Equity and Efficiency in the Allocation of Health Care Resources

John Hooker
Carnegie Mellon University

H. P. Williams

London School of Economics

INFORMS Healthcare Conference 2015 Nashville, USA

- The problem is to find a fair and reasonable distribution of resources.
- Motivation:
 - Very expensive treatments increasingly available.
 - Limited resources.

The dilemma:

 Allocate enormous resources to a few, seriously ill individuals (e.g. proton beam therapy),

OR

 Obtain better overall results by treating a broader population (e.g. flu shots).

- The dilemma arises in:
 - Treatment
 - Medical research
 - Clinical trials
 - Organ transplant

- Two classical criteria for allocating resources:
 - Utilitarianism (efficiency)
 - Difference principle of John Rawls (equity)

- Utilitarianism allocates resources to maximize total net utility.
 - Greatest good for the greatest number.
 - May sacrifice expensive treatments for seriously ill.

- The Rawlsian difference principle seeks to maximize the welfare of the least advantaged.
 - Social contract argument.
 - May result in less overall benefit.

- Utilitarian and Rawlsian distributions seem too extreme in practice.
 - How to combine them?

- Utilitarian and Rawlsian distributions seem too extreme in practice.
 - How to combine them?

One proposal:

- Maximize welfare of most seriously ill (Rawlsian)...
- ...until this requires undue sacrifice from others

- In particular:
 - Switch from **Rawlsian** to **utilitarian** when **inequality** exceeds Δ .

In particular:

- Switch from **Rawlsian** to **utilitarian** when **inequality** exceeds Δ .
- Build mixed integer programming model.
- Let u_i = utility allocated to person i

For 2 persons:

- Maximize min $\{u_1, u_2\}$ (Rawlsian) when $|u_1 u_2| \le \Delta$
- Maximize $u_1 + u_2$ (utilitarian) when $|u_1 u_2| > \Delta$

Two-person Model

Contours of **social** welfare function for 2 persons.

Two-person Model

Two-person Model

Person 1 is harder to treat.

But maximizing person 1's health requires too much sacrifice from person 2.

Suboptimal Feasible set U_1

 U_2

Optimal

allocation

Advantages

- Only one parameter ∆
 - $-\Delta$ has **intuitive meaning** (unlike weights in multicriteria models)
 - Examine **consequences** of different settings for Δ
 - Find least objectionable setting
 - Results in a consistent policy

Social Welfare Function

We want continuous contours...

Social Welfare Function

Social Welfare Function

The social welfare problem becomes

max z

$$z \leq \begin{cases} 2\min\{u_1, u_2\} + \Delta, & \text{if } |u_1 - u_2| \leq \Delta \\ u_1 + u_2, & \text{otherwise} \end{cases}$$

constraints on feasible set

Epigraph is union of 2 polyhedra.

Epigraph is union of 2 polyhedra.

Because they have different recession cones, there is no MILP model.

Impose constraints $|u_1 - u_2| \le M$

This equalizes recession cones.

Recession directions (u_1, u_2, z)

We have the model...

```
max z
z \le 2u_i + \Delta + (M - \Delta)\delta, \quad i = 1,2
z \le u_1 + u_2 + \Delta(1 - \delta)
u_1 - u_2 \le M, \quad u_2 - u_1 \le M
u_1, u_2 \ge 0
\delta \in \{0,1\}
constraints on feasible set
```

 U_1

We have the model...

$$\max z$$

$$z \le 2u_i + \Delta + (M - \Delta)\delta, \quad i = 1, 2$$

$$z \le u_1 + u_2 + \Delta(1 - \delta)$$

$$u_1 - u_2 \le M, \quad u_2 - u_1 \le M$$

$$u_1, u_2 \ge 0$$

$$\delta \in \{0, 1\}$$

 U_1

This is a **convex hull** formulation.

n-person Model

Rewrite the 2-person social welfare function as...

$$\Delta + 2u_{\min} + (u_1 - u_{\min} - \Delta)^+ + (u_2 - u_{\min} - \Delta)^+ \times$$

$$\alpha^+ = \max\{0, \alpha\}$$

 U_1

n-person Model

Rewrite the 2-person social welfare function as...

$$\Delta + 2u_{\min} + (u_1 - u_{\min} - \Delta)^+ + (u_2 - u_{\min} - \Delta)^+$$

$$\min\{u_1, u_2\}$$

$$\alpha^+ = \max\{0, \alpha\}$$

This can be generalized to *n* persons:

$$(n-1)\Delta + nu_{\min} + \sum_{j=1}^{n} \left(u_{j} - u_{\min} - \Delta\right)^{+}$$

n-person Model

Rewrite the 2-person social welfare function as...

