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Modeling Fairness

• Why represent fairness in an optimization model?
• In many applications, equitable distribution is an objective.  

How to formulate it mathematically?

• Optimization models may provide insight into the 
consequences of ethical theories.
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Modeling Equity

• Some applications�
• Single-payer health system.

• Facility location (e.g., emergency services).

• Taxation (revenue vs. progressivity).

• Relief operations.

• Telecommunications (lexmax, Nash bargaining solution)
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Outline

• Optimization models and their implications
• Utilitarian

• Rawlsian (lexmax)

• Axiomatics
• Deriving utilitarian and Rawlsian criteria

• Measures of inequality

• An allocation problem

• Bargaining solutions
• Nash

• Raiffa-Kalai-Smorodinsky

• Combining utility and equity
• Health care example
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Optimization Models and Their Implications

• Utilitarianism
• The optimization problem

• Characteristics of utilitarian allocations

• Arguments for utilitarianism

• Rawlsian difference principle
• The social contract argument

• The lexmax principle

• The optimization problem

• Characteristics of lexmax solutions
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Efficiency vs. Equity

• Two classical criteria for distributive 
justice:
– Utilitarianism (efficiency)
– Difference principle of John Rawls

(equity)

• These have the must studied
philosophical underpinnings.
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Utilitarian Principle

• We assume that every individual has a utility function 
v(x), where x is the wealth allocation to the individual.

Individual Utility Function
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Utilitarian Principle

• A “just” distribution of wealth is one that maximizes 
total expected utility.

• Let xi = wealth initially allocated to person i
ui(xi) = utility eventually produced by person i
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• The utility maximization problem:

Total budget

Utilitarian Model



10

• Elementary analysis yields the optimal solution:

Utilitarian Model

Distribute wealth so as to equalize marginal productivity.

1 1( ) ( )n nu x u x′ ′= =L

Marginal productivity
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• Elementary analysis yields the optimal solution:

Utilitarian Model

Distribute wealth so as to equalize marginal productivity.

1 1( ) ( )n nu x u x′ ′= =L

Marginal productivity

• If we index persons in order of marginal productivity, i.e., 

1 ,   all ( ) ( )i iu u i+
′ ′⋅ ≤ ⋅

Then less productive individuals receive less wealth.
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• Elementary analysis yields the optimal solution:

Utilitarian Model

Distribute wealth so as to equalize marginal productivity.

1 1( ) ( )n nu x u x′ ′= =L

Marginal productivity

• If we index persons in order of marginal productivity, i.e., 

1 ,   all ( ) ( )i iu u i+
′ ′⋅ ≤ ⋅

Then less productive individuals receive less wealth.

• For convenience assume ui(xi) = cixi
p
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Utility maximizing distribution
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• Classical utilitarian argument:  concave utility functions 
tend to make the utilitarian solution more egalitarian.

Utilitarian Model
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• Classical utilitarian argument:  concave utility functions 
tend to make the utilitarian solution more egalitarian.

• A completely egalitarian allocation x1 = ⋅⋅⋅ = xn is optimal 
only when 

Utilitarian Model

1 (1/ ) (1/ )nu n u n′ ′= =L

• So, equality is optimal only when everyone has the same 
marginal productivity in an egalitarian allocation.
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• Recall that                           where p ≥ 0

Utilitarian Model
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• The optimal wealth allocation is

• When p < 1:
– Allocation is completely egalitarian only if c1 = ⋅⋅⋅ = cn
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Utilitarian Model

• The most egalitarian optimal allocation: people receive 
wealth in proportion to productivity ci.

– And this occurs only when productivity very insensitive to 
investment (p → 0).

• Allocation can be very unequal when p is closer to 1.
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Utility maximizing wealth alllocation
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Utility Loss Due to Equality
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Utility Loss Due to Equality
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proportional to investment, 

equality has high cost 
(cuts utility in half)
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Utility Loss Due to Equality
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As p →0, optimal utility 
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allocation, but equal allocation 
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• More fundamentally, an egalitarian defense of 
utilitarianism is based on contingency, not principle.

• If we evaluate the fairness of utilitarian distribution, then there 
must be another standard of equitable distribution.

• Utilitarianism can endorse:.
– Neglect of disabled or nonproductive people.

– Meager wage for less talented people who work hard.

– Fewer resources for people with less productive jobs.  Not all 
jobs can be equally productive.

• � if this results in greater total utility.

Utilitarian Model
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Rawlsian Difference Principle

• Rawls’ Difference Principle seeks to maximize the 
welfare of the worst off.  

• Also known as maximin principle.

• Another formulation: inequality is permissible only to the 
extent that it is necessary to improve the welfare of those 
worst off.
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Rawlsian Difference Principle

• The root idea is that when I make a decision for myself, I 
make a decision for anyone in similar circumstances.

• It doesn’t matter who I am.

• Social contract argument
• I make decisions (formulate a social contract) in an original 

position, behind a veil of ignorance as to who I am.

• I must find the decision acceptable after I learn who I am.

• I cannot rationally assent to a policy that puts me on the bottom, 
unless I would have been even worse off under alternative 
policies.

• So the policy must maximize the welfare of the worst off.
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Rawlsian Difference Principle

• Applies only to basic goods.
• Things that people want, no matter what else they want.

• Salaries, tax burden, medical benefits, etc.

• For example, salary differentials may satisfy the principle if 
necessary to make the poorest better off.

• Applies to smallest groups for which outcome is 
predictable.

• A lottery passes the test even though it doesn’t maximize  
welfare of worst off – the loser is unpredictable.

• � unless the lottery participants as a whole are worst off.
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Rawlsian Difference Principle

• The difference rule implies a lexmax principle.
– If applied recursively.

• Lexmax (lexicographic maximum) principle:
– Maximize welfare of least advantaged class�

– then next-to-least advantaged class�

– and so forth.
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Lexmax Model

• Applications
• Production planning – Allocate scarce components to products 

to minimize worst-case delay to a customer.

• Location of fire stations – Minimize worst-case response time.

• Workforce management – Schedule rail crews so as to spread 
delays equitably  over time.  Similar for call center scheduling.

• Political districting – Minimize worst-case deviation from 
proportional representation.

• Social planning – Build a Rawlsian society.
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Lexmax Model

• Assume each person’s share of total utility is 
proportional to the utility of his/her initial wealth 
allocation.
– Thus individuals with more education, salary have greater 

access to social utility.

• Assume productivity functions ui(xi) = cixi
p

• Larger p means productivity more sensitive to investment.

• Assume personal utility function v(xi) = xi
q

• Larger q means people care more about getting rich.
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Lexmax Model

• The utility maximization problem:
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Lexmax Model

• The utility maximization problem:
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Lexmax Model

• The utility maximization problem:
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Lexmax Model

• The utility maximization problem:
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Lexmax Model

• The utility maximization problem:
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Theorem.  If
and v(.) is nondecreasing,
this
has an optimal solution in 
which

Lexmax Model

• The utility maximization problem:
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Theorem.  If
and v(.) is nondecreasing,
this
has an optimal solution in 
which

Lexmax Model

• The utility maximization problem:
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Lexmax Model

• When does the Rawlsian model result in equality?
– That is, when do we have x1 = ⋅⋅⋅ = xn in the solution of the 

lexmax problem?
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Lexmax Model
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• Remarkably, these can be solved in closed form, yielding�
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• Theorem. The lexmax distribution is egalitarian only if 

1 1 1

1 1n k n

i i i
i k i i

q n k
c c c

n k k p k= + = =

−− ≤ ⋅
− ∑ ∑ ∑

Lexmax Model

for k = 1, � , n − 1.
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• Theorem. The lexmax distribution is egalitarian only if 

1 1 1
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Lexmax Model

for k = 1, � , n − 1.

