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Modeling Equity

• There is a growing interest in incorporating equity
considerations in mathematical programming models.

• Not enough to minimize cost or maximize revenue.

• Also concerned about distribution of resources/benefits.

• Not obvious how to capture equity in the objective function .

• Still less obvious how to combine it with an efficiency 
objective.
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Modeling Equity

• Some applications…
• Single-payer health system.

• Facility location (e.g., emergency services).

• Taxation (revenue vs. progressivity).

• Relief operations.

• Telecommunications (lexmax, Nash bargaining solution)
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Outline

• Today:
• Utilitarianism

• Piecewise Linear Modeling

• Rawlsian Difference Principle

• Axiomatics

• Measures of Inequality

• An Allocation Problem

• Tomorrow:
• Nash Bargaining Solution

• Raiffa-Kalai-Smorodinsky Bargaining

• Disjunctive Modeling

• Combining Equity and Efficiency

• Health Care Example
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Today’s Outline

• Utilitarianism
• Utility and production functions

• The optimization problem

• Arguments for utilitarianism

• Piecewise Linear Modeling
• LP model of concave maximization

• MILP model of nonconcave maximization
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Today’s Outline

• Rawlsian Difference Principle
• The social contract argument

• The lexmax principle

• The optimization problem

• Axiomatics
• Interpersonal comparability

• Axioms of rational choice

• Social welfare functions
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Today’s Outline

• Measures of Inequality
• An example

• Utrilitarian, maximin, and lexmax solution

• Relative range, max, min

• Relative mean deviation

• Variance, coefficient of variation

• McLoone index

• Gini coefficient

• Atkinson index

• Hoover index

• Theil index

• An Allocation Problem
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Efficiency vs. Equity

• Two classical criteria for distributive 
justice:
– Utilitarianism (efficiency)
– Difference principle of John Rawls

(equity)

• These have the must studied
philosophical underpinnings.
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Utilitarianism

• Utilitarianism seeks allocation of resources that 
maximizes total utility.

• Let xi = resources allocated to person i.

• Let ui = utility enjoyed by person i.

• We have an optimization problem 

=
∈

∑max

( ),   all 

i
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i i i
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u h x i
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Production 
functions

Set of feasible 
resource 
allocations
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Utilitarianism

• The individual production function hi has two 
components.

• The value vi(xi) created by the individual, as a result of 
receiving resources xi.

• The utility ui(vi(xi)) = hi(xi) of the value created (ui is normally 
concave).

• So ai reflects the value function vi  (productivity), and p reflects 
the combined shape of both functions vi and ui.
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Utilitarianism

Assume resource distribution is constrained only by a fixed budget. 

We have the optimization problem

=

= ≥
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Utilitarianism

Utility maximizing distribution
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Utilitarianism

• Arguments for utilitarianism 
• Can define utility to suit context.

• Utilitarian distributions incorporate some egalitarian factors:

• With concave production functions, egalitarian distributions 
create more utility, ceteris paribus. 

• Inegalitarian distributions create disutility , due to social 
disharmony.
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Utilitarianism

• Egalitarian distributions create more utility?
• This effect is limited .

• Utilitarian distributions can be very unequal.  Productivity 
differences are magnified in the allocations.

Utility Maximizing Distribution
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Utilitarianism

• Egalitarian distributions create more utility?
• In the example, the most egalitarian distribution (p � 0) 

assigns resources in proportion to productivity.
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Utilitarianism

• Unequal distributions create disutility?
• Perhaps, but modeling this requires nonseparable utility 

functions

that may result in a problem that is hard to model and solve.

= ⋯1( , , )i i nu h x x
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Utilitarianism

• Unequal distributions create disutility?
• Perhaps, but modeling this requires nonseparable utility 

functions

that may result in a problem that is hard to model and solve.

• More fundamentally, this defense of utilitarianism is based on 
contingency , not principle .

= ⋯1( , , )i i nu h x x
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Utilitarianism

• Unequal distributions create disutility?
• Perhaps, but modeling this requires nonseparable utility 

functions

that may result in a problem that is hard to model and solve.

• More fundamentally, this defense of utilitarianism is based on 
contingency , not principle .

• If we evaluate the fairness of utilitarian distribution, then there 
must be another standard of equitable distribution.

• How do we model the standard we really have in mind?

= ⋯1( , , )i i nu h x x
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Modeling Utility

• Ideally, production functions are concave , and feasible 
set is convex .

• For example,                       for  0 < p < 1 and linear 
constraints on x.

• Then we solve the problem

by nonlinear programming.

• Any local optimum is a global optimum.

≤ ≥

∑max ( )

, 0

i i
i

h x

Ax b x

=( ) p
i i i ih x a x
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Piecewise Linear Modeling

• Piecewise linear modeling converts nonlinear 
programming to LP (linear programming) or MILP 
(mixed integer/linear programming).

• A key technique.

• Applies when functions are separable .

• Suppose we want to solve

≤ ≥

∑max ( )

, 0

i i
i

f x

Ax b x
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Piecewise Linear Modeling

• If each fi is concave , this reduces (approx.) to an LP.

fi(xi)

xi
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Piecewise Linear Modeling

• If each fi is concave , this reduces (approx.) to an LP.

fi(xi)

xi where

ci2

xi2
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Piecewise Linear Modeling

• If each fi is concave , this reduces (approx.) to an LP.

fi(xi)

xi where

ci2

xi2

The lower intervals “fill up” first.
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Piecewise Linear Modeling

• If each fi is concave , this reduces (approx.) to an LP.

fi(xi)

xi where

ci2

xi2

The lower intervals “fill up” first.
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Piecewise Linear Modeling

• If each fi is concave , this reduces (approx.) to an LP.

fi(xi)

xi
ai0 ai1 ai2 ai3
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The lower intervals “fill up” first.
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Piecewise Linear Modeling

• If fi is nonconcave , we can use an MILP model of the 
piecewise linear approximation.

fi(xi)

xi
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Piecewise Linear Modeling

• In general, a piecewise linear approximation vi of fi has 
the form

xi
ai0 bi1 bi2 bik

The function is continuous when bij = ai,j+1

ai1 aik

…
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Piecewise Linear Modeling

• In general, a piecewise linear approximation vi of fi has 
the form

xi
ai0 bi1 bi2 bik

The function is continuous when bij = ai,j+1

ai1 aik

…
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Piecewise Linear Modeling

• When the piecewise linear function is continuous, don’t 
use the “textbook” model

where   + =, 1i k ika b
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Piecewise Linear Modeling

• When the piecewise linear function is continuous, don’t 
use the “textbook” model

The “textbook” may tell you to use 
only the continuous part of the model

where   + =, 1i k ika b
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Piecewise Linear Modeling

• When the piecewise linear function is continuous, don’t 
use the “textbook” model

The “textbook” may tell you to use 
only the continuous part of the model

where   + =, 1i k ika b
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and declare the λij SOS2.

This sacrifices the tight 
relaxation of the next model…
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Piecewise Linear Modeling

• The best model of a continuous piecewise vi is the 
“incremental” formulation:
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Problems with Utilitarianism

• A utility maximizing distribution may be unjust.
– Disabled or nonproductive people may be neglected.

– Less talented people who work hard may receive meager wage.

– Not all jobs can be equally productive.  Those with less 
productive jobs may receive fewer resources.
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Rawlsian Difference Principle

• Rawls’ Difference Principle seeks to maximize the 
welfare of the worst off.  

• Also known as maximin principle.

• Another formulation: inequality is permissible only to the 
extent that it is necessary to improve the welfare of those 
worst off.

{ }
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max min

( ),   all 

ii

i i i

u

u h x i

x S
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Rawlsian Difference Principle

• The root idea is that when I make a decision for myself, I 
make a decision for anyone in similar circumstances.

• It doesn’t matter who I am.

• Social contract argument
• I make decisions (formulate a social contract) in an original 

position , behind a veil of ignorance as to who I am.

• I must find the decision acceptable after I learn who I am.

