Optimization Models for Equity

John Hooker Carnegie Mellon University

London School of Economics November 2010

Modeling Equity

- There is a growing interest in incorporating **equity** considerations in mathematical programming models.
 - Not enough to minimize cost or maximize revenue.
 - Also concerned about **distribution** of resources/benefits.
 - Not obvious how to capture equity in the **objective function**.
 - Still less obvious how to combine it with an efficiency objective.

Modeling Equity

- Some applications...
 - Single-payer health system.
 - Facility location (e.g., emergency services).
 - Taxation (revenue vs. progressivity).
 - Relief operations.
 - Telecommunications (lexmax, Nash bargaining solution)

Outline

- Today:
 - Utilitarianism
 - Piecewise Linear Modeling
 - Rawlsian Difference Principle
 - Axiomatics
 - Measures of Inequality
 - An Allocation Problem
- Tomorrow:
 - Nash Bargaining Solution
 - Raiffa-Kalai-Smorodinsky Bargaining
 - Disjunctive Modeling
 - Combining Equity and Efficiency
 - Health Care Example

Today's Outline

- Utilitarianism
 - Utility and production functions
 - The optimization problem
 - Arguments for utilitarianism
- Piecewise Linear Modeling
 - LP model of concave maximization
 - MILP model of nonconcave maximization

Today's Outline

- Rawlsian Difference Principle
 - The social contract argument
 - The lexmax principle
 - The optimization problem
- Axiomatics
 - Interpersonal comparability
 - Axioms of rational choice
 - Social welfare functions

Today's Outline

- Measures of Inequality
 - An example
 - Utrilitarian, maximin, and lexmax solution
 - Relative range, max, min
 - Relative mean deviation
 - Variance, coefficient of variation
 - McLoone index
 - Gini coefficient
 - Atkinson index
 - Hoover index
 - Theil index
- An Allocation Problem

Efficiency vs. Equity

- Two classical criteria for distributive justice:
 - Utilitarianism (efficiency)
 - Difference principle of John Rawls (equity)
- These have the must studied philosophical underpinnings.

- Utilitarianism seeks allocation of resources that maximizes total utility.
 - Let x_i = resources allocated to person *i*.
 - Let u_i = utility enjoyed by person *i*.
 - We have an optimization problem

For example, $h_i(x_i) = a_i x_i^p$ with different a_i s for 5 individuals

- The individual production function *h_i* has two components.
 - The value v_i(x_i) created by the individual, as a result of receiving resources x_i.
 - The **utility** $u_i(v_i(x_i)) = h_i(x_i)$ of the value created (u_i is normally concave).
 - So *a_i* reflects the value function *v_i* (productivity), and *p* reflects the combined shape of both functions *v_i* and *u_i*.

Assume resource distribution is constrained only by a fixed budget. We have the optimization problem

$$\max \sum_{i} u_{i}$$
$$u_{i} = a_{i} x_{i}^{p}, \text{ all } i$$
$$\sum_{i} x_{i} = 1, x_{i} \ge 0, \text{ all } i$$

This has a closed-form solution

$$\mathbf{x}_{i} = \mathbf{a}_{i}^{\frac{1}{1-p}} \left(\sum_{j=1}^{n} \mathbf{a}_{j}^{\frac{1}{1-p}}\right)^{-1}$$

Optimal allocations equalize slope (i.e., equal marginal productivity).

• Arguments for utilitarianism

- Can define utility to suit context.
- Utilitarian distributions incorporate some **egalitarian** factors:
- With **concave** production functions, egalitarian distributions create more utility, *ceteris paribus*.
- Inegalitarian distributions create disutility, due to social disharmony.

- Egalitarian distributions create more utility?
 - This effect is **limited**.
 - Utilitarian distributions can be very unequal. Productivity differences are magnified in the allocations.

- Egalitarian distributions create more utility?
 - In the example, the **most egalitarian** distribution $(p \rightarrow 0)$ assigns resources in proportion to productivity.

- Unequal distributions create disutility?
 - Perhaps, but modeling this requires **nonseparable** utility functions $\mu = h(x, \dots, x)$

 $u_i = h_i(x_1, \cdots, x_n)$

that may result in a problem that is hard to model and solve.

- Unequal distributions create disutility?
 - Perhaps, but modeling this requires **nonseparable** utility \bullet functions

 $u_i = h_i(\mathbf{x}_1, \cdots, \mathbf{x}_n)$

that may result in a problem that is hard to model and solve.

More fundamentally, this defense of utilitarianism is based on contingency, not principle.

- Unequal distributions create disutility?
 - Perhaps, but modeling this requires **nonseparable** utility functions $\mu = h(x, \dots, x)$

 $\boldsymbol{u}_i = \boldsymbol{h}_i(\boldsymbol{x}_1,\cdots,\boldsymbol{x}_n)$

that may result in a problem that is hard to model and solve.

- More fundamentally, this defense of utilitarianism is based on **contingency**, **not principle**.
- If we evaluate the fairness of utilitarian distribution, then there must be another standard of equitable distribution.
- How do we model the standard we really have in mind?

Modeling Utility

- Ideally, production functions are concave, and feasible set is convex.
 - For example, h_i(x_i) = a_ix_i^p for 0
 - Then we solve the problem

```
\max \sum_{i} h_i(x_i)Ax \le b, \ x \ge 0
```

by nonlinear programming.

• Any local optimum is a global optimum.

- Piecewise linear modeling converts nonlinear programming to LP (linear programming) or MILP (mixed integer/linear programming).
 - A key technique.
 - Applies when functions are **separable**.
- Suppose we want to solve

 $\max \sum_{i} f_i(x_i)$ $Ax \le b, \ x \ge 0$

• If each *f_i* is **concave**, this reduces (approx.) to an **LP**.

X_i

• If each *f_i* is **concave**, this reduces (approx.) to an **LP**.

 $\max \sum_{i} V_{i}$ $\mathbf{v}_i = f_i(\mathbf{a}_0) + \sum_j \frac{\Delta f_{ij}}{\Delta \mathbf{a}_{ii}} \mathbf{x}_{ij}$ $\mathbf{x}_i = \sum_i \mathbf{x}_{ij}$ $Ax \leq b, x \geq 0$ where $\Delta f_{ij} = f_i(\boldsymbol{a}_{ij}) - f_i(\boldsymbol{a}_{i,j-1})$ $\Delta \boldsymbol{a}_{ii} = \boldsymbol{a}_{ii} - \boldsymbol{a}_{i,i-1}$

• If each *f_i* is **concave**, this reduces (approx.) to an **LP**.

The lower intervals "fill up" first.

 $v_{i} = f_{i}(a_{0}) + \sum_{j} \frac{\Delta f_{ij}}{\Delta a_{ij}} x_{ij}$ $x_{i} = \sum_{j} x_{ij}$ $Ax \le b, \ x \ge 0$ where $\Delta f_{ij} = f_{i}(a_{ij}) - f_{i}(a_{i,j-1})$ $\Delta a_{ij} = a_{ij} - a_{i,j-1}$

 $\max \sum_{i} V_{i}$

• If each *f_i* is **concave**, this reduces (approx.) to an **LP**.

 $\max \sum_{i} V_{i}$ $V_{i} = f_{i}(a_{0}) + \sum_{j} \frac{\Delta f_{ij}}{\Delta a_{ij}} x_{ij}$ $x_{i} = \sum_{j} x_{ij}$ $Ax \le b, \quad x \ge 0$ where $\Delta f_{ij} = f_{i}(a_{ij}) - f_{i}(a_{i,j-1})$ $\Delta a_{ij} = a_{ij} - a_{i,j-1}$

The lower intervals "fill up" first.

• If each *f_i* is **concave**, this reduces (approx.) to an **LP**.

The lower intervals "fill up" first.

 $\max \sum_{i} V_{i}$ $V_{i} = f_{i}(a_{0}) + \sum_{j} \frac{\Delta f_{ij}}{\Delta a_{ij}} X_{ij}$ $X_{i} = \sum_{j} X_{ij}$ $Ax \le b, \ x \ge 0$ where $\Delta f_{ij} = f_{i}(a_{ij}) - f_{i}(a_{i,j-1})$ $\Delta a_{ij} = a_{ij} - a_{i,j-1}$

• If *f_i* is **nonconcave**, we can use an **MILP** model of the piecewise linear approximation.

