Modeling Equity in AI and Optimization

John Hooker
Carnegie Mellon University

INFORMS Pittsburgh February 2022

- A growing interest in incorporating equity into models...
 - Health care resources.
 - Facility location (e.g., emergency services, infrastructure).
 - Telecommunications.
 - Traffic signal timing
 - Disaster recovery (e.g., power restoration)...

- Example: disaster relief
 - Power restoration can focus on urban areas first (efficiency).
 - This can leave rural areas without power for weeks/months.
 - This happened in Puerto Rico after Hurricane Maria (2017).
- A more equitable solution
 - ...would give some priority to rural areas without overly sacrificing efficiency.

- It is far from obvious how to formulate equity concerns mathematically.
 - Less straightforward than maximizing total benefit or minimizing total cost.
 - Still less obvious how to combine equity with total benefit.

- There is no one concept of equity or fairness.
 - The appropriate concept depends on the application.
- We therefore survey a range of formulations.
 - Describe their mathematical properties.
 - Indicate their strengths and weaknesses.
 - State what appears to be the most practical model.
 - So that one can select the formulation that best suits a given application.
- Also a brief excursion into social choice theory.

References

- A more comprehensive tutorial (presented at CP 2021) is here: https://cp2021.lirmm.fr/submissions/2001
- References may be found in

V. Chen & J. N. Hooker, <u>A guide to formulating equity and fairness in an optimization model</u>, submitted, 2021.

Criterion	P-D?	C-M?	Linear?	Discrete?
Relative range	yes	yes	yes	no
Relative mean deviation	yes	yes	yes	no
Coefficient of variation	yes	yes	no	no
Gini coefficient	yes	yes	yes	no
Hoover index	yes	yes	yes	no

Fairness for the disadvantaged

Criterion	P-D?	C-M?	Linear?	Discrete?
Maximin (Rawlsian)	yes	yes	yes	no
Leximax (lexicographic)	yes	yes	yes	no
McLoone index	no	yes	yes	yes

P-D = Pigou-DaltonC-M = Chateauneuf-Moyes

Linear = all constraints linear *Discrete* = some variables discrete

Combining efficiency & fairness Convex combinations

Criterion	P-D?	C-M?	Linear?	Discrete?
Utility + Gini coefficient	yes	yes	no	no
Utility * Gini coefficient	yes	yes	yes	no
Utility + maximin	yes	yes	yes	no

Combining efficiency & fairness Classical methods

Criterion	P-D?	C-M?	Linear?	Discrete?
Alpha fairness	yes	yes	yes	no
Proportional fairness (Nash bargaining)	yes	yes	yes	no
Kalai-Smorodinsky bargaining	yes	yes	no	no

Combining efficiency & fairness Threshold methods

Criterion	P-D?	C-M?	Linear?	Discrete?
Utility + maximin – Utility threshold	no	yes	yes	yes
Utility + maximin – Equity threshold	yes	yes	yes	no
Utility + leximax – Predefined priorities	no	no	yes	yes
Utility + leximax - No predefined priorities	no	yes	yes	yes

Statistical fairness metrics

Criterion	P-D?	C-M?	Linear?	Discrete?
Demographic parity			yes	no
Equalized odds			yes	no
Accuracy parity			yes	no
Predictive rate parity			no	yes

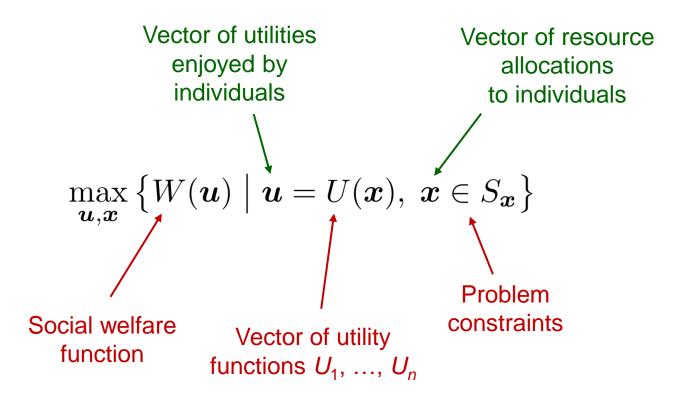
P-D = Pigou-Dalton
 C-M = Chateauneuf-Moyes
 Linear = all constraints linear
 Discrete = some variables discrete

 We formulate each fairness criterion as a social welfare function (SWF).

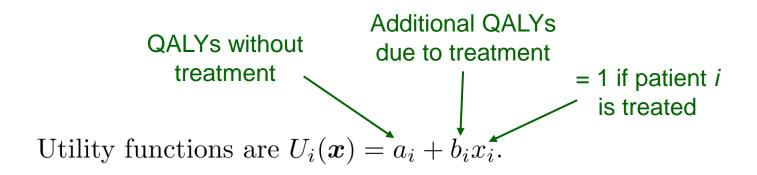
$$W(\boldsymbol{u}) = W(u_1, \ldots, u_n)$$

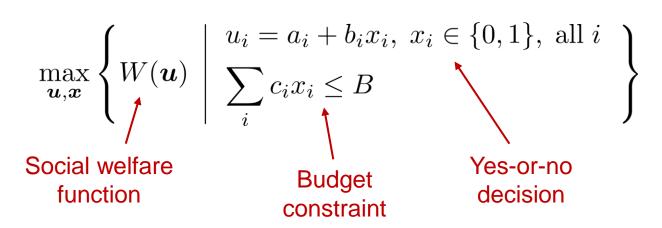
- Measures desirability of the magnitude and distribution of utilities across individuals.
- Utility can be wealth, health, negative cost, etc.
- The SWF becomes the objective function of the optimization model.

The social welfare optimization problem



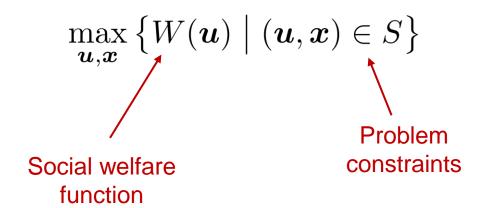
Example – *Medical triage*





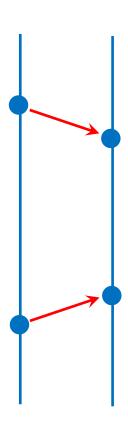
The social welfare optimization problem

Incorporate $\boldsymbol{u} = U(\boldsymbol{x})$ into problem constraints.



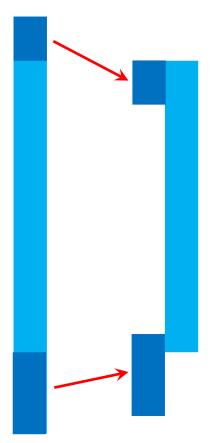
Pigou-Dalton Condition

- The Pigou-Dalton condition checks whether a SWF reflects equality.
 - A utility transfer from a better-off individual to a worse-off individual never decreases social welfare.
 - Problem: such a transfer can increase inequality with respect to some other individuals.



Chateauneuf-Moyes Condition

- Addresses weakness of Pigou-Dalton condition.
 - A utility transfer from top of distribution to bottom of distribution never decreases social welfare.
 - Loss/gain due to transfer is distributed equally in each class.



Chateauneuf & Moyes 2006

Criterion	P-D?	C-M?	Linear?	Discrete?
Relative range	yes	yes	yes	no
Relative mean deviation	yes	yes	yes	no
Coefficient of variation	yes	yes	no	no
Gini coefficient	yes	yes	yes	no
Hoover index	yes	yes	yes	no

Equality vs fairness

Two views on ethical importance of equality:

Parfit 1997

Irreducible: Inequality is inherently unfair.

Scanlon 2003

Reducible: Inequality is unfair only insofar as it reduces utility.

Frankfurt 2015

Possible problems with inequality measures:

- No preference for an identical distribution with higher utility.
- Even when average utility is fixed, no preference for reducing inequality at the **bottom** rather than the **top** of the distribution.

