
A Logic-Based Benders Approach

to Home Healthcare Delivery

Aliza Heching

Compassionate Care Hospice

aliza.heching@cchnet.net

J. N. Hooker

Carnegie Mellon University

jh38@andrew.cmu.edu

Ryo Kimura

Carnegie Mellon University

rkimura@andrew.cmu.edu

March 2018

Abstract

We propose an exact optimization method for home healthcare delivery that relies on logic-

based Benders decomposition (LBBD). The objective is to match patients with healthcare

aides and schedule multiple home visits over a given time horizon, so as to maximize the

number of patients served while taking into account patient requirements, travel time, and

scheduling constraints. Unlike classical Benders methods, LBBD allows us to exploit a natural

decomposition of the problem into a master problem, solved by mixed integer programming, and

a subproblem that decouples into small scheduling problems, solved by constraint programming.

We report computational results based on data obtained from a major home hospice care

provider. We find that LBBD is far superior to mixed integer programming on all but a few

instances with narrow time windows. It solves problems of realistic size to optimality if the aim

is to conduct staff planning on a rolling basis, without temporal dependencies between visits.

We also find that a version of LBBD known as branch and check usually outperforms standard

LBBD on the instances tested.

1 Introduction

Home healthcare is one of the world’s most rapidly growing industries, due primarily to cost

advantages and aging populations. The number of home healthcare aides in the United States,

for example, has doubled in the last decade (Span 2016). Home care is not only less expensive than

institutional care but offers other advantages. It allows patients to be treated in the comfortable

and familiar surroundings of home, which are less stressful than an institutional environment. It

1

reduces the risk of acquiring drug-resistant infections that may spread in hospitals and nursing

homes. The increasing availability of portable equipment and online consultation makes home care

feasible for a growing range of conditions. Hospice care, which provides palliative rather than

curative treatment, is particularly suited for the home. It may consist of a variety of services,

including assistance in everyday tasks, nursing care, psychological counseling, physical therapy,

religious/spiritual support, and bereavement services for the family.

The cost-effectiveness of home healthcare depends critically on the efficient assignment, schedul-

ing and routing of healthcare aides, whom we call aides for short. Aides typically start their work

shift at home or a central office, travel directly from one patient to the next, and return to home or

office at the end of the shift. Aides must be qualified to service patients to whom they are assigned,

and the schedule must observe a number of constraints imposed by the availability of aides, patient

needs, work rules, and legal and regulatory requirements. These include time windows for each

patient visit and each aide’s departure from and return to home base.

We propose an exact method for solving the home healthcare problem that relies on logic-

based Benders decomposition (LBBD). While many heuristic methods have been proposed for the

problem, an exact method is particularly useful when it is necessary to determine what level and

type of staffing are adequate to meet existing or projected patient needs. By maximizing the

number of patients that can be served by a given set of aides, one can determine with certainty

whether these aides are adequate, or additional aides must be hired and trained. Maximizing the

population served also tends to result in less travel time and idle time for aides. The method can

be modified to accommodate other objectives as well.

Logic-based Benders decomposition (Hooker 2000, Hooker and Ottosson 2003) is well suited

for this application because the problem naturally decomposes into an assignment task and a

scheduling task. The assignment portion of the problem becomes the Benders master problem,

leaving the routing and scheduling for the Benders subproblem, which further decouples into a

separate problem for each aide. While classical Benders decomposition requires that the subproblem

be a linear or nonlinear programming problem (Benders 1962, Geoffrion 1972), LBBD generalizes

the classical method to accommodate an arbitrary subproblem, such as the scheduling subproblem

posed by home healthcare. A variant of LBBD, branch and check, has the same characteristics

but solves the master problem once rather than repeatedly as in standard LBBD (Hooker 2000,

Thorsteinsson 2001). It can be advantageous when the master problem is much harder to solve

than the subproblem. We apply both standard LBBD and branch and check to the home healthcare

problem.

A logic-based Benders approach has two additional advantages. The subproblem decouples

into small scheduling problems that remain roughly the same size as the overall problem grows

in size, allowing the algorithm to scale up to real-world applications. In addition, the master

2

problem and subproblem can be solved with methods that are best suited for each. We solve the

master problem with mixed integer/linear programming (MILP), which is well suited for computing

optimal assignments, while we solve the subproblem with the powerful scheduling algorithms in a

constraint programming (CP) solver.

Our research was occasioned by a project undertaken for a major home hospice care organi-

zation. In this and in many other contexts, a weekly schedule is required, in which each patient

is visited a specified number of times each week. The task is to determine which aide serves each

patient, on which days of the week, and at what time of day. We therefore formulate a model that

schedules patient visits over a given time horizon, with multiple visits per patient if so mandated

by the patient care plan. Patients may also require visits from two or more different types of aides.

The model can also accommodate a limited number of temporal dependencies between visits, as

when patients require two or more aides to be present simultaneously for a joint task. If this kind

of teamwork is the norm, however, the scheduling problem no longer decouples, and LBBD may

not be an efficient solution method. We tested LBBD on problem instances that do not include

such temporal dependencies.

Due to the nature of hospice (where eligible patients have a life expectancy of six months or

less if the illness runs its normal course), the patient population is very dynamic. The problem

presented to us was to update an existing aide schedule in response to projected changes in the

patient population, as this allows the organization to anticipate staffing needs. We therefore focus

primarily on the computation of a rolling schedule, a task that arises in many other applications

as well. This means that when newly admitted patients replace some existing patients in the

population, we find aides and visit times for the new patients while allowing the visit times of

patients in service to be rescheduled. To maintain continuity of service – a key contributor to

quality of service and patient satisfaction – we require that existing patients be served by the same

aides on the same days as before. Other types of continuity constraints are easily incorporated into

the model.

LBBD is especially well suited for computation of a rolling schedule, because the structure of the

decomposition makes the problem much easier to solve when a subset of patients is replaced, even

though the visit times are scheduled for the entire population. However, to test LBBD on a problem

with very different characteristics, we also applied it to a Danish home care scheduling problem

originally studied by Rasmussen et al. (2012). This application requires solving the problem from

scratch rather than on a rolling basis.

We found that LBBD can solve instances of realistic size to optimality, with solution times

ranging from a few seconds to a few minutes on nearly all instances, depending on the number

of new patients. Branch and check proved to be significantly faster than standard LBBD on the

hospice care instances, as might be expected, because the master problem is much harder to solve

3

than the subproblem. Branch and check is also far superior to MILP except on some instances with

narrow time windows. Both forms of LBBD are dramatically faster than MILP on the Rasmussen

instances. The master problem is easier to solve than the subproblem in some of these instances,

and for these, standard LBBD tends to outperform branch and check.

The paper is organized as follows. After a review of previous work in Section 2 below, we

formulate the home healthcare problem in Section 3, along with options for modifying the model.

Section 4 provides a brief description of LBBD and its application to the home care problem.

Section 5 states the scheduling subproblem and indicates how Benders cuts are generated and

strengthened. Section 6 states the master problem and indicates how the Benders model can

be altered to accommodate different objective functions. Section 7 indicates how branch and

check differs from standard LBBD. A key element in the success of LBBD is the inclusion of

a subproblem relaxation in the master problem, and we describe three possible relaxations in

Section 8. Computational results are reported in Section 9, which is followed by conclusions and

suggestions for future research.

