A Guide to Formulating Equity and Fairness in Optimization Models

Violet (Xinying) Chen Stevens Institute of Technology John Hooker Carnegie Mellon University

INFORMS 2022

- A growing interest in incorporating fairness models, particularly in public sector & humanitarian settings.
 - Health care resources.
 - Facility location (e.g., emergency services, infrastructure).
 - Disaster recovery (e.g., power restoration)...

- Example: disaster relief
 - Power restoration can focus on urban areas first (efficiency).
 - This can leave rural areas without power for weeks/months.
 - This happened in Puerto Rico after Hurricane Maria (2017).

A more equitable solution

 ...would give some priority to rural areas without overly sacrificing efficiency.

- It is far from obvious how to formulate equity concerns **mathematically**.
 - Less straightforward than maximizing total benefit or minimizing total cost.
 - Still less obvious how to combine equity with total benefit.

- There is **no one** concept of equity or fairness.
 - The appropriate concept **depends on the application**.

- There is **no one** concept of equity or fairness.
 - The appropriate concept **depends on the application**.
- Survey of fairness models, with references:

V. Chen & J. N. Hooker, <u>A guide to formulating fairness in</u> <u>an optimization model</u>, submitted, 2022.

• Tutorial videos:

https://cp2021.lirmm.fr/submissions/2001 http://public.tepper.cmu.edu/jnh/equityINFORMSpgh.pdf

Criterion	Linear?	Contin?
Relative range	yes	yes
Relative mean deviation	yes	yes
Coefficient of variation	no	yes
Gini coefficient	yes	yes
Hoover index	yes	yes

Group parity metrics from AI

Criterion	Linear?	Contin?
Demographic parity	yes	yes
Equalized odds	yes	yes
Predictive rate parity	no	yes

Linear = fairness model introduces only **linear** expressions *Contin.* = fairness model introduces only **continuous** variables

Criterion	Linear?	Contin?
Maximin (Rawlsian)	yes	yes
Leximax (lexicographic)	yes	yes
McLoone index	yes	no

Combining efficiency & fairness Convex combinations

Criterion	Linear?	Contin?
Utility + Gini coefficient	no	yes
Utility * Gini coefficient	yes	yes
Utility + maximin	yes	yes

Linear = fairness model introduces only **linear** expressions *Contin.* = fairness model introduces only **continuous** variables

Combining efficiency & fairness Classical methods

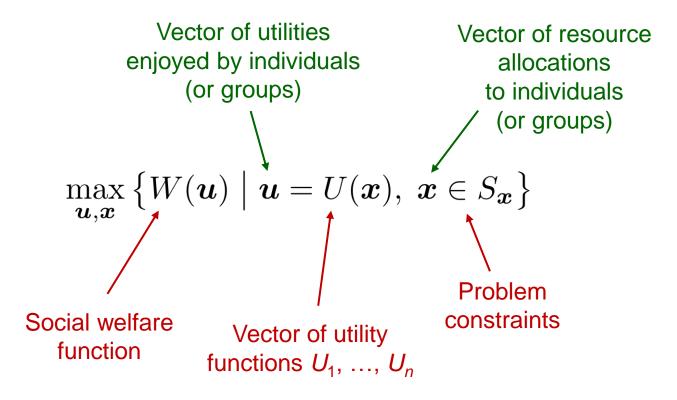
Criterion	Linear?	Contin?
Alpha fairness	yes	yes
Proportional fairness (Nash bargaining)	yes	yes
Kalai-Smorodinsky bargaining	no	yes

Combining efficiency & fairness Threshold methods

Criterion	Linear?	Contin?
Utility + maximin – Utility threshold	yes	no
Utility + maximin – Equity threshold	yes	yes
Utility + leximax – Predefined priorities	yes	no
Utility + leximax – No predefined priorities	yes	no