Equality vs fairness

We can perhaps agree on this much:

- Equality is not the same concept as fairness, even when it is closely related.
- An inequality metric can be appropriate when a specifically egalitarian distribution is the goal, without regard to efficiency and other forms of equity.

Relative range

$$W(\boldsymbol{u}) = -\frac{u_{\text{max}} - u_{\text{min}}}{\bar{u}}$$

Rationale:

- Perceived inequality is relative to the best off.
- So, move everyone closer to the best off.

Problem:

Ignores distribution between extremes.

Relative range

 Problem is linearized using same change of variable as in linear-fractional programming.

Let u = u'/t and x = x'/t. The optimization problem is

$$\min_{\substack{\boldsymbol{x}',\boldsymbol{u}',t\\u'_{\min},u'_{\max}}} \left\{ u'_{\max} - u'_{\min} \mid u'_{\min} \leq u'_{i} \leq u'_{\max}, \text{ all } i\\ \bar{u}' = 1, \ t \geq 0, \ (\boldsymbol{u}',\boldsymbol{x}') \in S' \right\}$$

where t, u'_{\min}, u'_{\max} are new variables.

Charnes & Cooper 1962

Relative range

Model:

$$\min_{\substack{\boldsymbol{x}',\boldsymbol{u}',t\\u'_{\min},u'_{\max}}} \left\{ u'_{\max} - u'_{\min} \mid u'_{\min} \leq u'_{i} \leq u'_{\max}, \text{ all } i\\ \bar{u}' = 1, \ t \geq 0, \ (\boldsymbol{u}',\boldsymbol{x}') \in S' \right\}$$

The difficulty of constraints $(\boldsymbol{u}', \boldsymbol{x}') \in S'$ depends on nature of S.

If S is linear $A\mathbf{u} + B\mathbf{x} \leq \mathbf{b}$, it remains linear: $A\mathbf{u}' + B\mathbf{x}' \leq t\mathbf{b}$.

If S is $g(u, x) \leq b$ for homogeneous g, it retains almost the same form: $g(u', x') \leq tb$.

Linearity assumption

- From here out, we assume constraints $(u, x) \in S$ are linear when we describe the form of the optimization problem.
- This covers a wide variety of constraints.
- Convex feasible set can be approximated by piecewise linear constraints.

Relative mean deviation

$$W(\boldsymbol{u}) = -\frac{1}{\bar{u}} \sum_{i} |u_i - \bar{u}|$$

Rationale:

Considers all utilities.

Model:

Again, linearized by change of variable.

$$\min_{\boldsymbol{x}',\boldsymbol{u}',\boldsymbol{v},t} \left\{ \sum_{i} v_{i} \mid \begin{array}{l} -v_{i} \leq u'_{i} - \bar{u}' \leq v_{i}, \text{ all } i \\ \bar{u}' = 1, \ t \geq 0, \ (\boldsymbol{u}',\boldsymbol{x}') \in S' \end{array} \right\}$$

where \boldsymbol{v} is vector of new variables.

Coefficient of variation

$$W(\boldsymbol{u}) = -\frac{1}{\bar{u}} \left[\frac{1}{n} \sum_{i} (u_i - \bar{u})^2 \right]^{\frac{1}{2}}$$

Rationale:

Familiar. Outliers receive extra weight.

Problem:

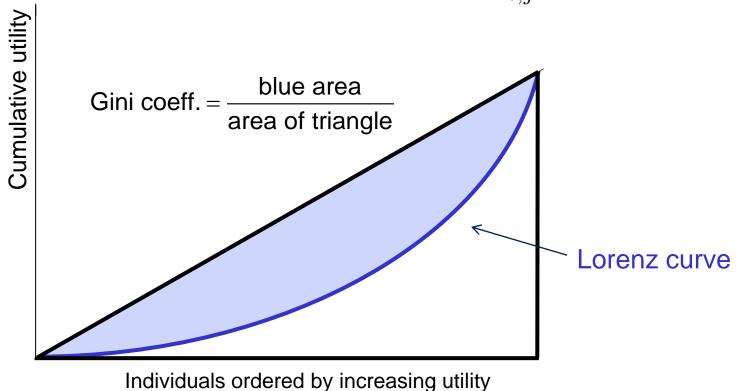
Nonlinear (but convex)

Model:

$$\min_{\boldsymbol{x}',\boldsymbol{u}',\boldsymbol{v},t} \left\{ \frac{1}{n} \sum_{i} (u'_{i} - \bar{u}')^{2} \mid \bar{u}' = 1, \ t \geq 0 \\ (\boldsymbol{u}',\boldsymbol{x}') \in S' \right\}$$

Gini coefficient

$$W(\boldsymbol{u}) = -G(\boldsymbol{u}), \text{ where } G(\boldsymbol{u}) = \frac{1}{2\bar{u}n^2} \sum_{i,j} |u_i - u_j|$$



Gini coefficient

$$W(\boldsymbol{u}) = -G(\boldsymbol{u}), \text{ where } G(\boldsymbol{u}) = \frac{1}{2\bar{u}n^2} \sum_{i,j} |u_i - u_j|$$

Rationale:

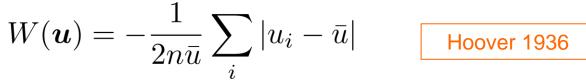
- Relationship to Lorenz curve.
- Widely used.

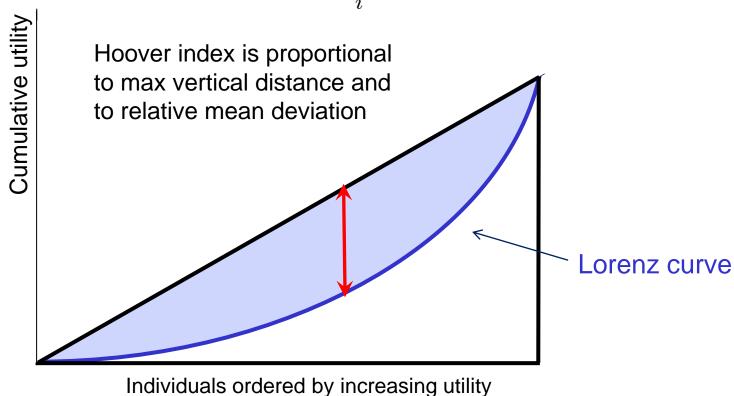
Model:

• Linear: $\min_{\boldsymbol{x}', \boldsymbol{u}', V, t} \left\{ \frac{1}{2n^2} \sum_{i,j} v_{ij} \mid \frac{-v_{ij} \le u_i' - u_j' \le v_{ij}, \text{ all } i, j}{\bar{u}' = 1, \ t \ge 0, \ (\boldsymbol{u}', \boldsymbol{x}') \in S'} \right\}$

where V is a matrix of new variables.

Hoover index





Hoover index

$$W(\boldsymbol{u}) = -\frac{1}{2n\bar{u}} \sum_{i} |u_i - \bar{u}|$$

Rationale:

 Hoover index is fraction of total utility that would have to be redistributed to achieve perfect equality.

Model:

Same as relative mean deviation.

Criterion	P-D?	C-M?	Linear?	Discrete?
Maximin (Rawlsian)	yes	yes	yes	no
Leximax (lexicographic)	yes	yes	yes	no
McLoone index	no	yes	yes	yes

Maximin

$$W(\boldsymbol{u}) = \min_{i} \{u_i\}$$

Rationale:

- Based on difference principle of John Rawls.
- Inequality is justified only to the extent that it increases the utility of the worst-off.
- Originally intended only for the design of social institutions and distribution of primary goods (goods that any rational person would want).
- Can be adopted as a general principle of equity: maximize the minimum utility.

