P, R, S). The search window directs the search recursively
by invoking itself, passing along a restriction P of the problem,

a vector R = (Ry, ..., R;) of the current relaxations, and a vec-
tor S = (S1,...,S5k) of their solutions. The latter two are made
available to enable efficient update of the current relaxation and
solution.

m infer(P, R, S). This activates a constraint propagation algorithm
that cycles through the constraint windows, inferring constraints
for each. The constraints are added to the current problem re-
striction P, which is passed back to search. R and S may be
provided for the generation of separating cuts. It may be desirable
for infer to accept parameters specifying how it cycles through the
windows, perhaps using a well-known CP procedure such as AC-1

or AC-3.

n relax(P, R;, S;,v;). This replaces the previously used relaxation
R; with a relaxation of P of type i. It cycles through the con-
straint windows and for each generates constraints to add to R;.
It then solves R; using the objective function in the correspond-
ing relaxation window. The solutions is returned as S;, and the
optimal value as v;.

Control is based on information in R and S.

4. Example: Traveling Salesman Problem

The traveling salesman problem has a particularly simple representa-
tion using the cycle constraint, which is related to all-different. Let
y; represent the city that comes after city j in a tour. Then cycle(yi,.. ., yn)
states that y1,...,y, should describe a hamiltonian cycle. If ¢;; is the
distance from city ¢ to city j, the traveling salesman problem can be
written

n
minimize Z Ciy;
Jj=1
subject to cycle(yi,...,Yn)

where the initial domain of each y; is {1,...,n}.

The model appears in Fig. 1. Modeling windows 1 and 2 define the
variables and objective function. The variable z; in the objection is de-
fined by window 4 to be cjy;. Window 3 sets up the standard constraint

10

1. Variables and Initial Domains for Problem P
y; € D; ={2,...,n} for j =2,...,n (jth city in tour)
Dy ={1}

zj € Rforj=1,...,n (cost of jth link in tour)

2. Objective Function
minimize Zj:l zj

3. Relaxation R;

Type: Constraint store, consisting of domains of y1, ..., Y.
Objective function: none.

Solver: select a value from each domain.

4. Relaxation R,

Type: Linear programming

Objective function: minimize Z], & Cik Tk

Solver: linear programming.

Set incumbent value Z = oo, where Z is a global variable.

5. Constraint: element

element(y;, (Cj1,-..,Cin),2;) for j=1,...,n.
Inference: maintain hyperarc consistency.
Relaxation: add reduced domains to constraint store.
Relaxation: disjunctive relaxation.

6. Constraint: cycle

cycle(y1,---,Yn)

Inference: domain reduction algorithm to be developed.

Relaxation: add reduced domains to constraint store.

Relaxation: standard IP relaxation, with assignment inequalities, separating
subtour elimination inequalities and various separating cuts with respect to Ss.

7. Search: branch and bound
BandBsearch(P, R, S, v, TSPbranch)

8. User defined procedure
Procedure TSPbranch(P, R, S,i). (Take the ith branch.)
Let z;; be a variable with a nonintegral value in Ss.
If i = 1 then create P’ from P by letting D; = {k} and return P'.
If 7 = 2 then create P’ from P by letting D; = D; \ {k} and return P'.

Figure 1. Model for the traveling salesman problem.

store R1 containing the variable domains. Since the domains are also
part of P, 121 in this case is redundant. Yet formally speaking branching
1s based on the domains in R; rather than the identical domains in P.

A Framework for IntegratingSolution Methods 11

Procedure BandBsearch(P, R, S, Branch).
Perform Infer(P). (Reduce domains.)
Perform Relax(P, R;). (Check the domains.)
If R; is infeasible then return.
Perform Relax(P, Ry, So, v2). (Solve LP relaxation Rs.)
If Ry is feasible and vy < Z then
If S5 is feasible then update the incumbent solution and let zZ = vs.
Else
Perform BandBsearch(Branch(P, R, S»,1), R, S).
Perform BandBsearch(Branch(P, R, S»,2), R, S).

Figure 2. Search routine for standard branch and bound, where R = (Ry, R») are
the constraint store and a linear relaxzation, and S = (S1,5;) are their solutions.
The function Branch(P, R, S,1) returns the problem that results from taking the ith
branch. The specific branching function is passed into BandBsearch as a parameter.