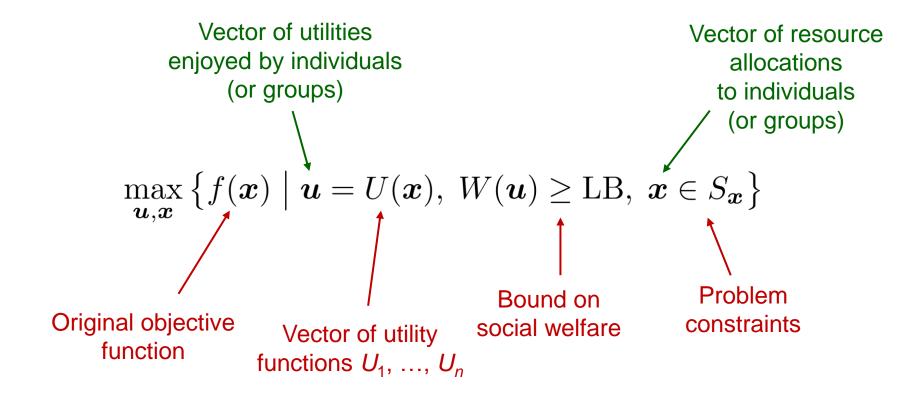
Linear = fairness model introduces only **linear** expressions *Contin.* = fairness model introduces only **continuous** variables

Generic Model


• We formulate each fairness criterion as a **social welfare** function (SWF).

$$W(\boldsymbol{u}) = W(u_1, \ldots, u_n)$$

- Measures desirability of the magnitude and distribution of utilities across individuals.
- Utility can be wealth, health, negative cost, etc.
- Welfare maximizing: the SWF becomes the objective function of the optimization model.
- Welfare constraining: the SWF imposes a lower bound on social welfare (original objective function retained)


Generic Model

Welfare maximizing model

Generic Model

Welfare constraining model

Criterion	Linear?	Contin?
Relative range	yes	yes
Relative mean deviation	yes	yes
Coefficient of variation	no	yes
Gini coefficient	yes	yes
Hoover index	yes	yes

Normally used in welfare constraining models

• To maximize overall efficiency while limiting inequality.

Two views on ethical importance of equality:

- **Irreducible:** Inequality is inherently unfair.
- **Reducible:** Inequality is unfair only insofar as it reduces utility.

Frankfurt 2015

Scanlon 2003

All SWFs but one have linear formulations

• Using linear fractional programming.

Relative range

$$W(\boldsymbol{u}) = -\frac{u_{\max} - u_{\min}}{\bar{u}}$$

Rationale:

- Perceived inequality is relative to the best off.
- So, move everyone closer to the best off.

Problem:

• Ignores distribution **between** extremes.

Relative mean deviation

$$W(\boldsymbol{u}) = -\frac{1}{\bar{u}} \sum_{i} |u_i - \bar{u}|$$

Rationale:

• Considers all utilities.

Coefficient of variation

$$W(\boldsymbol{u}) = -\frac{1}{\bar{u}} \left[\frac{1}{n} \sum_{i} (u_i - \bar{u})^2 \right]^{\frac{1}{2}}$$

Rationale:

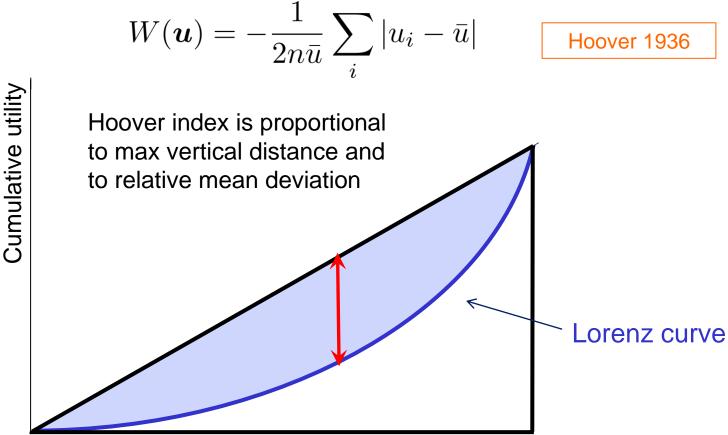
• Familiar. Outliers receive extra weight.