 In general, a piecewise linear approximation v_i of f_i has the form

The function is continuous when $b_{ij} = a_{i,j+1}$

 In general, a piecewise linear approximation v_i of f_i has the form

The function is continuous when $b_{ij} = a_{i,j+1}$

The best MILP model is:

$$\begin{split} \mathbf{v}_{i} &= \sum_{j} \lambda_{ij} f_{i}(\mathbf{a}_{ij}) + \mu_{ij} f_{i}(\mathbf{b}_{ij}) \\ \mathbf{x}_{i} &= \sum_{j} \lambda_{ij} \mathbf{a}_{ij} + \mu_{ij} \mathbf{b}_{ij} \\ \lambda_{ij} + \mu_{ij} &= \delta_{ij}, \text{ all } j \\ \sum_{j} \delta_{ij} &= 1 \\ \lambda_{ij}, \mu_{ij} &\geq 0, \quad \delta_{ij} \in \{0, 1\}, \text{ all } j \end{split}$$

When the piecewise linear function is continuous, don't use the "textbook" model

$$\begin{split} \mathbf{v}_{i} &= \sum_{j=1}^{k+1} \lambda_{ij} f_{i}(\mathbf{a}_{ij}) \\ \mathbf{x}_{i} &= \sum_{j=1}^{k+1} \lambda_{ij} \mathbf{a}_{ij}, \ \sum_{j=1}^{k} \lambda_{ij} = \mathbf{1} \\ \lambda_{ij} &\leq \delta_{i,j-1} + \delta_{ij}, \ j = 2, \dots, k \\ \lambda_{i1} &\leq \delta_{i1}, \ \lambda_{i,k+1} \leq \delta_{ik}, \ \sum_{j=1}^{k} \delta_{ij} = \mathbf{1} \\ \lambda_{ij}, \mu_{ij} &\geq 0, \ \delta_{ij} \in \{0,1\}, \ j = 1, \dots, k+1 \\ \text{where } \mathbf{a}_{i,k+1} = b_{ik} \end{split}$$

When the piecewise linear function is continuous, don't use the "textbook" model

$$\begin{split} \mathbf{v}_{i} &= \sum_{j=1}^{k+1} \lambda_{ij} f_{i}(\mathbf{a}_{ij}) & \text{The only} \\ \mathbf{x}_{i} &= \sum_{j=1}^{k+1} \lambda_{ij} \mathbf{a}_{ij}, \ \sum_{j=1}^{k} \lambda_{ij} = \mathbf{1} \\ \lambda_{ij} &\leq \delta_{i,j-1} + \delta_{ij}, \ j = 2, \dots, k \\ \lambda_{i1} &\leq \delta_{i1}, \ \lambda_{i,k+1} \leq \delta_{ik}, \ \sum_{j=1}^{k} \delta_{ij} = \mathbf{1} \\ \lambda_{ij}, \mu_{ij} &\geq 0, \ \delta_{ij} \in \{0,1\}, \ j = 1, \dots, k+1 \\ \text{where } \mathbf{a}_{i,k+1} = b_{ik} \end{split}$$

The "textbook" may tell you to use only the continuous part of the model

$$m{v}_i = \sum_{j=1}^{k+1} \lambda_{ij} f_i(m{a}_{ij})$$

 $m{x}_i = \sum_{j=1}^{k+1} \lambda_{ij} m{a}_{ij}$

and declare the λ_{ij} SOS2.

When the piecewise linear function is continuous, don't use the "textbook" model

$$\begin{split} \mathbf{v}_{i} &= \sum_{j=1}^{k+1} \lambda_{ij} f_{i}(\mathbf{a}_{ij}) & \text{The only} \\ \mathbf{x}_{i} &= \sum_{j=1}^{k+1} \lambda_{ij} \mathbf{a}_{ij}, \ \sum_{j=1}^{k} \lambda_{ij} = 1 \\ \lambda_{ij} &\leq \delta_{i,j-1} + \delta_{ij}, \ j = 2, \dots, k \\ \lambda_{i1} &\leq \delta_{i1}, \ \lambda_{i,k+1} \leq \delta_{ik}, \ \sum_{j=1}^{k} \delta_{ij} = 1 \\ \lambda_{ij}, \mu_{ij} &\geq 0, \ \delta_{ij} \in \{0,1\}, \ j = 1, \dots, k+1 \\ \text{where } \mathbf{a}_{i,k+1} = b_{ik} \end{split}$$

The "textbook" may tell you to use only the continuous part of the model

$$\mathbf{v}_{i} = \sum_{j=1}^{k+1} \lambda_{ij} f_{i}(\mathbf{a}_{ij})$$
$$\mathbf{x}_{i} = \sum_{j=1}^{k+1} \lambda_{ij} \mathbf{a}_{ij}$$

and declare the λ_{ij} SOS2.

This sacrifices the tight relaxation of the next model...

• The best model of a continuous piecewise *v_i* is the "incremental" formulation:

$$V_{i} = f_{i}(a_{i1}) + \sum_{j=2}^{k+1} \frac{\Delta f_{ij}}{\Delta a_{ij}} x_{ij}$$

$$x_{i} = a_{i1} + \sum_{j=1}^{k} x_{ij}$$

$$\Delta a_{ij} \delta_{ij} \leq x_{ij} \leq \Delta a_{ij} \delta_{i,j-1}, \quad j = 3, \dots, k$$

$$\Delta a_{i2} \delta_{ij} \leq x_{i2} \leq \Delta a_{i2}, \quad 0 \leq x_{i,k+1} \leq \Delta a_{i,k+1} \delta_{ik}$$

$$\delta_{ij} \in \{0,1\}, \quad j = 2, \dots, k$$

Problems with Utilitarianism

- A utility maximizing distribution may be unjust.
 - Disabled or nonproductive people may be neglected.
 - Less talented people who work hard may receive meager wage.
 - Not all jobs can be equally productive. Those with less productive jobs may receive fewer resources.

Rawlsian Difference Principle

- Rawls' **Difference Principle** seeks to maximize the welfare of the worst off.
 - Also known as **maximin** principle.
 - Another formulation: inequality is permissible only to the extent that it is necessary to improve the welfare of those worst off.

 $\max \min_{i} \{u_i\}$ $u_i = h_i(x_i), \text{ all } i$ $x \in S$

Rawlsian Difference Principle

- The root idea is that when I make a decision for myself, I make a decision for **anyone** in similar circumstances.
 - It doesn't matter who I am.
- Social contract argument
 - I make decisions (formulate a social contract) in an original position, behind a veil of ignorance as to who I am.
 - I must find the decision acceptable after I learn who I am.
 - I cannot rationally assent to a policy that puts me on the bottom, unless I would have been even worse off under alternative policies.
 - So the policy must **maximize** the welfare of the **worst off**.
- Applies only to **basic goods**.
 - Tings that people want, no matter what else they want.
 - Salaries, tax burden, medical benefits, etc.
 - For example, salary differentials may satisfy the principle if necessary to make the poorest better off.
- Applies to smallest groups for which outcome is predictable.
 - A lottery passes the test even though it doesn't maximize welfare of worst off the loser is unpredictable.
 - ...unless the lottery participants as a whole are worst off.

The difference rule implies a lexmax principle.
 If applied recursively.

• Lexmax (lexicographic maximum) principle:

- Maximize welfare of least advantaged class...
- then next-to-least advantaged class...
- and so forth.

• There is apparently no practical math programming model for lexmax. lexmax $\{u_1, ..., u_n\}$

 $u_i = h_i(x_i)$, all i $x \in S$

- We can solve the problem sequentially (pre-emptive goal programming).
 - Solve the maximin problem.
 - Fix the smallest u_i to its maximum value.
 - Solve the maximin problem over remaining *u*_is.
 - Continue to u_n .

- The Difference and Lexmax Principles need not result in equality.
 - Consider the example presented earlier...

Utilitarian distribution

Here, lexmax principle results in equality

Utilitarianism

But consider this distribution...

Utilitarianism

Lexmax doesn't result in equality

Axiomatics

- The economics literature derives social welfare functions from axioms of rational choice.
 - Some axioms are strong and hard to justify.
 - The social welfare function depends on degree of interpersonal comparability of utilities.
 - Arrow's impossibility theorem was the first result, but there are many others.
- Social welfare function
 - A function $f(u_1,...,u_n)$ of individual utilities.
 - An optimization model can find a distribution of utility that maximizes social welfare.

Interpersonal Comparability

- Social Preferences
 - Let $u = (u_1, ..., u_n)$ be the vector of utilities allocated to individuals.
 - A social welfare function ranks distributions: u is preferable to u' if f(u) > f(u').
- Invariance transformations.
 - These are transformations φ of utility vectors under which the ranking of distributions does not change.
 - Each $\phi = (\phi_1, \dots, \phi_n)$, where ϕ_i is a transformation of individual utility u_i .

Interpersonal Comparability

- Ordinal noncomparability.
 - Any $\phi = (\phi_1, \dots, \phi_n)$ with strictly increasing ϕ_i s is an invariance transformation.
- Ordinal level comparability.
 - Any $\phi = (\phi_1, \dots, \phi_n)$ with strictly increasing and identical ϕ_i s is an invariance transformation.

Interpersonal Comparability

- Cardinal nonncomparability.
 - Any $\phi = (\phi_1, \dots, \phi_n)$ with $\phi_i(u_i) = \alpha_i + \beta_i u_i$ and $\beta_i > 0$ is an invariance transformation.
- Cardinal unit comparability.
 - Any $\phi = (\phi_1, \dots, \phi_n)$ with $\phi_i(u_i) = \alpha_i + \beta u_i$ and $\beta > 0$ is an invariance transformation.
- Cardinal ratio scale comparability
 - Any $\phi = (\phi_1, \dots, \phi_n)$ with $\phi_i(u_i) = \beta u_i$ and $\beta > 0$ is an invariance transformation.

Axioms

- Anonymity
 - Social preferences are the same if indices of us are permuted.
- Strict pareto
 - If u > u', then u is preferred to u'.
- Independence of irrelevant alternatives
 - The preference of *u* over *u*' depends only on *u* and *u*' and not on what other utility vectors are possible.
- Separability of unconcerned individuals
 - Individuals *i* for which $u_i = u'_i$ don't affect the ranking of u and u'.

Axiomatics

Theorem

Given **ordinal level comparability**, any social welfare function *f* that satisfies the axioms is lexicographically increasing or lexicographically decreasing. So we get a **lexmax** or **lexmin** objective.

Theorem

Given **cardinal unit comparability**, any social welfare function *f* that satisfies the axioms has the form $f(u) = \sum_i a_i u_i$ for $a_i \ge 0$. Se we get a **utilitarian** objective.

Axiomatics

Theorem

Given **cardinal noncomparability**, any social welfare function *f* that satisfies the axioms (except anonimity and separability) has the form $f(u) = u_i$ for some fixed *i*. So individual *i* is a **dictator**.

Theorem

Given **cardinal ratio scale comparability**, any social welfare function *f* that satisfies the axioms has the form $f(u) = \sum_i u_i^p / p$. Se we get the production function used in the example.