Average of k smallest ci’sAverage of n − k largest ci’s
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1 1 1
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• Theorem. The lexmax distribution is egalitarian only if 

Lexmax Model

for k = 1, � , n − 1.

• Equality is more likely to be required when p is small.
– When investment in an individual yields rapidly decreasing 

marginal returns.
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1 1 1

1 1n k n
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− ∑ ∑ ∑

• Theorem. The lexmax distribution is egalitarian only if 

Lexmax Model

for k = 1, � , n − 1.

• Equality test is more sensitive at upper end (large k).
– Equality is unlikely to be required when there is a long upper tail 

(individuals at the top are very productive).

– Equality may be required even when there is a long lower tail 
(individuals at the bottom are very unproductive).
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1 1 1
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• Theorem. The lexmax distribution is egalitarian only if 

Lexmax Model

for k = 1, � , n − 1.

• Equality is more likely to be required when q is large.
– That is, when greater wealth yields rapidly increasing marginal 

utility.

– That is, when people want to get rich.
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Axiomatics

• Social welfare functions

• Interpersonal comparability

• Deriving the utilitarian criterion

• Deriving the maximin/minimax criterion
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Axiomatics

• The economics literature derives social welfare functions 
from axioms of rational choice.

• Some axioms are strong and hard to justify.

• The social welfare function depends on degree of 
interpersonal comparability of utilities.

• Arrow’s impossibility theorem was the first result, but there are 
many others.

• Social welfare function
• A function f (u1,� ,un) of individual utilities.

• Objective is to maximize f (u1,� ,un).
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• Social Preferences
• Let u = (u1,� ,un) be the vector of utilities allocated to 

individuals.

• A social welfare function ranks distributions:  
u is preferable to u′ if f (u) > f (u′).

Axiomatics
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Interpersonal Comparability

• Unit comparability
• Suppose each individual’s utility ui is changed to βui + αi.

• This doesn’t change the utilitarian ranking:

• This is unit comparability.

• That is, changing units of measure and giving everyone a 
different zero point has no effect on ranking.

if and only if( ) ( )  i i
i i

u x u y>∑ ∑
( ) ( )( ) ( )  i i i i

i i

u x u yβ α β α+ > +∑ ∑
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Interpersonal Comparability

• Unit comparability
• Unit comparability is enough to make utilitarian calculations 

meaningful.

• Given certain axioms, along with unit comparability, a 
utilitarian social welfare function is necessary�
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• Anonymity
• Social preferences are the same if indices of uis are 

permuted.

• Strict pareto
• If u > u′, then u is preferred to u′.

• Independence of irrelevant alternatives
• The preference of u over u′ depends only on u and u′ and not 

on what other utility vectors are possible. 

• Separability of unconcerned individuals
• Individuals i for which ui = ui′ don’t affect the ranking of 

u and u′.

Axioms
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Theorem
Given unit comparability, any social welfare function f that satisfies 
the axioms has the form f(u) =Σi aiui (utilitarian).

Axiomatics
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• Level comparability
• Suppose each individual’s utility ui is changed to φ(ui ), where  

φ is a monotone increasing function.

• This doesn’t change the maximin ranking:

• This is level comparability.

{ } { } if and only ifmin ( ) min ( )  i ii i
u x u y>

 ( ){ } ( ){ }min ( ) min ( )i ii i
u x u yφ φ>

Interpersonal Comparability
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• Level comparability
• Level comparability is enough to make maximin comparisons 

meaningful.

Theorem
Given level comparability, any social welfare function that satisfies the 
axioms leads to a maximin or minimax criterion.

Axiomatics
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Axiomatics

• Problem with utilitarian theorem
• The assumption of unit comparability implies no more than 

unit comparability.

• This is almost the same as assuming utilitarianism.

• It rules out a maximin criterion from the start, because the 
“worst-off” is a meaningless concept.

• Problem with maximin theorem
• The assumption of level comparability implies no more than 

level comparability.

• This rules out utilitarianism from the start.
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Measures of Inequality

• An example
• Utilitarian, maximin, and lexmax solution

• Inequality measures
• Relative range, max, min

• Relative mean deviation

• Variance, coefficient of variation

• McLoone index

• Gini coefficient

• Atkinson index

• Hoover index

• Theil index
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Measures of Inequality

• Assume we wish to minimize inequality.
• We will survey several measures of inequality.

• They have different strengths and weaknesses.

• Minimizing inequality may result in less total utility.

• Pigou-Dalton condition.
• One criterion for evaluating an inequality measure.

• If utility is transferred from one who is worse off to one who is 
better off, inequality should increase.
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Measures of Inequality

• Applications
• Tax policy 

• Disaster recovery

• Educational funding

• Greenhouse gas mitigation

• Ramp metering on freeways
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Example

Production functions for 5 individuals

Resources

Utility
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Utilitarian
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Utilitarian



64

Rawlsian

{ }{ }max min ii
u

LP model: + ∈
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Ensures that 
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Pareto optimal



65

Rawlsian
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Utilitarian
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Lexmax

{ }K1lexmax , , nu u

Sequence of 
LP models,
k = 1, � , n − 1:

= <
≤ ≥

= ≤ ≤ =∑

min

min

max

*,  all 

,   all 

, 0 , all ,

i i

i

i i i i i i
i

u

u u i k

u u i k

u a x x b i x B

Re-index for each k so that ui for i < k were fixed in previous iterations.
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Lexmax
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Rawlsian
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Utilitarian
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Relative Range

−max minu u
u

where { }=max max ii
u u { }=min min ii

u u = ∑(1/ ) i
i

u n u

Rationale:

• Perceived inequality is relative to the best off.

• A distribution should be judged by the position of the worst-off.

• Therefore, minimize gap between top and bottom.

Problems:

• Ignores distribution between extremes.

• Violates Pigou-Dalton condition



72

Relative Range

−max minu u
u
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cx c z

Ax bz

dx d z

x z

This is a fractional linear programming problem.

Use Charnes-Cooper transformation to an LP.  In general,

after change of variable x = x′/z and fixing denominator to 1.
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Relative Range
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Fractional LP model:
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Relative Range
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Lexmax
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Relative Max

maxu
u

Rationale:

• Perceived inequality is relative to the best off.

• Possible application to salary levels (typical vs. CEO)

Problems:

• Ignores distribution below the top.

• Violates Pigou-Dalton condition
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Relative Max

maxu
u

Fractional LP model:

≥

= ≤ ≤ =

∑

∑

max

max

min
(1/ )

,  all 

, 0 ,   all ,

i
i

i

i i i i i i
i

u
n u

u u i

u a x x b i x B

′≥
′ ′ ′ ′= ≤ ≤ =

′ =

∑

∑

max

max

min

 all 

, 0 ,   all ,

(1/ ) 1

i

i i i i i i
i

i
i

u

u u i

u a x x b z i x Bz

n u

LP model:
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Relative Max
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Relative Range
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Relative Min

minu
u

Rationale:

• Measures adherence to Rawlsian Difference Principle.