• I cannot rationally assent to a policy that puts me on the bottom, 
unless I would have been even worse off under alternative 
policies.

• So the policy must maximize the welfare of the worst off .
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Rawlsian Difference Principle

• Applies only to basic goods .
• Tings that people want, no matter what else they want.

• Salaries, tax burden, medical benefits, etc.

• For example, salary differentials may satisfy the principle if 
necessary to make the poorest better off.

• Applies to smallest groups for which outcome is 
predictable.

• A lottery passes the test even though it doesn’t maximize  
welfare of worst off – the loser is unpredictable.

• …unless the lottery participants as a whole are worst off.



38

Rawlsian Difference Principle

• The difference rule implies a lexmax principle.
– If applied recursively.

• Lexmax (lexicographic maximum) principle :
– Maximize welfare of least advantaged class…

– then next-to-least advantaged class…

– and so forth.



• There is apparently no practical math programming 
model for lexmax.

• We can solve the problem sequentially (pre-emptive goal 
programming).

• Solve the maximin problem.  

• Fix the smallest ui to its maximum value.

• Solve the maximin problem over remaining uis.

• Continue to un.

Rawlsian Difference Principle

{ }
=

∈

…1lexmax , ,

( ),   all 
n

i i i

u u

u h x i

x S



• The Difference and Lexmax Principles need not result in 
equality.

• Consider the example presented earlier…

Rawlsian Difference Principle



41

Rawlsian Difference Principle

Utility maximizing distribution
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Lexmax distribution
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Utilitarianism

Utility Maximizing Distribution
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Axiomatics

• The economics literature derives social welfare functions 
from axioms of rational choice.

• Some axioms are strong and hard to justify.

• The social welfare function depends on degree of 
interpersonal comparability of utilities.

• Arrow’s impossibility theorem was the first result, but there are 
many others.

• Social welfare function
• A function f (u1,…,un) of individual utilities.

• An optimization model can find a distribution of utility that 
maximizes social welfare.
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Interpersonal Comparability

• Social Preferences
• Let u = (u1,…,un) be the vector of utilities allocated to 

individuals.

• A social welfare function ranks distributions:  
u is preferable to u′ if f (u) > f (u′).

• Invariance transformations.  
• These are transformations φ of utility vectors under which the 

ranking of distributions does not change.

• Each φ = (φ1,…,φn), where φi is a transformation of individual 
utility ui.
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Interpersonal Comparability

• Ordinal noncomparability.
• Any φ = (φ1,…,φn)  with strictly increasing φis is an invariance 

transformation.

• Ordinal level comparability.
• Any φ = (φ1,…,φn)  with strictly increasing and identical φis is 

an invariance transformation.
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Interpersonal Comparability

• Cardinal nonncomparability.
• Any φ = (φ1,…,φn)  with φi(ui) = αi + βiui and βi > 0 is an 

invariance transformation.

• Cardinal unit comparability.
• Any φ = (φ1,…,φn)  with φi(ui) = αi + βui and β > 0 is an invariance 

transformation.

• Cardinal ratio scale comparability
• Any φ = (φ1,…,φn)  with φi(ui) = βui and β > 0 is an invariance 

transformation.
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Axioms

• Anonymity
• Social preferences are the same if indices of uis are 

permuted.

• Strict pareto
• If u > u′, then u is preferred to u′.

• Independence of irrelevant alternatives
• The preference of u over u′ depends only on u and u′ and not 

on what other utility vectors are possible. 

• Separability of unconcerned individuals
• Individuals i for which ui = ui′ don’t affect the ranking of 

u and u′.
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Axiomatics

Theorem
Given ordinal level comparability , any social welfare function f that 
satisfies the axioms is lexicographically increasing or lexicographically 
decreasing.  So we get a lexmax or lexmin objective.

Theorem
Given cardinal unit comparability , any social welfare function f that 
satisfies the axioms has the form f(u) =Σi aiui for 
ai ≥ 0.  Se we get a utilitarian objective.
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Axiomatics

Theorem
Given cardinal noncomparability , any social welfare function f that 
satisfies the axioms (except anonimity and separability) has the form 
f(u) = ui for some fixed i.  So individual i is a dictator .

Theorem
Given cardinal ratio scale comparability , any social welfare function 
f that satisfies the axioms has the form f(u) =Σi ui

p/p.  Se we get the 
production function used in the example.
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Measures of Inequality

• Assume we wish to minimize inequality .
• We will survey several measures of inequality.

• They have different strengths and weaknesses.

• Minimizing inequality may result in less total utility.

• Pigou-Dalton condition.
• One criterion for evaluating an inequality measure.

• If utility is transferred from one who is worse off to one who is 
better off, inequality should increase.
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Measures of Inequality

• Measures of Inequality
• An example

• Utrilitarian, maximin, and lexmax solution

• Relative range, max, min

• Relative mean deviation

• Variance, coefficient of variation

• McLoone index

• Gini coefficient

• Atkinson index

• Hoover index

• Theil index

• An Allocation Problem
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Example

Production functions for 5 individuals

Resources

Utility
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Utilitarian

∑max i
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LP model:
=
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Utilitarian
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Rawlsian

{ }{ }max min ii
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LP model: + ∈
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Ensures that 
solution is 
Pareto optimal



58

Rawlsian
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Utilitarian
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Lexmax

{ }…1lexmax , , nu u

Sequence of 
LP models,
k = 1, …, n − 1:
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Re-index for each k so that ui for i < k were fixed in previous iterations.
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Lexmax
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Relative Range

−max minu u
u

where { }=max max i
i

u u { }=min min ii
u u = ∑(1/ ) i

i

u n u

Rationale:

• Perceived inequality is relative to the best off.

• A distribution should be judged by the position of the worst-off.

• Therefore, minimize gap between top and bottom.

Problems:

• Ignores distribution between extremes.

• Violates Pigou-Dalton condition
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Equality Measures: Comparison

Relative range: 0 1.30 2.26
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Relative Range

−max minu u
u
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cx c z
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x z

This is a fractional linear programming problem.

Use Charnes-Cooper transformation to an LP.  In general,

after change of variable x = x′/z and fixing denominator to 1.
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Relative Range
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Relative Range
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Lexmax
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Relative Max

maxu
u

Rationale:

• Perceived inequality is relative to the best off.

• Possible application to salary levels (typical vs. CEO)

Problems:

• Ignores distribution below the top.

• Violates Pigou-Dalton condition
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Equality Measures: Comparison

Relative range: 0 1.30 2.26

Relative max: 1                               1.73              2.38
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Relative Max

maxu
u

Fractional LP model:

≥

= ≤ ≤ =

∑

∑

max

max
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, 0 ,   all ,

i
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i i i i i i
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u u i

u a x x b i x B
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′ ′ ′ ′= ≤ ≤ =
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 all 
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(1/ ) 1
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i
i
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u a x x b z i x Bz

n u

LP model:
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Relative Max
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Relative Range
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Relative Min

minu
u

Rationale:

• Measures adherence to Rawlsian Difference Principle.

• …relativized to mean

Problems:

• Ignores distribution above the bottom.

• Violates Pigou-Dalton condition
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Equality Measures: Comparison

Relative range: 0 1.30 2.26

Relative min: 1                               0.43              0.12
Relative max: 1                               1.73              2.38
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Relative Min

minu
u

Fractional LP model:

≤

= ≤ ≤ =

∑

∑

min

min

max
(1/ )

,  all 

, 0 ,   all ,

i
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i

i i i i i i
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u
n u

u u i

u a x x b i x B
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min
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 all 

, 0 ,   all ,

(1/ ) 1

i

i i i i i i
i

i
i

u

u u i

u a x x b z i x Bz

n u

LP model:
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Relative Min
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Relative Max
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Relative Range
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Relative Mean Deviation

−∑ i
i

u u

u

Rationale:

• Perceived inequality is relative to average.

• Entire distribution should be measured.

Problems:

• Violates Pigou-Dalton condition

• Insensitive to transfers on the same side of the mean.