Measures of Inequality

- Assume we wish to minimize inequality.
 - We will survey several measures of inequality.
 - They have different strengths and weaknesses.
 - Minimizing inequality may result in less total utility.
- **Pigou-Dalton** condition.
 - One criterion for evaluating an inequality measure.
 - If utility is transferred from one who is worse off to one who is better off, inequality should increase.

Measures of Inequality

- Measures of Inequality
 - An example
 - Utrilitarian, maximin, and lexmax solution
 - Relative range, max, min
 - Relative mean deviation
 - Variance, coefficient of variation
 - McLoone index
 - Gini coefficient
 - Atkinson index
 - Hoover index
 - Theil index
- An Allocation Problem

Example

Production functions for 5 individuals

Utilitarian

$$\max \sum_{i} U_{i}$$
LP model:
$$\max \sum_{i=1}^{5} U_{i}$$

$$U_{i} = a_{i} x_{i}, \quad 0 \le x_{i} \le b_{i}, \text{ all } i, \quad \sum_{i} x_{i} = B$$

where
$$(a_1, \dots, a_5) = (0.5, 0.75, 1, 1.5, 2)$$

 $(b_1, \dots, b_5) = (20, 25, 30, 35, 40)$
 $B = 100$

Utilitarian

Rawlsian

$$\max \left\{ \min_{i} \left\{ u_{i} \right\} \right\}$$

Rawlsian

Utilitarian

Lexmax

lexmax
$$\{u_1,\ldots,u_n\}$$

Re-index for each k so that u_i for i < k were fixed in previous iterations.

Lexmax

Rawlsian

Utilitarian

$$\frac{U_{\max} - U_{\min}}{\overline{U}}$$

where $u_{\max} = \max_{i} \{u_{i}\}$ $u_{\min} = \min_{i} \{u_{i}\}$ $\overline{u} = (1 / n) \sum_{i} u_{i}$

Rationale:

- Perceived inequality is relative to the best off.
- A distribution should be judged by the position of the worst-off.
- Therefore, minimize gap between top and bottom.

Problems:

- Ignores distribution between extremes.
- Violates Pigou-Dalton condition

Equality Measures: Comparison

Relative range:

2.26

$$\frac{U_{\text{max}} - U_{\text{min}}}{\overline{U}}$$

This is a **fractional linear programming** problem.

Use Charnes-Cooper transformation to an LP. In general,

after change of variable x = x'/z and fixing denominator to 1.

$$\begin{split} \frac{U_{\max} - U_{\min}}{\overline{U}} \\ \text{Fractional LP model:} & \min \frac{U_{\max} - U_{\min}}{(1/n)\sum_{i} U_{i}} \\ & u_{\max} \geq u_{i}, \ u_{\min} \leq u_{i}, \ \text{all } i \\ & u_{i} = a_{i}x_{i}, \ 0 \leq x_{i} \leq b_{i}, \ \text{all } i, \ \sum_{i} x_{i} = B \end{split}$$

LP model: & \min u_{\max} - u_{\min} \\ & u_{\max} \geq u'_{i}, \ u_{\min} \leq u'_{i}, \ \text{all } i \\ & u'_{i} = a_{i}x'_{i}, \ 0 \leq x'_{i} \leq b_{i}z, \ \text{all } i, \ \sum_{i} x'_{i} = Bz \\ & (1/n)\sum_{i} u'_{i} = 1 \end{split}

Lexmax

Relative Max

 $\frac{u_{\max}}{\overline{u}}$

Rationale:

- Perceived inequality is relative to the best off.
- Possible application to salary levels (typical vs. CEO)

Problems:

- Ignores distribution below the top.
- Violates Pigou-Dalton condition

Equality Measures: Comparison

Relative Max

Relative Max

Relative Range

Relative Min

Rationale:

- Measures adherence to Rawlsian Difference Principle.
- ...relativized to mean

Problems:

- Ignores distribution above the bottom.
- Violates Pigou-Dalton condition

Equality Measures: Comparison

Relative Min

Relative Min

Relative Max

Relative Range

Relative Mean Deviation

$$\frac{\sum_{i} \left| u_{i} - \overline{u} \right|}{\overline{u}}$$

Rationale:

- Perceived inequality is relative to average.
- Entire distribution should be measured.

Problems:

- Violates Pigou-Dalton condition
- Insensitive to transfers on the same side of the mean.
- Insensitive to placement of transfers from one side of the mean to the other.

Equality Measures: Comparison

Relative Mean Deviation

Fractional LP model:
$$\max \frac{\sum_{i} |u_{i} - \overline{u}|}{\overline{u}}$$

$$\lim_{i \to u_{i}^{+} \geq u_{i} - \overline{u}, u_{i}^{-} \geq \overline{u} - u_{i}, \text{ all } i$$

$$\lim_{i \to u_{i}^{+} \geq u_{i} - \overline{u}, u_{i}^{-} \geq \overline{u} - u_{i}, \text{ all } i$$

$$\lim_{i \to u_{i}^{+} \geq u_{i} - \overline{u}, u_{i}^{-} \geq \overline{u} - u_{i}, \text{ all } i$$

$$\lim_{i \to u_{i}^{+} \geq u_{i} - \overline{u}, u_{i}^{-} \geq \overline{u} - u_{i}, \text{ all } i, \sum_{i} x_{i} = B$$
LP model:
$$\max \sum_{i} (u_{i}^{+} + u_{i}^{-})$$

$$u_{i}^{+} \geq u_{i}^{\prime} - 1, u_{i}^{-} \leq u_{i}^{\prime} - 1, \text{ all } i$$

$$(1/n) \sum_{i} u_{i}^{\prime} = 1$$

$$u_{i}^{\prime} = a_{i} x_{i}^{\prime}, 0 \leq x_{i}^{\prime} \leq b_{i} z, \text{ all } i, \sum_{i} x_{i}^{\prime} = B z$$

Relative Mean Deviation

Relative Range

$$(1/n)\sum_{i}(u_{i}-\overline{u})^{2}$$

Rationale:

- Weight each utility by its distance from the mean.
- Satisfies Pigou-Dalton condition.
- Sensitive to transfers on one side of the mean.
- Sensitive to placement of transfers from one side of the mean to the other.

Problems:

- Weighting is arbitrary?
- Variance depends on scaling of utility.

$$(1/n)\sum_{i}(u_{i}-\overline{u})^{2}$$

Convex nonlinear model: $\min(1/n)\sum_{i}(u_{i} - \overline{u})^{2}$ $\overline{u} = (1/n)\sum_{i}u_{i}$ $u_{i} = a_{i}x_{i}, \ 0 \le x_{i} \le b_{i}, \ \text{all } i, \ \sum_{i}x_{i} = B$

Relative Mean Deviation

Relative Range

$$\frac{\left((1/n)\sum_{i}(u_{i}-\overline{u})^{2}\right)^{1/2}}{\overline{u}}$$

Rationale:

- Similar to variance.
- Invariant with respect to scaling of utilities.

Problems:

- When minimizing inequality, there is an incentive to reduce average utility.
- Should be minimized only for fixed total utility.

Equality Measures: Comparison

Again use change of variable u = u'/z and fix denominator to 1.

Relative Mean Deviation

McLoone Index

Rationale:

- Ratio of average utility below median to overall average.
- No one wants to be "below average."
- Pushes average up while pushing inequality down.

Problems:

- Violates Pigou-Dalton condition.
- Insensitive to upper half.

Equality Measures: Comparison

McLoone Index

$$\begin{split} \text{MILP model:} & \max \sum_{i} v'_{i} \\ & m' - My_{i} \leq u'_{i} \leq m' + M(1 - y_{i}), \text{ all } i \\ & v'_{i} \leq u'_{i}, v'_{i} \leq My_{i}, \text{ all } i \\ & \sum_{i} y_{i} < n/2 \\ & u'_{i} = a_{i}x'_{i}, \ 0 \leq x'_{i} \leq b_{i}z, \text{ all } i, \quad \sum_{i} x'_{i} = Bz \\ & y_{i} \in \{0,1\}, \text{ all } i \end{split}$$

McLoone Index

Relative Min

Gini Coefficient

$$\frac{(1/n^2)\sum_{i,j}\left|u_i-u_j\right|}{2\overline{u}}$$

Rationale:

- Relative mean difference between all pairs.
- Takes all differences into account.
- Related to area above cumulative distribution (Lorenz curve).
- Satisfies Pigou-Dalton condition.

Problems:

• Insensitive to shape of Lorenz curve, for a given area.

Equality Measures: Comparison

Gini Coefficient

Coefficient of Variation

Variance

Historical Gini Coefficient, 1945-2010

$$1 - \left((1/n) \sum_{i} \left(\frac{x_{i}}{\overline{x}} \right)^{p} \right)^{1/p}$$

Rationale:

- Best seen as measuring inequality of **resources** x_{i} .
- Assumes allotment *y* of resources results in utility *y*^p
- This is average utility per individual.

$$1 - \left((1/n) \sum_{i} \left(\frac{\mathbf{x}_{i}}{\overline{\mathbf{x}}} \right)^{p} \right)^{1/p}$$

Rationale:

- Best seen as measuring inequality of **resources** x_{i} .
- Assumes allotment y of resources results in utility y^p
- This is average utility per individual.
- This is equal resource allotment to each individual that results in same total utility.

$$1 - \left((1/n) \sum_{i} \left(\frac{x_{i}}{\overline{x}} \right)^{p} \right)^{1/p}$$

Rationale:

- Best seen as measuring inequality of **resources** x_{i} .
- Assumes allotment y of resources results in utility y^p
- This is average utility per individual.
- This is equal resource allotment to each individual that results in same total utility.
- This is additional resources per individual necessary to sustain inequality.

$$1 - \left((1/n) \sum_{i} \left(\frac{x_{i}}{\overline{x}} \right)^{p} \right)^{1/p}$$

Rationale:

- *p* indicates "importance" of equality.
- Similar to L_p norm
- p = 1 means inequality has no importance
- p = 0 is Rawlsian (measures utility of worst-off individual).