Window 5 indicates that relaxation Fg is a linear programming prob-
lem. Note that the objective function is the classical traveling salesman
objective, which uses variables z;;. Here z;; = 1 if j immediately pre-
cedes k in the tour. In general it is possible to introduce new variables
in order to formulate a relaxation. In this case variables x;; that would
traditionally be 0-1 variables in the traveling salesman model are used
only as continuous variables in the relaxation and play no modeling role.

Window 6 imposes the cycle constraint. Curiously, there seems to
be no filtering algorithm available for cycle in current CP technology,
but it would be an interesting research project to develop one. The
relaxation consists of assignment constraints, plus separating subtour
elimination constraints and other separating cuts with respect to the
previous solution Sy.

Window 7, the search window, calls a canned depth-first branching
search procedure, which appears in Fig. 2. It passes to the search proce-
dure a function TSPbranch that defines how the search should branch,
based on the solution of the relaxation. The search differs slightly from
standard branch and bound in that there is an initial check at each node
for whether a domain is empty, in which case the search backtracks.
The search could also check whether all domains are singletons, and if
so whether resulting solution is feasible in the original problem, in which
case the incumbent solution is updated. This step is omitted from Fig. 2
for simplicity.

The branching function TSPbranch(P, R, S,i) appears in window
8, a user-defined window. The function returns the problem to which
one branches in the ith branch. It branches on a variable z;; that is
nonintegral in the solution of the linear relaxation. This is accomplished

12

Unit 4 |—
Unit 2

—| Unit 1 Unit 5 |—
Unit 3

Unit 6 |—

Figure 3. Superstructure for a processing network design problem.

by setting D; = {k} for the x;; = 1 branch and setting Dy = D; \ {k}
for the x;; = 0 branch.

5. Example: Processing Network Design

An early application of integrated modeling was to processing network
design problems in the chemical industry [4, 23].

Figure 3 displays a small instance of a processing network design prob-
lem. The object is to determine which units to include in the network so
as to maximize net income (revenue minus cost). Each processing unit
1 incurs a fixed cost d; and delivers revenue d;u;, where the variable u;
represents the flow volume entering the unit. The revenue is normally
positive for the terminal units (units 4-6) because their output is sold,
and it is normally negative for the remaining units.

The model appears in Fig. 4. The first modeling window defines
the variables and domains; note that y; is a logical proposition that is
true when unit ¢ is installed. The quantities ¢; and ¢;; are capacities.
The objective function in window 2 subtracts total fixed costs from net
variable income. Window 3 defines the constraint store, and window
4 sets up a linear relaxation with the same objective function as the
original problem.

The linear constraints © = Az in window 5 define the flows u; through
the units in terms of the flows z;; on the arcs. The constraints bu = Bz
compute the flows out of each intermediate unit. The constraints in this
window can be added directly to the linear relaxation. They can also be
processed with a filtering algorithm that reduces the interval domains

A Framework for IntegratingSolution Methods

1. Variables and Initial Domains

u; € [0, ¢;] (flow through unit ¢)

x5 € [0,c;5] (flow on the arc from unit ¢ to unit j)
z; € [0,00] (fixed cost of unit %, if any)

y; € D; = {T, F} (true when unit ¢ is installed)

2. Objective Function

maximize E S Til — E ;%

3. Relaxation: R;

Type: constraint store, consisting of variable domains.
Objective function: none.

Solver: Select a value from each domain.

4. Relaxation R».

Type: linear programming.

ObJeCth.e function: max;mlze ZZ ity — ZZ 24

Solver: linear programming.

Set incumbent value Z = —oo, where Z is a global variable.

5. Constraint: Linear Inequalities

u = Az

bu = Bz

Inference: bounds consistency maintenance.
Relaxation: add reduced domains to constraint store.
Relaxation: add all these inequalities to LP relaxation.

6. Constraint: Disjunction of Linear Inequalities

Yi Yi .
(ZiZdi)\/(w <0) for each i

Inference: none.
Relaxation: Generate the projected big-M relaxation for the LP.

7. Constraint: Propositional Logic

y1 — (y2 vV y3) Y3 —> Y4

Y2 = Y1 y3 — (ys V ¥s)
y2 = (ya vV ys) ya — (Y2 V ys)
Y2 — Y6 ys — (y2 vV ¥3)
Y3 — y1 ye — (y2 vV y3)

Inference: Apply the resolution method.
Relaxation: Add reduced domains to constraint store.
(One could generate linear inequalities that relax the propositions.)