• Insensitive to placement of transfers from one side of the mean to 
the other.
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Equality Measures: Comparison

Relative range: 0 1.30 2.26

Rel. mean dev.: 0                               0.42              0.72
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Relative Mean Deviation

Fractional LP model:
+ −

+ −

+

≥ − ≥ −

=

= ≤ ≤ =
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max

, ,  all 
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, 0 ,  all ,

i i
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i i i i

i
i

i i i i i i
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u u

u
u u u u u u i

u n u

u a x x b i x B

LP model:

−∑ i
i

u u
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+ −

+ −

+
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u u u u i

n u

u a x x b z i x Bz
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Relative Mean Deviation



85

Relative Range
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Variance

−∑ 2(1/ ) ( )i
i

n u u

Rationale:

• Weight each utility by its distance from the mean.

• Satisfies Pigou-Dalton condition.

• Sensitive to transfers on one side of the mean.

• Sensitive to placement of transfers from one side of the mean to the 
other.

Problems:

• Weighting is arbitrary?

• Variance depends on scaling of utility.
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Variance

Convex nonlinear model: −

=

= ≤ ≤ =

∑

∑

∑

2min (1/ ) ( )

(1/ )

, 0 , all ,

i
i

i
i

i i i i i i
i

n u u

u n u

u a x x b i x B

−∑ 2(1/ ) ( )i
i

n u u
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Variance
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Relative Mean Deviation



90

Relative Range
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Coefficient of Variation

 − 
 

∑
1/2

2(1/ ) ( )i
i

n u u

u

Rationale:

• Similar to variance.

• Invariant with respect to scaling of utilities.

Problems:

• When minimizing inequality, there is an incentive to reduce average 
utility.

• Should be minimized only for fixed total utility.
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Equality Measures: Comparison

Relative range: 0 1.30 2.26

Coeff. of variation: 0                               0.46              0.81

Rel. mean dev.: 0                               0.42              0.72
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 − 
 

≥
≥

∑
1/2

2(1/ ) ( )
min

0

i
i

n u u

u
Au b

u

becomes

Again use change of variable u = u′/z and fix denominator to 1.

Coefficient of Variation

 − 
 

∑
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2(1/ ) ( )i
i

n u u

u

 ′ − 
 

′ ≥
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′ ≥
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∑
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2min (1/ ) ( 1)

(1/ ) 1
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i
i

i
i

n u

Au bz

n u

u

Can drop 
exponent 
to make 
problem 
convex
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Fractional nonlinear 
model:

 − 
 

=

= ≤ ≤ =

∑

∑

∑

1/2

2(1/ ) ( )
max

(1/ )

, 0 ,  all ,

i
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i
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n u u

u
u n u

u a x x b i x B

Convex nonlinear 
model:

Coefficient of Variation
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Variance
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Relative Mean Deviation
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McLoone Index

<
∑
:

(1/ 2)
i

i
i u m

u

u

Rationale:

• Ratio of average utility below median to overall average.

• No one wants to be “below average.”

• Pushes average up while pushing inequality down.

Problems:

• Violates Pigou-Dalton condition.

• Insensitive to upper half.
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Equality Measures: Comparison

Relative range: 0 1.30 2.26

McLoone: 1                               0.54              0.23

Rel. mean dev.: 0                               0.42              0.72
Coeff. of variation: 0                               0.46              0.81
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Fractional MILP model:

{ }

− ≤ ≤ + −
≤ ≤

<

= ≤ ≤ =

∈

∑

∑
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i
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i i i i
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i
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m My u m M y i

v u v My i

y n

u a x x b i x B

y i

McLoone Index

<
∑
:

(1/ 2)
i

i
i u m

u

u

Defines median m

Defines vi = ui if 
ui is below median

Half of utilities 
are below median

Selects utilities below median
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MILP model:

{ }
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McLoone Index
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Relative Min
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Gini Coefficient

−∑2

,

(1/ )

2

i j
i j

n u u

u

Rationale:

• Relative mean difference between all pairs.

• Takes all differences into account.

• Related to area above cumulative distribution (Lorenz curve).

• Satisfies Pigou-Dalton condition.

Problems:

• Insensitive to shape of Lorenz curve, for a given area.
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Gini Coefficient

−∑2

,

(1/ )

2

i j
i j

n u u

u
C

um
ul

at
iv

e 
ut

ili
ty

= blue area
Gini coeff.

area of triangle

Lorenz curve

Individuals ordered by increasing utility
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Equality Measures: Comparison

Gini: 0                               0.26              0.45

Relative range: 0 1.30 2.26

McLoone: 1                               0.54              0.23

Rel. mean dev.: 0                               0.42              0.72
Coeff. of variation: 0                               0.46              0.81
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Fractional LP model:

LP model:

Gini Coefficient

−∑2

,

(1/ )

2

i j
i j

n u u

u
+ −

+ −

+

≥ − ≥ −

=

= ≤ ≤ =

∑

∑

∑

2(1/ 2 ) ( )
max

, ,  all ,

(1/ )

, 0 ,  all ,

ij ij
ij

ij i j ij j i

i
i

i i i i i i
i

n u u

u
u u u u u u i j

u n u

u a x x b i x B

+ −

+ −

+

′ ′ ′ ′≥ − ≥ −

′ =

′ ′ ′ ′= ≤ ≤ =

∑

∑

∑

2max (1/ 2 ) ( )

,  ,  all ,

(1/ ) 1

, 0 ,  all ,

ij ij
ij

ij i j ij j i

i
i

i i i i i i
i

n u u

u u u u u u i j

n u

u a x x b z i x Bz



108

Gini Coefficient



Coefficient of Variation
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Variance



Historical Gini Coefficient, 1945-2010 
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Atkinson Index

  −      
∑

1/

1 (1/ )

pp

i

i

x
n

x

Rationale:

• Best seen as measuring inequality of resources xi.

• Assumes allotment y of resources results in utility yp

• This is average utility per individual.
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Atkinson Index

  −      
∑

1/

1 (1/ )

pp

i

i

x
n

x

Rationale:

• Best seen as measuring inequality of resources xi.

• Assumes allotment y of resources results in utility yp

• This is average utility per individual.

• This is equal resource allotment to each individual that results in 
same total utility.
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Atkinson Index

  −      
∑

1/

1 (1/ )

pp

i

i

x
n

x

Rationale:

• Best seen as measuring inequality of resources xi.

• Assumes allotment y of resources results in utility yp

• This is average utility per individual.

• This is equal resource allotment to each individual that results in 
same total utility.

• This is additional resources per individual necessary to sustain 
inequality.
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Atkinson Index

  −      
∑

1/

1 (1/ )

pp

i

i

x
n

x

Rationale:

• p indicates “importance” of equality.

• Similar to Lp norm

• p = 1 means inequality has no importance

• p = 0 is Rawlsian (measures utility of worst-off individual).

Problems:

• Measures utility, not equality.

• Doesn’t evaluate distribution of utility, only of resources.

• p describes utility curve, not importance of equality.
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Equality Measures: Comparison

Gini: 0                               0.26              0.45

Relative range: 0 1.30 2.26

McLoone: 1                               0.54              0.23

Rel. mean dev.: 0                               0.42              0.72
Coeff. of variation: 0                               0.46              0.81

Atkinson 0.06 0 0.06
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Ax b x

To minimize index, 
solve fractional
problem

Atkinson Index
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∑
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Fractional nonlinear 
model:

=
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∑
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Concave nonlinear 
model:
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Atkinson index
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Hoover Index

−∑

∑
(1/ 2)

i
i

i
i

u u

u

Rationale:

• Fraction of total utility that must be redistributed to achieve total 
equality.

• Proportional to maximum vertical distance between Lorenz curve 
and 45o line.

• Originated in regional studies, population distribution, etc. (1930s).

• Easy to calculate.

