Equitable Allocation of Scarce Medical Resources

Özgün Elçi, John Hooker, Peter Zhang Carnegie Mellon University

INFORMS 2020

The Problem

- Allocation of scare medical resources.
 - Across regions, hospitals.
 - Consider **equity** as well as **efficiency**.
 - Use **robust optimization** to allow for demand uncertainty and take advantage of expert knowledge.
- Overall research goal.
 - Multi-period model on general network.
- This talk.
 - Single-period model on hierarchical network.
 - Focus on **balancing** equity and efficiency

At each node, an equitable distribution problem based on available resources.

Simchi-Levi, Trichakis, Zhang (2019)

Budget constraints on resource distribution $\max_{\boldsymbol{x}} \left\{ f(\boldsymbol{x}) + \min_{\omega \in \Omega} \left\{ \mathbb{W} (\boldsymbol{u}(\boldsymbol{x}, \omega)) \right\} \, \middle| \, \boldsymbol{x} \in X \right\}$ Resource allocation vector

$$\max_{\boldsymbol{x}} \left\{ f(\boldsymbol{x}) + \min_{\omega \in \Omega} \left\{ \mathbb{W} \big(\boldsymbol{u}(\boldsymbol{x}, \omega) \big) \right\} \ \middle| \ \boldsymbol{x} \in X \right\}$$

If utility is nonlinear function of resources, use several budget constraints as piecewise linear approximation

$$\max_{\boldsymbol{x}} \left\{ f(\boldsymbol{x}) + \min_{\omega \in \Omega} \left\{ \mathbb{W} \big(\boldsymbol{u}(\boldsymbol{x}, \omega) \big) \right\} \ \middle| \ \boldsymbol{x} \in X \right\}$$

Possible problem:

Social welfare function is too hard to solve over many scenarios

Resource budget constraint on utilities imposed by allocation x.

If utility is **nonlinear** function of resources, use several budget constraints as piecewise linear approximation

- Purely efficient solution may be viewed as unfair.
 - Unequal distribution to regions, hospitals.
 - Neglect of expensive-to-treat patients to boost average health outcome.
- Exclusive focus on fairness may be inefficient.
 - Insufficient distribution to regions, hospitals with greater need.
 - High expenditure on a few gravely ill patients at the expense of overall health outcome.

- Two classical criteria for distributive justice:
- Utilitarianism (max total benefit) $\max \{ \mathbb{W}(\boldsymbol{u}(\boldsymbol{x})) \mid \boldsymbol{x} \in X \}$

$$\mathbb{W}(\boldsymbol{u}) = \sum_{i} u_{i}$$
 Bentham (1776)

 Rawlsian difference principle = maximin (max welfare of worst off)

$$\max_{\boldsymbol{x}} \left\{ \mathbb{W}(\boldsymbol{u}(\boldsymbol{x})) \mid \boldsymbol{x} \in X \right\}$$
$$\mathbb{W}(\boldsymbol{u}) = \max_{i} \{u_i\}$$

Rawls (1971)

- Some proposals for combining equity and efficiency:
 - Alpha-fairness
 - Proportional fairness
 - Kalai-Smorodinksy bargaining solution
 - Convex combination of utility and maximin
 - **Product of utility and (1 Gini coefficient)**
 - H-W combination of utility & maximin (our choice for now)

Alpha fairness

$$\mathbb{W}_{\alpha}(\boldsymbol{u}) = \begin{cases} \frac{1}{1-\alpha} \sum_{i} u_{i}^{1-\alpha} & \text{for } \alpha \geq 0, \ \alpha \neq 1 \\ \sum_{i} \log(u_{i}) & \text{for } \alpha = 1 \end{cases}$$

 $\alpha = 0$: utilitarian $\alpha = \infty$: maximin **larger** α : more emphasis on fairness

Problems: Nonlinear. How to choose α ?

Special case: $\alpha = 1$. **Proportional fairness** (Nash bargaining solution)

Problems: Nonlinear. Axiomatic and bargaining arguments rely on a strong assumption (lack of cardinal interpersonal comparability) 14

Kalai-Smorodinsky bargaining solution

Players receive an equal fraction of their possible utility gains. **Justification:** Rational bargaining arrives at optimal equilibrated relative concessions.