Problems:

- Measures utility, not equality.
- Doesn't evaluate distribution of utility, only of resources.
- *p* describes utility curve, not importance of equality.

Equality Measures: Comparison

$$1 - \left((1/n) \sum_{i} \left(\frac{x_i}{\overline{x}} \right)^p \right)^{1/p}$$

To minimize index, solve fractional problem After change of variable $x_i = x'_i/z$, this becomes

$$\max \sum_{i} \left(\frac{x_{i}}{\overline{x}}\right)^{p} = \frac{\sum_{i} x_{i}^{p}}{\overline{x}^{p}}$$
$$Ax \ge b, \ x \ge 0$$

$$\max \sum_{i} x_{i}^{\prime p}$$
$$(1/n) \sum_{i} x_{i}^{\prime} = 1$$
$$Ax^{\prime} \ge bz, x^{\prime} \ge 0$$

$$1 - \left((1/n) \sum_{i} \left(\frac{\mathbf{x}_{i}}{\overline{\mathbf{x}}} \right)^{p} \right)^{1/p}$$

Fractional nonlinear model:

$$\max \frac{\sum_{i} x_{i}^{p}}{\overline{x}^{p}}$$
$$\overline{x} = (1/n) \sum_{i} x_{i}$$
$$\sum_{i} x_{i} = B, \ x \ge 0$$

Concave nonlinear model:

$$\max \sum_{i} x_{i}^{\prime p}$$

$$(1 / n) \sum_{i} x_{i}^{\prime} = 1$$

$$\sum_{i} x_{i}^{\prime} = Bz, \quad x^{\prime} \ge 0$$

Hoover Index

Rationale:

- Fraction of total utility that must be redistributed to achieve total equality.
- Proportional to maximum vertical distance between Lorenz curve and 45° line.
- Originated in regional studies, population distribution, etc. (1930s).
- Easy to calculate.

Problems:

• Less informative than Gini coefficient?

Hoover Index $\frac{\sum_{i} \left| u_{i} - \overline{u} \right|}{\sum_{i} u_{i}}$ Cumulative utility Hoover index = max vertical distance Total utility = 1Lorenz curve Individuals ordered by increasing utility

Equality Measures: Comparison

Hoover Index

Gini Coefficient

Theil Index

 $(1/n)\sum_{i}\left(\frac{u_{i}}{\overline{u}}\ln\frac{u_{i}}{\overline{u}}\right)$

Rationale:

- One of a family of entropy measures of inequality.
- Index is zero for complete inequality (maximum entropy)
- Measures nonrandomness of distribution.
- Described as stochastic version of Hoover index.

Problems:

- Motivation unclear.
- A. Sen doesn't like it.

Equality Measures: Comparison

Theil Index

$$(1/n)\sum_{i}\left(rac{u_{i}}{\overline{u}}\lnrac{u_{i}}{\overline{u}}
ight)$$

Nasty nonconvex model:

$$\min (1/n) \sum_{i} \left(\frac{u_{i}}{\overline{u}} \ln \frac{u_{i}}{\overline{u}} \right)$$
$$\overline{u} = (1/n) \sum_{i} u_{i}$$
$$u_{i} = a_{i} x_{i}, \ 0 \le x_{i} \le b_{i}, \ \text{all } i, \quad \sum_{i} x_{i} = B$$

Theil Index

Hoover Index

Gini Coefficient

Outline

- Today:
 - Nash Bargaining Solution
 - Raiffa-Kalai-Smorodinsky Bargaining
 - Disjunctive Modeling
 - Combining Equity and Efficiency
 - Health Care Example

An Allocation Problem

- From Yaari and Bar-Hillel, 1983.
- 12 grapefruit and 12 avocados are to be divided between Jones and Smith.
- How to divide justly?

Utility provided by one fruit of each kind

Jones	Smith
100	50
0	50

An Allocation Problem

The optimization problem:

Social welfare function max $f(u_1, u_2)$ $u_1 = 100 x_{11}, u_2 = 50 x_{12} + 50 x_{22}$ $x_{i1} + x_{i2} = 12, i = 1, 2$ $x_{ij} \ge 0$, all i, j

where u_i = utility for person *i* (Jones, Smith) x_{ij} = allocation of fruit *i* (grapefruit, avocados) to person *j*

Rawlsian (maximin) solution $f(u_1, u_2) = \min\{u_1, u_2\}$

Bargaining Solutions

- A **bargaining solution** is an equilibrium allocation in the sense that none of the parties wish to bargain further.
 - Because all parties are "satisfied" in some sense, the outcome may be viewed as "fair."
 - Bargaining models have a **default** outcome, which is the result of a failure to reach agreement.
 - The default outcome can be seen as a **starting point**.

Bargaining Solutions

- Several proposals for the default outcome (starting point):
 - Zero for everyone. Useful when only the resources being allocated are relevant to fairness of allocation.
 - Equal split. Resources (not necessarily utilities) are divided equally. May be regarded as a "fair" starting point.
 - Strongly pareto set. Each party receives resources that can benefit no one else. Parties can always agree on this.

The Nash bargaining solution maximizes the social welfare function

$$f(u) = \prod_i (u_i - d_i)$$

where d is the default outcome.

- Not the same as Nash equilibrium.
- It maximizes the **product of the gains** achieved by the bargainers, relative to the fallback position.
- Assume feasible set is **convex**, so that Nash solution is unique (due to strict concavity of *f*).

• The **optimization problem** has a concave objective function if we maximize log *f*(*u*).

$$\max \log \prod_{i} (u_i - d_i) = \sum_{i} \log(u_i - d_i)$$
$$u \in S$$

• Problem is relatively easy if feasible set S is convex.

Nash Bargaining Solution From Equality

Nash Bargaining Solution

- Strongly pareto set gives Smith all 12 avocados.
 - Nothing for Jones.
 - Results in utility $(u_1, u_2) = (0, 600)$

Utility provided by one fruit of each kind

Jones	Smith
100	50
0	50

Nash Bargaining Solution From Strongly Pareto Set

- Axiom 1. Invariance under translation and rescaling.
 - If we map $u_i \rightarrow a_i u_i + b_i$, $d_i \rightarrow a_i d_i + b_i$, then bargaining solution $u_i^* \rightarrow a_i u_i^* + b_i$.

This is cardinal noncomparability.

- Axiom 1. Invariance under translation and rescaling.
 - If we map $u_i \rightarrow a_i u_i + b_i$, $d_i \rightarrow a_i d_i + b_i$, then bargaining solution $u_i^* \rightarrow a_i u_i^* + b_i$.

• Strong assumption – failed, e.g., by utilitarian welfare function

- Axiom 2. Pareto optimality.
 - Bargaining solution is pareto optimal.
- Axiom 3. Symmetry.
 - If all *d_i*s are equal and feasible set is symmetric, then all *u_i**s are equal in bargaining solution.

- Axiom 4. Independence of irrelevant alternatives.
 - Not the same as Arrow's axiom.
 - If *u*^{*} is a solution with respect to *d*...

- Axiom 4. Independence of irrelevant alternatives.
 - Not the same as Arrow's axiom.
 - If *u*^{*} is a solution with respect to *d*, then it is a solution in a smaller feasible set that contains *u*^{*} and *d*.

- Axiom 4. Independence of irrelevant alternatives.
 - Not the same as Arrow's axiom.
 - If *u*^{*} is a solution with respect to *d*, then it is a solution in a smaller feasible set that contains *u*^{*} and *d*.
 - This basically says that the solution behaves like an **optimum**.

Theorem. Exactly one solution satisfies Axioms 1-4, namely the Nash bargaining solution.

Proof (2 dimensions).

First show that the Nash solution satisfies the axioms.

Axiom 1. Invariance under transformation. If

$$\prod_{i} (u_{i}^{*} - d_{1}) \geq \prod_{i} (u_{i} - d_{1})$$

then
$$\prod_{i} ((a_{i}u_{i}^{*} + b_{i}) - (a_{i}d_{i} + b_{i})) \geq \prod_{i} ((a_{i}u_{i} + b_{i}) - (a_{i}d_{i} + b_{i}))$$

Axiom 2. Pareto optimality. Clear because social welfare function is strictly monotone increasing.

Axiom 3. Symmetry. Obvious.

Axiom 4. Independence of irrelevant alternatives. Follows from the fact that u^* is an optimum.

Now show that **only** the Nash solution satisfies the axioms...

Let u^* be the Nash solution for a given problem. Then it satisfies the axioms with respect to d. Select a transformation that sends $(u_1, u_2) \rightarrow (1, 1), \quad (d_1, d_2) \rightarrow (0, 0)$ The transformed problem has Nash solution (1,1), by Axiom 1:

Let u^* be the Nash solution for a given problem. Then it satisfies the axioms with respect to d. Select a transformation that sends $(u_1, u_2) \rightarrow (1, 1), \quad (d_1, d_2) \rightarrow (0, 0)$ The transformed problem has Nash solution (1,1), by Axiom 1:

By Axioms 2 & 3, (1,1) is the **only** bargaining solution in the triangle:

Let u^* be the Nash solution for a given problem. Then it satisfies the axioms with respect to d. Select a transformation that sends $(u_1, u_2) \rightarrow (1, 1), \quad (d_1, d_2) \rightarrow (0, 0)$ The transformed problem has Nash solution (1,1), by Axiom 1:

By Axioms 2 & 3, (1,1) is the **only** bargaining solution in the triangle: u_1 So by Axiom 4, (1,1) is the only bargaining solution in blue set.