Problem:

• Nonlinear (but convex)

Gini coefficient $W(\boldsymbol{u}) = -G(\boldsymbol{u}), \text{ where } G(\boldsymbol{u}) = \frac{1}{2\bar{u}n^2} \sum_{i,j} |u_i - u_j|$ Cumulative utility Gini coeff. = $\frac{\text{blue area}}{\text{area of triangle}}$ Lorenz curve

Individuals ordered by increasing utility


Gini coefficient

$$W(\boldsymbol{u}) = -G(\boldsymbol{u}), \text{ where } G(\boldsymbol{u}) = \frac{1}{2\bar{u}n^2} \sum_{i,j} |u_i - u_j|$$

Rationale:

- Relationship to Lorenz curve.
- Widely used.

Hoover index

Individuals ordered by increasing utility

Hoover index

$$W(\boldsymbol{u}) = -\frac{1}{2n\bar{u}}\sum_{i}|u_{i} - \bar{u}|$$

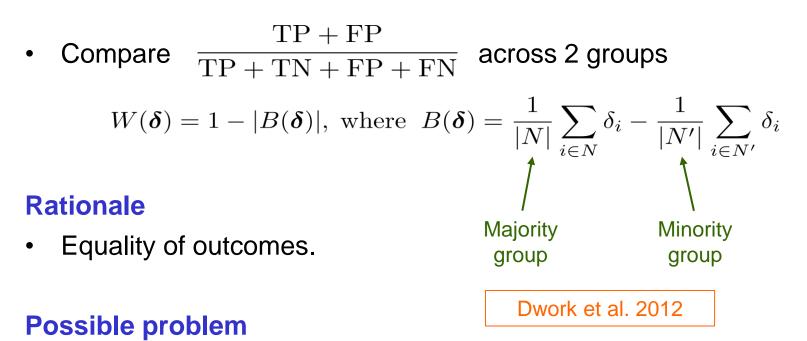
Rationale:

- Hoover index is fraction of total utility that would have to be redistributed to achieve perfect equality.
- Same model as relative mean deviation.

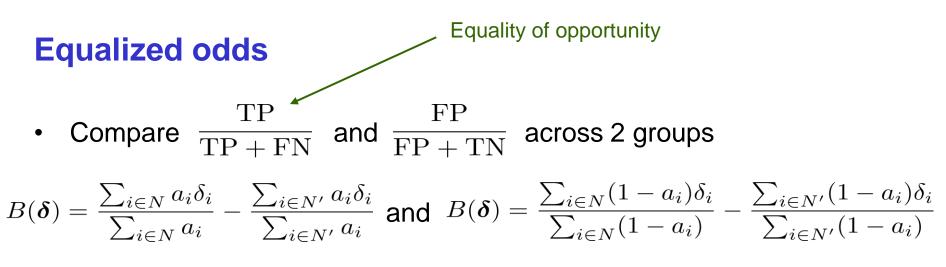
Criterion	Linear?	Contin?
Demographic parity	yes	yes
Equalized odds	yes	yes
Predictive rate parity	no	yes

Group Parity Metrics

- Widely discussed in **AI**.
- Intended to measure bias against a subgroup
- For example: mortgage loans, job interviews, parole.
- Utility vector \boldsymbol{u} is now vector $\boldsymbol{\delta}$ of yes-no decisions.
- Used in welfare constraining models.


Rationale

- Resonates with popular conceptions of fairness.
- Bias may incur legal problems.


Notation

- TP = number of true positives (correct yes's)
- FP = number of false positives (incorrect yes's).
- TN = number of true negatives (correct no's).
- FN = number of false negatives (incorrect no's).

Demographic parity

• Can discriminate against a minority group that is more qualified than majority group.

Rationale

• Compares fraction of qualified (or unqualified) persons selected.

Hardt et al. 2016

Possible problem

- Considers only **yes** (or only **no**) decisions.
- Historical discrimination can affect who is qualified.