$$\Delta + 2u_{\min} + (u_1 - u_{\min} - \Delta)^+ + (u_2 - u_{\min} - \Delta)^+$$

$$\min\{u_1, u_2\}$$

$$\alpha^+ = \max\{0, \alpha\}$$

This can be generalized to *n* persons:

$$(n-1)\Delta + nu_{\min} + \sum_{j=1}^{n} \left(u_{j} - u_{\min} - \Delta\right)^{+}$$

$$u_{1}$$

Interpretation: Everyone with utility within Δ of worst-off person is counted as having same utility as the worst-off person.

n-person MILP Model

To avoid n! 0-1 variables, add auxiliary variables w, v_i

$$\max z$$

$$z \leq (n-1)\Delta + \sum_{i} v_{i}$$

$$u_{i} - \Delta \leq v_{i} \leq u_{i} - \Delta \delta_{i}, \text{ all } i$$

$$w \leq v_{i} \leq w + (M - \Delta)\delta_{i}, \text{ all } i$$

$$u_{i} \geq 0, \text{ all } i$$

$$\delta_{i} \in \{0,1\}, \text{ all } i$$

n-person MILP Model

To avoid n! 0-1 variables, add auxiliary variables w, v_i

$$\max z$$

$$z \leq (n-1)\Delta + \sum_{i} v_{i}$$

$$u_{i} - \Delta \leq v_{i} \leq u_{i} - \Delta \delta_{i}, \text{ all } i$$

$$w \leq v_{i} \leq w + (M - \Delta)\delta_{i}, \text{ all } i$$

$$u_{i} \geq 0, \text{ all } i$$

$$\delta_{i} \in \{0,1\}, \text{ all } i$$

$$u_{1} \leq 0$$

Theorem. The model is correct (not easy to prove).

n-person MILP Model

To avoid n! 0-1 variables, add auxiliary variables w, v_i

$$\max z$$

$$z \leq (n-1)\Delta + \sum_{i} v_{i}$$

$$u_{i} - \Delta \leq v_{i} \leq u_{i} - \Delta \delta_{i}, \text{ all } i$$

$$w \leq v_{i} \leq w + (M - \Delta)\delta_{i}, \text{ all } i$$

$$u_{i} \geq 0, \text{ all } i$$

$$\delta_{i} \in \{0,1\}, \text{ all } i$$

Theorem. The model is correct (not easy to prove).

Theorem. This is a convex hull formulation (not easy to prove).

n-group Model

In practice, funds may be allocated to groups of different sizes

For example, disease/treatment categories.

```
Let \bar{u}_i = average utility gained by a person in group i n_i = size of group i
```

n-group Model

2-person case with $n_1 < n_2$. Contours have slope $-n_1/n_2$

n-group MILP Model

Again add auxiliary variables w, vi

$$\max z$$

$$z \leq \left(\sum_{i} n_{i} - 1\right) \Delta + \sum_{i} n_{i} v_{i}$$

$$u_{i} - \Delta \leq v_{i} \leq u_{i} - \Delta \delta_{i}, \text{ all } i$$

$$w \leq v_{i} \leq w + (M - \Delta) \delta_{i}, \text{ all } i$$

$$u_{i} \geq 0, \text{ all } i$$

$$\delta_{i} \in \{0,1\}, \text{ all } i$$

Theorem. The model is correct.

Theorem. This is a convex hull formulation.

Health Care Allocation

Measure utility in **QALYs** (quality-adjusted life years).

QALY, cost data, and group sizes based on Briggs & Gray (2000) and other sources.

Each group is a disease/treatment pair.

QALYs gained is a **concave**, **nonlinear** function of investment (decreasing marginal payoff)

 U_1

Health Example

Add constraints to define feasible set...

$$\max z$$

$$z \le \left(\sum_{i} n_{i} - 1\right) \Delta + \sum_{i} n_{i} v_{i}$$

$$\overline{u}_{i} - \Delta \le v_{i} \le \overline{u}_{i} - \Delta \delta_{i}, \text{ all } i$$

$$w \le v_{i} \le w + (M - \Delta) \delta_{i}, \text{ all } i$$

$$\overline{u}_{i} \ge 0, \text{ all } i$$

$$\delta_{i} \in \{0, 1\}, \text{ all } i$$

$$\overline{u}_{i} = q_{i}(x_{i}) / n_{i} + \alpha_{i}, \text{ all } i$$

$$\sum_{i} x_{i} \le \text{ budget}$$

 $q_i(x_i)$ is total additional QALYs in group i resulting from expenditure of x_i