Let u^* be the Nash solution for a given problem. Then it satisfies the axioms with respect to d. Select a transformation that sends $(u_1, u_2) \rightarrow (1, 1), \quad (d_1, d_2) \rightarrow (0, 0)$ The transformed problem has Nash solution (1,1), by Axiom 1:

- Problems with axiomatic justification.
 - Axiom 1 (invariance under transformation) is very strong.
 - Axiom 1 denies interpersonal comparability.
 - So how can it reflect moral concerns?

- **Problems** with axiomatic justification.
 - **Axiom 1** (invariance under transformation) is very strong.
 - Axiom 1 denies interpersonal comparability.
 - So how can it reflect moral concerns?
- Most attention has been focused on **Axiom 4** (independence of irrelevant alternatives).
 - Will address this later.

Players 1 and 2 make offers s, t.

Players 1 and 2 make offers *s*, *t*. Let p = P(player 2 will reject s), as estimated by player 1.

Players 1 and 2 make offers *s*, *t*. Let p = P(player 2 will reject s), as estimated by player 1. Then player 1 will stick with *s*, rather than make a counteroffer, if

Players 1 and 2 make offers *s*, *t*. Let p = P(player 2 will reject s), as estimated by player 1. Then player 1 will stick with *s*, rather than make a counteroffer, if

$$r_1 = \frac{s_1 - t_1}{s_1 - d_1} \le \frac{t_2 - s_2}{t_2 - d_2} = r_2$$

$$r_1 = \frac{s_1 - t_1}{s_1 - d_1} \le \frac{t_2 - s_2}{t_2 - d_2} = r_2$$

$$r_1 = \frac{s_1 - t_1}{s_1 - d_1} \le \frac{t_2 - s_2}{t_2 - d_2} = r_2$$

$$r_1 = \frac{s_1 - t_1}{s_1 - d_1} \le \frac{t_2 - s_2}{t_2 - d_2} = r_2$$

So we have
$$(s_1 - d_1)(s_2 - d_2) \le (t_1 - d_1)(t_2 - d_2)$$

So we have
$$(s_1 - d_1)(s_2 - d_2) \le (t_1 - d_1)(t_2 - d_2)$$

So we have
$$(s_1 - d_1)(s_2 - d_2) \le (t_1 - d_1)(t_2 - d_2)$$

So we have $(s_1 - d_1)(s_2 - d_2) \le (t_1 - d_1)(t_2 - d_2)$ and we have $(t_1 - d_1)(t_2 - d_2) \le (s_1' - d_1)(s_2' - d_2)$

This implies an improvement in the Nash social welfare function

So we have and we have

$$(s_1 - d_1)(s_2 - d_2) \le (t_1 - d_1)(t_2 - d_2)$$

 $(t_1 - d_1)(t_2 - d_2) \le (s_1' - d_1)(s_2' - d_2)$

This implies an improvement in the Nash social welfare function.

Given a minimum distance between offers, continued bargaining converges to Nash solution.

• This approach begins with a critique of the Nash bargaining solution.

- This approach begins with a critique of the Nash bargaining solution.
 - The new Nash solution is worse for player 2 even though the feasible set is larger.

• **Proposal**: Bargaining solution is pareto optimal point on line from *d* to ideal solution.

- **Proposal**: Bargaining solution is pareto optimal point on line from *d* to ideal solution.
 - The players receive an equal fraction of their possible utility gains.

- **Proposal**: Bargaining solution is pareto optimal point on line from *d* to ideal solution.
 - Replace Axiom 4 with **Axiom 4' (Monotonicity)**: A larger feasible set with same ideal solution results in a bargaining solution that is better (or no worse) for all players.

• Optimization model.

- Not an optimization problem over original feasible set (we gave up Axiom 4).
- But it is an optimization problem (pareto optimality) over the line segment from *d* to ideal solution.

$$\max \sum_{i} u_{i}$$

$$(g_{1} - d_{1})(u_{i} - d_{i}) = (g_{i} - d_{i})(u_{1} - d_{1}), \text{ all } i$$

$$u \in S$$

$$\frac{u_{1}^{*} - d_{1}}{u_{2}^{*} - d_{2}} = \frac{g_{1} - d_{1}}{g_{2} - d_{2}}$$
Raiffa-Kalai-Smorodinsky Bargaining Solution

• Optimization model.

- Not an optimization problem over original feasible set (we gave up Axiom 4).
- But it is an optimization problem (pareto optimality) over the line segment from *d* to ideal solution.

constants

$$\begin{array}{c}
\max \sum_{i} u_{i} \\
(g_{1} - d_{1})(u_{i} - d_{i}) = (g_{i} - d_{i})(u_{1} - d_{1}), \quad \text{all } i \\
u \in S
\end{array}$$

Raiffa-Kalai-Smorodinsky Bargaining Solution

• Optimization model.

- Not an optimization problem over original feasible set (we gave up Axiom 4).
- But it is an optimization problem (pareto optimality) over the line segment from *d* to ideal solution.

constants

$$\begin{array}{c}
\max \sum_{i} u_{i} \\
(g_{1} - d_{1})(u_{i} - d_{i}) = (g_{i} - d_{i})(u_{1} - d_{1}), \text{ all } i \\
u \in S
\end{array}$$
Linear constraint

Raiffa-Kalai-Smorodinsky Bargaining Solution

183

Raiffa-Kalai-Smorodinsky Bargaining Solution From Equality

Raiffa-Kalai-Smorodinsky Bargaining Solution From Strong Pareto Set

- Axiom 1. Invariance under transformation.
- Axiom 2. Pareto optimality.
- Axiom 3. Symmetry.
- Axiom 4'. Monotonicity.

Theorem. Exactly one solution satisfies Axioms 1-4', namely the RKS bargaining solution.

Proof (2 dimensions).

Easy to show that RKS solution satisfies the axioms.

Now show that **only** the RKS solution satisfies the axioms.

- Problems with axiomatic justification.
 - Axiom 1 is still in effect.
 - It denies interpersonal comparability.
 - Dropping Axiom 4 sacrifices optimization of a social welfare function.
 - This may not be necessary if Axiom 1 is rejected.
 - Needs modification for > 2 players (more on this shortly).

Resistance to an agreement *s* depends on sacrifice relative to sacrifice under no agreement. Here, player 2 is making a larger relative sacrifice:

Minimizing resistance to agreement requires minimizing

$$\max_{i} \left\{ \frac{g_{i} - s_{i}}{g_{i} - d_{i}} \right\}$$

Resistance to an agreement *s* depends on sacrifice relative to sacrifice under no agreement. Here, player 2 is making a larger relative sacrifice:

Minimizing resistance to agreement requires minimizing

$$\max_{i} \left\{ \frac{g_{i} - s_{i}}{g_{i} - d_{i}} \right\}$$

or equivalently, maximizing

$$\min_{i}\left\{\frac{\boldsymbol{s}_{i}-\boldsymbol{d}_{i}}{\boldsymbol{g}_{i}-\boldsymbol{d}_{i}}\right\}$$

Resistance to an agreement *s* depends on sacrifice relative to sacrifice under no agreement. Here, player 2 is making a larger relative sacrifice:

 $\frac{g_1 - s_1}{g_1 - d_1} \le \frac{g_2 - s_2}{g_2 - d_2}$ Minimizing resistance to agreement requires minimizing

 $\max_{i} \left\{ \frac{g_{i} - s_{i}}{g_{i} - d_{i}} \right\}$

or equivalently, maximizing

 $\min_{i}\left\{\frac{s_{i}-d_{i}}{g_{i}-d_{i}}\right\}$

which is achieved by RKS point.

This is the **Rawlsian social contract** argument applied to **gains** relative to the ideal.

Minimizing resistance to agreement requires minimizing

 $\max_{i} \left\{ \frac{g_{i} - s_{i}}{g_{i} - d_{i}} \right\}$

or equivalently, maximizing

 $\min_{i}\left\{\frac{s_{i}-d_{i}}{g_{i}-d_{i}}\right\}$

which is achieved by RKS point.

Problem with KLS Solutioon

- However, the RKS solution is Rawlsian only for 2 players.
 - In fact, RKS leads to counterintuitive results for 3 players.

Problem with KLS Solutioon

- However, the RKS solution is Rawlsian only for 2 players.
 - In fact, KLS leads to counterintuitive results for 3 players.

Summary

Summary

Summary

Mixed Integer Linear Modeling

- MILP modeling is basically **disjunctive modeling**.
- A problem has an MILP model if and only if it represents a **union of polyhedra** with the same recession cone.
- One can always write an MILP model by expressing the problem as a **disjunction of linear systems** that describe polyhedra with the same recession cone.
- In fact, one can write a **convex hull** (sharp) MILP model in this fashion.

Disjunctions of linear systems

A disjunction of linear systems represents a union of polyhedra.

 $\min cx$ $\bigvee_{k} (A^{k}x \ge b^{k})$

Disjunction of linear systems

A disjunction of linear systems represents a union of polyhedra.

We want a model with a convex hull relaxation (tightest linear relaxation). $\min cx$ $\bigvee_{k} (A^{k}x \ge b^{k})$

Disjunction of linear systems

The closure of the convex hull of

 $\min cx$ $\bigvee_{k} (A^{k}x \ge b^{k})$

... is described by

min
$$cx$$

 $A^{k}x^{k} \ge b^{k}y_{k}$, all k
 $\sum_{k} y_{k} = 1$
 $x = \sum_{k} x^{k}$
 $0 \le y_{k} \le 1$

Why?

To derive convex hull relaxation of a disjunction...

Convex hull relaxation (tightest linear relaxation)

Why?