2 Previous Work

Due to the difficulty of solving life-sized home healthcare delivery problems, nearly all existing

methods are heuristic algorithms. Recent studies have used tabu search (Hertz and Lahrichi 2009,

Rest and Hirsch 2016), pattern or column generation (Allaoua et al. 2013, Cappanera and Scutellà

2015), variable neighborhood search (Trautsamwieser and Hirsch 2011, Mankowska, Meisel, and

Bierwirth 2014), variable neighborhood search combined with scatter search and other heuristics

(Hiermann et al. 2015), constraint programming combined with heuristics (Nickel, Schröder, and

Steeg 2012, Rendl et al. 2012), an inexact Benders method (Ciré and Hooker 2012), and separate

solution of the rostering and scheduling components of the problem (Yalçındağ et al. 2014).

There are relatively few exact methods. Redjem et al. (2012) formulated the home healthcare

problem with an MILP model but solved only small instances (15 patients). Chahed et al. (2009)

used a specialized branch-and-bound algorithm to schedule home chemotherapy, but again tested

it only on a very small instance (8 patients).

Rasmussen et al. (2012) scaled up to problem instances of realistic size by solving an MILP

model of the problem with column generation and a specialized branching scheme. However, only

some of the smaller instances (20–80 patients) were solved to optimality within an hour. The

remainder were solved after grouping visits into clusters, so as to reduce the number of visits in the

model (clustering can, of course, be used in LBBD if desired). This sacrifices optimality, but the

authors report that the solutions are optimal or close to optimal on smaller instances that could

also be solved optimally.

4

The results of Rasmussen et al. show that a column generation method is a viable approach

to exact solution of the home care problem, at least for smaller real-world instances. A direct

comparison with the results we report is difficult, due to differences in the problem solved. They

compute a schedule for one day and one visit per patient, while we schedule multiple visits per

patient over a time horizon of several days. On the other hand, we reschedule on a rolling basis,

and their problem instances include temporal dependencies between visits.

Benders decomposition was introduced by Benders (1962) and extended to accommodate non-

linear programming subproblems by Geoffrion (1972). Logic-based Benders decomposition was

developed by Hooker (1995, 2000) and Hooker and Ottosson (2003). The computational advantages

of LBBD have since been demonstrated in a wide range of applications, partially surveyed by

Hooker (2012) and Ciré, Çoban, and Hooker (2015). Guidelines for applying LBBD can be found

in these references and Hooker (2007). Codato and Fischetti (2006) developed a method based on

combinatorial Benders cuts that is closely related to LBBD and applies to the specific case of an

MILP subproblem. Rahmaniani et al. (2017) provide an excellent survey of recent developments in

Benders decomposition, including LBBD.

Branch and check was introduced by Hooker (2000) and first applied by Thorsteinsson (2001),

who coined the term “branch and check.” The method has received much less attention than

standard LBBD, but Sadykov (2004, 2008) uses it to minimize the weighted number of late jobs

on a single machine, and Lam and Van Hentenryck (2016) use it for vehicle routing on a congested

network. Beck (2010) compares performance with standard LBBD on several different problems,

as well as presenting a variation of branch and check that avoids solving the subproblems under

certain circumstances.

This paper is based on methodology presented in a conference paper by Heching and Hooker

(2016) but goes significantly beyond it. It modifies the decomposition to allow the option of

requiring that a patient’s visits occur at the same time each day. It further develops the time

window relaxation described in the earlier paper, experiments with assignment and multicommodity

flow relaxations, and compares standard LBBD with branch and check. It is also based on a new

implementation that uses SCIP and Gecode as MILP and CP solvers, respectively, rather than

commercial solvers.

3 The Model

We define the home healthcare problem over d days. Each patient j must be visited on vj days

during this time period by an assigned aide having a set Qj of qualifications. Each visit has a

duration of pj time units and must take place within a time window [rj , dj].

We will let binary variable yijk = 1 if aide i is assigned to visit patient j on day k. If there

5

are restrictions on which days patients can be visited, we indicate this with the generic constraint

y ∈ K. For example, in a weekly schedule (d = 7), patient j may require two visits that must be

scheduled on Tuesday and Thursday or Tuesday and Friday. There may be separation constraints to

ensure that the visits are spaced evenly throughout the time horizon, particularly when the schedule

is cyclic. For example, in a schedule with vj = 2, we may require that the visits be separated by at

least two days in the cycle, so that visits on Monday and Saturday would be infeasible.

Each aide i has a set Q′i of qualifications. On any given day k, aide i begins at a starting

location bi, travels to the home of each assigned patient, and returns to the terminal location b′i

(normally bi = b′i). The travel time between aide/patient locations j and j′ is tjj′ time units, based

on an optimal route that is calculated in advance. Aide i must leave location bi during the time

window [rbi , dbi] and return to location b′i during [rb′i , db′i]. In addition, aide i cannot be on duty

more than Ui time units during the scheduling horizon. We will suppose that the aide “clocks in”

on arrival at the first patient of the day and “clocks out” on departure from the last patient, but

this can be altered if desired.

The remaining variables of the model are as follows. We let binary variable δj = 1 if patient

j is assigned an aide, and binary variable xij = 1 if aide i is assigned to patient j. We also let

integer variable πikν denote the νth patient visited by aide i on day k, and real variable sj denote

the time that the visit to patient j starts on each day it occurs. We are therefore supposing that

visits to patient j occur at the same time, because this simplifies notation and reflects the real-

world situation we modeled. This assumption can easily be relaxed by adding a day index k to the

variables sj and modifying the model in the obvious way.

The problem can be stated as follows:

max
∑
j

δj (1)

∑
i

xij = δj ,
∑
i,k

yijk = vjδj , ∀j (2)

yijk ≤ xij , ∀i, j, k (3)

xij = 0, ∀i, j with Qj 6⊆ Q′i (4)

yibik = yib′ik = 1, ∀i, k (5)

y ∈ K (6)

δj , xij , yijk ∈ {0, 1}, ∀i, j, k (7)

nik =
∑
j

yijk, all-different{πikν | ν = 1, . . . , nik}, ∀i, k (8)

πikν ∈ {j | yijk = 1}, ∀i, k, and ν = 1, . . . , nik (9)

πik1 = bi, πiknik = b′i ∀i, k (10)

6

rj ≤ sj ≤ dj − pj , ∀i, j (11)

sπikν + pπikν + tπikνπik,ν+1
≤ sπik,ν+1

, ∀i, k, and ν = 1, . . . , nik − 1 (12)∑
k

(
sπik,nik−1

+ pπik,nik−1
− sπik2

)
≤ Ui, ∀i (13)

sj ∈ R, for all j; πikk′ ∈ Z, ∀i, k, k′ (14)

The objective (1) is to maximize the number of patients served. Other objectives are possible, as

discussed in Section 6. Constraint (2) defines δj and ensures that patients are visited the required

number of times by their assigned aide. Constraint (3) says that patients are only visited by aides

who are assigned to them. Constraint (4) prevents patients from being served by aides without the

proper qualifications. Constraint (5) ensures that aides visit their starting and ending locations.

Constraint (6) enforces restrictions on which days visits may be scheduled.