Problems:

• Less informative than Gini coefficient?
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C
um

ul
at

iv
e 

ut
ili

ty

=Hoover index max vertical distance

Lorenz curve

Hoover Index

−∑

∑
(1/ 2)

i
i

i
i

u u

u

Total utility = 1

Individuals ordered by increasing utility
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Equality Measures: Comparison

Gini: 0                               0.26              0.45

Relative range: 0 1.30 2.26

McLoone: 1                               0.54              0.23

Rel. mean dev.: 0                               0.42              0.72
Coeff. of variation: 0                               0.46              0.81

Atkinson: 0.06 0 0.06
Hoover: 0 0.15 0.28
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Hoover Index
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Gini Coefficient
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Theil Index

 
 
 

∑(1/ ) lni i

i

u u
n

u u

Rationale:

• One of a family of entropy measures of inequality.

• Index is zero for complete inequality (maximum entropy)

• Measures nonrandomness of distribution.

• Described as stochastic version of Hoover index.

Problems:

• Motivation unclear.

• A. Sen doesn’t like it.
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Equality Measures: Comparison

Gini: 0                               0.26              0.45

Relative range: 0 1.30 2.26

McLoone: 1                               0.54              0.23

Rel. mean dev.: 0                               0.42              0.72
Coeff. of variation: 0                               0.46              0.81

Atkinson: 0.06 0 0.06
Hoover: 0 0.15 0.28
Theil: 0 0.27 0.86
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Nasty nonconvex
model:
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Theil Index
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Hoover Index
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Gini Coefficient
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Outline

• Today:
• Nash Bargaining Solution

• Raiffa-Kalai-Smorodinsky Bargaining

• Disjunctive Modeling

• Combining Equity and Efficiency

• Health Care Example
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An Allocation Problem

• From Yaari and Bar-Hillel, 1983.
• 12 grapefruit and 12 avocados are to be divided 

between Jones and Smith .
• How to divide justly?

Jones Smith

100 50

0 50

Utility provided by one fruit of each kind
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An Allocation Problem

The optimization problem:

= = +
+ = =
≥

1 2

1 11 2 12 22

1 2

max  ( , )

100 , 50 50

12, 1,2

0,  all ,
i i

ij

f u u

u x u x x

x x i

x i j

Social welfare function

where  ui = utility for person i (Jones, Smith)
xij = allocation of fruit i (grapefruit, avocados) 

to person j



134

u1

u2

Utilitarian Solution

1200

1200

(1200,600)

Smith’s utility

Jones’ utility

= +1 2 1 2( , )f u u u u

Optimal solution
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u1

u2

Rawlsian (maximin) solution

1200

1200

(800,800)

{ }=1 2 1 2( , ) min ,f u u u u
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Bargaining Solutions

• A bargaining solution is an equilibrium allocation in 
the sense that none of the parties wish to bargain 
further.

• Because all parties are “satisfied” in some sense, the 
outcome may be viewed as “fair.”

• Bargaining models have a default outcome, which is the 
result of a failure to reach agreement.

• The default outcome can be seen as a starting point .
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Bargaining Solutions

• Several proposals for the default outcome (starting 
point):

• Zero for everyone.  Useful when only the resources being 
allocated are relevant to fairness of allocation.

• Equal split .  Resources (not necessarily utilities) are divided 
equally.  May be regarded as a “fair” starting point .

• Strongly pareto set .  Each party receives resources that 
can benefit no one else.  Parties can always agree on this.
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Nash Bargaining Solution

• The Nash bargaining solution maximizes the social 
welfare function

where d is the default outcome.

• Not the same as Nash equilibrium .

• It maximizes the product of the gains achieved by the 
bargainers, relative to the fallback position.

• Assume feasible set is convex , so that Nash solution is 
unique (due to strict concavity of f).

= −∏( ) ( )i i
i

f u u d
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u2

Nash Bargaining Solution

d

u

Nash solution maximizes 
area of rectangle

Feasible set
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u2

Nash Bargaining Solution

d

u

Nash solution maximizes 
area of rectangle

Feasible set
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u2

Nash Bargaining Solution

d

u*

Nash solution maximizes 
area of rectangle

Feasible set
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Nash Bargaining Solution

• The optimization problem has a concave objective 
function if we maximize log f(u).

• Problem is relatively easy if feasible set S is convex.

− = −

∈

∑∏max log ( ) log( )i i i i
ii

u d u d

u S
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u1

u2

1200

1200

(1200,600)

Nash Bargaining Solution
From Zero

(0,0)
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u1

u2

Nash Bargaining Solution
From Equality

1200

1200

(900,750)

(600,600)
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Nash Bargaining Solution

• Strongly pareto set gives Smith all 12 avocados.
• Nothing for Jones.

• Results in utility (u1,u2) = (0,600)

Jones Smith

100 50

0 50

Utility provided by one fruit of each kind
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u1

u2

1200

1200

(600,900)

(0,600)

Nash Bargaining Solution
From Strongly Pareto Set
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Axiomatic Justification

• Axiom 1 . Invariance under translation and rescaling.
• If we map ui � aiui + bi, di � aidi + bi, 

then bargaining solution ui* � aiui* + bi.

u1

u2

u* u*

u1

u2

d
d

This is cardinal noncomparability .
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Axiomatic Justification

• Axiom 1 . Invariance under translation and rescaling.
• If we map ui � aiui + bi, di � aidi + bi, 

then bargaining solution ui* � aiui* + bi.

u1

u2

u*

u1

u2

• Strong assumption – failed, e.g., by utilitarian welfare function

Utilitarian 
solution

d
d

Utilitarian 
solution
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Axiomatic Justification

• Axiom 2 . Pareto optimality.
• Bargaining solution is pareto optimal.

• Axiom 3.  Symmetry.   
• If all dis are equal and feasible set is symmetric, then all ui*s 

are equal in bargaining solution.

u1

u2

u*

d



150

Axiomatic Justification

• Axiom 4.  Independence of irrelevant alternatives.   
• Not the same as Arrow’s axiom.

• If u* is a solution with respect to d…

u1

u2

u*

d
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Axiomatic Justification

• Axiom 4.  Independence of irrelevant alternatives.   
• Not the same as Arrow’s axiom.

• If u* is a solution with respect to d, then it is a solution in a 
smaller feasible set that contains u* and d.

u1

u2

u*

d

u*
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Axiomatic Justification

• Axiom 4.  Independence of irrelevant alternatives.   
• Not the same as Arrow’s axiom.

• If u* is a solution with respect to d, then it is a solution in a 
smaller feasible set that contains u* and d.

• This basically says that the solution behaves like an optimum .

u1

u2

u*

d

u*
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Axiomatic Justification

Theorem.  Exactly one solution satisfies Axioms 1-4, 
namely the Nash bargaining solution.

Proof (2 dimensions).

First show that the Nash solution satisfies the axioms.

Axiom 1 .  Invariance under transformation.   If
∗ − ≥ −∏ ∏1 1( ) ( )i i

i i

u d u d

( ) ( )∗ + − + ≥ + − +∏ ∏( ) ( ) ( ) ( )i i i i i i i i i i i i
i i

au b ad b au b ad b

then
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Axiomatic Justification

Axiom 2 .  Pareto optimality.  Clear because social welfare function 
is strictly monotone increasing.

Axiom 3.  Symmetry.  Obvious.

Axiom 4.  Independence of irrelevant alternatives.  Follows from the 
fact that u* is an optimum.

Now show that only the Nash solution satisfies the 
axioms…
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Axiomatic Justification

Let u* be the Nash solution for a given problem.  Then it satisfies the 
axioms with respect to d.  Select a transformation that sends

(u1,u2) � (1,1),    (d1,d2) � (0,0)

The transformed problem has Nash solution (1,1), by Axiom 1:

u1

u2

(1,1)

d
d

u*
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Axiomatic Justification

Let u* be the Nash solution for a given problem.  Then it satisfies the 
axioms with respect to d.  Select a transformation that sends

(u1,u2) � (1,1),    (d1,d2) � (0,0)

The transformed problem has Nash solution (1,1), by Axiom 1:

By Axioms 2 & 3,
(1,1) is the only
bargaining solution 
in the triangle: 

u1

u2

(1,1)

d
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Axiomatic Justification

Let u* be the Nash solution for a given problem.  Then it satisfies the 
axioms with respect to d.  Select a transformation that sends

(u1,u2) � (1,1),    (d1,d2) � (0,0)

The transformed problem has Nash solution (1,1), by Axiom 1:

By Axioms 2 & 3,
(1,1) is the only
bargaining solution 
in the triangle: 

u1

u2

(1,1)

d

So by Axiom 4, 
(1,1) is the only
bargaining solution 
in blue set.  