Problems with Kalai-Smorodinsky solution:

Axiomatic treatment again assumes cardinal noncomparability. No way to parameterize equity/efficiency trade-off. Leads to counterintuitive result for \geq 3 players:

Convex combinination

$$\mathbb{W}(\boldsymbol{u}) = (1 - \lambda) \sum u_i + \lambda \min_i \{u_i\}$$

Problem: No idea how to choose ${}^{i}\lambda$.

Product of utility and equality measure

$$\mathbb{W}(\boldsymbol{u}) = \left(\sum_{i} u_{i}\right) \left(1 - G(\boldsymbol{u})\right)$$
where $\boldsymbol{G}(\boldsymbol{u})$ is Gini coefficient $G(\boldsymbol{u}) = \frac{\sum_{i < j} |u_{i} - u_{j}|}{n \sum_{i} u_{i}}$
Eisenhandler & Tzur (2019)

This simplifies to expression that has a linear model:

$$\mathbb{W}(\boldsymbol{u}) = \sum_{i} u_{i} - \frac{1}{n} \sum_{i < j} \left| u_{j} - u_{i} \right|$$

Problems: Equality \neq fairness.

This is just a convex combination of utility and an equality measure (negative mean absolute difference) with equal weights. Why equal weights?

Our choice (for now): H-W combination of utility and maximin JH & Williams (2012)

Parameter Δ regulates equity-efficiency tradeoff, has **practical meaning**.

Social welfare function has practical mixed integer (MIP) model.

2-person model:

$$\mathbb{W}(u_1, u_2) = \begin{cases} u_1 + u_2 & \text{if } |u_1 - u_2| \ge \Delta \\ 2\min\{u_1, u_2\} + \Delta & \text{otherwise} \end{cases}$$

Contours of **social welfare function** for 2 persons.

Healthcare interpretation

Patient 1 is harder to treat.

But maximizing patient 1's health requires too much sacrifice from patient 2.

n-person social welfare function

$$\mathbb{W}(\boldsymbol{u}) = (n-1)\Delta + nu_{\min} + \sum_{i} \max\left\{0, \ u_{i} - u_{\min} - \Delta\right\}$$

Disadvantaged individuals receive some priority.

Choose Δ so that those with utilities in fair region (within Δ of smallest, u_{min}) deserve priority.

 $\Delta = 0$: utilitarian SWF (no fair region) $\Delta = \infty$: maximin SWF (all utilities in fair region) Utilities in fair region are equated with smallest utility, which receives weight equal to number of utilities in fair region.

MIP model of H-W social welfare function:

max σ

$$\sigma \le (n-1)\Delta + \sum_i v_i$$

 $v_i < u_i - \Delta \delta_i$ all i

Assumes $u_i \le M$ for all *i* to ensure MIP representability

$$w \leq v_i \leq w + (M - \Delta)\delta_i, \text{ all } i$$
$$u_i \geq 0, \ \delta_i \in \{0, 1\}, \ \text{, all } i$$

Theorem. The model is correct (not easy to prove).

Theorem. The model is sharp (before resource constraints are added).

H-W Health Example

Measure utility in **QALY**s (quality-adjusted life years).

QALY and cost data based on Briggs & Gray, (2000) etc.

Decide whether to fund each disease/treatment pair.

Distinguish **severity levels** of each disease.

Treatment decisions are discrete, so funding is **all-or-nothing** for each category.

H-W Health Example

Add constraints to define feasible set...

max σ

H-W model

$$u_{i} = q_{i}y_{i} + \alpha_{i}, \text{ all } i \leftarrow \sum_{i} n_{i}c_{i}y_{i} \leq B \leftarrow u_{i} \leq q_{i} + \alpha_{i}, \text{ all } i \leftarrow y_{i} \in \{0, 1\}, \text{ all } i$$