The remainder of the model schedules the aides. This part of the model will appear in the

subproblem, which will be solved by constraint programming (CP). Several of the constraints have

a form that is peculiar to CP models, which typically contain “global constraints,” or high-level

constraints that convey information to the solver about special structure in the problem. Constraint

(8) defines nik, the number of patients visited by aide i on day k. It also uses the all-different global

constraint to require the variables πikν to take on distinct values. Constraint (9) ensures that the

patients who are sequenced for a given aide on a given day are in fact assigned to that aide.

Constraint (10) requires aides to visit their starting location first and ending location last. Note

that the variable π has another variable nik as one of its indices, a standard feature of CP models.

Constraint (11) ensures visits occur within the required time windows. Constraint (12) ensures

there is enough time to travel between locations, and constraint (13) enforces the maximum work

time for aides. These two constraints likewise contain variable indices.

When a patient requires visits from two or more aides, the model can represent the patient

as two or more distinct patients with different requirements. If there are temporal dependencies

between the visits, they must be enforced by constraints on the start times. For example, if two

aides must be present at the same time to perform a task together, we regard the patient as two

patients j and j′ and add the constraint sj = sj′ . If one aide must pick up where the other left

off, we can add the constraint sj + pj = sj′ . If the two visits should not overlap, we can give them

nonoverlapping time windows, in which case no temporal constraints are necessary. Alternatively,

if we want the windows to overlap but not the visits, we can impose a nonoverlapping constraint

for the visits – a standard option in CP solvers.

As patients are frequently admitted or discharged from service, it is often desirable to modify

the schedule to include the newly admitted patients and remove the discharged patients while

rescheduling patients remaining in service as little as possible. The schedule may also be adjusted

at the beginning of the day to reflect unavailability of aides or other contingencies. Such updates are

7

easily accommodated by adding constraints to the above model. Suppose that patient j is currently

scheduled to be serviced by aide i at time t on days k for k ∈ Kj . To retain this arrangement, we

merely set yijk = 1 for k ∈ Kj in the model and modify the time window [rj , dj] to [t, t + pj]. To

allow flexibility in the time of day, we leave the time window unchanged. To fix the aide assignment

but not the day of the week, we set xij = 1 in the model and leave yijk unfixed. We can also require

that only certain aides take on new patients (or patients whose aides are unavailable). We need

only add the constraint xij = 0 for each of the remaining aides i and all new patients j.

4 Logic-Based Benders Decomposition

Logic-based Benders decomposition (LBBD) applies to optimization problems of the form

min{f(x, y) | C(x, y), C(x)}, where C(x, y) is a constraint set containing variables x and y, and C(x)

a constraint set containing only x. Fixing x to a value x̄ that satisfies C(x) defines the subproblem

min{f(x̄, y) | C(x̄, y)}. In many applications, including the present one, the subproblem decouples

into smaller problems that can be solved separately.

The subproblem is solved to obtain an optimal value v∗, which indicates that cost cannot be less

than v∗ when x is fixed to x̄. We therefore have the bound f(x̄, y) ≥ v∗ for any y. The solution of

the subproblem is analyzed to obtain a Benders cut, which is a more general bound f(x, y) ≥ βx̄(x)

that applies for any value of x. The Benders cut is added to a master problem, which is solved to

obtain the next value x̄ to which x is fixed. The kth master problem is

min
{
v
∣∣ C(x); v ≥ βxi(x), i = 1, . . . , k − 1

}
where x1, . . . , xk−1 are the solutions of the first k−1 master problems. The optimal value vk of the

master problem is a lower bound on the optimal value of the original problem, and each βxi(x
i) is

an upper bound. The algorithm terminates when vk = min{βxi(xi) | i = 1, . . . , k − 1}.
In principle, a Benders cut is found by examining the proof that v∗ is optimal in the subproblem.

The proof can be regarded as a solution of the inference dual of the subproblem. The same proof

may yield a useful bound βx̄(x) for values of x other than x̄. In the special case of a linear

programming problem, the inference dual is the linear programming dual. The proof takes the

form of dual multipliers, which form the basis for a classical Benders cut. These concepts are

discussed further in Hooker (2000, 2007, 2012), Hooker and Ottosson (2003).

In the present application, the objective function depends only on the master problem variables

x, so that the problem has the form min{f(x) | C(x, y), C(x)}. The subproblem becomes a

feasibility problem, which may simply be written C(x̄, y). When the subproblem is feasible,

the Benders algorithm terminates with an optimal solution. When it is infeasible, the proof of

infeasibility may establish infeasibility for values of x other than x̄, giving rise to a Benders cut

in the form of a constraint Bx̄(x) that must be satisfied by any feasible x. One can always use a

8

simple nogood cut x 6= x̄, but it is desirable to find stronger cuts. The master problem now has the

form min{f(x) | C(x); Bxi(x), i = 1, . . . , k − 1}.
When the proof of infeasibility is not directly accessible from the solver, a Benders cut must

be inferred in some other manner. One approach is to tease out the nature of the infeasibility

proof by checking heuristically if the subproblem remains infeasible when some of the premises

xj = x̄j are dropped. For example, if the subproblem remains infeasible when xj is fixed to x̄j

only for j = 1, . . . , q, we have the Benders cut (x1, . . . , xq) 6= (x̄1, . . . , x̄q), which excludes more

solutions than x 6= x̄. This strategy has proved successful in several contexts and will be used

here (Ciré, Çoban, and Hooker 2015, Hooker 2005, 2006, 2007). A second approach is to deduce

from the structure of the subproblem an analytical Benders cut that strengthens the nogood cut.

Analytical cuts have been used in a wide variety of applications, such as Terekhov, Beck, and

Brown (2007), Hooker (2007), Fazel-Zarandi and Beck (2009), Peterson and Trick (2009), Çoban

and Hooker (2013).

We decompose the home healthcare problem by assigning aides and visit days to patients in

the master problem and visit times in the subproblem. Because the objective function depends

only on master problem variables, the subproblem becomes a feasibility problem. In previous work,

Heching and Hooker (2016) decoupled the subproblem into a separate scheduling problem for each

aide and each day. However, it is often useful in practice to require a patient’s visits on different

days to occur at the same time. This couples the daily scheduling problems for each aide, but we

nonetheless obtained better computational results than in the earlier paper.

When there are temporal dependencies between visits, the scheduling problems for the aides

performing the visits must be coupled. Since each solution of the master problem may assign

different aides to patients, the subproblem may decouple differently in each Benders iteration.

LBBD is most effective when relatively few visits are subject to temporal dependencies, because

this allows most of the aides to be scheduled separately.

5 Subproblem

The subproblem normally decouples into a separate scheduling problem for each aide. Each

scheduling problem checks whether there is a schedule that observes the time windows while taking

account of visit durations, travel times, and simultaneity constraints. If not, a Benders cut is

generated as described below.

The subproblem formulation consists of the scheduling constraints (8)–(13) after the daily

assignment variables yijk are fixed to the values ȳijk they receive in the solution of the previous

master problem. The scheduling problem Si for each aide i is

all-different {πkν | ν = 1, . . . , n̄k} , ∀k

9

πk1 = bi, πkn̄k = b′i, ∀k

rj ≤ sj ≤ dj − pj , ∀j ∈
⋃
k

Pik

sπkν + pπkν + tπkνπk,ν+1
≤ sπk,ν+1

, ∀k and ν = 1, . . . , n̄k − 1∑
k

(
sπk,n̄k−1

+ pπk,n̄k−1
− sπk2

)
≤ Ui, ∀i

πkν ∈ Pik, ν = 1, . . . , n̄k

where Pik = {j | ȳijk = 1} and n̄k = |Pik|. If the scheduling problem for two or more aides must

be coupled, the variables πkν become πikν as in the main model, and the above constraints are

repeated for each of the aides i that must be coupled. Constraints are added to reflect temporal

dependencies as described earlier.