Rawls 1971, 1999

Maximin

$$W(\boldsymbol{u}) = \min_{i} \{u_i\}$$

Social contract argument:

- We decide on social policy in an "original position," behind a "veil of ignorance" as to our position on society.
- All parties must be willing to endorse the policy, no matter what position they end up assuming.
- No rational person can endorse a policy that puts him/her on the **bottom** of society – unless that person would be even worse off under another social arrangement.
- Therefore, an agreed-upon social policy must maximize the welfare of the worst-off.

Maximin

$$W(\boldsymbol{u}) = \min_{i} \{u_i\}$$

Model: $\max_{\boldsymbol{x},\boldsymbol{u},w} \{ w \mid w \leq u_i, \text{ all } i; (\boldsymbol{u},\boldsymbol{x}) \in S \}$

Problems:

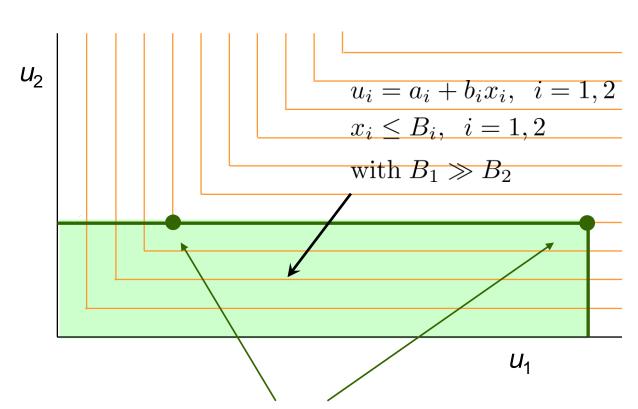
- Can force equality even when this is extremely costly in terms of total utility.
- Does not care about 2nd worst off, etc., and so can waste resources.

Maximin

 U_2 $u_i = a_i + b_i x_i, \quad i = 1, 2$ $x_1 + x_2 \le B$ Medical example with $b_1 \ll b_2$ with budget constraint U_1 Maximin solution, Substantial sacrifice Patient 2 gets most of Patient 1 of the resources.

Maximin

Medical example with resource bounds

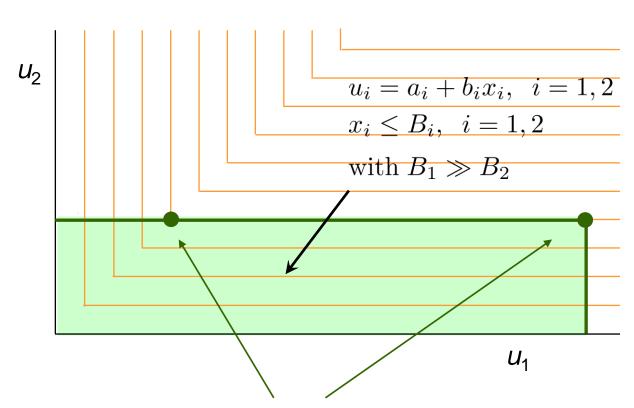


These solutions have same social welfare!

Maximin

Medical example with resource bounds

Remedy: use leximax solution



These solutions have same social welfare!

Leximax

Rationale:

- Takes in account 2nd worst-off, etc., and avoids wasting utility.
- Can be justified with Rawlsian argument.

Model:

Solve sequence of optimization problems

$$\max_{\boldsymbol{x},\boldsymbol{u},w} \left\{ w \mid w \leq u_i, \ u_i \geq \hat{u}_{i_{k-1}}, \ i \in I_k \right\}$$

for k = 1, ..., n, where i_k is defined so that $\hat{u}_{i_k} = \min_{i \in I_k} {\{\hat{u}_i\}}$, and where $I_k = \{1, ..., n\} \setminus \{i_1, ..., i_{k-1}\}, (\bar{\boldsymbol{x}}, \bar{\boldsymbol{u}})$ is an optimal solution of problem k, and $\hat{u}_{i_0} = -\infty$.

If $\hat{u}_j = \min_{i \in I_k} {\{\hat{u}_i\}}$ for multiple j, must enumerate all solutions that result from breaking the tie.

Fairness for the Disadvantaged

McLoone index

$$W(\boldsymbol{u}) = \frac{1}{|I(\boldsymbol{u})|} \sum_{i \in I(\boldsymbol{u})} u_i$$

where \tilde{u} is the median of utilities in \boldsymbol{u} and $I(\boldsymbol{u})$ is the set of indices of utilities at or below the median

Rationale:

- Compares total utility of those at or below the median to the utility that would result from bringing them up to the median.
- Index = 1 if no one is below median, → 0 for long lower tail.
- Focus on all the disadvantaged.
- Often used for public goods (e.g., educational benefits).
- Satisfies C-M condition, even though it violates P-D.

Fairness for the Disadvantaged

McLoone index

Model: Nonlinear, requires 0-1 variables.

$$\max_{\substack{\boldsymbol{x},\boldsymbol{u},m\\\boldsymbol{y},\boldsymbol{z},\boldsymbol{\delta}}} \left\{ \frac{\sum_{i} y_{i}}{\sum_{i} z_{i}} \middle| \begin{array}{l} m - M\delta_{i} \leq u_{i} \leq m + M(1 - \delta_{i}), \text{ all } i\\ y_{i} \leq u_{i}, y_{i} \leq M\delta_{i}, \delta_{i} \in \{0,1\}, \text{ all } i\\ z_{i} \geq 0, z_{i} \geq m - M(1 - \delta_{i}), \text{ all } i\\ \sum_{i} \delta_{i} \leq n/2, (\boldsymbol{u},\boldsymbol{x}) \in S \end{array} \right\}$$

Linearize with change of variable, obtain MILP.

$$\max_{\substack{\boldsymbol{x}', \boldsymbol{u}', m' \\ \boldsymbol{y}', \boldsymbol{z}', t, \delta}} \left\{ \sum_{i} y'_{i} \middle| \begin{array}{l} u'_{i} \geq m' - M\delta_{i}, \text{ all } i \\ u'_{i} \leq m' + M(1 - \delta_{i}), \text{ all } i \\ y'_{i} \leq u'_{i}, \ y'_{i} \leq M\delta_{i}, \ \delta_{i} \in \{0, 1\}, \text{ all } i \\ z'_{i} \geq 0, \ z'_{i} \geq m' - M(1 - \delta_{i}), \text{ all } i \\ \sum_{i} z'_{i} = 1, \ t \geq 0 \\ \sum_{i} \delta_{i} \leq n/2, \ (\boldsymbol{u}', \boldsymbol{x}') \in S' \end{array} \right\}$$

- The economics literature derives social welfare functions from axioms of rational choice.
- The social welfare function depends on degree of interpersonal comparability of utilities.
- Arrow's impossibility theorem was the first result, but there are many others.

Axioms

Anonymity (symmetry)

Social preferences are the same if indices of u_i s are permuted.

Strict pareto

If u > u', then u is preferred to u'.

Independence

The preference of u over u' depends only on u and u' and not on what other utility vectors are possible.

Separability

Individuals i for which $u_i = u'_i$ do not affect the relative ranking of \boldsymbol{u} and \boldsymbol{u}' .

Interpersonal comparability

 The properties of social welfare functions that satisfy the axioms depend on the degree to which utilities can be compared across individuals.

Invariance transformations

- These are transformations of utility vectors that indicate the degree of interpersonal comparability.
- Applying an invariance transformation to utility vectors does not change the **ranking** of distributions.

An invariance transformation has the form $\phi = (\phi_1, \dots, \phi_n)$, where ϕ_i is a transformation of individual utility i.

Unit comparability.

It is possible to compare utility differences across individuals.

$$u'_i - u_i > u'_j - u_j$$
 if and only if $\phi_i(u'_i) - \phi_i(u_i) > \phi_j(u'_j) - \phi_j(u_j)$

Theorem. Given anonymity, strict pareto, and independence axioms, the social welfare criterion must be **utilitarian**.

$$W(\boldsymbol{u}) = \sum_{i} u_{i}$$

Level comparability.