• � relativized to mean

Problems:

• Ignores distribution above the bottom.

• Violates Pigou-Dalton condition
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Relative Min

minu
u

Fractional LP model:

≤

= ≤ ≤ =

∑

∑

min

min

max
(1/ )

,  all 

, 0 ,   all ,

i
i

i

i i i i i i
i

u
n u

u u i

u a x x b i x B

′≥
′ ′ ′ ′= ≤ ≤ =

′ =

∑

∑

min

min

max

 all 

, 0 ,   all ,

(1/ ) 1

i

i i i i i i
i

i
i

u

u u i

u a x x b z i x Bz

n u

LP model:
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Relative Min
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Relative Max
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Relative Range
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Relative Mean Deviation

−∑ i
i

u u

u

Rationale:

• Perceived inequality is relative to average.

• Entire distribution should be measured.

Problems:

• Violates Pigou-Dalton condition

• Insensitive to transfers on the same side of the mean.

• Insensitive to placement of transfers from one side of the mean to 
the other.
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Relative Mean Deviation

Fractional LP model:
+ −

+ −

+

≥ − ≥ −

=

= ≤ ≤ =

∑

∑

∑

( )
max

, ,  all 

(1/ )

, 0 ,  all ,

i i
i

i i i i

i
i

i i i i i i
i

u u

u
u u u u u u i

u n u

u a x x b i x B

LP model:

−∑ i
i

u u

u

+ −

+ −

+

′ ′≥ − ≤ −
′ =

′ ′ ′ ′= ≤ ≤ =

∑

∑

∑

max ( )

1, 1,  all 

(1/ ) 1

, 0 , all ,

i i
i

i i i i

i
i

i i i i i i
i

u u

u u u u i

n u

u a x x b z i x Bz
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Relative Mean Deviation
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Relative Range
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Variance

−∑ 2(1/ ) ( )i
i

n u u

Rationale:

• Weight each utility by its distance from the mean.

• Satisfies Pigou-Dalton condition.

• Sensitive to transfers on one side of the mean.

• Sensitive to placement of transfers from one side of the mean to the 
other.

Problems:

• Weighting is arbitrary?

• Variance depends on scaling of utility.
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Variance

Convex nonlinear model: −

=

= ≤ ≤ =

∑

∑

∑

2min (1/ ) ( )

(1/ )

, 0 , all ,

i
i

i
i

i i i i i i
i

n u u

u n u

u a x x b i x B

−∑ 2(1/ ) ( )i
i

n u u
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Variance
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Relative Mean Deviation
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Relative Range
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Coefficient of Variation

 − 
 

∑
1/2

2(1/ ) ( )i
i

n u u

u

Rationale:

• Similar to variance.

• Invariant with respect to scaling of utilities.

Problems:

• When minimizing inequality, there is an incentive to reduce average 
utility.

• Should be minimized only for fixed total utility.
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 − 
 

≥
≥

∑
1/2

2(1/ ) ( )
min

0

i
i

n u u

u
Au b

u

becomes

Again use change of variable u = u′/z and fix denominator to 1.

Coefficient of Variation

 − 
 

∑
1/2

2(1/ ) ( )i
i

n u u

u

 ′ − 
 

′ ≥
′ =

′ ≥

∑

∑

1/2

2min (1/ ) ( 1)

(1/ ) 1

0

i
i

i
i

n u

Au bz

n u

u

Can drop 
exponent 
to make 
problem 
convex
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Fractional nonlinear 
model:

 − 
 

=

= ≤ ≤ =

∑

∑

∑

1/2

2(1/ ) ( )
max

(1/ )

, 0 ,  all ,

i
i

i
i

i i i i i i
i

n u u

u
u n u

u a x x b i x B

Convex nonlinear 
model:

Coefficient of Variation

 − 
 

∑
1/2

2(1/ ) ( )i
i

n u u

u

′ −

′ =

′ ′ ′ ′= ≤ ≤ =

∑

∑

∑

2min (1/ ) ( 1)

(1/ ) 1

, 0 , all ,

i
i

i
i

i i i i i i
i

n u

n u

u a x x b z i x Bz



Coefficient of Variation
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Variance
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Relative Mean Deviation
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McLoone Index

<
∑
:

(1/ 2)
i

i
i u m

u

u

Rationale:

• Ratio of average utility below median to overall average.

• No one wants to be “below average.”

• Pushes average up while pushing inequality down.

Problems:

• Violates Pigou-Dalton condition.

• Insensitive to upper half.
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Fractional MILP model:

{ }

− ≤ ≤ + −
≤ ≤

<

= ≤ ≤ =

∈

∑

∑

∑

∑

max

(1 ),   all 

, ,   all 

/ 2

, 0 , all ,

0,1 ,   all 

i
i

i
i

i i i

i i i i

i
i

i i i i i i
i

i

v

u

m My u m M y i

v u v My i

y n

u a x x b i x B

y i

McLoone Index

<
∑
:

(1/ 2)
i

i
i u m

u

u

Defines median m

Defines vi = ui if 
ui is below median

Half of utilities 
are below median

Selects utilities below median
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MILP model:

{ }

′

′ ′ ′− ≤ ≤ + −
′ ′ ′≤ ≤

<

′ ′ ′ ′= ≤ ≤ =

∈

∑

∑

∑

max

(1 ),   all 

, ,  all 

/ 2

, 0 ,  all ,

0,1 ,  all 

i
i

i i i

i i i i

i
i

i i i i i i
i

i

v

m My u m M y i

v u v My i

y n

u a x x b z i x Bz

y i

McLoone Index

<
∑
:

(1/ 2)
i

i
i u m

u

u
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McLoone Index
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Relative Min
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Gini Coefficient

−∑2

,

(1/ )

2

i j
i j

n u u

u

Rationale:

• Relative mean difference between all pairs.

• Takes all differences into account.

• Related to area above cumulative distribution (Lorenz curve).

• Satisfies Pigou-Dalton condition.

Problems:

• Insensitive to shape of Lorenz curve, for a given area.
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Gini Coefficient

−∑2

,

(1/ )

2

i j
i j

n u u

u
C

um
ul

at
iv

e 
ut

ili
ty

= blue area
Gini coeff.

area of triangle

Lorenz curve

Individuals ordered by increasing utility
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Fractional LP model:

LP model:

Gini Coefficient

−∑2

,

(1/ )

2

i j
i j

n u u

u
+ −

+ −

+

≥ − ≥ −

=

= ≤ ≤ =

∑

∑

∑

2(1/ 2 ) ( )
max

, ,  all ,

(1/ )

, 0 ,  all ,

ij ij
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ij i j ij j i

i
i

i i i i i i
i

n u u

u
u u u u u u i j

u n u

u a x x b i x B

+ −

+ −

+

′ ′ ′ ′≥ − ≥ −

′ =

′ ′ ′ ′= ≤ ≤ =

∑

∑

∑

2max (1/ 2 ) ( )

,  ,  all ,

(1/ ) 1

, 0 , all ,

ij ij
ij

ij i j ij j i

i
i

i i i i i i
i

n u u

u u u u u u i j

n u

u a x x b z i x Bz
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Gini Coefficient



Coefficient of Variation
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Variance



Gini Coefficient by Country (2013)



Historical Gini Coefficient, 1945-2010 
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Atkinson Index

  −      
∑

1/

1 (1/ )

pp

i

i

x
n

x

Rationale:

• Best seen as measuring inequality of resources xi.