 y_i indicates whether disease category *i* is funded

Budget constraint

Individual utility bounds

Model is slightly modified to accommodate patient groups of different sizes n_i

Intervention	$\begin{array}{c} \text{Cost} \\ \text{per person} \\ c_i \\ (\pounds) \end{array}$	$\begin{array}{c} \text{QALYs} \\ \text{gained} \\ q_i \end{array}$	Cost per QALY (£)	$\begin{array}{c} {\rm QALYs} \\ {\rm without} \\ {\rm intervention} \\ \alpha_i \end{array}$	Subgroup size n_i
Pacemaker for atriove	entricular hear	rt block			
Subgroup A	3500	3	1167	13	35
Subgroup B	3500	5	700	10	45
Subgroup C	3500	10	350	5	35
Hip replacement					
Subgroup A	3000	2	1500	3	45
Subgroup B	3000	4	750	4	45
Subgroup C	3000	8	375	5	45
Valve replacement for	aortic stenos	is			
Subgroup A	4500	3	1500	2.5	20
Subgroup B	4500	5	900	3	20
Subgroup C	4500	10	450	3.5	20
CABG ¹ for left main	disease				
Mild angina	3000	1.25	2400	4.75	50
Moderate angina	3000	2.25	1333	3.75	55
Severe angina	3000	2.75	1091	3.25	60
CABG for triple vesse	el disease				
Mild angina	3000	0.5	6000	5.5	50
Moderate angina	3000	1.25	2400	4.75	55
Severe angina	3000	2.25	1333	3.75	60
CABG for double vess	sel disease				
Mild angina	3000	0.25	12,000	5.75	60
Moderate angina	3000	0.75	4000	5.25	65
Severe angina	3000	1.25	2400	4.75	70

QALY

& cost

data

Part 1

	Intervention	Cost per person c_i	$\begin{array}{c} \text{QALYs} \\ \text{gained} \\ q_i \end{array}$	Cost per QALY	QALYs without intervention	$\begin{array}{c} \text{Subgroup} \\ \text{size} \\ n_i \end{array}$
		(\mathfrak{L})		(£)	$lpha_i$	
		22,500	4.5	5000	1.1	2
	Kidney transplant					
	Subgroup A	15,000	4	3750	1	8
QALY	Subgroup B	15,000	6	2500	1	8
9 ooot	Kidney dialysis					
& COSI	Less than 1 year su	ırvival				
data	Subgroup A	5000	0.1	50,000	0.3	8
uulu	1-2 years survival					
	Subgroup B	12,000	0.4	30,000	0.6	6
Dort 2	2-5 years survival					
Part 2	Subgroup C	20,000	1.2	$16,\!667$	0.5	4
	Subgroup D	28,000	1.7	16,471	0.7	4
	Subgroup E	36,000	2.3	$15,\!652$	0.8	4
	5-10 years survival					
	Subgroup F	46,000	3.3	13,939	0.6	3
	Subgroup G	56,000	3.9	14,359	0.8	2
	Subgroup H	66,000	4.7	14,043	0.9	2
	Subgroup I	77,000	5.4	14,259	1.1	2
	At least 10 years su	urvival				
	Subgroup J	88,000	6.5	13,538	0.9	2
	Subgroup K	100,000	7.4	13,514	1.0	1
	Subgroup L	111,000	8.2	13,537	1.2	1

Total budget £3 million

Δ	Pace-	Hip	Aortic	(CAB	G	Heart	Kidney		Kid	lney	dialys	is	Avg.
range	maker	repl.	valve	L	3	2	trans.	trans.	<1	1-2	2-5	5-10	>10	QALYs.
0-3.3	111	111	111	111	111	111	1	11	0	0	000	0000	000	7.54
3.4-4.0	111	111	111	111	111	111	0	11	1	0	000	0000	000	7.54
4.0 - 4.4	111	111	111	111	111	111	0	01	1	0	000	0000	001	7.51
4.5 - 5.01	111	011	111	111	111	111	1	01	1	0	000	0000	011	7.43
5.02 - 5.55	111	011	011	111	111	111	1	01	1	0	000	0001	011	7.36
5.56 - 5.58	111	011	011	111	111	011	0	01	1	0	000	0001	111	7.36
5.59	111	011	011	110	111	111	0	01	1	0	000	0001	111	7.20
5.60 - 13.1	111	111	111	101	000	000	1	11	1	0	111	1111	111	7.06
13.2 - 14.2	111	011	111	011	000	000	1	11	1	1	111	1111	111	7.03
14.3 - 15.4	111	111	111	011	000	000	1	11	1	1	101	1111	111	7.13
15.5 up	111	011	111	011	001	000	1	11	1	0	011	1111	111	7.19