Predictive rate parity

• Compare
$$\frac{TP}{TP + FP}$$
 across 2 groups.

$$B(\boldsymbol{\delta}) = \frac{\sum_{i \in N} a_i \delta_i}{\sum_{i \in N} \delta_i} - \frac{\sum_{i \in N'} a_i \delta_i}{\sum_{i \in N'} \delta_i}$$

Rationale

Compares what fraction of selected individuals should have been selected.

Dieterich et al. 2016

Problem

• Very difficult nonconvex discrete optimization problem.

Group Parity Metrics

General problems of group parity metrics

- Yes-no outcomes (δ) provide a **limited perspective** on utility consequences (u).
- No consensus on **which bias metric** to use (some are mutually incompatible).
- No principle for **balancing** equity and efficiency.
- No clear principle for **selecting protected groups**, unless one simply selects those protected by law.
- Achieving parity for one group may create disparity for other groups.

Criterion	Linear?	Contin?
Maximin (Rawlsian)	yes	yes
Leximax (lexicographic)	yes	yes
McLoone index	yes	no

Maximin

$$W(\boldsymbol{u}) = \min_i \{u_i\}$$

Rationale:

- Based on **difference principle** of John Rawls.
- Inequality is justified only to the extent that it increases the utility of the worst-off.
- Originally intended only for the design of social institutions and distribution of primary goods (goods that any rational person would want).
- Social contract argument.

Rawls 1971, 1999

Leximax

Rationale:

- Takes in account 2nd worst-off, etc., and avoids wasting utility.
- Can be justified with Rawlsian argument.

McLoone index

$$W(\boldsymbol{u}) = \frac{1}{|I(\boldsymbol{u})|\tilde{u}} \sum_{i \in I(\boldsymbol{u})} u_i$$

where \tilde{u} is the median of utilities in \boldsymbol{u} and $I(\boldsymbol{u})$ is the set of indices of utilities at or below the median

Rationale:

- Compares total utility of those at or **below the median** to the utility that would result from bringing them up to the median.
- Index = 1 if no one is below median, \rightarrow 0 for long lower tail.
- Focus on all the disadvantaged.
- Often used for public goods (e.g., educational benefits).

Criterion	Linear?	Contin?
Utility + Gini coefficient	no	yes
Utility * Gini coefficient	yes	yes
Utility + maximin	yes	yes

Utility + Gini coefficient

$$W(\boldsymbol{u}) = (1 - \lambda) \sum_{i} u_{i} + \lambda (1 - G(\boldsymbol{u}))$$

Rationale.

- Takes into account both efficiency and equity.
- Can adjust their relative importance.

Problem.

- Combines utility with a dimensionless quantity.
- How to interpret λ , or choose a λ for a given application?

Utility * Gini coefficient

$$W(\boldsymbol{u}) = \left(1 - G(\boldsymbol{u})\right) \sum_{i} u_{i}$$

Rationale.

Eisenhandler & Tzur 2019

- Gets rid of λ .
- Equivalent to SWF that is easily linearized:

$$W(\boldsymbol{u}) = \sum_{i} u_{i} - \frac{1}{n} \sum_{i < j} |u_{j} - u_{i}|$$

Problem.

• It is still a convex combination of utility and an equality metric (mean absolute difference).

Utility + Gini-weighted utility

$$W(\boldsymbol{u}) = \sum_{i} u_{i} + \mu \left(1 - G(\boldsymbol{u}) \right) \sum_{i} u_{i}$$

Rationale.

Combines quantities measured in same units.

Mostajabdaveh, Gutjahr, Salman 2019

Problem.

- Equivalent to utility*(1-Gini) with multiplier $\lambda = \mu (1 + \mu)^{-1}$.
- How to interpret μ ?

Utility & Fairness – Convex Combinations

Utility + Maximin

$$W(\boldsymbol{u}) = (1 - \lambda) \sum_{i} u_i + \lambda \min_{i} \{u_i\}$$

Rationale.

• Explicitly considers individuals other than worst off.

Problem.

• If u_k is smallest utility, this is simply the linear combination

$$W(\boldsymbol{u}) = u_k + (1 - \lambda) \sum_{i \neq k} u_i$$

• How to interpret λ ?