• Assumes allotment y of resources results in utility yp

• This is average utility per individual.
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Atkinson Index

  −      
∑

1/

1 (1/ )

pp

i

i

x
n

x

Rationale:

• Best seen as measuring inequality of resources xi.

• Assumes allotment y of resources results in utility yp

• This is average utility per individual.

• This is equal resource allotment to each individual that results in 
same total utility.
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Atkinson Index

  −      
∑

1/

1 (1/ )

pp

i

i

x
n

x

Rationale:

• Best seen as measuring inequality of resources xi.

• Assumes allotment y of resources results in utility yp

• This is average utility per individual.

• This is equal resource allotment to each individual that results in 
same total utility.

• This is additional resources per individual necessary to sustain 
inequality.
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Atkinson Index

  −      
∑

1/

1 (1/ )

pp

i

i

x
n

x

Rationale:

• p indicates “importance” of equality.

• Similar to Lp norm

• p = 1 means inequality has no importance

• p = 0 is Rawlsian (measures utility of worst-off individual).

Problems:

• Measures utility, not equality.

• Doesn’t evaluate distribution of utility, only of resources.

• p describes utility curve, not importance of equality.
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  = 
 

≥ ≥

∑
∑max

, 0

p
p i

i i
p

i

x
x
x x

Ax b x

To minimize index, 
solve fractional
problem

Atkinson Index

  −      
∑

1/

1 (1/ )

pp

i

i

x
n

x

After change of variable  
xi = xi′/z, this becomes

′

′ =

′ ′≥ ≥

∑

∑

max

(1/ ) 1

, 0

p
i

i

i
i

x

n x

Ax bz x
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Fractional nonlinear 
model:

=

= ≥

∑

∑

∑

max

(1/ )

, 0

p
i

i
p

i
i

i
i

x

x
x n x

x B x

Concave nonlinear 
model:

Atkinson Index

  −      
∑

1/

1 (1/ )

pp

i

i

x
n

x

′

′ =

′ ′= ≥

∑

∑

∑

max

(1/ ) 1

, 0

p
i

i

i
i

i
i

x

n x

x Bz x



119

Atkinson index
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Hoover Index

−∑

∑
(1/ 2)

i
i

i
i

u u

u

Rationale:

• Fraction of total utility that must be redistributed to achieve total 
equality.

• Proportional to maximum vertical distance between Lorenz curve 
and 45o line.

• Originated in regional studies, population distribution, etc. (1930s).

• Easy to calculate.

Problems:

• Less informative than Gini coefficient?
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C
um

ul
at

iv
e 

ut
ili

ty

=Hoover index max vertical distance

Lorenz curve

Hoover Index

−∑

∑
(1/ 2)

i
i

i
i

u u

u

Total utility = 1

Individuals ordered by increasing utility



122

Hoover Index
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Gini Coefficient
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Theil Index

 
 
 

∑(1/ ) lni i

i

u u
n

u u

Rationale:

• One of a family of entropy measures of inequality.

• Index is zero for complete equality (maximum entropy)

• Measures nonrandomness of distribution.

• Described as stochastic version of Hoover index.

Problems:

• Motivation unclear.

• A. Sen doesn’t like it.
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Nasty nonconvex
model:

 
 
 

=

= ≤ ≤ =

∑

∑

∑

min (1/ ) ln

(1/ )

, 0 ,  all ,

i i

i

i
i

i i i i i i
i

u u
n

u u

u n u

u a x x b i x B

Theil Index

 
 
 

∑(1/ ) lni i

i

u u
n

u u
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Theil Index
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Hoover Index
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Gini Coefficient
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An Allocation Problem

• From Yaari and Bar-Hillel, 1983.
• 12 grapefruit and 12 avocados are to be divided 

between Jones and Smith.
• How to divide justly?

Jones Smith

100 50

0 50

Utility provided by one fruit of each kind
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An Allocation Problem

The optimization problem:

= = +
+ = =
≥

1 2

1 11 2 12 22

1 2

max  ( , )

100 , 50 50

12, 1,2

0,  all ,
i i

ij

f u u

u x u x x

x x i

x i j

Social welfare function

where  ui = utility for person i (Jones, Smith)
xij = allocation of fruit i (grapefruit, avocados) 

to person j



131

u1

u2

Utilitarian Solution

1200

1200

(1200,600)

Smith’s utility

Jones’ utility

= +1 2 1 2( , )f u u u u

Optimal solution
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u1

u2

Rawlsian (maximin) solution

1200

1200

(800,800)

{ }=1 2 1 2( , ) min ,f u u u u
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Bargaining Solutions

• Nash Bargaining Solution
• Example

• Axiomatic justification

• Bargaining justification

• Raiffa-Kalai-Smorodinsky Solution
• Example

• Axiomatic justification

• Bargaining jusification
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Bargaining Solutions

• A bargaining solution is an equilibrium allocation in 
the sense that none of the parties wish to bargain 
further.

• Because all parties are “satisfied” in some sense, the 
outcome may be viewed as “fair.”

• Bargaining models have a default outcome, which is the 
result of a failure to reach agreement.

• The default outcome can be seen as a starting point.
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Bargaining Solutions

• Several proposals for the default outcome (starting 
point):

• Zero for everyone.  Useful when only the resources being 
allocated are relevant to fairness of allocation.

• Equal split.  Resources (not necessarily utilities) are divided 
equally.  May be regarded as a “fair” starting point.

• Strongly pareto set.  Each party receives resources that 
can benefit no one else.  Parties can always agree on this.
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Nash Bargaining Solution

• The Nash bargaining solution maximizes the social 
welfare function

where d is the default outcome.

• Not the same as Nash equilibrium.

• It maximizes the product of the gains achieved by the 
bargainers, relative to the fallback position.

• Assume feasible set is convex, so that Nash solution is 
unique (due to strict concavity of f).

= −∏( ) ( )i i
i

f u u d
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u2

Nash Bargaining Solution

d

u

Nash solution maximizes 
area of rectangle

Feasible set
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u2

Nash Bargaining Solution

d

u

Nash solution maximizes 
area of rectangle

Feasible set
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u2

Nash Bargaining Solution

d

u*

Nash solution maximizes 
area of rectangle

Feasible set
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Nash Bargaining Solution

• Major application to telecommunications.
• Where it is known as proportional 

fairness
• u is proportionally fair if for all 

feasible allocations u′

• Here, ui is the utility of the packet 
flow rate assigned user i.

• Maximin criterion also used.

0i i

i i

u u

u

′ −
≤∑
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Nash Bargaining Solution

• The optimization problem has a concave objective 
function if we maximize log f(u).

• Problem is relatively easy if feasible set S is convex.

− = −

∈

∑∏max log ( ) log( )i i i i
ii

u d u d

u S
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u1

u2

1200

1200

(1200,600)

Nash Bargaining Solution
From Zero

(0,0)
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u1

u2

Nash Bargaining Solution
From Equality

1200

1200

(900,750)

(600,600)
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Nash Bargaining Solution

• Strongly pareto set gives Smith all 12 avocados.
• Nothing for Jones.