Utilitarian solution

Δ	Pace-	Hip	Aortic	(CAB	G	Heart	Kidney		Kic	lney	dialys	is	Avg.
range	maker	repl.	valve	L	3	2	trans.	trans.	<1	1-2	2-5	5-10	>10	QALYs.
0-3.3	111	111	111	111	111	111	1	11	0	0	000	0000	000	7.54
3.4 - 4.0	111	111	111	111	111	111	0	11	1	0	000	0000	000	7.54
4.0 - 4.4	111	111	111	111	111	111	0	01	1	0	000	0000	001	7.51
4.5 - 5.01	111	011	111	111	111	111	1	01	1	0	000	0000	011	7.43
5.02 - 5.55	111	011	011	111	111	111	1	01	1	0	000	0001	011	7.36
5.56 - 5.58	111	011	011	111	111	011	0	01	1	0	000	0001	111	7.36
5.59	111	011	011	110	111	111	0	01	1	0	000	0001	111	7.20
5.60 - 13.1	111	111	111	101	000	000	1	11	1	0	111	1111	111	7.06
13.2 - 14.2	111	011	111	011	000	000	1	11	1	1	111	1111	111	7.03
14.3 - 15.4	111	111	111	011	000	000	1	11	1	1	101	1111	111	7.13
15.5 up	111	011	111	011	001	000	1	11	1	0	011	1111	111	7.19

Maximin solution

1

Δ	Pace-	Hip	Aortic	(CAB	G	Heart	Kidney		Kic	lney	dialys	is	Avg.
range	maker	repl.	valve	L	3	2	trans.	trans.	<1	1-2	2-5	5-10	>10	QALYs.
0-3.3	111	111	111	111	111	111	1	11	0	0	000	0000	000	7.54
3.4-4.0	111	111	111	111	111	111	0	11	1	0	000	0000	000	7.54
4.0-4.4	111	111	111	111	111	111	0	01	1	0	000	0000	001	7.51
4.5 - 5.01	111	011	111	111	111	111	1	01	1	0	000	0000	011	7.43
5.02 - 5.55	111	011	011	111	111	111	1	01	1	0	000	0001	011	7.36
5.56 - 5.58	111	011	011	111	111	011	0	01	1	0	000	0001	111	7.36
5.59	111	011	011	110	111	111	0	01	1	0	000	0001	111	7.20
5.60 - 13.1	111	111	111	101	000	000	1	11	1	0	111	1111	111	7.06
13.2 - 14.2	111	011	111	011	000	000	1	11	1	1	111	1111	111	7.03
14.3 - 15.4	111	111	111	011	000	000	1	11	1	1	101	1111	111	7.13
15.5 up	111	011	111	011	001	000	1	11	1	0	011	1111	111	7.19

Most resources come from As Z							As Δ increases, transfer resources to dialysis								
heart bypass surgery ((very expensive, but these patients are the								
						WO	rst off v	without	treat	tment)					
									$\langle \rangle$						
Δ	Pace-	Hip	Aortic	(CAB	G	Heart	Kidney		Kidney	dialysi	is	Avg.		
range	maker	repl.	valve	L	3	2	trans.	trans.	<1	1-2 2-5	5-10	>10	QALYs.		
0-3.3	111	111	111	111	111	111	1	11	0	000	0000	000	7.54		
3.4-4.0	111	111	111	111	111	111	0	11	1	0 \000	0000	000	7.54		
4.0-4.4	111	111	111	111	111	111	0	01	1	0 000	0000	001	7.51		
4.5 - 5.01	111	011	111	111	111	111	1	01	1	0 000	0000	011	7.43		
5.02 - 5.55	111	011	011	111	111	111	1	01	1	0 000	0001	011	7.36		
5.56 - 5.58	111	011	011	111	111	011	0	01	1	0 000	0001	111	7.36		
5.59	111	011	011	110	111	111	0	01	1	0 000	0001	111	7.20		
5.60 - 13.1	111	111	111	101	000	000	1	11	1	0 111	1111	111	7.06		
13.2 - 14.2	111	011	111	011	000	000	1	11	1	1 111	1111	111	7.03		
14.3 - 15.4	111	111	111	011	000	000	1	11	1	1 101	1111	111	7.13		
15.5 up	111	011	111	011	001	000	1	11	1	0 011	1111	111	7.19		

Problems

We need rapid solution for many scenarios. But...