It is possible to compare utility levels across individuals.

$$u_i > u_j$$
 if and only if $\phi_i(u_i) > \phi_j(u_j)$

Theorem. Given anonymity, strict pareto, independence, and separability axioms, the social welfare criterion must be **maximin** or **minimax**. $W(\mathbf{u}) = \min_i \{u_i\} \text{ or } W(\mathbf{u}) = -\max_i \{u_i\}$

Problem with the utilitarian proof.

- The proof assumes that utilities have no more than unit comparability.
- This immediately rules out a maximin criterion, since identifying the minimum utility presupposes that utility levels can be compared.

Problem with the maximin proof.

- The proof assumes that utilities have no more than level comparability.
- This immediately rules out criteria that consider the spread of utilities.
- So, it rules out all the criteria we consider after maximin.

Criterion	P-D?	C-M?	Linear?	Discrete?
Utility + Gini coefficient	yes	yes	no	no
Utility * Gini coefficient	yes	yes	yes	no
Utility + maximin	yes	yes	yes	no

Utility + Gini coefficient

$$W(\mathbf{u}) = (1 - \lambda) \sum_{i} u_i + \lambda (1 - G(\mathbf{u}))$$

Rationale.

- Takes into account both efficiency and equity.
- Allows one to adjust their relative importance.

Problem.

- Combines utility with a dimensionless quantity.
- How to interpret λ, or choose a λ for a given application?
- Choice of λ is an issue with convex combinations in general.

Utility * Gini coefficient

$$W(\mathbf{u}) = (1 - G(\mathbf{u})) \sum_{i} u_{i}$$

Rationale.

Eisenhandler & Tzur 2019

- Gets rid of λ .
- Equivalent to SWF that is easily linearized:

$$W(\mathbf{u}) = \sum_{i} u_i - \frac{1}{n} \sum_{i < j} |u_j - u_i|$$

Problem.

- It is still a convex combination of utility and an equality metric (mean absolute difference).
- Implicit multiplier $\lambda = \frac{1}{2}$. Why this multiplier?

Utility + Gini-weighted utility

$$W(\mathbf{u}) = \sum_{i} u_i + \mu (1 - G(\mathbf{u})) \sum_{i} u_i$$

Rationale.

Combines quantities measured in same units.

Mostajabdaveh, Gutjahr, Salman 2019

Problem.

- Equivalent to utility*(1-Gini) with multiplier $\lambda = \mu (1 + 2\mu)^{-1}$.
- How to interpret μ?

Utility + Maximin

$$W(\mathbf{u}) = (1 - \lambda) \sum_{i} u_i + \lambda \min_{i} \{u_i\}$$

Rationale.

Explicitly considers individuals other than worst off.

Problem.

• If u_k is smallest utility, this is simply the linear combination

$$W(\mathbf{u}) = u_k + (1 - \lambda) \sum_{i \neq k} u_i$$

How to interpret λ?

Utility & Fairness – Classical Methods

Criterion	P-D?	C-M?	Linear?	Discrete?
Alpha fairness	yes	yes	yes	no
Proportional fairness (Nash bargaining)	yes	yes	yes	no
Kalai-Smorodinsky bargaining	yes	yes	no	no

Alpha Fairness

$$W_{\alpha}(\boldsymbol{u}) = \begin{cases} \frac{1}{1-\alpha} \sum_{i} u_i^{1-\alpha} & \text{for } \alpha \geq 0, \ \alpha \neq 1 \\ \sum_{i} \log(u_i) & \text{for } \alpha = 1 \end{cases}$$
 Mo & Walrand 2000; Verloop, Ayesta & Borst 2010

Rationale.

Continuous and well-defined adjustment of equity/efficiency tradeoff.

Utility u_i must be reduced by $(u_i/u_i)^{\alpha}$ units to compensate for a unit increase in u_i ($< u_j$) while maintaining constant social welfare.

- Integral of power law $\sum_i u_i^{-\alpha}$
- Utilitarian when $\alpha = 0$, maximin when $\alpha \to \infty$
- Satisfies P-D (and therefore C-M).

Alpha Fairness

$$W_{\alpha}(\boldsymbol{u}) = \begin{cases} \frac{1}{1-\alpha} \sum_{i} u_{i}^{1-\alpha} & \text{for } \alpha \geq 0, \ \alpha \neq 1 \\ \sum_{i} \log(u_{i}) & \text{for } \alpha = 1 \end{cases}$$

Model

Nonlinear but concave.

$$\max_{\boldsymbol{x},\boldsymbol{u}} \left\{ W_{\alpha}(\boldsymbol{u}) \mid (\boldsymbol{u},\boldsymbol{x}) \in S \right\}$$

 Can be solved by efficient algorithms if constraints are linear (or perhaps if S is convex).

Alpha Fairness

$$W_{\alpha}(\boldsymbol{u}) = \begin{cases} \frac{1}{1-\alpha} \sum_{i} u_{i}^{1-\alpha} & \text{for } \alpha \geq 0, \ \alpha \neq 1 \\ \sum_{i} \log(u_{i}) & \text{for } \alpha = 1 \end{cases}$$

Possible problems

- Parameter α has no interpretation apart from the tradeoff rate.
- Unclear how to choose α in practice.
- An egalitarian distribution can have same social welfare as arbitrarily extreme inequality.

In a 2-person problem, the distribution $(u_1, u_2) = (1, 1)$ has the same social welfare as $(2^{1/(1-\alpha)}, \infty)$ when $\alpha > 1$.

Proportional Fairness

$$W(\boldsymbol{u}) = \sum_{i} \log(u_i)$$

Nash 1950

- Special case of alpha fairness ($\alpha = 1$).
- Also known as Nash bargaining solution, in which case bargaining starts with a default distribution d.

$$W(\mathbf{u}) = \sum_{i} \log(u_i - d_i) \text{ or } W(\mathbf{u}) = \prod_{i} (u_i - d_i)$$

Rationale

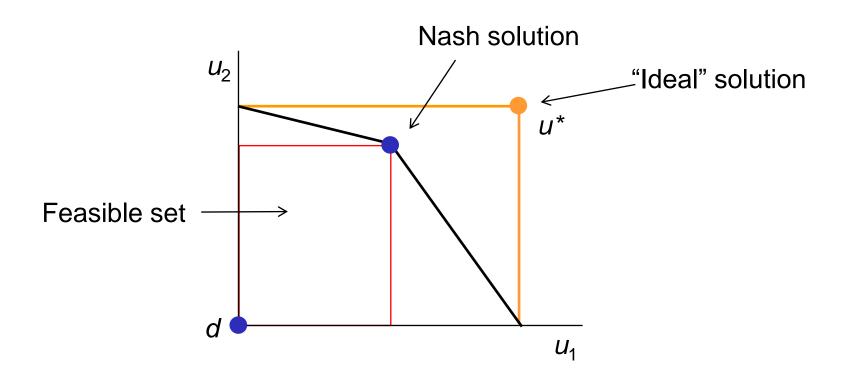
- Has nice geometric interpretation.
- Can be derived from axiomatic and bargaining arguments.
- Used in engineering applications (telecom, traffic signaling).

Proportional Fairness

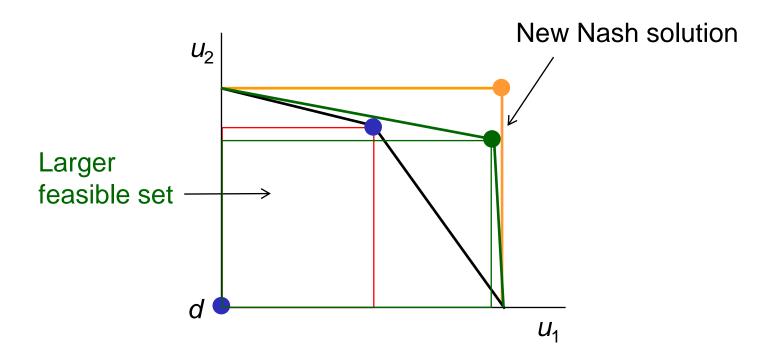
Problems with bargaining justifications.