• Results in utility (u1,u2) = (0,600)

Jones Smith

100 50

0 50

Utility provided by one fruit of each kind
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u1

u2

1200

1200

(600,900)

(0,600)

Nash Bargaining Solution
From Strongly Pareto Set
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Axiomatic Justification

• Axiom 1. Invariance under translation and rescaling.
• If we map ui � aiui + bi, di � aidi + bi, 

then bargaining solution ui* � aiui* + bi.

u1

u2

u* u*

u1

u2

d
d

This is cardinal noncomparability.
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Axiomatic Justification

• Axiom 1. Invariance under translation and rescaling.
• If we map ui � aiui + bi, di � aidi + bi, 

then bargaining solution ui* � aiui* + bi.

u1

u2

u*

u1

u2

• Strong assumption – failed, e.g., by utilitarian welfare function

Utilitarian 
solution

d
d

Utilitarian 
solution
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Axiomatic Justification

• Axiom 2. Pareto optimality.
• Bargaining solution is pareto optimal.

• Axiom 3.  Symmetry.   
• If all dis are equal and feasible set is symmetric, then all ui*s 

are equal in bargaining solution.

u1

u2

u*

d
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Axiomatic Justification

• Axiom 4.  Independence of irrelevant alternatives.   
• Not the same as Arrow’s axiom.

• If u* is a solution with respect to d�

u1

u2

u*

d
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Axiomatic Justification

• Axiom 4.  Independence of irrelevant alternatives.   
• Not the same as Arrow’s axiom.

• If u* is a solution with respect to d, then it is a solution in a 
smaller feasible set that contains u* and d.

u1

u2

u*

d

u*
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Axiomatic Justification

• Axiom 4.  Independence of irrelevant alternatives.   
• Not the same as Arrow’s axiom.

• If u* is a solution with respect to d, then it is a solution in a 
smaller feasible set that contains u* and d.

• This basically says that the solution behaves like an optimum.

u1

u2

u*

d

u*
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Axiomatic Justification

Theorem.  Exactly one solution satisfies Axioms 1-4, 
namely the Nash bargaining solution.

Proof (2 dimensions).

First show that the Nash solution satisfies the axioms.

Axiom 1.  Invariance under transformation.   If
∗ − ≥ −∏ ∏1 1( ) ( )i i

i i

u d u d

( ) ( )∗ + − + ≥ + − +∏ ∏( ) ( ) ( ) ( )i i i i i i i i i i i i
i i

au b ad b au b ad b

then
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Axiomatic Justification

Axiom 2.  Pareto optimality.  Clear because social welfare function 
is strictly monotone increasing.

Axiom 3.  Symmetry.  Obvious.

Axiom 4.  Independence of irrelevant alternatives.  Follows from the 
fact that u* is an optimum.

Now show that only the Nash solution satisfies the 
axioms�
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Axiomatic Justification

Let u* be the Nash solution for a given problem.  Then it satisfies the 
axioms with respect to d.  Select a transformation that sends

(u1,u2) � (1,1),    (d1,d2) � (0,0)

The transformed problem has Nash solution (1,1), by Axiom 1:

u1

u2

(1,1)

d
d

u*
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Axiomatic Justification

Let u* be the Nash solution for a given problem.  Then it satisfies the 
axioms with respect to d.  Select a transformation that sends

(u1,u2) � (1,1),    (d1,d2) � (0,0)

The transformed problem has Nash solution (1,1), by Axiom 1:

By Axioms 2 & 3,
(1,1) is the only
bargaining solution 
in the triangle: 

u1

u2

(1,1)

d
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Axiomatic Justification

Let u* be the Nash solution for a given problem.  Then it satisfies the 
axioms with respect to d.  Select a transformation that sends

(u1,u2) � (1,1),    (d1,d2) � (0,0)

The transformed problem has Nash solution (1,1), by Axiom 1:

By Axioms 2 & 3,
(1,1) is the only
bargaining solution 
in the triangle: 

u1

u2

(1,1)

d

So by Axiom 4, 
(1,1) is the only
bargaining solution 
in blue set.  
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Axiomatic Justification

Let u* be the Nash solution for a given problem.  Then it satisfies the 
axioms with respect to d.  Select a transformation that sends

(u1,u2) � (1,1),    (d1,d2) � (0,0)

The transformed problem has Nash solution (1,1), by Axiom 1:

u1

u2

(1,1)

d

So by Axiom 4, 
(1,1) is the only
bargaining solution 
in blue set.  

By Axiom 1, u* is 
the only bargaining 
solution in the 
original problem.

d

u*
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Axiomatic Justification

• Problems with axiomatic justification.
• Axiom 1 (invariance under transformation) is very strong.

• Axiom 1 denies interpersonal comparability.

• So how can it reflect moral concerns?

u1

u2

u*

u1

u2

Utilitarian 
solution

Utilitarian 
solution



Axiomatic Justification

• Problems with axiomatic justification.
• Axiom 1 (invariance under transformation) is very strong.

• Axiom 1 denies interpersonal comparability.

• So how can it reflect moral concerns?

• Most attention has been focused on Axiom 4
(independence of irrelevant alternatives).
• Will address this later.
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Players 1 and 2 make offers s, t.

u1

u2

s

d

Bargaining Justification

t
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Players 1 and 2 make offers s, t.

Let  p = P(player 2 will reject s), as estimated by player 1.

u1

u2

s

d

Bargaining Justification

t
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Players 1 and 2 make offers s, t.

Let  p = P(player 2 will reject s), as estimated by player 1.

Then player 1 will stick with s, rather than make a counteroffer, if

u1

u2

s

d

Bargaining Justification

t

− + ≥1 1 1(1 )p s pd t

s1t1d1
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Players 1 and 2 make offers s, t.

Let  p = P(player 2 will reject s), as estimated by player 1.

Then player 1 will stick with s, rather than make a counteroffer, if

u1

u2

s

d

Bargaining Justification

t

− + ≥1 1 1(1 )p s pd t

s1t1d1

So player 1 will stick with s if
−≤ =
−

1 1
1

1 1

s t
p r

s d
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It is rational for player 1 to make a counteroffer s′, rather than player 2, if 

u1

u2

s

Bargaining Justification

t

− −= ≤ =
− −

1 1 2 2
1 2

1 1 2 2

s t t s
r r

s d t d

s1t1d1

So player 1 will stick with s if
−≤ =
−

1 1
1

1 1

s t
p r

s d
d2

s2

t2
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It is rational for player 1 to make a counteroffer s′, rather than player 2, if 

u1

u2

s

d

Bargaining Justification

t

− −= ≤ =
− −

1 1 2 2
1 2

1 1 2 2

s t t s
r r

s d t d

It is rational for player 2 to make the next 
counteroffer if

′ ′− −′ ′= ≥ =
′ − −
1 1 2 2

1 2
1 1 2 2

s t t s
r r

s d t ds′
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u1

u2

s

Bargaining Justification

t

− −= ≤ =
− −

1 1 2 2
1 2

1 1 2 2

s t t s
r r

s d t d

But

′ ′− −′ ′= ≥ =
′ − −
1 1 2 2

1 2
1 1 2 2

s t t s
r r

s d t ds′

− −≤
− −

1 1 2 2

1 1 2 2

s t t s
s d t d

s1t1d1

d2

s2

t2

It is rational for player 1 to make a counteroffer s′, rather than player 2, if 

It is rational for player 2 to make the next 
counteroffer if
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u1