8. Search
Procedure BandBsearch(P, R, S, NetBranch)

9. User defined procedure
Procedure NetBranch(P, R, S, 1)
Let ¢ be a unit for which »; > 0 and z; < d;.
Let D; be the domain of y;.
If ¢ = 1 then create P’ from P by letting D; = {T'} and return P’.
If ¢ = 2 then create P’ from P by letting D; = { F'} and return P’.

Figure 4. Model for the processing network design

problem.

13

14

as much as possible, using straightforward interval arithmetic. This is
called bounds consistency maintenance.

Window 6 requires that one either pay for a unit or shut it down.
That is, either z; > d; or u; < 0 for each unit 7. The same constraint
requires that if y; is true, then z; > d;, and otherwise u; < 0. It in effect
defines y;. This type of disjunctive constraint receives its own window
because is quite common in modeling situations and can be given a
succinct relaxation [11]. In the present case the relaxation simplifies to
cizi > dyuy for each i.

One can accelerate the search by making some simple observations.
It is clearly pointless to install unit 1 unless one installs unit 2 or unit 3.
This can be written y; — (y2 V y3). Rules of this sort have been called
“don’t be stupid constraints” and appear in window 7. A large number
of don’t-be-stupid rules can be used when they are processed symbol-
ically rather than added to the relaxation. Logical inference methods
(such as the resolution method) can be applied to fix variables or detect
infeasibility.

The search window specifies a traditional depth-first branching search.
The branching is directed by which disjunctions in window 6 are violated
by the solution of the linear relaxation. The search branches on y; for
some unit ¢ whose disjunction is violated.

6. Example: Lot Sizing

A lot sizing problem discussed by Wolsey (1998) illustrates the role
of conditional constraints. (We modify the example slightly.) Several
products ¢ must be shipped in specified quantities d; on each day t.
However, at most one product can be manufactured on a given day,
so that inventory must be accumulated. The unit daily holding cost for
product 4 is h;, and ¢;; is the cost of switching the manufacturing process
from product i to product j (gi; = 0). A product may be manufactured
for a fraction of a day or for several days in a row.

Let 4 be the product manufactured on day ¢, with 1y = null if nothing
is manufactured. Note that 1 need not have a numerical value. Let xy
be the quantity of product ¢ manufactured on day ¢. The stock level of
product ¢ on day t is s;;. These declarations appear in the first window
of Fig. b.

The objective (window 2) is to minimize the total cost of holding
inventory and switching from one product to another, where the latter
is indicated by wv;. The calculation of v; incurs modeling difficulties
in traditional integer programming, because a large number of doubly-

A Framework for IntegratingSolution Methods 15

indexed 0-1 variables must normally be introduced for this purpose. Here
the definition is given by window 7, to be discussed shortly.

Window 4 specifies a continuous relaxation. In addition, a solution
of the relaxation is a candidate solution is it satisfies the conditional
constraint in window 6. Window 5 contains the linear inventory balance
constraints, which can be added directly to the relaxation.

The conditional constraint in window 6 is a versatile device. In general
it has the form A — C, and its function is to impose the consequent '
as a constraint whenever, during the course of the search, the antecedent
A becomes true. In the present case, the antecedent becomes true, and
x4 = 0 is enforced, whenever the domain of 1 is reduced to the point
that it excludes i.

The element constraint in window 6 defines v; = gy, ,,,; that is,
the setup cost incurred on day ¢ is the cost of switching from product
y¢—1 vesterday to product 1 today. The variable subscript of ¢ is a pair
(yt—1,y¢), and we impose the constraint element((y;_1,y¢), @, v¢), where
(is the matrix of g;’s.

The search window implements a standard first-fail branching algo-
rithm.

7. Example: An Allocation Problem

An example proposed by Williams [27] illustrates a local search model.
A firm wants each of its retail outlets to be supplied by one of the firm’s
two divisions. There are several products, and the division that supplies
retailer 7 must provide it a;; units of product ¢. The company wants
division 1 to control a certain fraction of the market for each product.
Let b; be the corresponding quantity of product ¢ that division 1 should
supply. The problem is to approximate the desired allocation as closely
as possible. It might be formulated as the following (-1 programming
problem.

minimize > |s;]
subject to Zaijxj + s =b;, allz (1)

J
Tj € {07 1}7 all j
si €R, alli
Where x; = 1 when division 1 supplies retailer j, and x; = 0 otherwise.
The problem is known to be very hard for MP methods [3]. A local
search method may therefore be appropriate.
The model of Fig. 6 illustrates a simulated annealing search. A ran-
dom neighbor of the current solution is selected. If it is superior to
the current solution, the search moves to the neighboring solution, and

16

1. Variables and Initial Domains

85t € |0,00) (stock level of product 7 in period t)

x5 € [0, C] (production level of product 7 in period t)

yt € {prod 1,...,prod n,null} (product manufactured in period ¢, if any)

2. Objective Function

maximize Zt (Zz hisit + vt>

3. Relaxation R;

Type: Constraint store, consisting of variable domains.
Objective function: none.