- Why should a bargaining procedure that is rational from an individual viewpoint result in a just distribution?
- Why should "procedural justice" = justice?
 For example, is the outcome of bargaining in a free market necessarily just?
- A deep question in political theory.

Begins with a critique of the Nash bargaining solution.

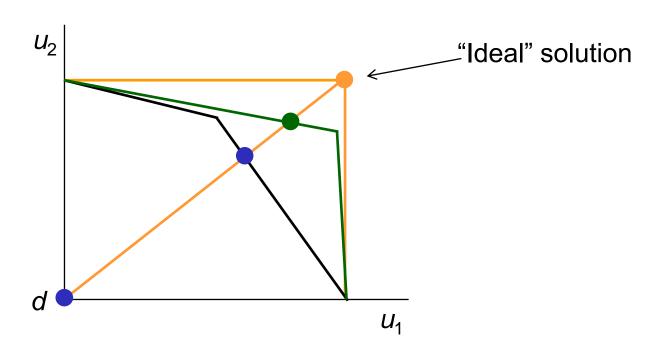


- Begins with a critique of the Nash bargaining solution.
- The new Nash solution is worse for player 2 even though the feasible set is larger.



 Proposal: Bargaining solution is pareto optimal point on line from d to ideal solution.

Kalai & Smorodinksy 1975



Social welfare function

$$W(\boldsymbol{u}) = \begin{cases} \sum_{i} u_{i}, & \text{if } \boldsymbol{u} = (1 - \beta)\boldsymbol{d} + \beta \boldsymbol{u}^{\text{max}} \text{ for some } \beta \text{ with } 0 \leq \beta \leq 1 \\ 0, & \text{otherwise} \end{cases}$$

where
$$u_i^{\max} = \max_{\boldsymbol{x}, \boldsymbol{u}} \{u_i \mid (\boldsymbol{u}, \boldsymbol{x}) \in S\}.$$

Model

$$\max_{\beta, \boldsymbol{x}, \boldsymbol{u}} \left\{ \beta \mid \boldsymbol{u} = (1 - \beta) \boldsymbol{d} + \beta \boldsymbol{u}^{\max}, \ (\boldsymbol{u}, \boldsymbol{x}) \in S, \ \beta \leq 1 \right\}$$

Rationale

- Satisfies monotonicity.
- Seems reasonable for price or wage negotiation.
- Defended by some social contract theorists
 (e.g., "contractarians")
 Gauthier 1983, Thompson 1994

Possible problems

- Satisfies neither P-D nor C-M condition.
- In some contexts, it may not be ethical to allocate utility in proportion to one's potential.
- For example, when allocating resources to those with minor ailments vs chronic diseases.

Utility & Fairness – Threshold Methods

Criterion	P-D?	C-M?	Linear?	Discrete?
Utility + maximin – Utility threshold	no	yes	yes	yes
Utility + maximin – Equity threshold	yes	yes	yes	no
Utility + leximax – Predefined priorities	no	no	yes	yes
Utility + leximax – No predefined priorities	no	yes	yes	yes

Combining utility and maximin

- **Utility threshold:** Use a maximin criterion until the utility cost becomes too great, then switch a utilitarian criterion.
- **Equity threshold:** Use a utilitarian criterion until the inequity becomes too great, then switch to a maximin criterion.

Williams & Cookson 2000

 u_2

Utility threshold

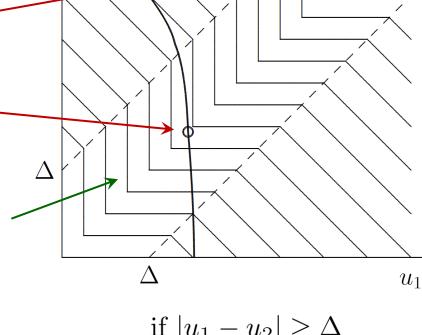
Optimal solution

Maximin solution results in too much utility sacrifice for person 2

Feasible set

Williams & Cookson 2000

$$W(u_1, u_2) = \begin{cases} u_1 + u_2, & \text{if } |u_1 - u_2| \ge \Delta \\ 2\min\{u_1, u_2\} + \Delta, & \text{otherwise} \end{cases}$$



Utility threshold

Generalization to *n* persons

$$W(\boldsymbol{u}) = (n-1)\Delta + \sum_{i=1}^{n} \max \left\{ u_i - \Delta, u_{\min} \right\}$$
 where $u_{\min} = \min_{i} \{u_i\}$ JH & Williams 2012

Rationale

- Utilities within ∆ of the lowest are in the fair region.
- Trade-off parameter ∆ has a practical interpretation.
- ∆ is chosen so that individuals in fair region are sufficiently deprived to deserve priority.
- Suitable when equity is the initial concern, but without paying too
 high a cost for fairness (healthcare, politically sensitive contexts).
- $\Delta = 0$ corresponds to utilitarian criterion, $\Delta = \infty$ to maximin.

Utility threshold

Model

$$\max_{\boldsymbol{x},\boldsymbol{u},\boldsymbol{\delta},\boldsymbol{v},w,z} \left\{ n\Delta + \sum_{i} v_{i} \middle| \begin{array}{l} u_{i} - \Delta \leq v_{i} \leq u_{i} - \Delta\delta_{i}, \text{ all } i \\ w \leq v_{i} \leq w + (M - \Delta)\delta_{i}, \text{ all } i \\ u_{i} - u_{i} \leq M, \text{ all } i, j \\ u_{i} \geq 0, \ \delta_{i} \in \{0,1\}, \text{ all } i \\ (\boldsymbol{u},\boldsymbol{x}) \in S \end{array} \right\}$$

- Tractable MILP model.
- Model is **sharp** without $(u, x) \in S$.

JH & Williams 2012

Easily generalized to differently-sized groups of individuals.

Problem

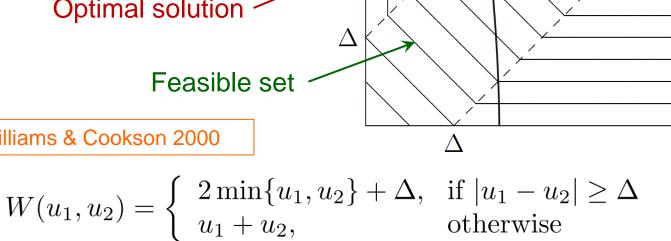
 Due to maximin component, many solutions with different equity properties have same social welfare value.

 u_2

Utilitarian solution leaves person 1 overly deprived

Optimal solution

Williams & Cookson 2000



 u_1

Equity threshold

Generalization to *n* persons

$$W(\mathbf{u}) = n\Delta + \sum_{i=1}^{n} \min\{u_i - \Delta, u_{min}\}\$$

Chen & JH 2021

Rationale

- Utilities more than ∆ above the lowest are in the fair region.
- Trade-off parameter ∆ has a practical interpretation.
- Δ is chosen so that well-off individuals (those in fair region) do not deserve more utility unless smaller utilities are also increased.
- Suitable when efficiency is the initial concern, but one does not want to create excessive inequality (traffic management, telecom, disaster recovery).

Equity threshold

Model

$$\max_{\boldsymbol{x},\boldsymbol{u},\boldsymbol{v},w,z} \left\{ n\Delta + \sum_{i} v_{i} \middle| \begin{array}{l} v_{i} \leq w \leq u_{i}, \text{ all } i \\ v_{i} \leq u_{i} - \Delta, \text{ all } i \\ w \geq 0, v_{i} \geq 0, \text{ all } i \\ (\boldsymbol{u},\boldsymbol{x}) \in S \end{array} \right\}$$

Linear model.

Chen & JH 2021

Easily generalized to differently-sized groups of individuals.

Problem

 As with threshold model, many solutions with different equity properties have same social welfare value.