Utility & Fairness – Classical Methods

Criterion	Linear?	Contin?
Alpha fairness	yes	yes
Proportional fairness (Nash bargaining)	yes	yes
Kalai-Smorodinsky bargaining	no	yes

Alpha Fairness

$$W_{\alpha}(\boldsymbol{u}) = \begin{cases} \frac{1}{1-\alpha} \sum_{i} u_{i}^{1-\alpha} & \text{for } \alpha \geq 0, \ \alpha \neq 1 \\ \sum_{i} \log(u_{i}) & \text{for } \alpha = 1 \end{cases}$$

Mo & Walrand 2000; Verloop, Ayesta & Borst 2010

Rationale.

• Continuous and well-defined adjustment of equity/efficiency tradeoff.

Utility u_j must be reduced by $(u_j/u_i)^{\alpha}$ units to compensate for a unit increase in u_i (< u_j) while maintaining constant social welfare.

- Utilitarian when $\alpha = 0$, maximin when $\alpha \rightarrow \infty$
- Can be derived from certain axioms. Lan & Chiang 2011
- Nonlinear but concave

Alpha Fairness

Alpha Fairness distribution vs alpha value 12 10 8 Player 1 Player 2 – Player 3 Utility 6 Player 4 Player 5 – Player 6 4 – Player 8 Avg utility 2 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 Alpha

Example:

Maximum alpha fairness subject to budget constraint $u_1 + 2u_2 + \dots + 8u_8 \le 100$

Proportional Fairness

$$W(\boldsymbol{u}) = \sum_{i} \log(u_i)$$

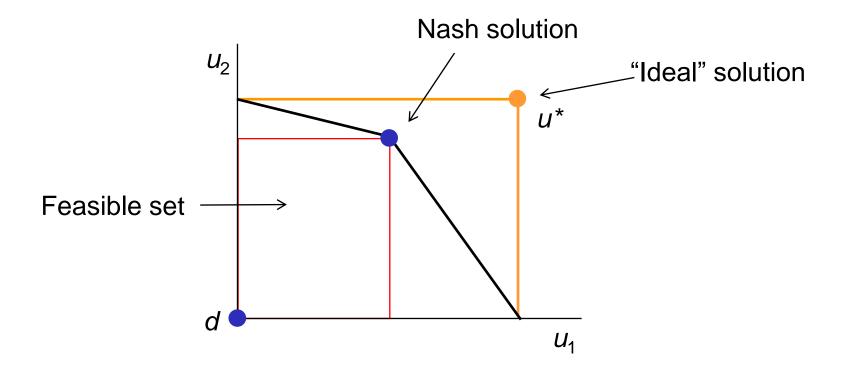

Nash 1950

- Special case of alpha fairness ($\alpha = 1$).
- Also known as Nash bargaining solution.
- Bargaining starts with a default distribution *d*.

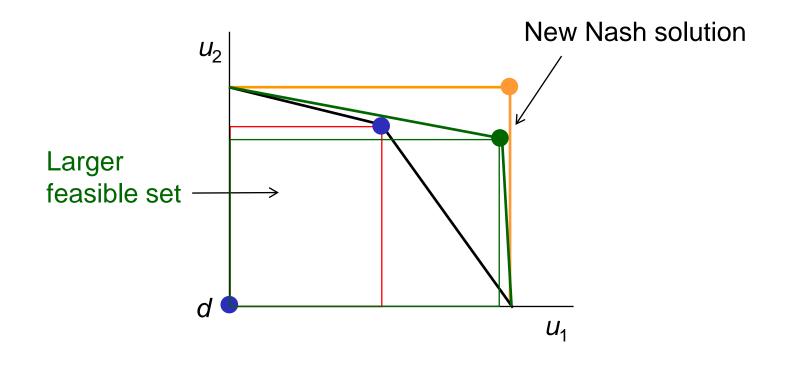
Rationale

- Has nice geometric interpretation.
- Can be derived from axiomatic and bargaining arguments.