u2

s

Bargaining Justification

t

− −= ≤ =
− −

1 1 2 2
1 2

1 1 2 2

s t t s
r r

s d t d

But

′ ′− −′ ′= ≥ =
′ − −
1 1 2 2

1 2
1 1 2 2

s t t s
r r

s d t ds′

− −≤
− −

1 1 2 2

1 1 2 2

s t t s
s d t d

− −≥
− −

1 1 2 2

1 1 2 2

t d s d
s d t d

s1t1d1

d2

s2

t2

It is rational for player 1 to make a counteroffer s′, rather than player 2, if 

It is rational for player 2 to make the next 
counteroffer if
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So we have

u1

u2

s

Bargaining Justification

t

s′

s1t1d1

d2

s2

t2

− − ≤ − −1 1 2 2 1 1 2 2( )( ) ( )( )s d s d t d t d

But

′ ′− −′ ′= ≥ =
′ − −
1 1 2 2

1 2
1 1 2 2

s t t s
r r

s d t d

− −≤
− −

1 1 2 2

1 1 2 2

s t t s
s d t d

− −≥
− −

1 1 2 2

1 1 2 2

t d s d
s d t d

It is rational for player 2 to make the next 
counteroffer if
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So we have

u1

u2

s

Bargaining Justification

t

Similarly

s′

s1′t1d1

d2

s2′

t2

− − ≤ − −1 1 2 2 1 1 2 2( )( ) ( )( )s d s d t d t d

′ ′− −≥
′ − −
1 1 2 2

1 1 2 2

s t t s
s d t d

It is rational for player 2 to make the next 
counteroffer if

′ ′− −′ ′= ≥ =
′ − −
1 1 2 2

1 2
1 1 2 2

s t t s
r r

s d t d
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So we have

u1

u2

s

Bargaining Justification

t

Similarly

s′

′− −≤
′ − −

1 1 2 2

1 1 2 2

t d s d
s d t d

s1′t1d1

d2

s2′

t2

− − ≤ − −1 1 2 2 1 1 2 2( )( ) ( )( )s d s d t d t d

′ ′− −≥
′ − −
1 1 2 2

1 1 2 2

s t t s
s d t d

It is rational for player 2 to make the next 
counteroffer if

′ ′− −′ ′= ≥ =
′ − −
1 1 2 2

1 2
1 1 2 2

s t t s
r r

s d t d
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So we have

u1

u2

s

Bargaining Justification

t

s′

s1′t1d1

d2

s2′

t2

− − ≤ − −1 1 2 2 1 1 2 2( )( ) ( )( )s d s d t d t d

and we have ′ ′− − ≤ − −1 1 2 2 1 1 2 2( )( ) ( )( )t d t d s d s d

Similarly

′− −≤
′ − −

1 1 2 2

1 1 2 2

t d s d
s d t d

′ ′− −≥
′ − −
1 1 2 2

1 1 2 2

s t t s
s d t d
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So we have

u2

s

Bargaining Justification

t

s′

≤ − −− − 1 1 21 2 21 2 ( )(( ) ))(s t ts d dd d

and we have ′ ′− − −≤ −1 11 2 22 21 ( )(( )( ) )t d t d s d s d

d

This implies an improvement in the 
Nash social welfare function
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So we have

u2

s

Bargaining Justification

t

s′

≤ − −− − 1 1 21 2 21 2 ( )(( ) ))(s t ts d dd d

and we have ′ ′− − −≤ −1 11 2 22 21 ( )(( )( ) )t d t d s d s d

d

This implies an improvement in the 
Nash social welfare function.

Given a minimum distance between 
offers, continued bargaining 
converges to Nash solution.
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Raiffa-Kalai-Smorodinsky 
Bargaining Solution

• This approach begins with a critique of the Nash 
bargaining solution.

u1

u2

d

u*

Nash solution

“Ideal” solution

Feasible set
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Raiffa-Kalai-Smorodinsky Bargaining Solution

• This approach begins with a critique of the Nash 
bargaining solution.
• The new Nash solution is worse for player 2 even though the 

feasible set is larger.

u1

u2

Larger 
feasible set

New Nash solution

d
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Raiffa-Kalai-Smorodinsky Bargaining Solution

• Proposal:  Bargaining solution is pareto optimal point 
on line from d to ideal solution.

u1

u2

Larger 
feasible set

“Ideal” solution

d
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Raiffa-Kalai-Smorodinsky Bargaining Solution

• Proposal:  Bargaining solution is pareto optimal point 
on line from d to ideal solution.
• The players receive an equal fraction of their possible utility 

gains.

u1

u2 “Ideal” solution

u*
∗

∗

− −=
− −

1 1 1 1

2 2 2 2

u d g d
u d g d

g

d

Feasible set
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Raiffa-Kalai-Smorodinsky Bargaining Solution

• Proposal:  Bargaining solution is pareto optimal point 
on line from d to ideal solution.
• Replace Axiom 4 with Axiom 4′′′′ (Monotonicity): A larger 

feasible set with same ideal solution results in a bargaining 
solution that is better (or no worse) for all players.

u1

u2

Larger 
feasible set

“Ideal” solution

∗

∗

− −=
− −

1 1 1 1

2 2 2 2

u d g d
u d g d

g

d

u*
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Raiffa-Kalai-Smorodinsky Bargaining Solution

• Applications
• Allocation of wireless capacity.

• Allocation of cloud computing resources.

• Datacenter resource scheduling 
(also dominant resource fairness)

• Resource allocation in visual sensor networks

• Labor-market negotiations



− − = − −
∈

∑

1 1 1 1

max

( )( ) ( )( ),   all 

i
i

i i i i

u

g d u d g d u d i

u S
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Raiffa-Kalai-Smorodinsky Bargaining Solution

• Optimization model.
• Not an optimization problem over original feasible set (we 

gave up Axiom 4).

• But it is an optimization problem (pareto optimality) over the 
line segment from d to ideal solution.

∗

∗

− −=
− −

1 1 1 1

2 2 2 2

u d g d
u d g d
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Raiffa-Kalai-Smorodinsky Bargaining Solution

• Optimization model.
• Not an optimization problem over original feasible set (we 

gave up Axiom 4).

• But it is an optimization problem (pareto optimality) over the 
line segment from d to ideal solution.

− − = − −
∈

∑

1 1 1 1

max

( )( ) ( )( ),   all 

i
i

i i i i

u

g d u d g d u d i

u S

constants
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Raiffa-Kalai-Smorodinsky Bargaining Solution

• Optimization model.
• Not an optimization problem over original feasible set (we 

gave up Axiom 4).

• But it is an optimization problem (pareto optimality) over the 
line segment from d to ideal solution.