Utility + leximax, predetermined preferences

$$W(\boldsymbol{u}) = \begin{cases} nu_1, & \text{if } |u_i - u_j| \leq \Delta \text{ for all } i, j \\ \sum_i u_i + \text{sgn}(u_1 - u_i)\Delta, & \text{otherwise} \end{cases}$$

where preference order is u_1, \ldots, u_n .

McElfresh & Dickerson 2018

Rationale

- Takes into account utility levels of individuals in the fair region.
- Successfully applied to kidney exchange.

Utility + leximax, predetermined preferences

Model (MILP)

$$\max_{\substack{\boldsymbol{u}, \boldsymbol{x} \\ \boldsymbol{w}_{1}, w_{2} \\ \boldsymbol{y}, \boldsymbol{\phi}, \boldsymbol{\delta}}} \begin{cases} w_{1} \leq nu_{1}, \ w_{1} \leq M\phi \\ w_{2} \leq \sum_{i} (u_{i} + y_{i}), \ w_{2} \leq M(1 - \phi) \\ u_{i} - u_{j} - \Delta \leq M(1 - \phi), \ \text{all } i, j \\ y_{i} \leq \Delta, \ y_{i} \leq -\Delta + M\delta_{i}, \ u_{i} - u_{1} \leq M(1 - \delta_{i}), \ \text{all } i \end{cases}$$

$$\begin{cases} w_{1} \leq nu_{1}, \ w_{1} \leq M\phi \\ u_{2} \leq \sum_{i} (u_{i} + y_{i}), \ w_{2} \leq M(1 - \phi) \\ u_{3} \leq M(1 - \phi), \ \text{all } i, j \\ v_{3} \leq \Delta, \ y_{3} \leq -\Delta + M\delta_{i}, \ u_{4} - u_{1} \leq M(1 - \delta_{i}), \ \text{all } i \end{cases}$$

where preference order is u_1, \ldots, u_n .

Also...

- The SWF combines utility and maximin.
- Leximax criterion applied only to optimal solutions of the SWF, and then only if some u's are in the fair region.

Utility + leximax, predetermined preferences

Possible problems

- SWF is discontinuous.
- SWF violates C-M and therefore P-D conditions.
- Preferences cannot be pre-ordered in many applications.
- Leximax is not incorporated in the SWF, but is applied only to SWF-maximizing solutions.

Utility + leximax, sequence of SWFs

SWFs W_1, \ldots, W_n are maximized sequentially, where W_1 is the utility threshold SWF defined earlier, and W_k for $k \geq 2$ is

$$W_k(\boldsymbol{u}) = \sum_{i=1}^{k-1} (n - i + 1) u_{\langle i \rangle} + (n - k + 1) \min \left\{ u_{\langle 1 \rangle} + \Delta, u_{\langle k \rangle} \right\}$$
$$+ \sum_{i=k}^{n} \max \left\{ 0, \ u_{\langle i \rangle} - u_{\langle 1 \rangle} - \Delta \right\}$$

where $u_{\langle 1 \rangle}, \ldots, u_{\langle n \rangle}$ are u_1, \ldots, u_n in nondecreasing order.

Chen & JH 2021

Rationale

- Does not require pre-ordered preferences, satisfies C-M (not P-D).
- Tractable MILP models in practice, valid inequalities known.

Utility + leximax, sequence of SWFs

where \bar{u}_{i_k} is the value of the smallest utility in the optimal solution of the kth MILP model, and $I = \{1, \ldots, n\} \setminus \{i_1, \ldots, i_{k-1}\}$. The socially optimal solution is $(\bar{u}_1, \ldots, \bar{u}_n)$.

Threshold Methods – Healthcare Example

- Based on budget decisions in UK National Health Service
- Allocate limited treatment resources to disease/prognosis categories of patients.
- Based on cost, number of patients, and QALY estimates with and without treatment.*
- We will compare 2 utility-threshold SWFs: utility + maximin and sequential utility + leximax.
- Solution time = fraction of second for each value of Δ .

Problem due to JH & Williams 2012

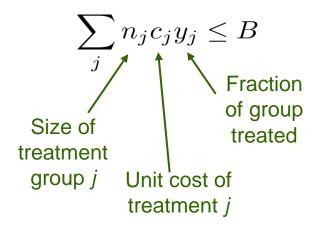
*QALY = quality adjusted life-year. Data reflect a particular situation and are not valid in general. Solutions presented here should not be taken as a general recommendation for healthcare resource allocation, but only as an illustration of social welfare functions.

	Intervention	$\begin{array}{c} \operatorname{Cost} \\ \operatorname{per \ person} \\ c_i \\ (\pounds) \end{array}$	QALYs gained q_i	$\begin{array}{c} \mathrm{Cost} \\ \mathrm{per} \\ \mathrm{QALY} \\ (\pounds) \end{array}$	$\begin{array}{c} {\rm QALYs} \\ {\rm without} \\ {\rm intervention} \\ {\alpha_i} \end{array}$	$\begin{array}{c} {\rm Subgroup} \\ {\rm size} \\ n_i \end{array}$		
	Pacemaker for atrioventricular heart block							
	Subgroup A	3500	3	1167	13	35		
	Subgroup B	3500	5	700	10	45		
	Subgroup C	3500	10	350	5	35		
QALY	Hip replacement							
	Subgroup A	3000	2	1500	3	45		
& cost	Subgroup B	3000	4	750	4	45		
data	Subgroup C	3000	8	375	5	45		
uala	Valve replacement for aortic stenosis							
	Subgroup A	4500	3	1500	2.5	20		
Part 1	Subgroup B	4500	5	900	3	20		
i ait i	Subgroup C	4500	10	450	3.5	20		
	CABG ¹ for left main disease							
	Mild angina	3000	1.25	2400	4.75	50		
	Moderate angina	3000	2.25	1333	3.75	55		
	Severe angina	3000	2.75	1091	3.25	60		
	CABG for triple vessel disease							
	Mild angina	3000	0.5	6000	5.5	50		
	Moderate angina	3000	1.25	2400	4.75	55		
	Severe angina	3000	2.25	1333	3.75	60		
	CABG for double vessel disease							
	Mild angina	3000	0.25	12,000	5.75	60		
	Moderate angina	3000	0.75	4000	5.25	65		
	Severe angina	3000	1.25	2400	4.75	70		

	Intervention	$\begin{array}{c} \operatorname{Cost} \\ \operatorname{per \ person} \\ c_i \\ (\pounds) \end{array}$	QALYs gained q_i	$\begin{array}{c} \mathrm{Cost} \\ \mathrm{per} \\ \mathrm{QALY} \\ \mathrm{(£)} \end{array}$	$\begin{array}{c} {\rm QALYs} \\ {\rm without} \\ {\rm intervention} \\ {\alpha_i} \end{array}$	$\begin{array}{c} {\rm Subgroup} \\ {\rm size} \\ n_i \end{array}$	
	Heart transplant	22,500	4.5	5000	1.1	2	
QALY & cost data	Kidney transplant Subgroup A	15,000	4	3750	1	8	
	Subgroup B	15,000	6	2500	1	8	
	Kidney dialysis Less than 1 year survival						
	Subgroup A 1-2 years survival	5000	0.1	50,000	0.3	8	
Part 2	Subgroup B	12,000	0.4	30,000	0.6	6	
	2-5 years survival Subgroup C	20,000	1.2	16,667	0.5	4	
	Subgroup D Subgroup E	28,000 36,000	$\frac{1.7}{2.3}$	16,471 $15,652$	$0.7 \\ 0.8$	4	
	5-10 years survival Subgroup F	46,000	3.3	13,939	0.6	3	
	Subgroup G	56,000	3.9	14,359	0.8	2	
	Subgroup H Subgroup I	66,000 77,000	$\frac{4.7}{5.4}$	14,043 $14,259$	$0.9 \\ 1.1$	$\frac{2}{2}$	
	At least 10 years survival						
	Subgroup J Subgroup K	88,000 100,000	$6.5 \\ 7.4$	13,538 $13,514$	$0.9 \\ 1.0$	2 1	
	Subgroup L	111,000	8.2	13,537	1.2	1	