The number of variables in the subproblem is limited by the fact that an aide can service only

a limited number of patients in a day, say L, regardless of the overall size of the problem instance.

Suppose that there are m aides and n patients, and there is no coupling of aides. Then there are

at most n variables sj and at most dL variables πkν in each of the m scheduling problems, which

are solved separately. The number of variables in the subproblem therefore increases linearly with

the number of patients.

If scheduling problem Si is infeasible, we initially generate a nogood cut
∑

k

∑
j∈Pik(1−yijk) ≥ 1

that prevents the same set of patients from being assigned to aide i on their corresponding days in

subsequent assignments. To strengthen the cut, we re-solve Si for subsets of Pik using the following

heuristic. For each k, we initially set P̄ik = Pik, and for each j ∈ P̄ik we do the following: remove j

from P̄ik, re-solve Si, and restore j to P̄ik if the modified Si is feasible. By replacing Pik with P̄ik

in the nogood cut, we obtain a Benders cut that results in significantly better performance.

6 Master Problem

The basic master problem consists of constraints (1)–(7) of the original problem and the Benders

cuts generated in all previous iterations, as described above. Because the problem is solved by

MILP, the constraints (6) on days assignments must be encoded as linear inequality constraints.

This is usually not difficult and will be illustrated in Section 9.

The master problem contains mnd variables yijk, mn variables xij , and n variables δj . The

number of variables therefore increases linearly with the number of patients, as in the subproblem.

Furthermore, when a rolling schedule is computed, many of the variables yijk and xij effectively

drop out of the problem because they are fixed to 0 or 1.

We augment the master problem with a relaxation of the subproblem, because computational

experience in Ciré, Çoban, and Hooker (2015) and elsewhere indicates that including such a

10

relaxation is crucial to obtaining good performance. Normally, the relaxation would contain only

master problem variables yijk, xij and δj rather than variables in the subproblem. This is quite

different from a classical relaxation, which contains variables from the problem being relaxed. We

present a time window relaxation, described in Section 8.1 below, that contains only the variables

yijk. A number of time window relaxations for other types of problems are described in Hooker

(2012).

In an effort to find stronger subproblem relaxations, we also experimented with relaxations that

contain variables from the subproblem. In particular, we used the classical assignment relaxation

and a multicommodity flow relaxation, described in Sections 8.2 and 8.3, respectively. The solution

values of the subproblem variables are discarded after the master problem is solved, and new

solution values obtained when the subproblem is solved.

The decomposition can be modified to accommodate other objective functions, including those

defined in terms of subproblem variables. In the latter case, the subproblem becomes an opti-

mization problem, and the Benders cuts become inequalities as described in Section 4. Cuts of

this kind can be constructed in analogy with the nogood cuts used here. Suppose, for example,

that the hourly wage for aide i is ci, and we wish to minimize total wages. We can convert Ui

in the subproblem to a variable, and the scheduling problem for aide i now has an objective of

minimizing ciUi. If z∗i is the minimum cost found for aide i’s schedule, the Benders cut consists of

the inequalities

zi ≥ z∗i
∑
k

∑
j∈Pik

(1− yijk), ∀i

and the master problem has the objective function
∑

i zi, where zi is the cost of aide i. This cut

imposes the lower bound z∗i on the cost of aide i if the same patients are assigned to the aide on

the same days. The cut can be strengthened heuristically by re-solving the scheduling problems.

Heuristics and subproblem relaxations for various objective functions are described, for example,

in Hooker (2006, 2007, 2012).

7 Branch and Check

Branch and check can be useful when the master problem is much harder to solve than the

subproblem. It solves the master problem only once with a branch-and-bound procedure, rather

than repeatedly as in standard LBBD. Each time a feasible solution is found at a node of the

branching tree, the current values of the master problem variables are sent to the subproblem, and

the resulting subproblem is solved. Feasible solutions generated by primal heuristics may also be

sent to the subproblem. If the subproblem is infeasible, one or more Benders cuts are generated,

and they are enforced throughout the remainder of the branching process.

11

We will find that the scheduling subproblem generally solves much more rapidly than the master

problem in the hospice care instances, which suggests that branch and check may be preferable to

standard LBBD for these instances. In fact, branch and check could benefit from relaxations

stronger than the time window relaxation, since it may be advantageous to invest more time in

solving a master problem that better reflects the original problem. We test these hypotheses in the

computational section below.

8 Subproblem Relaxation

We now describe the three subproblem relaxations we investigated for use in the standard LBBD

and branch and check algorithms.

8.1 Time Window Relaxation

The time window relaxation generalizes a similar relaxation used in Heching and Hooker (2016).

It is based on the idea that the total duration of visits and travel assigned to an aide must be no

greater than the length of a time interval into which the visits must fit.

For each aide i and day k, define a set {[rbi , αik`] | ` ∈ Lik} of backward intervals that begin

with the start of the aide’s shift, and a set {[βik`, db′i] | ` ∈ L
′
ik} of forward intervals that end with

the termination of the shift. The time window relaxation requires that the visits that are assigned

to aide i on day k, and whose time windows lie inside a given backward interval, must have a total

duration that fits in that interval. There is a similar requirement for forward time intervals. In

the case of backward intervals, the minimum travel time from the previous visit is included in the

visit duration, and in the case of forward intervals, the minimum travel time to the next visit is

included.

To state the relaxation more precisely, let J [t, t′] be the set of patients whose time windows lie

in the interval [t, t′], so that J [t, t′] = {j | [rj , dj] ⊆ [t, t′]}. Let the backward augmented duration

p′ijk for a patient j, aide i and day k be the visit duration pj plus the minimum travel time from

the previous visit, which may be the aide’s origin base. The forward augmented duration p′′ijk is pj

plus the minimum travel time to the next visit, which may be the aide’s terminal base. So we have

p′ijk = pj + min
{
tbij , min

j′∈Jik
{tj′j}

}
, p′′ijk = pj + min

{
min
j′∈Jik

{tjj′}, tjb′i
}

where Jik is the set of patients that are already assigned aide i on day k, or that have not yet been

assigned to an aide. Thus the backward augmented duration is a lower bound on the time required

to reach and carry out a visit, and similarly for the forward augmented duration.

We now observe that the sum of the backward augmented durations of visits in J [rbi , αik`] must

12

be at most the width of the backward interval [rbi , αik`], and similar for any forward interval:∑
j∈J [rbi ,αik`]

p′ijkyijk ≤ αik` − rbi , ` ∈ Lik;
∑

j∈J [βik`,db′
i
]

p′′ijkyijk ≤ db′i − βik`, ` ∈ L′ik (15)

This is because the visits and travel to each visit must fit between the beginning of the aide’s

shift and the end of the backward interval, and similarly for a forward interval. Inequalities (15),

collected over all aides i and days k, comprise a time window relaxation.