Convex hull relaxation (tightest linear relaxation)

min cx

MILP Representability

A subset S of \mathbb{R}^n is MILP representable if it is the projection onto x of some MILP constraint set of the form

 $Ax + Bu + Dy \ge b$ x, y \ge 0 x \in \mathbb{R}^n, u \in \mathbb{R}^m, y_k \in \{0,1\}

MILP Representability

A subset S of \mathbb{R}^n is MILP representable if it is the projection onto x of some MILP constraint set of the form

$$Ax + Bu + Dy \ge b$$

$$x, y \ge 0$$

$$x \in \mathbb{R}^{n}, \ u \in \mathbb{R}^{m}, \ y_{k} \in \{0, 1\}$$

Theorem. $S \subset \mathbb{R}^n$ is MILP representable if and only if S is the union of finitely many polyhedra having the same recession cone.

Example: Fixed charge function

Minimize a fixed charge function:

$$\begin{array}{ll} \min \ x_2 \\ x_2 \ge \begin{cases} 0 & \text{if } x_1 = 0 \\ f + c x_1 & \text{if } x_1 > 0 \end{cases} \\ x_1 \ge 0 \end{array}$$

Minimize a fixed charge function:

$$\begin{array}{ll} \min \ x_2 \\ x_2 \ge \begin{cases} 0 & \text{if } x_1 = 0 \\ f + cx_1 & \text{if } x_1 > 0 \end{cases} \\ x_1 \ge 0 \end{array}$$

.

Minimize a fixed charge function:

$$\begin{array}{ll} \min \ x_2 \\ x_2 \ge \begin{cases} 0 & \text{if } x_1 = 0 \\ f + C x_1 & \text{if } x_1 > 0 \end{cases} \\ x_1 \ge 0 \end{array}$$

Minimize a fixed charge function:

$$\begin{array}{ll} \min \ x_2 \\ x_2 \ge \begin{cases} 0 & \text{if } x_1 = 0 \\ f + C x_1 & \text{if } x_1 > 0 \end{cases} \\ x_1 \ge 0 \end{array}$$

Minimize a fixed charge function:

$$\begin{array}{ll} \min \ x_2 \\ x_2 \ge \begin{cases} 0 & \text{if } x_1 = 0 \\ f + c x_1 & \text{if } x_1 > 0 \end{cases} \\ x_1 \ge 0 \end{array}$$

Modeling a union of polyhedra

Start with a disjunction of linear systems to represent the union of polyhedra.

The *k*th polyhedron is $\{x \mid A^k x \ge b\}$

Introduce a 0-1 variable y_k that is 1 when x is in polyhedron <u>k</u>.

Disaggregate x to create an x^k for each k.

 $\min cx$ $\bigvee_{k} (A^{k}x \ge b^{k})$

min cx $A^{k}x^{k} \ge b^{k}y_{k}$, all k $\sum_{k} y_{k} = 1$ $x = \sum_{k} x^{k}$ $y_{k} \in \{0,1\}$
Example

Start with a disjunction of linear systems to represent the union of polyhedra $\min x_2$ $\begin{pmatrix} x_1 = 0 \\ x_2 \ge 0 \end{pmatrix} \lor \begin{pmatrix} 0 \le x_1 \le M \\ x_2 \ge f + cx_1 \end{pmatrix}$

Example

Start with a disjunction of linear systems to represent the union of polyhedra

Introduce a 0-1 variable y_k that is 1 when x is in polyhedron <u>k</u>.

Disaggregate x to create an x^k for each k.

 $\min x_{2}$ $\begin{pmatrix} x_{1} = 0 \\ x_{2} \ge 0 \end{pmatrix} \lor \begin{pmatrix} 0 \le x_{1} \le M \\ x_{2} \ge f + cx_{1} \end{pmatrix}$

min cx $x_1^1 = 0, \quad x_2^1 \ge 0$ $0 \le x_1^2 \le My_2, \quad -cx_1^2 + x_2^2 \ge fy_2$ $y_1 + y_2 = 1, \quad y_k \in \{0, 1\}$ $x = x^1 + x^2$

Example

To simplify: Replace x_1^2 with x_1 . Replace x_2^2 with x_2 . Replace y_2 with y_2 .

min
$$x_2$$

 $x_1^1 = 0, x_2^1 \ge 0$
 $0 \le x_1^2 \le My_2, -cx_1^2 + x_2^2 \ge fy_2$
 $y_1 + y_2 = 1, y_k \in \{0, 1\}$
 $x = x^1 + x^2$

- Utilitarian and Rawlsian distributions seem **too extreme** in practice.
 - How to combine them?

- Utilitarian and Rawlsian distributions seem **too extreme** in practice.
 - How to combine them?

• One proposal:

- Maximize welfare of **worst off** (Rawlsian)...
- ... until this requires **undue sacrifice** from others
- Seems appropriate in health care allocation.

- In particular:
 - Switch from Rawlsian to utilitarian when inequality exceeds Δ .

- In particular:
 - Switch from Rawlsian to utilitarian when inequality exceeds Δ .
 - Build mixed integer programming model.
 - Let u_i = utility allocated to person *i*
- For 2 persons:
 - Maximize $\min_i \{u_1, u_2\}$ (Rawlsian) when $|u_1 u_2| \le \Delta$
 - Maximize $u_1 + u_2$ (utilitarian) when $|u_1 u_2| > \Delta$

Two-person Model

Contours of **social welfare function** for 2 persons.

Two-person Model

Two-person Model

Advantages

- Only one parameter Δ
 - Focus for debate.
 - Δ has **intuitive meaning** (unlike weights)
 - Examine **consequences** of different settings for Δ
 - Find least objectionable setting
 - Results in a **consistent** policy

Social Welfare Function

We want continuous U_2 contours... Δ *U*₁ Δ

Social Welfare Function

Social Welfare Function

The social welfare problem becomes

max z

$$z \leq \begin{cases} 2\min\{u_1, u_2\} + \Delta, & \text{if } |u_1 - u_2| \leq \Delta \\ u_1 + u_2, & \text{otherwise} \end{cases}$$

constraints on feasible set

Epigraph is union of 2 polyhedra.

Epigraph is union of 2 polyhedra.

Because they have different recession cones, there is no MILP model.

Impose constraints $|u_1 - u_2| \le M$

This equalizes recession cones.

We have the model...

 $\begin{array}{l} \max \ z \\ z \leq 2u_i + \Delta + (M - \Delta)\delta, \quad i = 1, 2 \\ z \leq u_1 + u_2 + \Delta(1 - \delta) \\ u_1 - u_2 \leq M, \quad u_2 - u_1 \leq M \\ u_1, u_2 \geq 0 \\ \delta \in \{0, 1\} \\ \text{ constraints on feasible set} \end{array}$

We have the model...

$$\max z$$

$$z \le 2u_i + \Delta + (M - \Delta)\delta, \quad i = 1, 2$$

$$z \le u_1 + u_2 + \Delta(1 - \delta)$$

$$u_1 - u_2 \le M, \quad u_2 - u_1 \le M$$

$$u_1, u_2 \ge 0$$

$$\delta \in \{0, 1\}$$

*U*₁

This is a **convex hull** formulation.

n-person Model

Rewrite the 2-person social welfare function as...

$$\Delta + 2u_{\min} + (u_1 - u_{\min} - \Delta)^+ + (u_2 - u_{\min} - \Delta)^+$$

$$\min\{u_1, u_2\}$$

$$\alpha^+ = \max\{0, \alpha\}$$

n-person Model

Rewrite the 2-person social welfare function as...

$$\Delta + 2u_{\min} + (u_1 - u_{\min} - \Delta)^+ + (u_2 - u_{\min} - \Delta)^+$$

$$\min\{u_1, u_2\}$$

$$\alpha^+ = \max\{0, \alpha\}$$

This can be generalized to *n* persons:

$$(n-1)\Delta + nu_{\min} + \sum_{j=1}^{n} (u_j - u_{\min} - \Delta)^+$$

n-person Model

Rewrite the 2-person social welfare function as...

$$\frac{\Delta + 2u_{\min} + (u_1 - u_{\min} - \Delta)^+ + (u_2 - u_{\min} - \Delta)^+}{\alpha^+ = \max\{0, \alpha\}}$$

This can be generalized to *n* persons:

$$(n-1)\Delta + nu_{\min} + \sum_{j=1}^{n} (u_j - u_{\min} - \Delta)^+$$

Epigraph is a union of *n*! polyhedra with same recession direction (u,z) = (1,...,1,n) if we require $|u_i - u_j| \le M$

So there is an MILP model...

n-person MILP Model

To avoid n! 0-1 variables, add auxiliary variables w_{ii}

 $\begin{array}{l} \max \ z \\ z \leq u_i + \sum_{j \neq i} w_{ij}, \ \text{all } i \\ w_{ij} \leq \Delta + u_i + \delta_{ij} (M - \Delta), \ \text{all } i, j \text{ with } i \neq j \\ w_{ij} \leq u_j + (1 - \delta_{ij})\Delta, \ \text{all } i, j \text{ with } i \neq j \\ u_i - u_j \leq M, \ \text{all } i, j \\ u_i \geq 0, \ \text{all } i \\ \delta_{ij} \in \{0, 1\}, \ \text{all } i, j \text{ with } i \neq j \end{array}$

n-person MILP Model

To avoid n! 0-1 variables, add auxiliary variables w_{ii}

$$\begin{array}{l} \max \ z \\ z \leq u_i + \sum_{j \neq i} w_{ij}, \ \text{all} \ i \\ w_{ij} \leq \Delta + u_i + \delta_{ij} (M - \Delta), \ \text{all} \ i, j \ \text{with} \ i \neq j \\ w_{ij} \leq u_j + (1 - \delta_{ij})\Delta, \ \text{all} \ i, j \ \text{with} \ i \neq j \\ u_i - u_j \leq M, \ \text{all} \ i, j \\ u_i \geq 0, \ \text{all} \ i \\ \delta_{ij} \in \{0, 1\}, \ \text{all} \ i, j \ \text{with} \ i \neq j \end{array}$$

Theorem. The model is correct (not easy to prove).

n-person MILP Model

To avoid n! 0-1 variables, add auxiliary variables w_{ii}

$$\begin{array}{l} \max \ z \\ z \leq u_i + \sum_{j \neq i} w_{ij}, \ \text{all} \ i \\ w_{ij} \leq \Delta + u_i + \delta_{ij} (M - \Delta), \ \text{all} \ i, j \ \text{with} \ i \neq j \\ w_{ij} \leq u_j + (1 - \delta_{ij})\Delta, \ \text{all} \ i, j \ \text{with} \ i \neq j \\ u_i - u_j \leq M, \ \text{all} \ i, j \\ u_i \geq 0, \ \text{all} \ i \\ \delta_{ij} \in \{0, 1\}, \ \text{all} \ i, j \ \text{with} \ i \neq j \end{array}$$

Theorem. The model is correct (not easy to prove).