Threshold Methods – Healthcare Example

Budget constraint



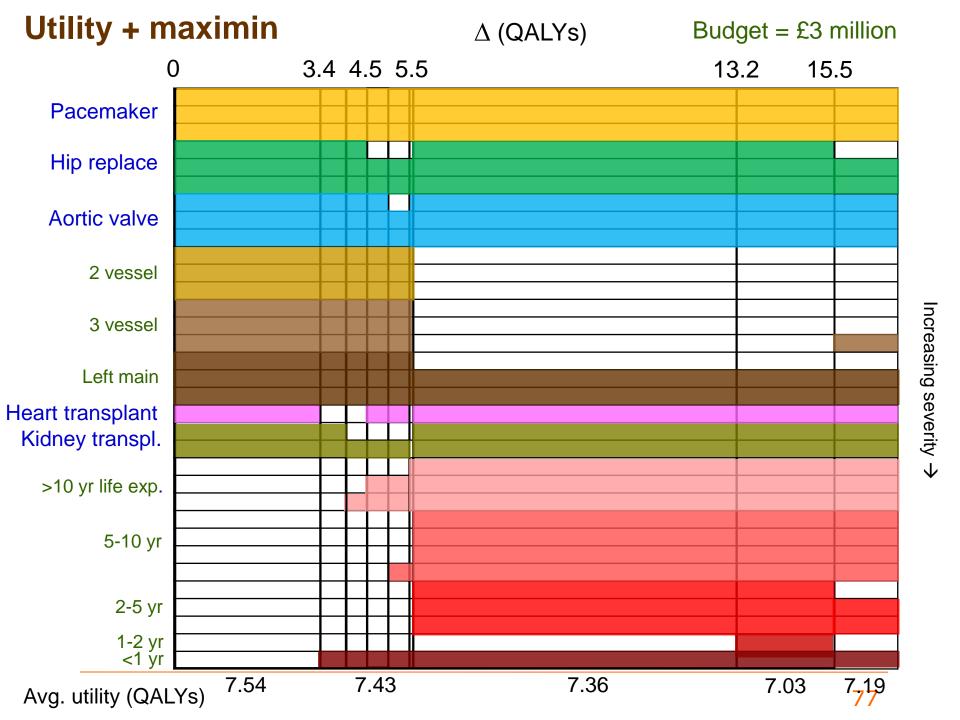
Utility function

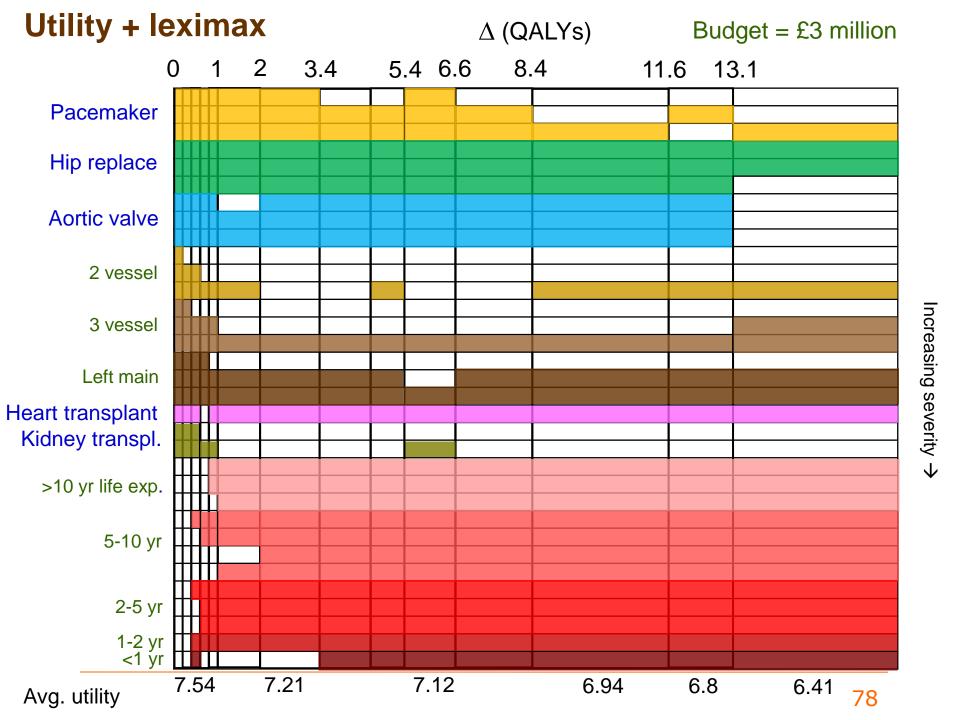
$$u_i = q_i y_i + \alpha_i$$
Treatment QALYs benefit without (QALYs) treatment

which implies $y_i = (u_i - \alpha_i)/q_i$

So the optimization problem becomes

$$\max_{\mathbf{u}} \left\{ W(\mathbf{u}) \mid \sum_{j} \frac{n_{j} c_{j}}{q_{j}} u_{j} \leq B + \sum_{j} \frac{n_{j} c_{j} \alpha_{j}}{q_{j}}; \quad \alpha \leq \mathbf{u} \leq \mathbf{q} + \alpha \right\}$$