- H-W model has **0-1 variables**.
- Model is **no longer sharp** when budget constraint, bounds are added.

Problems

We need rapid solution for many scenarios. But...

- H-W model has **0-1 variables**.
- Model is **no longer sharp** when budget constraint, bounds are added.

Current research goals

- Find **closed-form solution** for **single** budget constraint, **no bounds**.
- Tighten model that has multiple budget constraints to speed solution.
- Observe empirical behavior of **LP relaxation** with budget constraint and bounds (close to optimal?).

Single Budget Constraint

Suppose there is a single budget constraint $\sum_{i} c_{i}u_{i} \leq B$ and no bounds. Theorem. The H-W solution is purely utilitarian or purely maximin. In particular, given $c_{1} = \min_{i} \{c_{i}\}$, we have a utilitarian solution $u_{i} = \begin{cases} B/c_{1} & \text{for } i = 1 \\ 0 & \text{for } i \geq 2 \end{cases} \text{ if } \Delta \leq \left(\frac{1}{c_{1}} - \frac{n}{\sum_{i} c_{i}}\right),$ And maximin solution $u_{i} = \frac{B}{\sum_{i} c_{i}} \text{ for all } i \text{ otherwise (all utilities equal).}$

Single Budget Constraint

Single Budget Constraint

Suppose there is a single budget constraint $\sum_{i} c_i u_i \leq B$ and no bounds. **Theorem.** The H-W solution is **purely utilitarian** or **purely maximin**. In particular, given $c_1 = \min_i \{c_i\}$, we have a utilitarian solution

$$u_{i} = \begin{cases} B/c_{1} & \text{for } i = 1 \\ 0 & \text{for } i \ge 2 \end{cases} \text{ if } \Delta \le \left(\frac{1}{c_{1}} - \frac{n}{\sum_{i} c_{i}}\right),$$

And maximin solution $u_{i} = \frac{B}{\sum_{i} c_{i}} \text{ for all } i \text{ otherwise (all utilities equal).}$

Solution is **uninteresting** because cost is a **linear** function of utilities and there are **no individual bounds** on utilities.

More realistic: **multiple** linear budget constraints give piecewise linear approximation of **nonlinear** (concave) utility functions, or there are **individual bounds** on utilities (as in H-W problem).

Multiple Budget Constraints

Suppose there are multiple budget constraints of the form $\sum_{i} c_{i}u_{i} \leq B$. **Theorem.** For each budget constraint, we have the valid inequalities $\sigma \leq (n-1)\Delta + (1+(n-1)\frac{\Delta}{M_{i}}) + \sum_{j \neq i} \left(1 - \frac{\Delta}{\min\{M_{i}, M_{j}\}}\right)u_{j}$, all iwhere $M_{i} = B/c_{i}$

Multiple Budget Constraints

Suppose there are multiple budget constraints of the form $\sum_{i} c_{i}u_{i} \leq B$. **Theorem.** For each budget constraint, we have the valid inequalities $\sigma \leq (n-1)\Delta + (1+(n-1)\frac{\Delta}{M_{i}}) + \sum_{j \neq i} \left(1 - \frac{\Delta}{\min\{M_{i}, M_{j}\}}\right)u_{j}$, all iwhere $M_{i} = B/c_{i}$

These inequalities **tighten the MIP model** and therefore, potentially, quality of LP relaxation.

The inequalities remain valid, of course, when there are individual bounds on utilities.

Empirical Observations

LP relaxation of H-W model with single linear budget constraint and individual utility bounds **almost always yields optimal solution**.

We are exploring **special structure** of solutions of this and other problems.

Future work: Apply these results in robust optimization model.

References with Surveys

O. Karsu and A. Morton, Inequality averse optimisation in operations research, *EJOR* (2015) 343-359,

V. Chen and J. N. Hooker, Balancing fairness and efficiency in an optimization model, submitted (available on arXiv).