158

Axiomatic Justification

Let u* be the Nash solution for a given problem.  Then it satisfies the 
axioms with respect to d.  Select a transformation that sends

(u1,u2) � (1,1),    (d1,d2) � (0,0)

The transformed problem has Nash solution (1,1), by Axiom 1:

u1

u2

(1,1)

d

So by Axiom 4, 
(1,1) is the only
bargaining solution 
in blue set.  

By Axiom 1, u* is 
the only bargaining 
solution in the 
original problem.

d

u*



159

Axiomatic Justification

• Problems with axiomatic justification.
• Axiom 1 (invariance under transformation) is very strong.

• Axiom 1 denies interpersonal comparability .

• So how can it reflect moral concerns?

u1

u2

u*

u1

u2

Utilitarian 
solution

Utilitarian 
solution



Axiomatic Justification

• Problems with axiomatic justification.
• Axiom 1 (invariance under transformation) is very strong.

• Axiom 1 denies interpersonal comparability .

• So how can it reflect moral concerns?

• Most attention has been focused on Axiom 4
(independence of irrelevant alternatives).
• Will address this later.
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Players 1 and 2 make offers s, t.

u1

u2

s

d

Bargaining Justification

t
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Players 1 and 2 make offers s, t.

Let  p = P(player 2 will reject s), as estimated by player 1.

u1

u2

s

d

Bargaining Justification

t
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Players 1 and 2 make offers s, t.

Let  p = P(player 2 will reject s), as estimated by player 1.

Then player 1 will stick with s, rather than make a counteroffer, if

u1

u2

s

d

Bargaining Justification

t

− + ≥1 1 1(1 )p s pd t

s1t1d1
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Players 1 and 2 make offers s, t.

Let  p = P(player 2 will reject s), as estimated by player 1.

Then player 1 will stick with s, rather than make a counteroffer, if

u1

u2

s

d

Bargaining Justification

t

− + ≥1 1 1(1 )p s pd t

s1t1d1

So player 1 will stick with s if
−≤ =
−

1 1
1

1 1

s t
p r

s d
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It is rational for player 1 to make a counteroffer s′, rather than player 2, if 

u1

u2

s

Bargaining Justification

t

− −= ≤ =
− −

1 1 2 2
1 2

1 1 2 2

s t t s
r r

s d t d

s1t1d1

So player 1 will stick with s if
−≤ =
−

1 1
1

1 1

s t
p r

s d
d2

s2

t2
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It is rational for player 1 to make a counteroffer s′, rather than player 2, if 

u1

u2

s

d

Bargaining Justification

t

− −= ≤ =
− −

1 1 2 2
1 2

1 1 2 2

s t t s
r r

s d t d

It is rational for player 2 to make the next 
counteroffer if

′ ′− −′ ′= ≥ =
′ − −
1 1 2 2

1 2
1 1 2 2

s t t s
r r

s d t ds′
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u1

u2

s

Bargaining Justification

t

− −= ≤ =
− −

1 1 2 2
1 2

1 1 2 2

s t t s
r r

s d t d

But

′ ′− −′ ′= ≥ =
′ − −
1 1 2 2

1 2
1 1 2 2

s t t s
r r

s d t ds′

− −≤
− −

1 1 2 2

1 1 2 2

s t t s
s d t d

s1t1d1

d2

s2

t2

It is rational for player 1 to make a counteroffer s′, rather than player 2, if 

It is rational for player 2 to make the next 
counteroffer if
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u1

u2

s

Bargaining Justification

t

− −= ≤ =
− −

1 1 2 2
1 2

1 1 2 2

s t t s
r r

s d t d

But

′ ′− −′ ′= ≥ =
′ − −
1 1 2 2

1 2
1 1 2 2

s t t s
r r

s d t ds′

− −≤
− −

1 1 2 2

1 1 2 2

s t t s
s d t d

− −≥
− −

1 1 2 2

1 1 2 2

t d s d
s d t d

s1t1d1

d2

s2

t2

It is rational for player 1 to make a counteroffer s′, rather than player 2, if 

It is rational for player 2 to make the next 
counteroffer if
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So we have

u1

u2

s

Bargaining Justification

t

s′

s1t1d1

d2

s2

t2

− − ≤ − −1 1 2 2 1 1 2 2( )( ) ( )( )s d s d t d t d

But

′ ′− −′ ′= ≥ =
′ − −
1 1 2 2

1 2
1 1 2 2

s t t s
r r

s d t d

− −≤
− −

1 1 2 2

1 1 2 2

s t t s
s d t d

− −≥
− −

1 1 2 2

1 1 2 2

t d s d
s d t d

It is rational for player 2 to make the next 
counteroffer if
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So we have

u1

u2

s

Bargaining Justification

t

Similarly

s′

s1′t1d1

d2

s2′

t2

− − ≤ − −1 1 2 2 1 1 2 2( )( ) ( )( )s d s d t d t d

′ ′− −≥
′ − −
1 1 2 2

1 1 2 2

s t t s
s d t d

It is rational for player 2 to make the next 
counteroffer if

′ ′− −′ ′= ≥ =
′ − −
1 1 2 2

1 2
1 1 2 2

s t t s
r r

s d t d
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So we have

u1

u2

s

Bargaining Justification

t

Similarly

s′

′− −≤
′ − −

1 1 2 2

1 1 2 2

t d s d
s d t d

s1′t1d1

d2

s2′

t2

− − ≤ − −1 1 2 2 1 1 2 2( )( ) ( )( )s d s d t d t d

′ ′− −≥
′ − −
1 1 2 2

1 1 2 2

s t t s
s d t d

It is rational for player 2 to make the next 
counteroffer if

′ ′− −′ ′= ≥ =
′ − −
1 1 2 2

1 2
1 1 2 2

s t t s
r r

s d t d
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So we have

u1

u2

s

Bargaining Justification

t

s′

s1′t1d1

d2

s2′

t2

− − ≤ − −1 1 2 2 1 1 2 2( )( ) ( )( )s d s d t d t d

and we have ′ ′− − ≤ − −1 1 2 2 1 1 2 2( )( ) ( )( )t d t d s d s d

Similarly

′− −≤
′ − −

1 1 2 2

1 1 2 2

t d s d
s d t d

′ ′− −≥
′ − −
1 1 2 2

1 1 2 2

s t t s
s d t d
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So we have

u2

s

Bargaining Justification

t

s′

≤ − −− − 1 1 21 2 21 2 ( )(( ) ))(s t ts d dd d

and we have ′ ′− − −≤ −1 11 2 22 21 ( )(( )( ) )t d t d s d s d

d

This implies an improvement in the 
Nash social welfare function
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So we have

u2

s

Bargaining Justification

t

s′

≤ − −− − 1 1 21 2 21 2 ( )(( ) ))(s t ts d dd d

and we have ′ ′− − −≤ −1 11 2 22 21 ( )(( )( ) )t d t d s d s d

d

This implies an improvement in the 
Nash social welfare function.

