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Modeling Fairness

• A growing interest* in incorporating fairness into models

• Health care resources.

• Facility location (e.g., emergency 

services, infrastructure).

• Telecommunications.

• Traffic signal timing

• Disaster recovery (e.g., power 

restoration)

*51 fairness-related talks today alone.
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• Example: Emergency facility location

– Locations in densely populated zone minimize average

response time, but are unfair to those in outlying areas

– Locations that minimize worst-case response time 

result in poor service for most of the population

– A more equitable solution

– …would compromise between equity and efficiency.

Modeling Fairness
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• Example: Traffic signal timing

– Throughput is maximized by giving constant green light 

to the major street, red light to cross street.

– Then motorists on the cross street wait forever.

– A more equitable solution would find a compromise.

– Similar issues in telecommunications, an early adopter 

of fairness modeling.

Modeling Fairness
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• Example: Disaster relief

– Power restoration can focus on urban areas first (efficiency).

– This can leave rural areas without power for weeks/months.

– This happened in Puerto Rico after Hurricane Maria (2017). 

– A more equitable solution

– …would give some priority

to rural areas without overly

sacrificing efficiency.

Modeling Fairness
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Modeling Fairness

• The problem:  How to incorporate fairness into 

an optimization model?

• Our approach: determine how various fairness models

affect the structure of optimal solutions.

Özgün Elçi, John Hooker, Peter Zhang 

The  Structure of Fair Solutions: 

Achieving Fairness in an Optimization Model 

Springer, forthcoming.
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Modeling Fairness

• We focus on two models that maximize total utility 

subject to a bound on inequality:  

• Inequality as measured by range of utilities.  

• Inequality as measured by Gini coefficient.
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Modeling Fairness

• We focus on two models that maximize total utility 

subject to a bound on inequality:  

• Inequality as measured by range of utilities.  

• Inequality as measured by Gini coefficient.

• Structural results may help explain why societies 

historically tend to have 2 or 3 fairly homogeneous 

social classes.  
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• Optimization models are normally formulated to 

maximize total utility.

• where utility = wealth, health, negative cost, etc.

• This can lead to very unfair resource distribution.

• For example...

Modeling Fairness
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Utility maximizing 

distribution 

for 2 persons,

subject to

budget constraint

Utility contours

Person 1 has greater conversion efficiency:

Maximize Utility?
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Modeling Equity/Efficiency Trade-off

• Maximize utility subject to an inequality bound

• Coefficient of variation (Jain’s index)

• Range

• Gini coefficient

• Hoover index

• McLoone index
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Modeling Equity/Efficiency Trade-off

• Maximize utility subject to an inequality bound

• Coefficient of variation (Jain’s index)

• Range

• Gini coefficient

• Hoover index

• McLoone index

• Maximize a social welfare function

• Alpha fairness (or Nash bargaining solution as special case)

• Beta fairness

• Kalai-Smorodinsky bargaining solution

• Utility threshold function

• Equity threshold function
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Modeling Equity/Efficiency Trade-off

• Theorem: the optimal trade-off subject to a 

budget constraint divides stakeholders into 

2 or 3 homogeneous classes…

• …when maximizing utility subject to range constraint, 

which is same as maximizing equity threshold function.

• …most surprisingly, when maximizing utility subject to 

constraint on Gini coefficient.
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Maximizing Utility with Range Bound

In general, the problem is

• We do not normalize the range by the mean utility.

• Otherwise, the problem is infeasible or has a purely 

utilitarian solution.

• For the same reason, we use an unnormalized Gini 

coefficient.

.
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Maximizing Utility with Range Bound

Solutions have two possible patterns
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In general, the problem is

 



• There are 2 or 3 groups of stakeholders

• If 3, the middle group contains only 1 stakeholder, 

and the 3rd group has zero utility.

• Everyone a group receives the same utility, even when 

the conversion efficiencies ai differ. 
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Maximizing Utility with Range Bound
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 



• Maximizing utility with a range bound is equivalent to 

maximizing the equity threshold function

• …which combines utilitarian and maximin criteria

19

Equity Threshold
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Feasible set

Utilitarian solution 

leaves person 1 

overly deprived 

Optimal solution

Williams & Cookson 2000

Equity Threshold
Equity threshold 

SWF for 2 

stakeholders



21

Generalization to n persons

•  is chosen so that well-off individuals do not deserve more utility 

unless utilities within  of smallest are also increased.

•  =  corresponds to utilitarian,  = 0 to maximin.

Equivalence theorem

• Maximizing W(u) subject to a budget constraint gives the same

solution as maximizing total utility subject to a budget constraint 

and range bound .

Equity Threshold
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Equity Threshold
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Maximizing Utility with Gini Bound

Solutions have two possible patterns

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

U
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Stakeholder

Smaller D

In general, the problem is

1 2 3 4 5 6 7 8 9 1011121314151617181920
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Stakeholder

Larger D



• There are 2 or 3 groups of stakeholders

• If 3, one group has zero utility.

• The middle group can contain multiple stakeholders. 
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Maximizing Utility with Gini Bound
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Maximizing Utility with Gini Bound

Why?  If                                , the problem can be written as an LP:

Then the proof is based on duality and structure of a feasible basis. 
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Maximizing utility with Gini Bound
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Conclusions

• Maximizing utility subject to an inequality bound  

creates 2 or 3 homogeneous classes.

• In particular, when maximizing subject to a bound on

range or Gini coefficient.

• This may help explain why societies historically tend 

to consist of 2 or 3 major social classes.

• And closer study of the optimality conditions may suggest 

how to minimize class differences.  
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