Solver: select a value from each domain.

4. Relaxation Rs

Type: linear programming.

Objective function: maximize Zt (Zl hisit + vt>

Solver: linear programming.

Set incumbent value Z = —oo, where Z is a global variable.

5. Constraint: Linear Inequalities

8it—1+ Ts = dit + 8, all 4,1

Inference: bounds consistency maintenance.

Relaxation: add reduced domains to the constraint store.
Relaxation: add all these inequalities to the LP relaxation.

6. Constraint: Conditional

(ye #1) — (2 = 0), all 4, ¢

Inference: none.

Relaxation: add reduced domains to the constraint store.
Relaxation: add consequent to LP relaxation if antecedent is true.

7. Constraint: Element

Element((y¢—1,¥¢), Q,vt), all t

Inference: maintain hyperarc consistency.

Relaxation: add reduced domains to the constraint store.
Relaxation: disjunctive relaxation.

8. Search
Procedure BandBsearch(P, R, S, FirstFailBranch)

9. User defined procedure

Procedure FirstFailBranch(P, R, S)
Let the discrete variable with the smallest domain have domain D.
Split D into Dy and Ds.
If i = 1 then create P’ from P by letting D = D; and return P’
If i = 2 then create P’ from P by letting D = D> and return P’

Figure 5. Model for the lot sizing problem.

otherwise it moves to the neighboring solution with probability p. In
general p depends on the “temperature,” which falls over time, but for

A Framework for IntegratingSolution Methods 17

1. Variables and Initial Domains
x; € D; = {0}, j =1,...,n (takes value 1 when division 1 is assigned retailer j)
s; € (—o0,00), i =1,...,m (error in meeting goal for product %)

2. Objective Function
minimize f(z) =", |si

3. Relaxation R;

Type: linear.

Objective function: minimize Zl |'si|
Solver: direct computation.

4. Constraint: Linear Inequalities

S; = bz — Z] a;;Tj, all ¢

Inference: none.

Relaxation: s; = b; — Z], a;;x;, with each z; is fixed to the single value in D;

5. Search: Simulated Annealing
Procedure Search(P, R, S).
Return if search has run long enough.
Let random(p) be a random variable that has value 1 with probability p.
To flip a domain D; = {a} is to change it to {1 — a}.
Perform relax(P, Ry, S1,v).
Do forever:
Randomly select j from {1,...,n} and change P by flipping D;.
Perform relax(P, Ry, S1,v').
If v < v or random(p) = 1 then perform Search(P, R, S) and return.
Change P back by flipping D;.

Figure 6. Model for the allocation problem.

simplicity temperature is assumed constant. The search begins with all
Tj = 0.

The objective function is calculated in a linear relaxation Ry of (1),
in which the x;’s are fixed to the values in their current domains. This
is the only relaxation used by the model.

8. Example: Benders Decomposition

Benders decomposition integrates two solution methods: one that
solves the master problem, and one that solves the subproblem. We
will consider the case of classical Benders applied to integer program-
ming, which combines integer programming (master problem solver) and
linear programming (subproblem solver). This will show how the mod-
eling framework proposed here can be adapted to a suite of solution
methods other than CP, MP and heuristics.

18

Classical Benders decomposition can be applied to problems of the

form
minimize cx + dy

subject to Ax+ By > a
zER", yeZ™

The basic strategy of the method is to try different values of y and find
an optimal x for each one in a subproblem. Thus if y is fixed to y the
subproblem is the linear programming problem

minimize cx + dy @)
subject to Ax > a — By

The dual of (2) is

minimize u(a — By) + dy
subject to u©A =c¢
u >0

If the subproblem (2) is feasible and bounded, and if @ solves the dual,
one obtains a Benders cut

z > u(a — By) +dy (3)

If the subproblem is infeasible, and @ is an extreme ray solution of the
dual, the Benders cut becomes

u(a — By) <0 (4)

(We assume that the subproblem and its dual are not both infeasible.)
If the subproblem is unbounded, the original problem is also unbounded,
and the procedure stops. Otherwise one solves a master problem of the
form

minimize 2
subject to cuts of the form (3) and (4) generated so far

The solution ¥y of the master problem defines the next subproblem. The
process continues until the master problem and subproblem have the
same optimal value.