Proportional Fairness

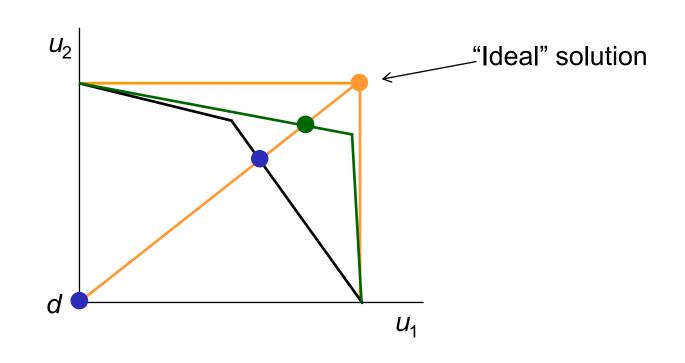


Proportional Fairness


Problems with bargaining justifications.

- Why should a bargaining procedure that is rational from an **individual** viewpoint result in a **just distribution?**
- Why should "procedural justice" = justice?
 For example, is the outcome of bargaining in a free market necessarily just?
- A deep question in political theory.

• Begins with a critique of the Nash bargaining solution.

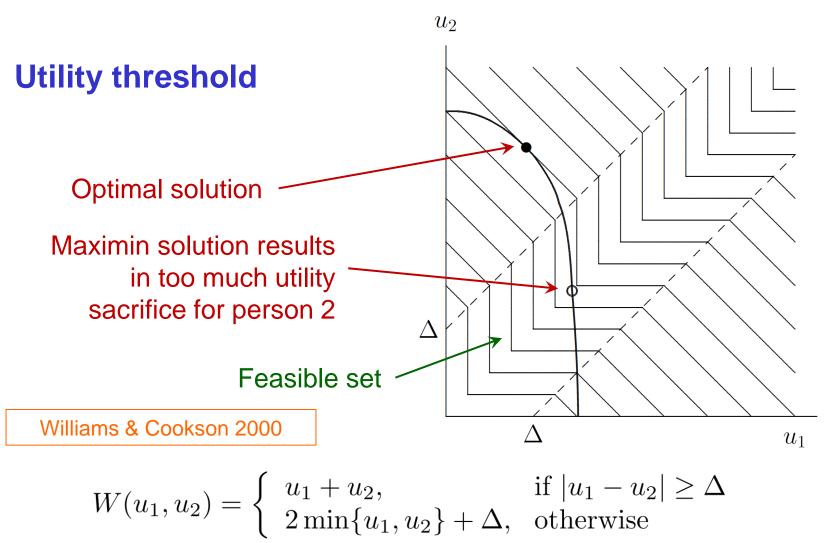


- Begins with a critique of the Nash bargaining solution.
- The new Nash solution is **worse** for player 2 even though the feasible set is **larger**.

• **Proposal**: Bargaining solution is pareto optimal point on line from *d* to ideal solution.

Possible problems

- In some contexts, it may not be ethical to allocate utility in proportion to one's potential.
- For example, when allocating resources to those with minor ailments vs chronic diseases.


Utility & Fairness – Threshold Methods

Criterion	Linear?	Contin?
Utility + maximin – Utility threshold	yes	yes
Utility + maximin – Equity threshold	yes	no
Utility + leximax – Predefined priorities	yes	yes
Utility + leximax – No predefined priorities	yes	yes

Combining utility and maximin

- **Utility threshold:** Use a maximin criterion until the utility cost becomes too great, then switch a utilitarian criterion.
- Equity threshold: Use a utilitarian criterion until the inequity becomes too great, then switch to a maximin criterion.