Given a minimum distance between 
offers, continued bargaining 
converges to Nash solution.
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Raiffa-Kalai-Smorodinsky 
Bargaining Solution

• This approach begins with a critique of the Nash 
bargaining solution.

u1

u2

d

u*

Nash solution

“Ideal” solution

Feasible set
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Raiffa-Kalai-Smorodinsky Bargaining Solution

• This approach begins with a critique of the Nash 
bargaining solution.
• The new Nash solution is worse for player 2 even though the 

feasible set is larger.

u1

u2

Larger 
feasible set

New Nash solution

d
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Raiffa-Kalai-Smorodinsky Bargaining Solution

• Proposal :  Bargaining solution is pareto optimal point 
on line from d to ideal solution.

u1

u2

Larger 
feasible set

“Ideal” solution

d
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Raiffa-Kalai-Smorodinsky Bargaining Solution

• Proposal :  Bargaining solution is pareto optimal point 
on line from d to ideal solution.
• The players receive an equal fraction of their possible utility 

gains.

u1

u2 “Ideal” solution

u*
∗

∗

− −=
− −

1 1 1 1

2 2 2 2

u d g d
u d g d

g

d

Feasible set
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Raiffa-Kalai-Smorodinsky Bargaining Solution

• Proposal :  Bargaining solution is pareto optimal point 
on line from d to ideal solution.
• Replace Axiom 4 with Axiom 4 ′′′′ (Monotonicity) : A larger 

feasible set with same ideal solution results in a bargaining 
solution that is better (or no worse) for all players.

u1

u2

Larger 
feasible set

“Ideal” solution

∗

∗

− −=
− −

1 1 1 1

2 2 2 2

u d g d
u d g d

g

d

u*



− − = − −
∈

∑

1 1 1 1

max

( )( ) ( )( ),   all 

i
i

i i i i

u

g d u d g d u d i

u S
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Raiffa-Kalai-Smorodinsky Bargaining Solution

• Optimization model .
• Not an optimization problem over original feasible set (we 

gave up Axiom 4).

• But it is an optimization problem (pareto optimality) over the 
line segment from d to ideal solution.

∗

∗

− −=
− −

1 1 1 1

2 2 2 2

u d g d
u d g d
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Raiffa-Kalai-Smorodinsky Bargaining Solution

• Optimization model .
• Not an optimization problem over original feasible set (we 

gave up Axiom 4).

• But it is an optimization problem (pareto optimality) over the 
line segment from d to ideal solution.

− − = − −
∈

∑

1 1 1 1

max

( )( ) ( )( ),   all 

i
i

i i i i

u

g d u d g d u d i

u S

constants



182

Raiffa-Kalai-Smorodinsky Bargaining Solution

• Optimization model .
• Not an optimization problem over original feasible set (we 

gave up Axiom 4).

• But it is an optimization problem (pareto optimality) over the 
line segment from d to ideal solution.

− − = − −
∈

∑

1 1 1 1

max

( )( ) ( )( ),   all 

i
i

i i i i

u

g d u d g d u d i

u S

constants

Linear constraint
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u1

u2

Raiffa-Kalai-Smorodinsky Bargaining Solution
From Zero

1200

1200

(800,800)

(0,0)
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u1

u2

1200

1200

(900,750)

(600,600)

Raiffa-Kalai-Smorodinsky Bargaining Solution
From Equality
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u1

u2

1200

1200

(600,900)

(0,600)

Raiffa-Kalai-Smorodinsky Bargaining Solution
From Strong Pareto Set
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Axiomatic Justification

• Axiom 1 .  Invariance under transformation.
• Axiom 2.  Pareto optimality.
• Axiom 3.  Symmetry.
• Axiom 4 ′′′′.  Monotonicity.
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Axiomatic Justification

Theorem.  Exactly one solution satisfies Axioms 1-4′, 
namely the RKS bargaining solution.

Proof (2 dimensions).

Easy to show that RKS solution satisfies the axioms.

Now show that only the RKS solution satisfies the axioms.
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Axiomatic Justification

Let u* be the RKS solution for a given problem.  Then it satisfies the 
axioms with respect to d.  Select a transformation that sends

(g1,g2) � (1,1),    (d1,d2) � (0,0)

The transformed problem has RKS solution u′, by Axiom 1:

u1

u2

(1,1)

d

d

u*

g

u′
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Axiomatic Justification

Let u* be the RKS solution for a given problem.  Then it satisfies the 
axioms with respect to d.  Select a transformation that sends

(g1,g2) � (1,1),    (d1,d2) � (0,0)

The transformed problem has RKS solution u′, by Axiom 1:

By Axioms 2 & 3,
u′ is the only
bargaining solution 
in the red polygon: 

u1

u2

(1,1)

d

u′
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Axiomatic Justification

Let u* be the RKS solution for a given problem.  Then it satisfies the 
axioms with respect to d.  Select a transformation that sends

(g1,g2) � (1,1),    (d1,d2) � (0,0)

The transformed problem has RKS solution u′, by Axiom 1:

By Axioms 2 & 3,
u′ is the only
bargaining solution 
in the red polygon: 

The red polygon 
lies inside blue set.  
So by Axiom 4′, its 
bargaining solution 
is no better than 
bargaining solution 
on blue set.  
So u′ is the only 
bargaining solution 
on blue set.u1

u2

(1,1)

d

u′
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Axiomatic Justification

Let u* be the RKS solution for a given problem.  Then it satisfies the 
axioms with respect to d.  Select a transformation that sends

(g1,g2) � (1,1),    (d1,d2) � (0,0)

The transformed problem has RKS solution u′, by Axiom 1:

By Axiom 1, u* is 
the only bargaining 
solution in the 
original problem.

g

u*

u1

u2

(1,1)

d

u′
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Axiomatic Justification

• Problems with axiomatic justification.
• Axiom 1 is still in effect.

• It denies interpersonal comparability .

• Dropping Axiom 4 sacrifices optimization of a social welfare 
function.

• This may not be necessary if Axiom 1 is rejected.

• Needs modification for > 2 players (more on this shortly).
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Resistance to an agreement s depends on sacrifice relative to 
sacrifice under no agreement.  Here, player 2 is making a larger 
relative sacrifice:

s

Bargaining Justification

− −≤
− −

1 1 2 2

1 1 2 2

g s g s
g d g d

s1 g1d1

Minimizing resistance to 
agreement requires 
minimizing 

 −
 − 

max i i

i
i i

g s
g d

d2

s2

g2
g
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Resistance to an agreement s depends on sacrifice relative to 
sacrifice under no agreement.  Here, player 2 is making a larger 
relative sacrifice:

s

Bargaining Justification

− −≤
− −

1 1 2 2

1 1 2 2

g s g s
g d g d

s1 g1d1

Minimizing resistance to 
agreement requires 
minimizing 

 −
 − 

max i i

i
i i

g s
g d

d2

s2

g2
g

or equivalently, maximizing

min i i

i
i i

s d
g d

 −
 − 
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Resistance to an agreement s depends on sacrifice relative to 
sacrifice under no agreement.  Here, player 2 is making a larger 
relative sacrifice:

s

Bargaining Justification

− −≤
− −

1 1 2 2

1 1 2 2

g s g s
g d g d

s1 g1d1

Minimizing resistance to 
agreement requires 
minimizing 

 −
 − 

max i i

i
i i

g s
g d

d2

s2

g2
g

or equivalently, maximizing

min i i

i
i i

s d
g d

 −
 − 

which is achieved by RKS 
point.
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This is the Rawlsian social contract argument applied to gains 
relative to the ideal .

s

Bargaining Justification

s1 g1d1

Minimizing resistance to 
agreement requires 
minimizing 

 −
 − 

max i i

i
i i

g s
g d

d2

s2

g2
g

or equivalently, maximizing

which is achieved by RKS 
point.

min i i

i
i i

s d
g d

 −
 − 
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Problem with KLS Solutioon

• However, the RKS solution is Rawlsian only for 
2 players .
• In fact, RKS leads to counterintuitive results for 3 players.

g

d

Red triangle is 
feasible set.

RKS point is d !
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Problem with KLS Solutioon

• However, the RKS solution is Rawlsian only for 
2 players .
• In fact, KLS leads to counterintuitive results for 3 players.

g

d

Red triangle is 
feasible set.

RKS point is d !