This process can be viewed as searching over restrictions of the orig-
inal problem, namely over subproblems defined by the fixed value 3.
Each time a subproblem is formulated, an inference method (solution of
the linear programming dual) is used to infer a Benders cut. The master
problem is a relaxation of the original problem, and its solution guides
the search strategy by defining the next subproblem. The Benders al-
gorithm is therefore easily formulated in the framework proposed here,

A Framework for IntegratingSolution Methods 19

1. Variables and Initial Domains
z; €R, all i
y; € D; = {0}, all j (integer variables initially set to 0)

2. Objective Function
minimize cx + dy

3. Relaxation R;

Type: Integer programming problem (master problem).
Objective function: minimize z.

Solver: integer programming solver.

Global variable Z is optimal value of master problem.

4. Constraint: Linear Inequalities

Ax+ By > a.

Inference: generation of Benders cuts by solving dual.
Relaxation: none.

5. Constraint: Benders cuts generated by inference

Benders cuts of the form z > %(a — By) + dy when the subproblem is bounded,
or of the form %(a — By) < 0 when the subproblem is unbounded, where
the subproblem is P minus Benders cuts, and % is the solution of the
subproblem dual. Initially there are no Benders cuts.

Inference: none.

Relaxation: add all Benders cuts to master problem.

6. Search
Procedure Search(P, R, S)
Perform Infer(P, R, S). (Generate Benders cuts.)
If dual is infeasible, stop with unbounded solution.
Perform Relax(P, R, S, v). (Solve master problem.)
If v is equal to the value of the dual, stop.
Obtain P’ from P by setting each D, to {g;}, where g; is value of y; in §
(solution of master).

Perform Search(P', R, S).

Figure 7. Model for classical Benders decomposition.

using one relaxation. The details appear in Fig. 7. Note that one of the
constraint windows is initially empty and simply serves as a collection
bin for Benders cuts.

9. Example: Machine Scheduling

In the above treatment of Benders decomposition, the use of dual-
ity to derive a Benders cut from the restricted problem (subproblem)
is regarded as an inference method. This suggests a generalization of
Benders in which any dual-based method of inferring valid constraints

20

from the restricted problem is regarded as generation of a Benders cut.
Interestingly, the linear programming dual can be interpreted as a spe-
cial case of a general “inference dual,” described in [], whose solution is
the inference of a valid bound on the objective function. This is exactly
what a Benders cut is.

CP provides a natural context in which to infer Benders cuts, due to
the importance of inference methods in the field. In fact, Benders decom-
position has been explored recently as an alternate method of combining
CP with other methods, particularly MP [8, 12]. A CP method is ap-
plied to the subproblem (i.e., the current problem restriction) to obtain
cuts, and an MP method solves the master problem (i.e., the relaxation).
It follows that this Benders-based approach to combining methods is a
special case of the framework proposed here.

Jain and Grossman’s solution of a machine scheduling problem [16]
nicely illustrates how CP can generate Benders cuts, and it also achieved
dramatic computational success. The results are impressive because this
particular problem happens to be especially well suited to a Benders
approach, but it is likely that other problems sith similar structure may
also benefit from it, such as a vehicle routing problem with time windows.

The problem may be stated as follows. Each job j is assigned to one
of several machines ¢ that operate at different speeds. Each assignment
results in a processing time Tj; and incurs a fixed processing cost Cyj.
There is a release date I?; and a due date S; for each job j. The objective
is to minimize processing cost while observing release and due dates.