Theorem. This is a convex hull formulation (not easy to prove).

n-group Model

In practice, funds may be allocated to groups of different sizes

For example, disease/treatment categories.

Let \overline{u} = average utility gained by a person in group *i*

 $n_i = \text{size of group } i$

n-group Model

2-person case with $n_1 < n_2$. Contours have slope $-n_1/n_2$

n-group MILP Model

Again add auxiliary variables w_{ij}

$$\begin{array}{l} \max \ z \\ z \leq (n_i - 1)\Delta + n_i \overline{u}_i + \sum_{j \neq i} w_{ij}, \ \text{all } i \\ w_{ij} \leq n_j (\overline{u}_i + \Delta) + \delta_{ij} n_j (M - \Delta), \ \text{all } i, j \text{ with } i \neq j \\ w_{ij} \leq \overline{u}_j + (1 - \delta_{ij}) n_j \Delta, \ \text{all } i, j \text{ with } i \neq j \\ \overline{u}_i - \overline{u}_j \leq M, \text{ all } i, j \\ \overline{u}_i \geq 0, \text{ all } i \\ \delta_{ij} \in \{0, 1\}, \ \text{all } i, j \text{ with } i \neq j \end{array}$$

Theorem. The model is correct.

Theorem. This is a convex hull formulation.

Health Example

Measure utility in QALYs (quality-adjusted life years).

QALY and cost data based on Briggs & Gray, (2000) etc.

Each group is a disease/treatment pair.

Treatments are discrete, so group funding is all-or-nothing.

Divide groups into relatively homogeneous subgroups.

*U*₁

Health Example

Add constraints to define feasible set...

max z $z \leq (n_i - 1)\Delta + n_i \overline{u}_i + \sum_{i \neq i} w_{ij}$, all i $w_{ii} \leq n_i (\overline{u}_i + \Delta) + \delta_{ii} n_i (M - \Delta)$, all i, j with $i \neq j$ $w_{ii} \leq \overline{u}_i + (1 - \delta_{ii})n_i\Delta$, all i, j with $i \neq j$ $\overline{u}_i - \overline{u}_i \leq M$, all i, j $\overline{u}_i \ge 0$, all *i* U_1 $\delta_{ii} \in \{0,1\}, \text{ all } i, j \text{ with } i \neq j$ y_i indicates $\overline{u}_{i} = q_{i}y_{i} + \alpha_{i}$ $\sum_{i} n_{i}c_{i}y_{i} \leq \text{budget}$ $y_{i} \in \{0,1\}, \text{ all } i$ whether group *i* is funded

Intervention	$\begin{array}{c} \operatorname{Cost} \\ \operatorname{per \ person} \\ c_i \end{array}$	$\begin{array}{c} \text{QALYs} \\ \text{gained} \\ q_i \end{array}$	Cost per QALY	QALYs without intervention	Subgroup size n_i	
	(£)		(£)	α_i		
Pacemaker for atriov	entricular hea	rt block				
Subgroup A	3500	3	1167	13	35	
Subgroup B	3500	5	700	10	45	
Subgroup C	3500	10	350	5	35	
Hip replacement						
Subgroup A	3000	2	1500	3	45	
Subgroup B	3000	4	750	4	45	
Subgroup C	3000	8	375	5	45	
Valve replacement for	aortic stenos	is				
Subgroup A	4500	3	1500	2.5	20	
Subgroup B	4500	5	900	3	20	
Subgroup C	4500	10	450	3.5	20	
CABG ¹ for left main	disease					
Mild angina	3000	1.25	2400	4.75	50	
Moderate angina	3000	2.25	1333	3.75	55	
Severe angina	3000	2.75	1091	3.25	60	
CABG for triple vess	el disease					
Mild angina	3000	0.5	6000	5.5	50	
Moderate angina	3000	1.25	2400	4.75	55	
Severe angina	3000	2.25	1333	3.75	60	
CABG for double ves.	sel disease					
Mild angina	3000	0.25	12,000	5.75	60	
Moderate angina	3000	0.75	4000	5.25	65	
Severe angina	3000	1.25	2400	4.75	70	

QALY & cost data

Part 1

Intervention	$\begin{array}{c} \text{Cost} \\ \text{per person} \\ c_i \\ (\pounds) \end{array}$	$\begin{array}{c} \text{QALYs} \\ \text{gained} \\ q_i \end{array}$	Cost per QALY (£)	$\begin{array}{c} {\rm QALYs} \\ {\rm without} \\ {\rm intervention} \\ \alpha_i \end{array}$	Subgroup size n_i
	22,500	4.5	5000	1.1	2
Kidney transplant					
Subgroup A	15,000	4	3750	1	8
Subgroup B	15,000	6	2500	1	8
Kidney dialysis	Contraction for the second				
Less than 1 year	survival				
Subgroup A	5000	0.1	50,000	0.3	8
1-2 years survival	1		72		
Subgroup B	12,000	0.4	30,000	0.6	6
2-5 years survival	l.				
Subgroup C	20,000	1.2	16,667	0.5	4
Subgroup D	28,000	1.7	16,471	0.7	4
Subgroup E	36,000	2.3	15,652	0.8	4
5-10 years survive	al				
Subgroup F	46,000	3.3	13,939	0.6	3
Subgroup G	56,000	3.9	14,359	0.8	2
Subgroup H	66,000	4.7	14,043	0.9	2
Subgroup I	77,000	5.4	14,259	1.1	2
At least 10 years	survival				
Subgroup J	88,000	6.5	13,538	0.9	2
Subgroup K	100,000	7.4	13,514	1.0	1
Subgroup L	111,000	8.2	13,537	1.2	1

Part 2

Results

Total budget £3 million

Δ	Pace-	Hip	Aortic	(CABO	÷	Heart	Kidney		Ki	dney	dialy	sis
range	maker	repl.	valve	\mathbf{L}	3	2	trans.	trans.	< 1	1-2	2-5	5 - 10	> 10
0-3.3	111	111	111	111	111	111	1	11	0	0	000	0000	000
3.4 - 4.0	111	111	111	111	111	111	0	11	1	0	000	0000	000
4.0 - 4.4	111	111	111	111	111	111	0	01	1	0	000	0000	001
4.5 - 5.01	111	011	111	111	111	111	1	01	1	0	000	0000	011
5.02 - 5.55	111	011	011	111	111	111	0	01	1	0	000	0001	011
5.56 - 5.58	111	011	011	111	111	011	0	01	1	0	000	0001	111
5.59	111	011	011	110	111	111	0	01	1	0	000	0001	111
5.60 - 13.1	111	111	111	101	000	000	1	11	1	0	111	1111	111
13.2 - 14.2	111	011	111	011	000	000	1	11	1	1	111	1111	111
14.3 - 15.4	111	111	111	011	000	000	1	11	1	1	101	1111	111
15.5-up	111	011	111	011	001	000	1	11	1	0	011	1111	111

Results

Utilitarian solution

Δ	Pace-	Hip	Aortic	CABG I			Heart Kidney			Kidney dialysis			
range 🗸	maker	repl.	valve	\mathbf{L}	3	2	trans.	trans.	< 1	1-2	2-5	5-10	> 10
0 - 3.3	111	111	111	111	111	111	1	11	0	0	000	0000	000
3.4 - 4.0	111	111	111	111	111	111	0	11	1	0	000	0000	000
4.0 - 4.4	111	111	111	111	111	111	0	01	1	0	000	0000	001
4.5 - 5.01	111	011	111	111	111	111	1	01	1	0	000	0000	011
5.02 - 5.55	111	011	011	111	111	111	0	01	1	0	000	0001	011
5.56 - 5.58	111	011	011	111	111	011	0	01	1	0	000	0001	111
5.59	111	011	011	110	111	111	0	01	1	0	000	0001	111
5.60 - 13.1	111	111	111	101	000	000	1	11	1	0	111	1111	111
13.2 - 14.2	111	011	111	011	000	000	1	11	1	1	111	1111	111
14.3 - 15.4	111	111	111	011	000	000	1	11	1	1	101	1111	111
15.5–up	111	011	111	011	001	000	1	11	1	0	011	1111	111
Rawlsian solution