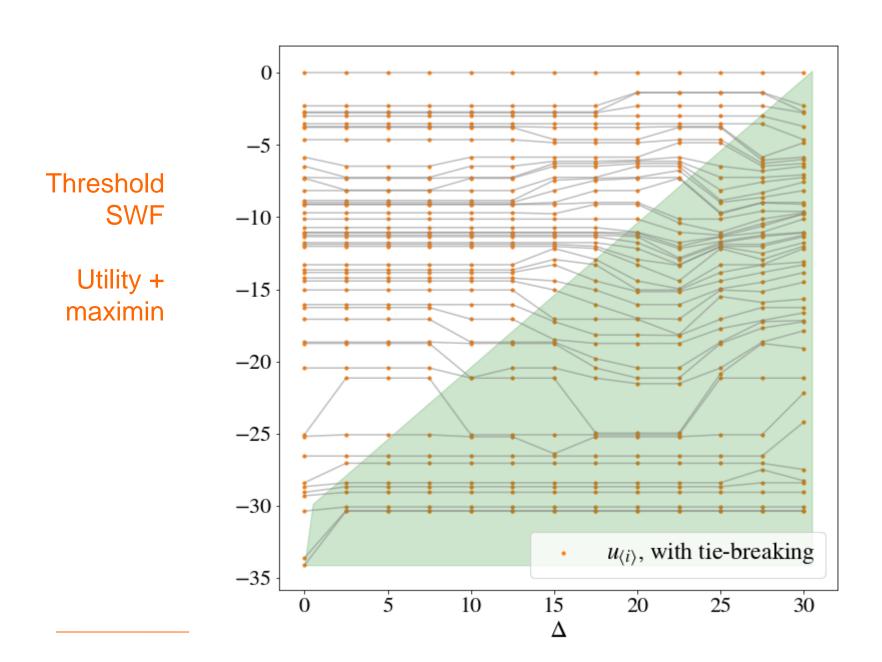


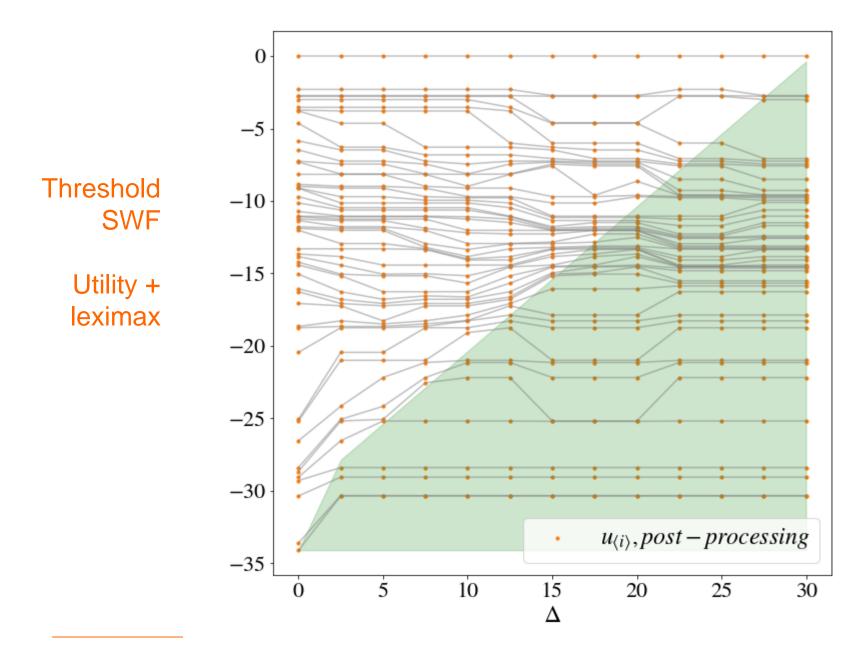


Threshold Methods – Disaster Preparedness Example

- Select earthquake shelter locations.
- Utility = negative distance of each neighborhood to nearest shelter, subject to limited budget.
- We will compare 2 utility-threshold SWFs: utility + maximin and sequential utility + leximax.
- 50 neighborhoods, 50 potential shelter locations.
- Solution time = 1 to 18 seconds for each value of Δ.

Problem due to Mostajabdaveh, Gutjahr & Salman 2019





Criterion	P-D?	C-M?	Linear?	Discrete?
Demographic parity			yes	no
Equalized odds			yes	no
Predictive rate parity			no	yes

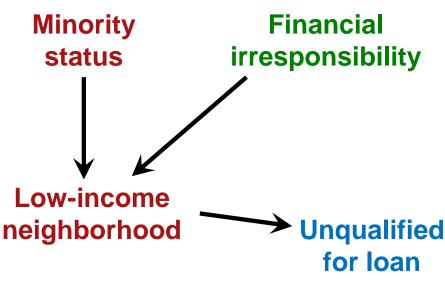
- Widely discussed in Al.
- Intended to measure bias against a subgroup.
- Most are based on statistical measures of classification error.
- Utility vector \boldsymbol{u} is now vector $\boldsymbol{\delta}$ of yes-no decisions.
- For example: mortgage loans, job interviews, parole.

Rationale

- Unjustified bias against certain groups generally seen as inherently unfair.
- Bias may also incur legal problems.

Example of implicit bias – Mortgage loans

- Financially irresponsible individuals may live in a low-income neighborhood.
- Members of a minority group may also live in the neighborhood due to historical discrimination.
- Minority status is **not** part of mortgage applicant's profile.
- But AI predictor sees the correlation between minority status and past defaults.
- Minority individual is denied
 a mortgage, even though financial
 irresponsibility is not the cause of past defaults.



Notation

- TP = number of true positives (correct yes's)
- FP = number of false positives (incorrect yes's).
- TN = number of true negatives (correct no's).
- FN = number of false negatives (incorrect no's).

Basic model

- Maximize **accuracy**, perhaps $\frac{\mathrm{TP} + \mathrm{TN}}{\mathrm{TP} + \mathrm{TN} + \mathrm{FP} + \mathrm{FN}}$
 - ...subject to a **bound** on a bias SWF.
- Bias measured by comparing various statistics across
 2 groups (a protected group and everyone else).

Demographic parity

• Compare $\frac{\mathrm{TP} + \mathrm{FP}}{\mathrm{TP} + \mathrm{TN} + \mathrm{FP} + \mathrm{FN}}$ across 2 groups

$$W(\pmb{\delta})=1-|B(\pmb{\delta})|, ext{ where } B(\pmb{\delta})=rac{1}{|N|}\sum_{i\in N}\delta_i-rac{1}{|N'|}\sum_{i\in N'}\delta_i$$
 ale

group

group

Rationale

Equality of outcomes.

Possible problem

Can discriminate against a minority group that is more qualified than majority group.

Dwork et al. 2012

Equalized odds

Equality of opportunity

• Compare $\frac{\mathrm{TP}}{\mathrm{TP}+\mathrm{FN}}$ and $\frac{\mathrm{FP}}{\mathrm{FP}+\mathrm{TN}}$ across 2 groups

$$B(\pmb{\delta}) = \frac{\sum_{i \in N} a_i \delta_i}{\sum_{i \in N} a_i} - \frac{\sum_{i \in N'} a_i \delta_i}{\sum_{i \in N'} a_i} \text{ and } B(\pmb{\delta}) = \frac{\sum_{i \in N} (1 - a_i) \delta_i}{\sum_{i \in N} (1 - a_i)} - \frac{\sum_{i \in N'} (1 - a_i) \delta_i}{\sum_{i \in N'} (1 - a_i)}$$

Rationale

Compares fraction of qualified (or unqualified) persons selected.

Possible problem

• Considers only **yes** (or only **no**) decisions.

Hardt et al. 2016

Predictive rate parity

• Compare $\frac{\mathrm{TP}}{\mathrm{TP}+\mathrm{FP}}$ across 2 groups.

$$B(\boldsymbol{\delta}) = \frac{\sum_{i \in N} a_i \delta_i}{\sum_{i \in N} \delta_i} - \frac{\sum_{i \in N'} a_i \delta_i}{\sum_{i \in N'} \delta_i}$$

Rationale

 Compares what fraction of selected individuals should have been selected.

Dieterich et al. 2016

Problem

- Poses very difficult nonconvex discrete optimization problem.
- Unclear what justifies the computational burden.

Matthews correlation coefficient

Rationale

Most comprehensive measure of classification accuracy.

Problem

Poses intractable nonconvex, discrete optimization problem.

Matthews 1975, Chicco & Jurman 2020

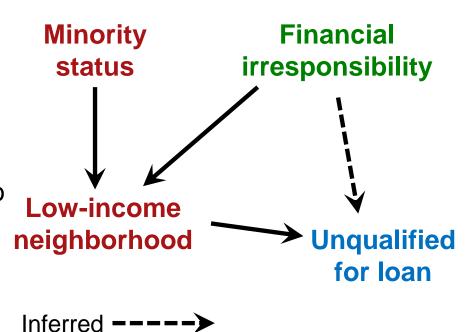
Counterfactual fairness

Rationale

- Attempts to determine whether minority individuals would be granted a mortgage if they were members of the majority.
- Computes conditional probabilities on Bayesian (causal) networks to isolate true cause of past defaults.

Observed ----

Kusner et al. 2017, Russell et al. 2017

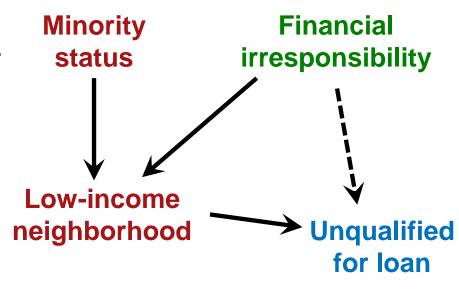


Counterfactual fairness

Problems

 Hard to find enough data to calibrate a large Bayesian network.

 Unclear how to formulate this in an optimization model. Kusner et al. 2017, Russell et al. 2017



Observed ———

Inferred ---->

General problems of fairness metrics

- Yes-no outcomes (δ) provide a **limited perspective** on utility consequences (u).
- No consensus on **which bias metric** $B(\delta)$, if any, is suitable for a given context. Bias metrics were developed to measure predictive accuracy, not fairness.
- No principle for balancing equity and efficiency.
- No clear principle for **selecting protected groups** (*N*), unless one simply selects those protected by law.