To formulate the problem we need the cumulative constraint, which
formulates a resource-constrained scheduling problem. It is written

cumulative(t,d,r, L)

where ¢ = ({1,...,t,) is a vector of start times, d is a vector of corre-
sponding job durations, and r a vector of corresponding resource con-
sumption rates. The constraint requires that the total rate of resource
consumption at any one time not exceed L:

S ory <L, allt
ty <t §7 tj +dj
Let y; be the machine to which job j is assigned and ¢; the start time

for job j. It also convenient to let (¢; | y; = i) denote the tuple of start
times of jobs assigned to machine 4, arranged in increasing order of the

A Framework for IntegratingSolution Methods 21
job number. The problem can be written

(a)

subject to t; > R;, allj (b)

()

t; +Ty_7'j <S5j, alj c
cumulative((l; [y; = 4), (Tij | yj =14),¢,1), alli (d)

minimize E Cyj j

The objective function (a) measures the total processing cost. Con-
straints (b) and (c) observe release times and deadlines. The cumulative
constraint (d) gives each job a resource consumption rate of 1 and sets
the maximum total rate to 1 (e is a vector of ones). It ensures that jobs
assigned to each machine are scheduled so that they do not overlap.

The problem has two parts: the assignment of jobs to machines, and
the scheduling of jobs on each machine. The assignment problem is
treated as the master problem and solved with mixed integer program-
ming methods. Once the assignments are made, the subproblems are
dispatched to a constraint programming solver to find a feasible sched-
ule. If there is no feasible schedule, a Benders cut is generated.

If y is fixed to g, the subproblem is

cumulative((t; | y; = 1), (Ti; | g; = 1) ,¢e,1), alli
Rj <tj <S5 — Dy, all j

The bounds on ¢; reduce the domain of ¢; before one applies cumulative.
The subproblem can be decomposed into smaller problems, one for each
machine. If CP methods determine that the smaller problem is infeasible
for some 7, then the jobs assigned to machine ¢ cannot all be scheduled
on that machine. In fact, going beyond Jain and Grossmann, there may
be a subset J of these jobs that cannot be scheduled on machine i. This
gives rise to a Benders cut stating that at least one of the jobs in .J must
be assigned to another machine.

V (y; #4)

JjeJ

where the symbol \/ denotes a disjunction. Let 3* be the solution of the
Eth master problem, I* the set of machines 7 in the resulting subproblem
for which the schedule is infeasible, and .J;; the infeasible subset. The
master problem can now be written,

minimize E Cyj j
J

subject to \/ (yj #i), icI*, k=1,...,K
7€k

22

The master problem can be reformulated for solution with conven-
tional integer programming technology. Let y;; be a 0-1 variable that is
1 when job j is assigned to machine i. The master problem (??) can be
written

minimize E Cii¥ij
,J

subject to z(l—yij) >1, iel* k=1,...,K
J€Jgi
yi; €{0,1}, alli,j

As noted in the previous section, the master problem can be regarded
as a relaxation of the restricted problem. The relaxation can be tight-
ened as follows:

minimize Z CiiYij
()
subject to u; > R;, all j
u; + ZTijyij < Sj all j
i

SA-yy)>1, i€l k=1,....,K (d)

(
(
(
(

JE€JIks
> Tijys < max{S;} —min{R;}, alli (c)
. J J
g
Yij < {07 1}7 all i:j (f)
u<u<a (9)

The variables u; have the same meaning as the start time variables ¢;
but are formally distinguished for purposes of solving the relaxation.
The bounds in (g) are taken from the current domains of ¢. Constraints
(b) and (c) simply observe the release times and due dates. Constraints
(e) say that the total processing time on each machine must fit between
the earliest release time and the latest deadline. It is reported in [25]
that simply dropping (e) from the relaxation makes the solution method
much less effective.

The model appears in Fig. 8. Note that the element constraint in
Window 4 defines the objective function. In practice one might install
a feature to create element constraints automatically to implement vari-
able indices.

10. Conclusion

We presented a simple framework for combining solution methods that
is based on their common solution strategies: search over problem re-
strictions, inference of new constraints, and solution of relaxations. The

A Framework for IntegratingSolution Methods 23

1. Variables and Initial Domains

t; € [0,00), all j (start times)

z; € [0,00), all j (cost of processing job j)

y; € T; = {1}, all ¢ (start with arbitrary assignment of jobs to machines)

2. Objective Function
minimize Z]. Wy

3. Relaxation R;
Type: Integer programming problem (master problem).
Objective function: minimize Z]. wj.

Solver: integer programming solver.

4. Constraint: element
element(y;, (Cij,...,Chmj), wy), all j.
Inference: domain reduction.
Relaxation: disjunctive relaxation.

5. Constraint: Linear Inequalities

Rj <t; <85 —Tyy;, all 5.