To obtain tighter inequalities (15), the backward and forward intervals should be chosen to

have a large density. That is, the visits that can take place within them should have a large

total duration relative to the width of the interval. To accomplish this, we need only consider the

backward intervals [rbi , dj] and the forward intervals [rj , db′i] for all patients j. The corresponding

densities are

ρj =
1

dj − rbi

∑
j′∈J [rbi ,dj]

p′ij′k, ρ′j =
1

db′i − rj

∑
j′∈J [rj ,db′

i
]

p′′ij′k

respectively. We now let the set Lik of backward intervals contain those intervals [rbi , dj] for which

ρj is sufficiently large, and similarly for the set L′ik of forward intervals.

The inequalities (15) are still fairly weak when scheduling all patients from scratch, because

the shortest travel time from the last (or next) visit is a weak bound on the actual travel time.

However, they are more effective when scheduling on a rolling basis, because the shortest travel

time is computed only over patients who are already assigned aide i on day k or are unassigned.

Additionally, we add the following relaxation of the “no overtime” constraint, which states that

the combined duration of all patients visited by an aide cannot exceed the aide’s work limit:∑
j

vjpjxij ≤ Ui, ∀i (16)

8.2 Assignment Relaxation

The second relaxation we considered is based on the assignment relaxation of the traveling salesman

problem. We define a new binary variable wijj′k = 1 if aide i visits patient j immediately prior to

patient j′ on day k. We add the constraints

wijb′ik +
∑
j′ 6=j

wijj′k = wibijk +
∑
j′ 6=j

wij′jk = yijk, ∀i, j, k (17)

wibijk +
∑
j′ 6=j

wij′jk = wijb′ik +
∑
j′ 6=j

wijj′k, ∀i, j, k (18)

plus similar constraints in which j and/or j′ is a home base. In addition, we include a simple

feasibility constraint based on the total hours spent traveling/working in a day∑
j

(
tbijwibijk + tjb′iwijb′ik + pjyijk +

∑
j′ 6=j

tjj′wijj′k

)
≤ db′i − rbi , ∀i, k (19)

13

a strengthened version of the inequalities (15) from the time window relaxation∑
j∈Ji`

(
tbi,jwibijk + pjyijk +

∑
j′∈Ji`
j′ 6=j

tj′jwij′jk

)
≤ αi` − rbi , ` ∈ Li

∑
j∈J ′i`

(
pjyijk + tjb′iwijb′ik +

∑
j′∈J ′i`
j′ 6=j

tjj′wijj′k +
)
≤ db′i − βi`, ` ∈ L′i

(20)

as well as a strengthened version of the inequalities (16)∑
j,k

pjyijk +
∑
j′ 6=j

tjj′wijj′k ≤ Ui, ∀i (21)

8.3 Multicommodity flow relaxation

The third relaxation is based on the well-known multicommodity flow model for the vehicle routing

problem with time windows (Cordeau and Laporte 2006). In addition to including all variables and

constraints of the assignment relaxation, we include the variables sijk and the constraints

sij′k ≥ sijk + pj + tjj′ −Mjj′(1− wijj′k), ∀i, j, j′, k (22)

rj ≤ sijk ≤ dj − pj , ∀i, j, k (23)

plus similar constraints in which j and/or j′ is a home base. Here Mjj′ = max{0, dj+pj+tjj′−rj′}.
The inequalities (19) and (20) are also strengthened slightly, by replacing rbi with sibik and db′i with

sib′ik.

If we constrain the variables wijj′k to be binary (rather than continuous), the multicommodity

flow relaxation becomes an MILP formulation of the original problem.

9 Computational Results

We tested standard LBBD (S-LBBD) and branch and check (B&Ch) on three datasets. One consists

of real-world data provided by a major hospice care organization, one is obtained by modifying these

data, and one consists of Rasmussen instances. We solved instances in the first two datasets on a

rolling basis, and the instances in the third from scratch.

9.1 Hospice Care Instances

The task presented to us was to update an existing schedule so as to accommodate projected changes

in the patient population. In particular, management wished to determine whether a given staff

was adequate to serve the new population while meeting all requirements. We therefore maximized

the number of patients that can be served by a specified work force with specified qualifications.

14

The aide assignments and scheduled days of the week were fixed for patients in service, but the

time of day could be rescheduled.

The organization maintains a weekly schedule for each region it serves; some regions provide

service seven days per week while others offer aide visits on weekdays only. In our dataset, visits

are scheduled on weekdays only. The patients required multiple visits per week, in accordance with

their plan of care; per patient request, these were all scheduled at exactly the same time of day.

When there are two visits per week, consecutive visits should be separated by at least two days,

and when there are three visits per week, these visits should be separated by at least one day. This

was enforced in the master problem by replacing the generic constraint (6) with

yijk + yij,k+τ ≤ 1, ∀i, j with vj ∈ {2, 3}, ∀τ, k with 1 ≤ τ ≤ 4− vj , 1 ≤ k ≤ 5

When formulating the time window relaxation, we noted that almost all the time windows either

span most of the morning or most of the afternoon. It was therefore natural to use one backward

interval ending at noon, and one forward interval beginning at noon, for each aide i. Thus we set

Li = L′i = {1} and αi1 = βi1 = noon for each i. This choice of α and β turns out to yield the

highest-density non-trivial backward and forward interval for almost every aide i, where density is

defined as in Section 8.1, and a nontrivial interval is one that includes and excludes at least one

visit.

To obtain an initial schedule, we ran a greedy heuristic on an 80-patient population using 20

aides. Since the heuristic could only schedule 48 patients, we ran the standard LBBD algorithm

on 60 of these patients, including 40 pre-scheduled by the greedy heuristic and 20 treated as new

patients. They collectively required 270 visits, since the patients required between 2 to 5 visits per

week. LBBD scheduled all of the new patients using 18 aides. The resulting 60-patient schedule

was used as a starting point for computational tests. It is better than a heuristic schedule but

worse than an optimal one, as one might expect when scheduling on a rolling basis.

We ran the tests for different rates of patient turnover in the 60-patient population. One

instance was generated for each number n = 8, . . . , 25 of new patients, where the new patients are

assumed to be the last n patients in the list of 60. We designated 8 of the 18 aides as available

to cover the new patients (along with their pre-assigned patients), because a minimum of 9 aides

were required in nearly every instance. This allowed us to test computational performance near

the phase transition for the problem. We set a maximum time limit of one hour.

9.2 Implementation

We implemented the algorithms using SCIP version 3.2.1 (Achterberg 2009) and the CP solver

Gecode version 4.4.0 (Gecode Team 2016). The master problem was solved by SCIP, and the

scheduling subproblems by Gecode. The SCIP presolver removes variables in the master problem

15

that are fixed to 0 or 1 by preassignments. The scheduling problems were formulated with a

combination of Hamiltonian path constraints, unary resource constraints, and element constraints.

The problems were solved with branch-and-bound search, first branching on sequence variables

and then on start-time variables. We implemented S-LBBD via a custom dialog (for SCIP), which

made calls to SCIP and Gecode to solve the master problem and solve the subproblem/generate

Benders cuts, respectively.

We implemented B&Ch by incorporating into the master problem an additional constraint that

enforced feasibility of the subproblems. We implemented a custom constraint handler for this

constraint, which made calls to Gecode to determine feasibility of the subproblem and generated

Benders cuts accordingly. We generated cuts for feasible solutions found by primal heuristics, as

well as for those obtained in the branching process, because this proved to accelerate solution

significantly. The solvers were run in Arch Linux on a laptop with an Intel Core i5 processor and

7.75 GB RAM.

We formulated an MILP model for the problem by modifying the well-known multicommodity

flow model for the vehicle routing problem with time windows (Desrochers et al. 1988, Desrochers

and Laporte 1991, Cordeau et al. 2007). The model consists of (1)–(7), (17)–(18), and (22)–(23).