	Intervention	Cost per person c_i (£)	$\begin{array}{c} \text{QALYs} \\ \text{gained} \\ q_i \end{array}$	Cost per QALY (£)	$\begin{array}{c} {\rm QALYs} \\ {\rm without} \\ {\rm intervention} \\ {\alpha_i} \end{array}$	Subgroup size n_i				
	Pacemaker for atriove	entricular hear	rt block							
	Subgroup A	3500	3	1167	13	35				
	Subgroup B	3500	5	700	10	45				
	Subgroup C	3500	10	350	5	35				
OALV	Hip replacement									
QALY	Subgroup A	3000	2	1500	3	45				
& cost	Subgroup B	3000	4	750	4	45				
	Subgroup C	3000	8	375	5	45				
data	Valve replacement for aortic stenosis									
	Subgroup A	4500	3	1500	2.5	20				
	Subgroup B	4500	5	900	3	20				
Dort 1	Subgroup C	4500	10	450	3.5	20				
Part 1	$CABG^{1}$ for left main disease									
	Mild angina	3000	1.25	2400	4.75	50				
	Moderate angina	3000	2.25	1333	3.75	55				
	Severe angina	3000	2.75	1091	3.25	60				
	CABG for triple vesse									
	Mild angina	3000	0.5	6000	5.5	50				
	Moderate angina	3000	1.25	2400	4.75	55				
	Severe angina	3000	2.25	1333	3.75	60				
	CABG for double vess									
	Mild angina	3000	0.25	12,000	5.75	60				
	Moderate angina	3000	0.75	4000	5.25	65				
	Severe angina	3000	1.25	2400	4.75	70				

	Intervention	$\begin{array}{c} \operatorname{Cost} \\ \operatorname{per \ person} \\ c_i \\ (\pounds) \end{array}$	QALYs gained q_i	Cost per QALY (£)	$\begin{array}{c} {\rm QALYs} \\ {\rm without} \\ {\rm intervention} \\ {\alpha_i} \end{array}$	$\begin{array}{c} {\rm Subgroup} \\ {\rm size} \\ n_i \end{array}$
	Heart transplant	22,500	4.5	5000	1.1	20
QALY & cost	Kidney transplant Subgroup A Subgroup B Kidney dialysis	15,000 15,000	4 6	3750 2500	1 1	24 24
data	Less than 1 year s Subgroup A 1-2 years survival	5000	0.1	50,000	0.3	24
Part 2	Subgroup B 2-5 years survival Subgroup C Subgroup D Subgroup E	12,000 20,000 28,000 36,000	0.4 1.2 1.7 2.3	30,000 16,667 16,471 15,652	0.6 0.5 0.7 0.8	18 12 12 12
	5-10 years survival Subgroup F Subgroup G Subgroup H Subgroup I At least 10 years s Subgroup J Subgroup K Subgroup L	46,000 56,000 66,000 77,000	3.3 3.9 4.7 5.4 6.5 7.4 8.2	13,939 14,359 14,043 14,259 13,538 13,514 13,537	0.6 0.8 0.9 1.1 0.9 1.0 1.2	9 6 6 6 3 3
	bubgroup L	111,000	0.2	10,001	1.4	<u> </u>

Number treated by category Total budget £3 million

$\Delta =$	0–2.3	2.4–3.9	4.0–5.4	5.5–11.2	11.3–∞	Population
Pacemaker	115	115	115	109	2	115
Hip replace	135	135	134	0	0	135
Aortic valve	60	60	60	0	0	60
CABG	4	360	463	0	0	540
Heart trans.	5	0	0	3	5	20
Kidney trans.	56	0	10	15	17	80
Dialysis	0	5	23	31	40	117

Number treated by category Total budget £4 million

$\Delta =$	0–2.3	2.4–3.9	4.0–5.4	5.5–11.2	11.3–∞	Population
Pacemaker	115	115	115	115	113	115
Hip replace	135	135	135	135	1	135
Aortic valve	60	60	60	60	0	60
CABG	424	500	475	3	0	540
Heart trans.	20	0	2	5	7	20
Kidney trans.	80	80	7	17	21	80
Dialysis	0	2	16	33	49	117

Average QALYs per person Total budget £3 million

$\Delta =$	0–2.3	2.4–3.9	4.0–5.4	5.5–11.2	11.3–∞	Maximum
Pacemaker	15.3	15.3	15.3	15.3	9.6	15.3
Hip replace	8.7	8.7	8.6	4.0	4.0	8.7
Aortic valve	9.0	9.0	9.0	3.0	3.0	9.0
CABG	5.8	5.9	4.6	4.6	4.6	6.0
Heart trans.	1.1	1.1	1.8	2.2	2.5	5.6
Kidney trans.	4.8	1.0	1.8	2.1	2.3	6.0
Dialysis	0.7	1.0	1.7	2.1	2.3	3.0

Average QALYs per person Total budget £4 million

$\Delta =$	0–2.3	2.4–3.3	3.4	3.5–4.9	5.0–∞	Maximum
Pacemaker	15.3	15.3	15.3	15.3	15.2	15.3
Hip replace	8.7	8.7	8.7	8.7	4.1	8.7
Aortic valve	9.0	9.0	9.0	9.0	3.0	9.0
CABG	5.9	6.0	6.0	4.6	4.6	6.0
Heart trans.	5.6	1.1	1.6	2.2	2.7	5.6
Kidney trans.	6.0	6.0	1.5	2.3	2.6	6.0
Dialysis	0.7	8.0	1.5	2.2	2.6	3.0

Solution time vs. Δ