Inference: bounds consistency maintenance.
Relaxation: R; <wu; <855 — Ty.jj, all § .
> Tijyi; < max;{S;} — min;{R;}, all j

plus bounds on u;’s derived from current domains of ;’s.
Fix y;’s to values in current master problem solution.

6. Constraint: Benders cuts generated by inference
Benders cuts of the form Zjeﬁl —9;;) > 1, where
the subproblem is P minus Benders cuts. Initially there are no Benders cuts.
Inference: none.
Relaxation: add all Benders cuts to master problem.

7. Search
Procedure Search(P, R, S)
Perform Infer(P, R, S). (Generate Benders cuts using CP.)
If subproblem is feasible, stop with optimal solution.
Perform Relax(P, R, S, v). (Solve master problem.)
Obtain P’ from P by setting each D; to {g;}, where g; is value of y; in S
(solution of master).

Perform Search(P', R, S).

Figure 8. Model for a machine scheduling problem.

problem is modeled in a set of windows that define variables, constraints,
and the objective function. Additional windows initialize relaxations and
specify the search method.

Subsets of constraints with special structure are placed in separate
constraint windows that have their own syntax for specifying constraints.

24

Each constraint window uses specialized inference methods and relax-
ations that exploit the structure of its constraints. The inference meth-
ods may include domain reduction (filtering) and cutting planes. The
relaxations might consist of in-domain constraints (for a constraint store)
or linear inequalities.

This a modeling style quite different from that of traditional opera-
tions research, which tends to write everything in terms of a few ele-
mentary constructs such as inequalities. The approach suggested here
requires that the modeler be familiar with a library of global constraints.
Yet it results in a simpler and more readable model and allows the solver
to exploit the structure of the model. It can take advantage of the large
literature on specialized cutting planes and other specialized methods.

The windows are linked by underlying data structures that hold the
current problem restriction and the relaxations. The relaxations and
their solutions provide information for directing the search. The relax-
ation windows initialize the relaxation data structures.

The search proceeds by enumerating problem restrictions, either ex-
haustively or heuristically. A search window directs the search recur-
sively by invoking an a generic inference procedure, a generic relaxation
procedure, and itself. The inference procedure cycles through the con-
straints in a specified way and triggers the generation of new constraints
for addition to the current problem restriction (in-domain constraints,
cutting planes, etc.). The relaxation procedure assembles the relaxations
generated by the constraint windows.

The search procedure may be a canned procedure that accepts para-
meters, such as a branch-and-bound or first-fail branching search, or it
may written by the user.

The framework was designed for combining CP, MP and heuristic
methods, but it can represent any solution method that involves search
over problem restrictions, inference and relaxation. This fact was illus-
trated by Benders decomposition, which fits readily into the framework.
It can be viewed as an enumeration of problem restrictions (subprob-
lems) that infers constraints (Benders cuts) and is directed by the so-
lution of a relaxation (master problem). Since a recent and promising
method for integrating CP and MP uses generalized Benders decompo-
sition, it is a special case of the framework proposed here. Benders is
generalized by using domain reduction, rather than linear programming
duality, to infer the Benders cuts.

This design proposed here should allow a software developer to build
the basic framework and add to it as desired.

References

Bockmayr, A., T. Kasper. 1998. Branch and infer: A unifying framework for
integer and finite domain constraint programming, INFORMS Journal on Com-
puting 10 287-300.

Bollapragada, S., O. Ghattas, J. N. Hooker. 2001. Optimal design of truss struc-
tures by mixed logical and linear programming, Operations Research 49 (2001)
42-51.

Cornuéjols, G. and M. Dawande. 1999. A class of hard small 0-1 programs,
INFORMS Journal on Computing 11 205-210.

Grossmann, I. E., J. N. Hooker, R. Raman, H. Yan. 1994. Logic cuts for process-
ing networks with fixed charges, Computers and Operations Research 21 265—
279.

Hooker, J. N. 1992. Generalized resolution for 0-1 linear inequalities, Annals of
Mathematics and Artificial Intelligence 6 271-286.

Hooker, J. N. 1994. Logic-based methods for optimization, in A. Borning, ed.,
Principles and Practice of Constraint Programming, Lecture Notes in Computer
Science 874 336-349.

Hooker, J. N. 1997. Constraint satisfaction methods for generating valid cuts,
in D. L. Woodrufl, ed., Advances in Computational and Stochasic Optimization,
Logic Programming and Heuristic Search, Kluwer (Dordrecht) 1-30.