Because there are mn2d variables wijj′k, the number of variables increases quadratically with the

number of patients. This remains the case for a rolling schedule, because all patient visits can be

resequenced even when many staff and day assignments are fixed. Thus while preassignments in a

rolling schedule make the Benders master problem significantly smaller, they have relatively little

effect on the size of the MILP model, in which most of the variables are sequencing variables wijj′k.

SCIP uses reliability branching and pseudocosts by default (Achterberg 2009). However, we

turned off reliability branching for the B&Ch master problem, because in this context, SCIP 3.2.1

occasionally attempts to branch on a variable whose value has become fixed, throwing an error. This

is likely due to the pseudocost calculations becoming invalid over time as B&Ch generates global

cuts. The removal of reliability branching for B&Ch appears otherwise to be of little consequence,

because the results are very similar with and without reliability branching on instances where no

error is generated.

9.3 Results for Hospice Care Instances

Computational results for the hospice care instances appear in Table 1. The table shows the number

of new patients in each problem instance, as well as the number of patients covered in the optimal

solution. Computation times are indicated for all three methods, as well as the number of Benders

iterations for S-LBBD. Although we tested the Benders methods using all three relaxations, Table 1

shows results for the time-window relaxation only, because it proved to be by far the most effective.

Computation times for MILP are those obtained by SCIP.

16

Table 1: Solution times for 60-patient hospice care instances requiring 270 visits

New New Patients MILP S-LBBD B&Ch

patients visits covered Time (s) Iters Time (s) Time (s)

8 40 60 43.6 7 3.17 0.63

9 45 59 41.0 13 5.99 0.71

10 50 59 46.6 7 3.27 0.74

11 55 59 53.3 11 5.63 0.70

12 60 59 53.2 12 6.49 1.30

13 65 59 63.0 21 12.3 1.11

14 70 58 113 84 72.3 9.28

15 75 58 223 86 77.0 9.78

16 80 58 844 91 98.5 43.5

17 85 59 1591 93 106 31.1

18 90 58 3017 116 202 62.0

19 95 58 1189 119 388 90.0

20 100 57 1016 124 1251 600

21 105 58 923 168 1272 380

22 110 58 * 217 951 523

23 115 58 264 * 2092

24 120 *

∗Computation time exceeded one hour.

Both S-LBBD and B&Ch are faster than MILP on nearly every instance, and B&Ch is consis-

tently superior to S-LBBD. In fact, B&Ch is almost always between one and two orders of magnitude

faster than MILP. These results indicate that a Benders method can scale up to problem instances

of realistic size. Patient records indicate that a 5–8% turnover per week is typical in practice.

Therefore B&Ch allows staff planning as much as 6 weeks in advance for 60 patients collectively

requiring 270 visits, with computation times ranging from less than a second to ten minutes,

depending on the number of new patients. This is adequate for many if not most hospice care

situations.

As indicated by Table 2, solution of the subproblem consumes less that one percent of the

S-LBBD solution time for the hospice care instances. The superior performance of B&Ch over

S-LBBD is therefore consistent with our hypothesis that B&Ch may benefit from fast solution of

the subproblem.

We also hypothesized that B&Ch may benefit from including tighter relaxations in the master

problem, such as the assignment and multicommodity flow relaxations discussed earlier. Table 3

compares the performance of these two relaxations with the time window relaxation. The tighter

relaxations lead to much worse performance, refuting the hypothesis. This might be explained

17

Table 2: Percent of solution time devoted to subproblem

S-LBBD B&Ch

Instances Avg Max Avg Max

Original 60-patient instances 0.1 0.2 1.4 3.9

Narrow time windows 0.1 0.1 2.8 6.0

Fewer visits per patient 0.0 0.1 1.7 3.5

Rasmussen, weighted objective 0.4 0.8 6.3 13.6

Rasmussen, covering objective 1.2 1.5 85.6 99.7

by the fact that the tighter relaxations result in many fewer Benders cuts, and in fact none at

all for the multicommodity flow relaxation. Since a cut is generated at each feasible node of the

search tree at which the subproblem is infeasible, this indicates that the search discovers fewer

feasible nodes when the relaxation is tighter. This is presumably because the tighter bound allows

backtracking at a higher level in the tree. Because there are fewer cuts, less information is obtained

from the subproblem, and in fact no information in the case of the multicommodity flow relaxation.

Evidently, the reduced information flow results in poorer performance.

Given these results, one might question whether even the time window relaxation is helpful,

especially when patient time windows span half a day as in the test instances. Table 4 reveals that

the time window relaxation yields a significant, if not dramatic, reduction in computation time. It

should therefore be included in the master problem. Table 4 also shows the advantage of generating

cuts from feasible solutions obtained by primal heuristics, rather than solely from those obtained

in the branching process.

9.4 Modified Hospice Care Instances

To clarify further the effect of problem structure on the performance of S-LBBD and B&Ch, we

solved two modifications of the hospice care problem.

The first modification uses much narrower patient time windows. We replaced the original time

windows with time windows centered around each patient’s visit as scheduled in the initial heuristic

solution. We then set the length of the time window to be twice that of the visit duration.

The second modification is inspired by the fact that over 80% of patients require five visits

per week in the original dataset. This was the situation as presented by the company, but one

might ask how performance differs when there are fewer visits per week. We therefore changed the

number of required visits per week for each patient to a uniformly drawn random number from 1

to 5, with the duration of each visit is kept the same. We ran the greedy heuristic to produce a

new initial schedule.

18

Table 3: Performance of branch and check with three types of relaxation

New Time window relaxation Assignment relaxation Multicommodity flow relax.

patients # nodes # cuts Time (s) # nodes # cuts Time (s) # nodes # cuts Time (s)

8 1 5 0.63 45 3 35.8 30 0 56.6

9 2 14 0.71 35 0 30.9 16 0 61.0

10 2 16 0.74 18 0 29.4 37 0 64.3

11 1 19 0.70 38 2 30.3 125 0 159

12 120 57 1.30 788 9 36.2 244 0 208

13 38 50 1.11 304 3 37.1 292 0 459

14 7691 202 9.28 19103 36 181 * * *

15 7976 221 9.78 16866 52 254

16 44197 290 43.5 70486 52 1394

17 20316 332 31.1 59337 51 3073

18 51890 467 62.0 * * *

19 65085 520 89.6

20 481199 789 600

21 217671 745 380

22 348012 860 523

23 1010641 1386 2092

24 * * *

∗Computation time exceeded one hour.

The results appear in Table 5. For the instances with narrow time windows, the pure MILP

formulation actually outscales S-LBBD and B&Ch. This is perhaps not surprising, because the

time windows are so narrow that their position already determines the schedule to a great extent,

and because scheduling is the more difficult task for MILP.

The instances with fewer visits per week are less constrained and therefore further from the

phase transition. To correct for this, we reduced the number of available aides to 6, which is

enough to cover all but one patient in the optimal solutions. B&Ch is far superior to MILP on

these instances, and it remains faster than S-LBBD as well.

These results suggest that the advantage of Benders methods is robust, except when time

windows become narrow enough to severely constrain the schedule.