− − = − −
∈

∑

1 1 1 1

max

( )( ) ( )( ),   all 

i
i

i i i i

u

g d u d g d u d i

u S

constants

Linear constraint
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u1

u2

Raiffa-Kalai-Smorodinsky Bargaining Solution
From Zero

1200

1200

(800,800)

(0,0)
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u1

u2

1200

1200

(900,750)

(600,600)

Raiffa-Kalai-Smorodinsky Bargaining Solution
From Equality
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u1

u2

1200

1200

(600,900)

(0,600)

Raiffa-Kalai-Smorodinsky Bargaining Solution
From Strong Pareto Set
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Axiomatic Justification

• Axiom 1.  Invariance under transformation.
• Axiom 2.  Pareto optimality.
• Axiom 3.  Symmetry.
• Axiom 4′′′′.  Monotonicity.
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Axiomatic Justification

Theorem.  Exactly one solution satisfies Axioms 1-4′, 
namely the RKS bargaining solution.

Proof (2 dimensions).

Easy to show that RKS solution satisfies the axioms.

Now show that only the RKS solution satisfies the axioms.
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Axiomatic Justification

Let u* be the RKS solution for a given problem.  Then it satisfies the 
axioms with respect to d.  Select a transformation that sends

(g1,g2) � (1,1),    (d1,d2) � (0,0)

The transformed problem has RKS solution u′, by Axiom 1:

u1

u2

(1,1)

d

d

u*

g

u′
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Axiomatic Justification

Let u* be the RKS solution for a given problem.  Then it satisfies the 
axioms with respect to d.  Select a transformation that sends

(g1,g2) � (1,1),    (d1,d2) � (0,0)

The transformed problem has RKS solution u′, by Axiom 1:

By Axioms 2 & 3,
u′ is the only
bargaining solution 
in the red polygon: 

u1

u2

(1,1)

d

u′



190

Axiomatic Justification

Let u* be the RKS solution for a given problem.  Then it satisfies the 
axioms with respect to d.  Select a transformation that sends

(g1,g2) � (1,1),    (d1,d2) � (0,0)

The transformed problem has RKS solution u′, by Axiom 1:

By Axioms 2 & 3,
u′ is the only
bargaining solution 
in the red polygon: 

The red polygon 
lies inside blue set.  
So by Axiom 4′, its 
bargaining solution 
is no better than 
bargaining solution 
on blue set.  
So u′ is the only 
bargaining solution 
on blue set.u1

u2

(1,1)

d

u′
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Axiomatic Justification

Let u* be the RKS solution for a given problem.  Then it satisfies the 
axioms with respect to d.  Select a transformation that sends

(g1,g2) � (1,1),    (d1,d2) � (0,0)

The transformed problem has RKS solution u′, by Axiom 1:

By Axiom 1, u* is 
the only bargaining 
solution in the 
original problem.

g

u*

u1

u2

(1,1)

d

u′
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Axiomatic Justification

• Problems with axiomatic justification.
• Axiom 1 is still in effect.

• It denies interpersonal comparability.

• Dropping Axiom 4 sacrifices optimization of a social welfare 
function.

• This may not be necessary if Axiom 1 is rejected.

• Needs modification for > 2 players (more on this shortly).
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Resistance to an agreement s depends on sacrifice relative to 
sacrifice under no agreement.  Here, player 2 is making a larger 
relative sacrifice:

s

Bargaining Justification

− −≤
− −

1 1 2 2

1 1 2 2

g s g s
g d g d

s1 g1d1

Minimizing resistance to 
agreement requires 
minimizing 

 −
 − 

max i i

i
i i

g s
g d

d2

s2

g2
g
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Resistance to an agreement s depends on sacrifice relative to 
sacrifice under no agreement.  Here, player 2 is making a larger 
relative sacrifice:

s

Bargaining Justification

− −≤
− −

1 1 2 2

1 1 2 2

g s g s
g d g d

s1 g1d1

Minimizing resistance to 
agreement requires 
minimizing 

 −
 − 

max i i

i
i i

g s
g d

d2

s2

g2
g

or equivalently, maximizing

min i i

i
i i

s d
g d

 −
 − 
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Resistance to an agreement s depends on sacrifice relative to 
sacrifice under no agreement.  Here, player 2 is making a larger 
relative sacrifice:

s

Bargaining Justification

− −≤
− −

1 1 2 2

1 1 2 2

g s g s
g d g d

s1 g1d1

Minimizing resistance to 
agreement requires 
minimizing 

 −
 − 

max i i

i
i i

g s
g d

d2

s2

g2
g

or equivalently, maximizing

min i i

i
i i

s d
g d

 −
 − 

which is achieved by RKS 
point.
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This is the Rawlsian social contract argument applied to gains 
relative to the ideal.

s

Bargaining Justification

s1 g1d1

Minimizing resistance to 
agreement requires 
minimizing 

 −
 − 

max i i

i
i i

g s
g d

d2

s2

g2
g

or equivalently, maximizing

which is achieved by RKS 
point.

min i i

i
i i

s d
g d

 −
 − 
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Problem with RKS Solutioon

• However, the RKS solution is Rawlsian only for 
2 players.
• In fact, RKS leads to counterintuitive results for 3 players.

g

d

Red triangle is 
feasible set.

RKS point is d !
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Problem with RKS Solutioon

• However, the RKS solution is Rawlsian only for 
2 players.
• In fact, RKS leads to counterintuitive results for 3 players.

g

d

Red triangle is 
feasible set.

RKS point is d !

Rawlsian point is u.

u
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u1

u2

Summary

1200

1200

(0,0)

(600,600)(0,600)

Rawlsian

Utilitarian
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u1

u2

Summary

1200

1200

(0,0)

(600,600)(0,600)

Nash bargaining

Rawlsian

Utilitarian
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u1

u2

Summary

1200

1200

(0,0)

(600,600)(0,600)

Nash bargaining

Raiffa-Kalai-Smorodinsky bargaining

Rawlsian

Utilitarian
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Combining Equity and Efficiency

• A proposed model

• Health care application
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Combining Equity and Efficiency

• Utilitarian and Rawlsian distributions seem too extreme 
in practice.
− How to combine them?

• One proposal:
– Maximize welfare of worst off (Rawlsian)...

– � until this requires undue sacrifice from others

– Seems appropriate in health care allocation.
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Combining Equity and Efficiency

• In particular:

– Switch from Rawlsian to utilitarian when inequality exceeds ∆.
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Combining Equity and Efficiency

• In particular:

– Switch from Rawlsian to utilitarian when inequality exceeds ∆.

– Build mixed integer programming model.

– Let ui = utility allocated to person i

• For 2 persons:

– Maximize  mini {u1, u2}   (Rawlsian) when  |u1 − u2| ≤ ∆
– Maximize u1 + u2 (utilitarian) when |u1 − u2| > ∆
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u1

u2

∆

∆

Two-person Model

Contours of social 
welfare function for 
2 persons.
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u1

u2

∆

∆

Two-person Model

Contours of social 
welfare function for 
2 persons.

Rawlsian region

{ }1 2
mn, au u
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u1

u2

∆

∆

Two-person Model

Contours of social 
welfare function for 
2 persons.

Utilitarian region

Rawlsian region

1 2
u u+

{ }1 2
mn, au u
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u1

u2

∆

∆

Feasible set

Person 1 is harder 
to treat.

But maximizing 
person 1’s health 
requires too much 
sacrifice from 
person 2.

Optimal 
allocation

Suboptimal
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Advantages

• Only one parameter ∆
– Focus for debate.