Hooker, J. N. 2000. Logic-Based Methods for Optimization: Combining Opti-
mization and Constraint Satisfaction, Wiley (New York).

Hooker, J. N. 2001. Logic, optimization and constraint programming, to appear

in INFORMS Journal on Computing.

Hooker, J. N., Hak-Jin Kim, G. Ottosson. 2001. A declarative modeling frame-
work that combines solution methods, Annals of Operations Research, Annals
of Operations Research 104 141-161.

Hooker, J. N., M. A. Osorio. 1999. Mixed logical/linear programming, Discrete
Applied Mathematics 96-97 395-442.

Hooker, J. N. G. Ottosson. 1998. Logic-based Benders decomposition, to appear
in Mathematical Programming.

26

13]

14]

[15]

[16]

17]

21]

22)

23]

24]

25]

Hooker, J. N., G. Ottosson, E. Thorsteinsson, Hak-Jin Kim. 1999. On integrating
constrain propagation and linear programming for combinatorial optimization,
Proceeedings, 16th National Conference on Artificial Intelligence, MIT Press
(Cambridge) 136-141.

Hooker, J. N., G. Ottosson, E. Thorsteinsson, Hak-Jin Kim. 2000. A scheme
for unifying optimization and constraint satisfaction methods, Knowledge Engi-
neering Review 15 11-30.

Hooker, J. N. and Hong Yan. 2001. A continuous relaxation of the cumulative
constraint, manuscript, Hong Kong Polytechnic University.

Jain, V., and I. E. Grossmann. 2001. Algorithms for hybrid MILP /CP models for
a class of optimization problems, INFORMS Journal on Computing 13 258-276.

Kim, Hak-Jin, and J. N. Hooker. 2002. Solving fixed-charge network flow prob-
lems with a hybrid optimization and constraint programming approach. To ap-
pear in Annals of Operations Research.

Marriott, K., P. J. Stuckey. 1998. Programming with Constraints: An Introduc-
tion, MIT Press (Cambridge).

Nemhauser, G. L., and L. A. Wolsey. 1999. Integer and Combinatorial Opti-
mization, Wiley (New York).

Ottosson, G., E. Thorsteinsson. 2000. Linear relaxations and reduced-cost based
propagation of continuous variable subscripts, presented at Second International
‘Workshop on Integration of AI and OR Techniques in Constraint Programming
for Combinatorial Optimization Problems, University of Paderborn.

Ottosson, G., E. Thorsteinsson, J. N. Hooker. 1999. Mixed global con-
straints and inference in hybrid CLP-IP solvers, CP99 Post-Conference
Workshop on Large Scale Combinatorial Optimization and Constraints,
http://www.dash.co.uk/wscp99, 57-78.

Raman, R., I. Grossmann. 1991. Symbolic integration of logic in mixed-integer
linear programming techniques for process synthesis, Computers and Chemical
Engineering 17 909-927.

Raman, R., I. Grossmann. 1993. Relation between MILP modeling and logical
inference for chemical process synthesis, Computers and Chemical Engineering
15 73-84.

Raman, R., I. Grossmann. 1994. Modeling and computational techniques for
logic based integer programming, Computers and Chemical Engineering 18 563—
578.

Thorsteinsson, E. S. 2001. Branch-and-check: A hybrid framework integrat-
ing mixed integer programming and constraint logic programming, Seventh In-
ternational Conference on Principles and Practice of Constraint Programming
(CP2001), Lecture Notes in Computer Science 2239.

REFERENCES 27

26]

27]

28]

Turkay, M., I. E. Grossmann. 1996. Logic-based MINLP algorithms for the
optimal synthesis of process networks, Computers and Chemical Engineering
20 959-978.

Williams, H. P. 1999. Model Building in Mathematical Programming, 4th ed.,
Wiley (New York).

Williams, H. P., and Hong Yan. 2001. Representations of the all-different pred-
icate, INFORMS Journal on Computing, to appear.

Wolsey, L. A. 1998. Integer Programming, Wiley (New York).

Yan, H., and J. N. Hooker. 1999. Tight representation of logical constraints as
cardinality rules, Mathematical Programming 85 363-377.

Yan, H., and H. P. Williams. 2001. Convex hull representations of the at-least
predicate of constraint satisfaction, manuscript, Hong Kong Polytechnic Uni-
versity.