9.5 Rasmussen Instances

Rasmussen et al. (2012) provided us four real-world instances obtained from two Danish munici-

palities. The task is to assign a given set of crews, each containing members with specific skills,

to a population of patients who require certain skills. The municipalities did not provide temporal

19

Table 4: Effect of time window relaxation and primal heuristic cuts (PHC) on computation time

(seconds)

New S-LBBD B&Ch

patients No relax Relax No relax No PHC Relax & PHC

8 19.4 3.17 0.95 0.61 0.63

9 11.4 5.99 1.00 0.90 0.71

10 24.2 3.27 1.03 1.19 0.74

11 20.8 5.63 1.29 1.44 0.70

12 16.8 6.49 1.64 1.18 1.30

13 41.1 12.3 3.01 5.50 1.11

14 132 72.3 26.1 28.2 9.28

15 161 77.0 24.3 50.2 9.78

16 232 98.5 52.2 119 43.5

17 128 106 30.5 153 31.1

18 604 202 265 517 62.0

19 957 388 165 632 90.0

20 1185 1251 2378 2998 600

21 4200 1272 3522 1938 380

22 * 951 2033 1190 523

23 * 3045 * 2092

24 * *

∗Computation time exceeded one hour.

dependencies with the instances, as they were handled on an ad-hoc basis, but Rasmussen et al.

added a set of dependencies to test their algorithm adequately. We did not include them because

our method is designed for problems without temporal dependencies. Rasmussen et al. solved the

problem over a time horizon of a single day, while we solved an equivalent 5-day problem that

requires that each patient be visited every day at the same time.

The original objective of the Rasmussen instances is to minimize a weighted sum of travel cost,

matching costs, and number of uncovered patients. The weights are adjusted so that as many

patients as possible are covered, after which matching costs are minimized, followed by travel costs.

The matching costs are indicated by giving each crew-patient pair a cost (positive for an undesirable

match and negative for a desirable one). We solved each instance twice: once while minimizing a

weighted sum of the matching cost and number of uncovered patients, and again while maximizing

the number of patients covered.

For the time window relaxation, we explicitly found the best forward interval and best backward

interval for each problem instance during the pre-processing phase via an exhaustive search over

all reasonable breakpoints (i.e., the ends and starts of task/patient time windows).

20

Table 5: Solution time (s) for modified hospice care instances

New Patients Narrow time windows New Patients Fewer visits per week

patients covered MILP S-LBBD B&Ch patients covered MILP S-LBBD B&Ch

8 60 53.1 10.1 1.37 12 58 58.9 17.0 0.91

9 59 40.0 11.3 1.13 13 58 58.6 20.5 1.05

10 59 40.5 17.9 1.44 14 58 71.3 30.6 1.33

11 59 41.8 22.6 1.75 15 58 123 80.0 1.32

12 59 43.4 28.8 1.11 16 58 167 259 1.94

13 59 42.3 28.3 1.41 17 58 253 521 1.79

14 59 45.2 62.8 2.97 18 58 3357 472 3.45

15 59 47.0 69.0 5.25 19 58 2364 710 3.23

16 59 59.5 96.5 3.67 20 59 1518 519 5.36

17 59 106 233 11.0 21 59 1811 759 4.52

18 58 127 349 69.1 22 59 3636 717 5.29

19 58 137 425 164 23 60 * 767 3.87

20 57 153 557 160 24 60 1990 3.48

21 57 171 993 437 25 60 2040 91.6

22 57 254 997 1818 26 60 2577 4.57

23 58 524 * * 27 60 2693 376

24 58 903 28 60 4200 3834

25 58 2369 29 60 * *

26 * *

∗Computation time exceeded one hour.

The number of patients in the four instances hh, ll1, ll2, and ll3 are 150, 107, 60, and 61,

respectively. We found that MILP could not come close to solving any of these, and the MILP

model for hh was in fact too large to load into the solver. To allow a meaningful comparison with

MILP, we reduced the number of patients to 30 in each instance, keeping the number of crews the

same. At this point, MILP could solve two of the instances with the weighted objective within

an hour, albeit none with the covering objective. As Table 6 indicates, the Benders methods are

dramatically superior to MILP, easily solving all 8 instance-objective combinations. Interestingly,

standard LBBD is usually faster than B&Ch when the covering objective is used. This is again

consistent with the hypothesis that B&Ch is preferable to S-LBBD only when the subproblem solves

rapidly, because in these instances, the subproblem consumes a much larger fraction of solution

time than in other instances (Table 2).

21

Table 6: Solution time (s) for modified Rasmussen instances

Weighted objective Covering objective

Instance Patients Crews MILP LBBD B&Ch MILP LBBD B&Ch

hh 30 15 * 3.16 1.41 * 23.3 441

ll1 30 8 * 1.74 0.43 * 108 1.41

ll2 30 7 2868 1.56 0.32 * 1.38 6.45

ll3 30 6 1398 2.16 0.30 * 3.07 5.98

∗Computation time exceeded one hour.

10 Conclusions and Future Work

We developed an exact solution method for the home healthcare problem using logic-based Benders

decomposition (LBBD). We formulated the problem so as to maximize the number of patients served

by a given staff with given qualifications, while taking into account patient requirements, travel

time, and scheduling constraints. We create a schedule spanning several days during which patients

may receive multiple visits from the same healthcare aide, or visits from multiple aides. Unlike

most competing methods developed for this problem, LBBD computes an optimal schedule and

therefore allows planners to determine with certainty whether a given work force can serve a given

patient population. We tested both standard LBBD and a variant of LBBD (branch and check)

that solves the master problem only once.

Based on computational tests in a real-world setting, we conclude that LBBD, and in particular

branch and check, can solve a problem of realistic size when scheduling on a rolling basis and there

are no temporal dependencies between visits. By contrast, mixed integer/linear programming

does not scale up, due to growth in the size of the model, except when time windows are so

narrow that their position largely determines the schedule. LBBD has the advantage that the

scheduling component of the problem breaks down into small scheduling problems that remain

roughly constant in size as the overall problem size increases. In addition, LBBD is particularly

well suited to computing a rolling schedule, because the structure of the decomposition makes the

problem much easier to solve when only a subset of the patient population is replaced. In one

real-world context, however, LBBD easily solved instances from scratch that were intractable for

MILP.

Branch and check is faster than standard LBBD on most of the instances tested. However,

when the subproblem is harder to solve than the master problem, standard LBBD tends to be

faster. Branch and check also benefits from Benders cuts generated from feasible solutions found

by primal heuristics. An issue for future research is whether such cuts could accelerate standard

LBBD.

22

Even though branch and check solves the master problem only once, it does not benefit from

adding variables to the master problem to create a tighter relaxation of the subproblem. The

reason for this appears to be that an overly tight relaxation results in the creation of fewer Benders

cuts during the branching process, and therefore too little information flow from the scheduling

subproblem to the master problem. This observation could have implications for future applications

of branch and check.

References

Achterberg T, 2009 SCIP: Solving constraint integer programs. Mathematical Programming Computation

1:1–41.

Allaoua H, Borne S, Létocart L, Calvo RW, 2013 A matheuristic approach for solving a home health care

problem. Electronic Notes in Discrete Mathematics 41:471–478.

Beck JC, 2010 Checking-up on branch and check. Cohen D, ed., Principles and Practice of Constraint

Programming (CP 2010), volume 6308 of Lecture Notes in Computer Science, 84–98 (New York:

Springer).