Rawlsian point is u.

u
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u1

u2

Summary

1200

1200

(0,0)

(600,600)(0,600)

Rawlsian

Utilitarian
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u1

u2

Summary

1200

1200

(0,0)

(600,600)(0,600)

Nash bargaining

Rawlsian

Utilitarian
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u1

u2

Summary

1200

1200

(0,0)

(600,600)(0,600)

Nash bargaining

Raiffa-Kalai-Smorodinsky bargaining

Rawlsian

Utilitarian
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Mixed Integer Linear Modeling

• MILP modeling is basically disjunctive modeling .

• A problem has an MILP model if and only if it represents 
a union of polyhedra with the same recession cone.

• One can always write an MILP model by expressing the 
problem as a disjunction of linear systems that 
describe polyhedra with the same recession cone.

• In fact, one can write a convex hull (sharp) MILP model 
in this fashion.



A disjunction of linear systems 
represents a union of polyhedra. ( )

min
k k

k

cx

A x b≥∨

Disjunctions of linear systems



A disjunction of linear systems 
represents a union of polyhedra.

We want a model with a convex 
hull relaxation (tightest linear 
relaxation).

( )
min

k k

k

cx

A x b≥∨

Disjunction of linear systems



Disjunction of linear systems

The closure of the convex hull of

( )
min

k k

k

cx

A x b≥∨

min

, all 

1

0 1

k k k
k

k
k

k

k

k

cx

A x b y k

y

x x

y

≥
=

=

≤ ≤

∑

∑

…is described by



Why?

Convex hull relaxation
(tightest linear relaxation)

To derive convex hull 
relaxation of a disjunction…

min

, all 

1

0 1

k k k

k
k

k
k

k

k

cx

A x b k

y

x y x

y

≥
=

=

≤ ≤

∑

∑

Write each 
solution as a 
convex 
combination 
of points in 
the 
polyhedron

x
1x

2x



Why?

Convex hull relaxation
(tightest linear relaxation)

min

, all 

1

0 1

k k k
k

k
k

k

k

k

cx

A x b y k

y

x x

y

≥
=

=

≤ ≤

∑

∑

To derive convex hull 
relaxation of a disjunction…

min

, all 

1

0 1

k k k

k
k

k
k

k

k

cx

A x b k

y

x y x

y

≥
=

=

≤ ≤

∑

∑

Write each 
solution as a 
convex 
combination 
of points in 
the 
polyhedron

x
1x

2x

Change of 
variable

k
kx y x=



MILP Representability

A subset S of    is MILP representable if it is the projection onto x
of some MILP constraint set of the form

{ }

+ + ≥
≥

∈ ∈ ∈R R

, 0

, , 0,1n m
k

Ax Bu Dy b

x y

x u y

R
n



MILP Representability

A subset S of    is MILP representable if it is the projection onto x
of some MILP constraint set of the form

{ }

+ + ≥
≥

∈ ∈ ∈R R

, 0

, , 0,1n m
k

Ax Bu Dy b

x y

x u y

R
n

Theorem.  S ⊂ is MILP 
representable if and only if 
S is the union of finitely 
many polyhedra having the 
same recession cone.

n
R

Polyhedron

Recession cone 
of polyhedron



Example: Fixed charge function

Minimize a fixed charge function:

x1

x2

2

1
2

1 1

1

min

0 if 0

if 0

0

x

x
x

f cx x

x

= ≥  + > 

≥



Example

Minimize a fixed charge function: 2

1
2

1 1

1

min

0 if 0

if 0

0

x

x
x

f cx x

x

= ≥  + > 

≥

x1

x2

Feasible set

x1



Example

Minimize a fixed charge function: 2

1
2

1 1

1

min

0 if 0

if 0

0

x

x
x

f cx x

x

= ≥  + > 

≥

x1

x2

Union of two 
polyhedra
P1, P2

P1
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Minimize a fixed charge function: 2

1
2

1 1

1

min

0 if 0

if 0

0

x

x
x

f cx x

x

= ≥  + > 

≥

x1

x2

Union of two 
polyhedra
P1, P2

P1

P2



Example

Minimize a fixed charge function: 2

1
2

1 1

1

min

0 if 0

if 0

0

x

x
x

f cx x

x

= ≥  + > 

≥

x1

x2

The 
polyhedra 
have 
different 
recession 
cones.

P1

P1

recession
cone

P2

P2

recession
cone
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Minimize a fixed charge function:

Add an upper bound on x1

2

1
2

1 1

1

min

0 if 0

if

0

 0

x

x
x

f cx x

x M

=

≤

≥  + >

≤


x1

x2

The 
polyhedra 
have the 
same 
recession 
cone.

P1

P1

recession
cone

P2

P2

recession
coneM



Modeling a union of polyhedra

Start with a disjunction of linear 
systems to represent the union 
of polyhedra.

The kth polyhedron is {x | Akx ≥ b}

( )
min

k k

k

cx

A x b≥∨

Introduce a 0-1 variable  yk that is 
1 when x is in polyhedron k.

Disaggregate x to create an xk for 
each k.  

{ }

min

, all 

1

0,1

k k k
k

k
k

k

k

k

cx

A x b y k

y

x x

y

≥
=

=

∈

∑

∑



Example

Start with a disjunction of 
linear systems to represent 
the union of polyhedra

2

1 1

2 2 1

min

0 0

0

x

x x M

x x f cx

= ≤ ≤   ∨   ≥ ≥ +   

x1

x2

P1

P2

M



Example

Start with a disjunction of 
linear systems to represent 
the union of polyhedra

2

1 1

2 2 1

min

0 0

0

x

x x M

x x f cx

= ≤ ≤   ∨   ≥ ≥ +   

{ }

1 1
1 2

2 2 2
1 2 1 2 2

1 2
1 2

min

0,  0

0 ,   

1,  0,1k

cx

x x

x My cx x fy

y y y

x x x

= ≥
≤ ≤ − + ≥
+ = ∈
= +

Introduce a 0-1 variable  yk
that is 1 when x is in 
polyhedron k.

Disaggregate x to create an 
xk for each k.  



Example

To simplify:

Replace x1
2 with x1.

Replace x2
2 with x2.

Replace y2 with y. { }

2
1 1
1 2

2 2 2
1 2 1 2 2

1 2
1 2

min

0,  0

0 ,   

1,  0,1k

x

x x

x My cx x fy

y y y

x x x

= ≥
≤ ≤ − + ≥
+ = ∈
= +

This yields

{ }

2

1

2 1

min

0

0,1

x

x My

x fy cx

y

≤ ≤
≥ +

∈
{ }

min

0

0,1

fy cx

x My

y

+
≤ ≤
∈

or

“Big M ”
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Combining Equity and Efficiency

• Utilitarian and Rawlsian distributions seem too extreme 
in practice.
− How to combine them?
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Combining Equity and Efficiency

• Utilitarian and Rawlsian distributions seem too extreme 
in practice.
− How to combine them?

• One proposal:
– Maximize welfare of worst off (Rawlsian)...

– …until this requires undue sacrifice from others

– Seems appropriate in health care allocation.



222

Combining Equity and Efficiency

• In particular:

– Switch from Rawlsian to utilitarian when inequality exceeds ∆.
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Combining Equity and Efficiency

• In particular:

– Switch from Rawlsian to utilitarian when inequality exceeds ∆.

– Build mixed integer programming model.

– Let ui = utility allocated to person i

• For 2 persons:

– Maximize  mini {u1, u2}   (Rawlsian) when  |u1 − u2| ≤ ∆
– Maximize u1 + u2 (utilitarian) when |u1 − u2| > ∆
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u1

u2

∆

∆

Two-person Model

Contours of social 
welfare function for 
2 persons.
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u1

u2

∆

∆

Two-person Model

Contours of social 
welfare function for 
2 persons.

Rawlsian region

{ }1 2
min ,u u
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u1

u2

∆

∆

Two-person Model

Contours of social 
welfare function for 
2 persons.

Utilitarian region

Rawlsian region

1 2
u u+

{ }1 2
min ,u u
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u1

u2

∆

∆

Feasible set

Person 1 is harder 
to treat.