Δ	Pace-	Hip	Aortic	(CABO	÷	Heart	Kidney		K	idney	dialy	sis
range	\mathbf{maker}	repl.	valve	\mathbf{L}	3	2	trans.	trans.	< 1	1-2	2-5	5-10	> 10
0 - 3.3	111	111	111	111	111	111	1	11	0	0	000	0000	000
3.4 - 4.0	111	111	111	111	111	111	0	11	1	0	000	0000	000
4.0 - 4.4	111	111	111	111	111	111	0	01	1	0	000	0000	001
4.5 - 5.01	111	011	111	111	111	111	1	01	1	0	000	0000	011
5.02 - 5.55	111	011	011	111	111	111	0	01	1	0	000	0001	011
5.56 - 5.58	111	011	011	111	111	011	0	01	1	0	000	0001	111
5.59	111	011	011	110	111	111	0	01	1	0	000	0001	111
5.60 - 13.1	111	111	111	101	000	000	1	11	1	0	111	1111	111
13.2 - 14.2	111	011	111	011	000	000	1	11	1	1	111	1111	111
14.3–15.4 ↓	111	111	111	011	000	000	1	11	1	1	101	1111	111
15.5-up	111	011	111	011	001	000	1	11	1	0	011	1111	111

Fur	nd for a	all Δ											
	\downarrow \setminus		7										
Δ	Pace-	Hip	Aortic	(CABG Heart Kidney					Ki	dney	dialy	sis
range	maker	repl.	valve	L	3	2	trans.	trans.	< 1	1-2	2-5	5 - 10	> 10
0 - 3.3	111	111	111	111	111	111	1	11	0	0	000	0000	000
3.4 - 4.0	111	111	111	111	111	111	0	11	1	0	000	0000	000
4.0 - 4.4	111	111	111	111	111	111	0	01	1	0	000	0000	001
4.5 - 5.01	111	011	111	111	111	111	1	01	1	0	000	0000	011
5.02 - 5.55	111	011	011	111	111	111	0	01	1	0	000	0001	011
5.56 - 5.58	111	011	011	111	111	011	0	01	1	0	000	0001	111
5.59	111	011	011	110	111	111	0	01	1	0	000	0001	111
5.60 - 13.1	111	111	111	101	000	000	1	11	1	0	111	1111	111
13.2 - 14.2	111	011	111	011	000	000	1	11	1	1	111	1111	111
14.3 - 15.4	111	111	111	011	000	000	1	11	1	1	101	1111	111
15.5-up	111	011	111	011	001	000	1	11	1	0	011	1111	111

Results													
								N	lore	e dia	alysi	s wit	h
	larger Δ , beginning												ng
		with longer life span											
Δ	Pace-	Hip	Aortic	(CABO	3	Heart	Kidney		Ki	dney	dialy	sis
range	maker	repl.	valve	\mathbf{L}	3	2	trans.	trans.	< 1	1-2	2-5	5 - 10	> 10
0–3.3	111	111	111	111	111	111	1	11	0	0	000	0000	000
3.4 – 4.0	111	111	111	111	111	111	0	11	1	0	000	0000	000
4.0 - 4.4	111	111	111	111	111	111	0	01	1	0	000	0000	001
4.5 - 5.01	111	011	111	111	111	111	1	01	1	0	000	0000	011
5.02 - 5.55	111	011	011	111	111	111	0	01	1	0	000	0001	011
5.56 - 5.58	111	011	011	111	111	011	0	01	1	0	000	0001	111
5.59	111	011	011	110	111	111	0	01	1	0	000	0001	111
5.60 - 13.1	111	111	111	101	000	000	1	11	1	0	111	1111	111
13.2 - 14.2	111	011	111	011	000	000	1	11	1	1	111	1111	111
14.3 - 15.4	111	111	111	011	000	000	1	11	1	1	101	1111	111
15.5-up	111	011	111	011	001	000	1	11	1	0	011	1111	111

Abrupt change at $\Delta = 5.60$

Δ	Pace-	Hip	Aortic	(CABO	3	Heart	Kidney		Ki	dney	dialy	sis
range	maker	repl.	valve	\mathbf{L}	3	2	trans.	trans.	< 1	1-2	2-5	5 - 10	> 10
0-3.3	111	111	111	111	111	111	1	11	0	0	000	0000	000
3.4 - 4.0	111	111	111	111	111	111	0	11	1	0	000	0000	000
4.0 - 4.4	111	111	111	111	111	111	0	01	1	0	000	0000	001
4.5 - 5.01	111	011	111	111	111	111	1	01	1	0	000	0000	011
5.02 - 5.55	111	011	011	111	111	111	0	01	1	0	000	0001	011
5.56–5.58 \checkmark	111	011	011	111	111	011	0	01	1	0	000	0001	111
5.59	111	011	011	110	111	111	0	01	1	0	000	0001	111
5.60 - 13.1	111	111	111	101	000	000	1	11	1	0	111	1111	111
13.2 - 14.2	111	011	111	011	000	000	1	11	1	1	111	1111	111
14.3 - 15.4	111	111	111	011	000	000	1	11	1	1	101	1111	111
15.5-up	111	011	111	011	001	000	1	11	1	0	011	1111	111

			Come and go together										
Δ	Pace-	Hip	Aortic	(CABC	f	Heart	Kidney		K	idney	dialys	sis
range	maker	repl.	valve	L	3	2	trans.	trans.	< 1	1-2	2-5	5-10	> 10
0-3.3	111	111	111	111	111	111	1	11	0	0	000	0000	000
3.4 - 4.0	111	111	111	111	111	111	0	11	1	0	000	0000	000
4.0 - 4.4	111	111	111	111	111	111	0	01	1	0	000	0000	001
4.5 - 5.01	111	011	111	111	111	111	1	01	1	0	000	0000	011
5.02 - 5.55	111	011	011	111	111	111	0	01	1	0	000	0001	011
5.56 - 5.58	111	011	011	111	111	011	0	01	1	0	000	0001	111
5.59	111	011	011	110	111	111	0	01	1	0	000	0001	111
5.60 - 13.1	111	111	111	101	000	000	1	11	1	0	111	1111	111
13.2 - 14.2	111	011	111	011	000	000	1	11	1	1	111	1111	111
14.3 - 15.4	111	111	111	011	000	000	1	11	1	1	101	1111	111
15.5-up	111	011	111	011	001	000	1	11	1	0	011	1111	111

In-out-in													
Δ range	Pace- maker	Hip repl.	Aortic valve	L	CABC 3	G 2	Heart trans.	Kidney trans.	< 1	Ki 1-2	idney 2-5	dialys 5-10	sis > 10
0 - 3.3	111	111	111	111	111	111	1	11	0	0	000	0000	000
3.4 - 4.0	111	111	111	111	111	111	0	11	1	0	000	0000	000
4.0 - 4.4	111	111	111	111	111	111	0	01	1	0	000	0000	001
4.5 - 5.01	111	011	111	111	111	111	1	01	1	0	000	0000	011
5.02 - 5.55	111	011	011	111	111	111	0	01	1	0	000	0001	011
5.56 - 5.58	111	011	011	111	111	011	0	01	1	0	000	0001	111
5.59	111	011	011	110	111	111	0	01	1	0	000	0001	111
5.60 - 13.1	111	111	111	101	000	000	1	11	1	0	111	1111	111
13.2 - 14.2	111	011	111	011	000	000	1	11	1	1	111	1111	111
14.3 - 15.4	111	111	111	011	000	000	1	11	1	1	101	1111	111
15.5-up	111	011	111	011	001	000	1	11	1	0	011	1111	111

Most rapid change. Possible range for politically acceptable compromise

1

Δ	Pace-	Hip	Aortic	(CABO	3	Heart	Kidney		Ki	dney	dialy	sis
range	maker	repl.	valve	\mathbf{L}	3	2	trans.	trans.	< 1	1-2	2-5	5 - 10	> 10
0–3.3	111	111	111	111	111	111	1	11	0	0	000	0000	000
3.4 - 4.0	111	111	111	111	111	111	0	11	1	0	000	0000	000
4.0 - 4.4	111	111	111	111	111	111	0	01	1	0	000	0000	001
4.5 - 5.01	111	011	111	111	111	111	1	01	1	0	000	0000	011
5.02 - 5.55	111	011	011	111	111	111	0	01	1	0	000	0001	011
5.56 - 5.58	111	011	011	111	111	011	0	01	1	0	000	0001	111
5.59	111	011	011	110	111	111	0	01	1	0	000	0001	111
5.60 - 13.1	111	111	111	101	000	000	1	11	1	0	111	1111	111
13.2 - 14.2	111	011	111	011	000	000	1	11	1	1	111	1111	111
14.3 - 15.4	111	111	111	011	000	000	1	11	1	1	101	1111	111
15.5-up	111	011	111	011	001	000	1	11	1	0	011	1111	111

32 groups, 1089 integer variables Solution time (CPLEX 12.2) is < 0.5 sec for each Δ

Δ	Pace-	Hip	Aortic	(CABC	3	Heart	Kidney		Ki	idney	dialy	sis
range	maker	repl.	valve	\mathbf{L}	3	2	trans.	trans.	< 1	1-2	2-5	5 - 10	> 10
0 - 3.3	111	111	111	111	111	111	1	11	0	0	000	0000	000
3.4 - 4.0	111	111	111	111	111	111	0	11	1	0	000	0000	000
4.0 - 4.4	111	111	111	111	111	111	0	01	1	0	000	0000	001
4.5 - 5.01	111	011	111	111	111	111	1	01	1	0	000	0000	011
5.02 - 5.55	111	011	011	111	111	111	0	01	1	0	000	0001	011
5.56 - 5.58	111	011	011	111	111	011	0	01	1	0	000	0001	111
5.59	111	011	011	110	111	111	0	01	1	0	000	0001	111
5.60 - 13.1	111	111	111	101	000	000	1	11	1	0	111	1111	111
13.2 - 14.2	111	011	111	011	000	000	1	11	1	1	111	1111	111
14.3 - 15.4	111	111	111	011	000	000	1	11	1	1	101	1111	111
15.5-up	111	011	111	011	001	000	1	11	1	0	011	1111	111

Solution time vs. Δ

Future Work

- Generalize Rawlsian criterion to lexmax.
- Find principled justification for choice of Δ .