– ∆ has intuitive meaning (unlike weights) 

– Examine consequences of different settings for ∆
– Find least objectionable setting

– Results in a consistent policy
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u1

u2

∆

∆

Social Welfare Function

We want continuous 
contours�
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u1

u2

∆

∆

Social Welfare Function

We want continuous 
contours�

1 2
u u+

{ }1 2
2mn, au u + ∆

So we use affine 
transform of Rawlsian 
criterion



213

Social Welfare Function

The social welfare problem becomes

{ }1 2 1 2

1 2

mxf

2mn, a a nott

a ttttttttttttttttttttersl() n0l

{e,0r(xn,r0te,tolx0n}ult0lr

z

u u u u
z

u u

 + ∆ − ≤ ∆
≤  + 
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u1

u2

u1

u2

MILP Model
Epigraph is union of 2 polyhedra.
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u1

u2

u1

u2

MILP Model
Epigraph is union of 2 polyhedra.
Because they have different recession cones, there is no MILP model.

(0,1,0)
(1,1,2)

(1,0,0)

Recession
directions
(u1,u2,z)

(0,1,1)

(1,0,1)
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u1

u2

∆

∆

M

M

MILP Model
Impose constraints  |u1 − u2| ≤ M
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u1

u2

u1

u2

MILP Model
This equalizes recession cones.

(1,1,2) (1,1,2)Recession
directions
(u1,u2,z)
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u1

MILP Model

We have the model�

1 2

1 2 2 1

1 2

mxf

2 d g a 1a2

d1 g

a

a �

��a1�

{e,0r(xn,r0te,tolx0n}ult0lr

n

z

z u j n

z u u

u u j u u j

u u

δ
δ

δ

≤ + ∆ + −∆ =
≤ + + ∆ −
− ≤ − ≤

≥
∈
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u1

MILP Model

We have the model�

1 2

1 2 2 1

1 2

mxf

2 d g a 1a2

d1 g

a

a �

��a1�

{e,0r(xn,r0te,tolx0n}ult0lr

n

z

z u j n

z u u

u u j u u j

u u

δ
δ

δ

≤ + ∆ + −∆ =
≤ + + ∆ −
− ≤ − ≤

≥
∈

This is a convex hull formulation.
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n-person Model

Rewrite the 2-person social welfare function as�

( ) ( )mn, 1 mn, 2 mn,
2u u u u u

+ +∆ + + − −∆ + − −∆

{ }1 2
mn, au u { }mxf �aα α+ =
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n-person Model

Rewrite the 2-person social welfare function as�

( ) ( )mn, 1 mn, 2 mn,
2u u u u u

+ +∆ + + − −∆ + − −∆

{ }1 2
mn, au u { }mxf �aα α+ =

This can be generalized to n persons:

( )mn, mn,

1

d 1g
q

y

y

q qu u u
+

=

− ∆ + + − −∆∑
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n-person Model

Rewrite the 2-person social welfare function as�

Epigraph is a union of n! polyhedra with same recession direction 
(u,z) = (1,� ,1,n) if we require |ui − uj| ≤ M

So there is an MILP model�

( ) ( )mn, 1 mn, 2 mn,
2u u u u u

+ +∆ + + − −∆ + − −∆

{ }1 2
mn, au u { }mxf �aα α+ =

This can be generalized to n persons:

( )mn, mn,

1

d 1g
q

y

y

q qu u u
+

=

− ∆ + + − −∆∑
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n-person MILP Model

To avoid n! 0-1 variables, add auxiliary variables wij

mxf

attxuut

d ga ttxuut a t) nrst

d1 g a ttxuut a t) nrst

a txuut a tt

�a txuut

��a1�a ttxuut a t) nrst

n ny

y n

ny n ny

ny y ny

n y

n

ny

z

z u � n

� u j n y n y

� u n y n y

u u j n y

u n

n y n y

δ
δ

δ

≠
≤ +

≤ ∆ + + − ∆ ≠
≤ + − ∆ ≠

− ≤
≥
∈ ≠

∑
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u1

n-person MILP Model

To avoid n! 0-1 variables, add auxiliary variables wij

mxf

attxuut

d ga ttxuut a t) nrst

d1 g a ttxuut a t) nrst

a txuut a tt

�a txuut

��a1�a ttxuut a t) nrst

n ny

y n

ny n ny

ny y ny

n y

n

ny

z

z u � n

� u j n y n y

� u n y n y

u u j n y

u n

n y n y

δ
δ

δ

≠
≤ +

≤ ∆ + + − ∆ ≠
≤ + − ∆ ≠

− ≤
≥
∈ ≠

∑

Theorem.  The model is correct (not easy to prove).
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u1

n-person MILP Model

To avoid n! 0-1 variables, add auxiliary variables wij

mxf

attxuut

d ga ttxuut a t) nrst

d1 g a ttxuut a t) nrst

a txuut a tt

�a txuut

��a1�a ttxuut a t) nrst

n ny

y n

ny n ny

ny y ny

n y

n

ny

z

z u � n

� u j n y n y

� u n y n y

u u j n y

u n

n y n y

δ
δ

δ

≠
≤ +

≤ ∆ + + − ∆ ≠
≤ + − ∆ ≠

− ≤
≥
∈ ≠

∑

Theorem.  The model is correct (not easy to prove).

Theorem.  This is a convex hull formulation (not easy to prove).



226

n-group Model

In practice, funds may be allocated to groups of different sizes

For example, disease/treatment categories.

Let       = average utility gained by a person in group i

= size of group i

iu

in
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∆

∆

M

M

n-group Model
2-person case with n1 < n2.  Contours have slope − n1/n2

1u

2u
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n-group MILP Model

Again add auxiliary variables wij

δ
δ

δ

≠
≤ − ∆ + +

≤ + ∆ + −∆ ≠
≤ + − ∆ ≠

− ≤
≥
∈ ≠

∑
mxf

d 1g attxuut

d g d ga ttxuut a t) nrst

d1 g a ttxuut a t) nrst

a txuut a tt

�a txuut

��a1�a ttxuut a t) nrst

n n n ny

y n

ny y n ny y

ny y ny y

n y

n

ny

z

z q qu � n

� q u q j n y n y

� u q n y n y

u u j n y

u n

n y n y

Theorem.  The model is correct.

Theorem.  This is a convex hull formulation.
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Health Example

Measure utility in QALYs (quality-adjusted life years).

QALY and cost data based on Briggs & Gray, (2000) etc.

Each group is a disease/treatment pair.

Treatments are discrete, so group funding is all-or-nothing.

Divide groups into relatively homogeneous subgroups.
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Health Example

Add constraints to define feasible set�
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z q qu � n
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u � 	

q 
 	

	 a1�a ttxuutn

yi indicates 
whether 
group i is 
funded
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QALY 
& cost 
data

Part 1
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QALY 
& cost 
data

Part 2
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Results

Total budget £3 million
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Results

Utilitarian solution
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Results

Rawlsian solution
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Results

Fund for all ∆
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Results
More dialysis with
larger ∆, beginning 
with longer life span
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Results

Abrupt change at ∆ = 5.60
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Results

Come and go together
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Results

In-out-in
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Results

Most rapid change.  Possible range for 
politically acceptable compromise
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Results

32 groups, 1089 integer variables
Solution time (CPLEX 12.2) is negligible
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Results