But maximizing 
person 1’s health 
requires too much 
sacrifice from 
person 2.

Optimal 
allocation

Suboptimal
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Advantages

• Only one parameter ∆
– Focus for debate.

– ∆ has intuitive meaning (unlike weights) 

– Examine consequences of different settings for ∆
– Find least objectionable setting

– Results in a consistent policy
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u1

u2

∆

∆

Social Welfare Function

We want continuous 
contours…



230

u1

u2

∆

∆

Social Welfare Function

We want continuous 
contours…

1 2
u u+

{ }1 2
2min ,u u + ∆

So we use affine 
transform of Rawlsian 
criterion
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Social Welfare Function

The social welfare problem becomes

{ }1 2 1 2

1 2

max

2min , , if  

,                     otherwise

constraints on feasible set

z

u u u u
z

u u

 + ∆ − ≤ ∆
≤  + 
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u1

u2

u1

u2

MILP Model
Epigraph is union of 2 polyhedra.
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u1

u2

u1

u2

MILP Model
Epigraph is union of 2 polyhedra.
Because they have different recession cones , there is no MILP model.

(0,1,0)
(1,1,2)

(1,0,0)

Recession
directions
(u1,u2,z)

(0,1,1)

(1,0,1)
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u1

u2

∆

∆

M

M

MILP Model
Impose constraints  |u1 − u2| ≤ M
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u1

u2

u1

u2

MILP Model
This equalizes recession cones.

(1,1,2) (1,1,2)Recession
directions
(u1,u2,z)
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u1

MILP Model

We have the model…

1 2

1 2 2 1

1 2

max

2 ( ) , 1,2

(1 )

,

, 0

{0,1}

constraints on feasible set

i

z

z u M i

z u u

u u M u u M

u u

δ
δ

δ

≤ + ∆ + − ∆ =
≤ + + ∆ −
− ≤ − ≤

≥
∈
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u1

MILP Model

We have the model…

1 2

1 2 2 1

1 2

max

2 ( ) , 1,2

(1 )

,

, 0

{0,1}

constraints on feasible set

i

z

z u M i

z u u

u u M u u M

u u

δ
δ

δ

≤ + ∆ + − ∆ =
≤ + + ∆ −
− ≤ − ≤

≥
∈

This is a convex hull formulation.
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n-person Model

Rewrite the 2-person social welfare function as…

( ) ( )min 1 min 2 min
2u u u u u

+ +∆ + + − − ∆ + − − ∆

{ }1 2
min ,u u { }max 0,α α+ =
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n-person Model

Rewrite the 2-person social welfare function as…

( ) ( )min 1 min 2 min
2u u u u u

+ +∆ + + − − ∆ + − − ∆

{ }1 2
min ,u u { }max 0,α α+ =

This can be generalized to n persons:

( )min min

1

( 1)
n

j

j

n nu u u
+

=

− ∆ + + − − ∆∑
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n-person Model

Rewrite the 2-person social welfare function as…

Epigraph is a union of n! polyhedra with same recession direction 
(u,z) = (1,…,1,n) if we require |ui − uj| ≤ M

So there is an MILP model…

( ) ( )min 1 min 2 min
2u u u u u

+ +∆ + + − − ∆ + − − ∆

{ }1 2
min ,u u { }max 0,α α+ =

This can be generalized to n persons:

( )min min

1

( 1)
n

j

j

n nu u u
+

=

− ∆ + + − − ∆∑
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n-person MILP Model

To avoid n! 0-1 variables, add auxiliary variables wij

max

,  all 

( ),   all ,  with 

(1 ) ,   all ,  with 

,  all ,   

0,  all 

{0,1},   all ,  with 

i ij

j i

ij i ij

ij j ij

i j

i

ij

z

z u w i

w u M i j i j

w u i j i j

u u M i j

u i

i j i j

δ
δ

δ

≠
≤ +

≤ ∆ + + − ∆ ≠
≤ + − ∆ ≠

− ≤
≥
∈ ≠

∑
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u1

n-person MILP Model

To avoid n! 0-1 variables, add auxiliary variables wij

max

,  all 

( ),   all ,  with 

(1 ) ,   all ,  with 

,  all ,   

0,  all 

{0,1},   all ,  with 

i ij

j i

ij i ij

ij j ij

i j

i

ij

z

z u w i

w u M i j i j

w u i j i j

u u M i j

u i

i j i j

δ
δ

δ

≠
≤ +

≤ ∆ + + − ∆ ≠
≤ + − ∆ ≠

− ≤
≥
∈ ≠

∑

Theorem.  The model is correct (not easy to prove).
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u1

n-person MILP Model

To avoid n! 0-1 variables, add auxiliary variables wij

max

,  all 

( ),   all ,  with 

(1 ) ,   all ,  with 

,  all ,   

0,  all 

{0,1},   all ,  with 

i ij

j i

ij i ij

ij j ij

i j

i

ij

z

z u w i

w u M i j i j

w u i j i j

u u M i j

u i

i j i j

δ
δ

δ

≠
≤ +

≤ ∆ + + − ∆ ≠
≤ + − ∆ ≠

− ≤
≥
∈ ≠

∑

Theorem.  The model is correct (not easy to prove).

Theorem.  This is a convex hull formulation (not easy to prove).
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n-group Model

In practice, funds may be allocated to groups of different sizes

For example, disease/treatment categories.

Let       = average utility gained by a person in group i

= size of group i

iu

in
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∆

∆

M

M

n-group Model
2-person case with n1 < n2.  Contours have slope − n1/n2

1u

2u
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u1

n-group MILP Model

Again add auxiliary variables wij

δ
δ

δ

≠
≤ − ∆ + +

≤ + ∆ + − ∆ ≠
≤ + − ∆ ≠

− ≤
≥
∈ ≠

∑
max

( 1) ,  all 

( ) ( ),   all ,  with 

(1 ) ,   all ,  with 

,  all ,   

0,  all 

{0,1},   all ,  with 

i i i ij

j i

ij j i ij j

ij j ij j

i j

i

ij

z

z n nu w i

w n u n M i j i j

w u n i j i j

u u M i j

u i

i j i j

Theorem.  The model is correct.

Theorem.  This is a convex hull formulation.
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u1

Health Example

Measure utility in QALYs (quality-adjusted life years).

QALY and cost data based on Briggs & Gray, (2000) etc.

Each group is a disease/treatment pair.

Treatments are discrete, so group funding is all-or-nothing.

Divide groups into relatively homogeneous subgroups.
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u1

Health Example

Add constraints to define feasible set…

δ
δ

δ
α

≠

≤ − ∆ + +

≤ + ∆ + − ∆ ≠
≤ + − ∆ ≠

− ≤
≥
∈ ≠
= +

≤

∈

∑

∑

max

( 1) ,  all 

( ) ( ),   all ,  with 

(1 ) ,   all ,  with 

,  all ,   

0,  all 

{0,1},   all ,  with 

 budget

{0

i i i ij

j i

ij j i ij j

ij j ij j

i j

i

ij

i i i i

i i i

i

i

z

z n nu w i

w n u n M i j i j

w u n i j i j

u u M i j

u i

i j i j

u q y

n c y

y ,1},   all i

yi indicates 
whether 
group i is 
funded
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QALY 
& cost 
data

Part 1



250

QALY 
& cost 
data

Part 2
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Results

Total budget £3 million



252

Results

Utilitarian solution
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Results

Rawlsian solution
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Results

Fund for all ∆
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Results
More dialysis with
larger ∆, beginning 
with longer life span
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Results

Abrupt change at ∆ = 5.60



257

Results

Come and go together
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Results

In-out-in
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Results

Most rapid change.  Possible range for 
politically acceptable compromise
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Results

32 groups, 1089 integer variables
Solution time (CPLEX 12.2) is < 0.5 sec for each ∆
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Solution time vs. ∆∆∆∆

No. of 
groups

∆ = ∞



262

Future Work

• Generalize Rawlsian criterion to lexmax.

• Find principled justification for choice of ∆.