Benders JF, 1962 Partitioning procedures for solving mixed-variables programming problems. Numerische

Mathematik 4:238–252.

Cappanera P, Scutellà MG, 2015 Joint assignment, scheduling and routing models to home care optimization:

A pattern-based approach. Transportation Science 49:830–852.

Çoban E, Hooker JN, 2013 Single-facility scheduling by logic-based benders decomposition. Annals of

Operations Research 210:245–272.

Chahed S, Marcon E, Sahin E, Feillet D, Dallery Y, 2009 Exploring new operational research opportunities

within the home care context: The chemotherapy at home. Health Care Management Science 12:179–

191.

Ciré A, Çoban E, Hooker JN, 2015 Logic-based Benders decomposition for planning and scheduling: A

computational analysis. Barták R, Salido M, eds., COPLAS Proceedings, 21–29.

Ciré A, Hooker JN, 2012 A heuristic logic-based Benders method for the home health care problem, presented

at Matheuristics 2012, Angra dos Reis, Brazil.

Codato G, Fischetti M, 2006 Combinatorial Benders’ cuts for mixed-integer linear programming. Operations

Research 54:756–766.

Cordeau JF, Laporte G, 2006 Modeling and optimization of vehicle routing and arc routing problems. Appa G,

Pitsoulis L, Williams HP, eds., Handbook on Modelling for Discrete Optimization, 151–191 (Springer).

Cordeau JF, Laporte G, Savelsbergh M, Vigo D, 2007 Vehicle routing. Barnhart C, Laporte G, eds., Handbook

in Operations Research and Management Science, volume 14, 367–428 (Elsevier).

Desrochers M, Laporte G, 1991 Improvements and extensions to the Miller-Tucker-Zemlin subtour elimina-

tion constraints. Operations Research Letters 10(1):27–36.

23

Desrochers M, Lenstra JK, Savelsbergh MWP, Soumis F, 1988 Vehicle routing with time windows: Opti-

mization and approximation. Golden BL, Assad AA, eds., Vehicle Routing: Methods and Studies, 65–84

(Amsterdam: North-Holland).

Fazel-Zarandi MM, Beck JC, 2009 Solving a location-allocation problem with logic-based Benders decompo-

sition. Gent IP, ed., Principles and Practice of Constraint Programming (CP 2009), volume 5732 of

Lecture Notes in Computer Science, 344–351 (New York: Springer).

Gecode Team, 2016 Gecode: Generic constraint development environment. Available from

http://www.gecode.org.

Geoffrion AM, 1972 Generalized Benders decomposition. Journal of Optimization Theory and Applications

10:237–260.

Heching A, Hooker JN, 2016 Scheduling home hospice care by logic-based Benders decomposition. Quimper

CG, ed., CPAIOR Proceedings, volume 9676 of Lecture Notes in Computer Science, 187–197 (Springer).

Hertz A, Lahrichi N, 2009 A patient assignment algorithm for home care service. Journal of the Operational

Research Society 60:481–495.

Hiermann G, Prandtstetter M, Rendl A, Puchinger J, Raidl G, 2015 Metaheuristics for solving a multimodal

home-healthcare scheduling problem. Central European Journal of Operations Research 23:89–113.

Hooker JN, 1995 Logic-based Benders decomposition. INFORMS National Meeting (INFORMS 1995).

Hooker JN, 2000 Logic-Based Methods for Optimization: Combining Optimization and Constraint Satisfac-

tion (New York: Wiley).

Hooker JN, 2005 A hybrid method for planning and scheduling. Constraints 10:385–401.

Hooker JN, 2006 An integrated method for planning and scheduling to minimize tardiness. Constraints

11:139–157.

Hooker JN, 2007 Planning and scheduling by logic-based Benders decomposition. Operations Research 55:588–

602.

Hooker JN, 2012 Integrated Methods for Optimization, 2nd ed. (Springer).

Hooker JN, Ottosson G, 2003 Logic-based Benders decomposition. Mathematical Programming 96:33–60.

Lam E, Van Hentenryck P, 2016 A branch-and-price-and-check model for the vehicle routing problem with

location congestion. Constraints 21:394–412.

Mankowska DS, Meisel F, Bierwirth C, 2014 The home health care routing and scheduling problem with

interdependent services. Health Care Management Science 17:15–30.

Nickel S, Schröder M, Steeg J, 2012 Mid-term and short-term planning support for home health care services.

European Journal of Operational Research 219:574–587.

Peterson B, Trick M, 2009 A Benders’ approach to a transportation network design problem. van Hoeve WJ,

Hooker JN, eds., CPAIOR Proceedings, volume 5547 of Lecture Notes in Computer Science, 326–327

(New York: Springer).

Rahmaniani R, Crainic TG, Gendreau M, Rei W, 2017 The Benders decomposition algorithm: A literature

review. European Journal of Operational Research 259:801–817.

24

Rasmussen MS, Justesen T, Dohn A, Larsen J, 2012 The home care crew scheduling problem: Preference-based

visit clustering and temporal dependencies. European Journal of Operational Research 219:598–610.

Redjem R, Kharraja S, Xie X, Marcon E, 2012 Routing and scheduling of caregivers in home health care

with synchronized visits. 9th International Conference of Modeling, Optimization and Simulation, 06–08

(Bordeaux, France).

Rendl A, Prandtstetter M, Hiermann G, Puchinger J, Raidl G, 2012 Hybrid heuristics for multimodal

homecare scheduling. Beldiceanu N, Jussien N, Pinson E, eds., CPAIOR Proceedings, volume 7298

of Lecture Notes in Computer Science, 339–355 (Springer).

Rest KD, Hirsch P, 2016 Daily scheduling of home health care services using time-dependent public transport.

Flexible Services and Manufacturing Journal 28:495–525.

Sadykov R, 2004 A hybrid branch-and-cut algorithm for the one-machine scheduling problem. Régin JC,

Rueher M, eds., CPAIOR Proceedings, volume 3011 of Lecture Notes in Computer Science, 409–415

(Springer).

Sadykov R, 2008 A branch-and-check algorithm for minimizing the weighted number of late jobs on a single

machine with release dates. European Journal of Operational Research 189:1284–1304.

Span P, 2016 Wages for home health care lag as demand grows. New York Times September 23.

Terekhov D, Beck JC, Brown KN, 2007 Solving a stochastic queueing design and control problem with

constraint programming. Proceedings of the 22nd National Conference on Artificial Intelligence (AAAI

2007), volume 1, 261–266 (AAAI Press).

Thorsteinsson E, 2001 Branch and check: A hybrid framework integrating mixed integer programming and

constraint logic programming. Walsh T, ed., Principles and Practice of Constraint Programming (CP

2001), volume 2239 of Lecture Notes in Computer Science, 16–30 (Springer).

Trautsamwieser A, Hirsch P, 2011 Optimization of daily scheduling for home health care services. Journal of

Applied Operational Research 3:124–136.

Yalçındağ S, Matta A, Şahin E, Shanthikumar JG, 2014 A two-stage approach for solving assignment

and routing problems in home health care services. Matta A, Li J, Sahin E, Lanzarone E, Fowler

J, eds., Proceedings of the International Conference on Health Care Systems Engineering, volume 61 of

Proceedings in Mathematics and Statistics, 47–59 (New York: Springer).

25