Williams & Cookson 2000

Utility threshold

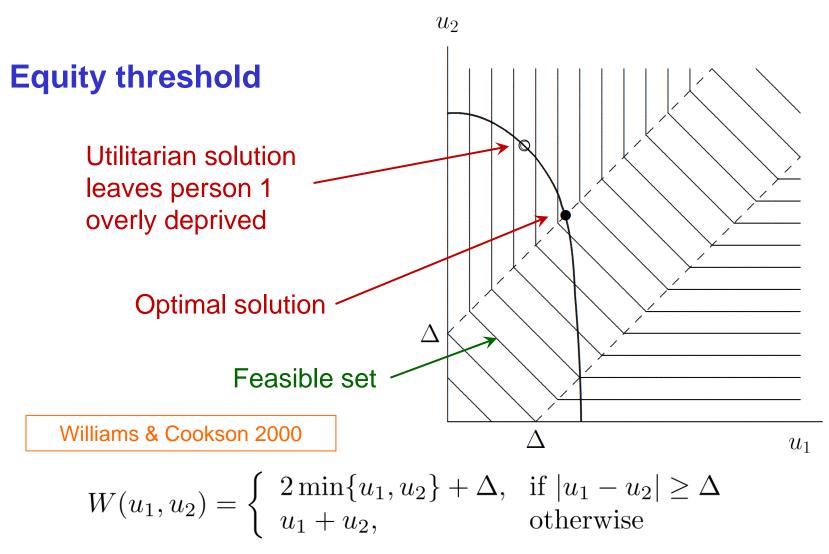
Generalization to *n* persons

$$W(\boldsymbol{u}) = (n-1)\Delta + \sum_{i=1}^{n} \max\left\{u_i - \Delta, u_{\min}\right\}$$

where $u_{\min} = \min_i \{u_i\}$ JH & Williams 2012

Interpretation

- Δ is chosen so that individuals in fair region are sufficiently deprived to **deserve priority**.
- $\Delta = 0$ corresponds to utilitarian criterion, $\Delta = \infty$ to maximin.


Utility threshold

Rationale

- Trade-off parameter Δ has a **practical interpretation**.
- Suitable when **equity** is the initial concern, but without paying **too high a cost** for fairness (healthcare, politically sensitive contexts).

Problem

• Due to maximin component, many solutions with different equity properties have same social welfare value.

Equity threshold

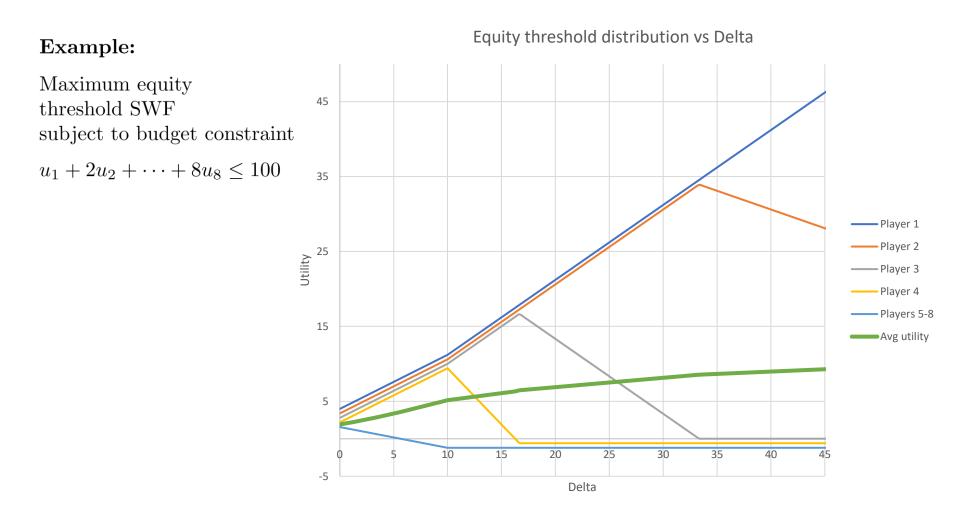
Generalization to *n* persons

$$W(oldsymbol{u}) = n\Delta + \sum_{i=1}^n \min\{u_i - \Delta, u_{min}\}$$
Elçi, JH, and Zhang 2022

Interpretation

• Δ is chosen so that well-off individuals (those in fair region) **do not deserve more utility** unless smaller utilities are also increased.

Equity threshold

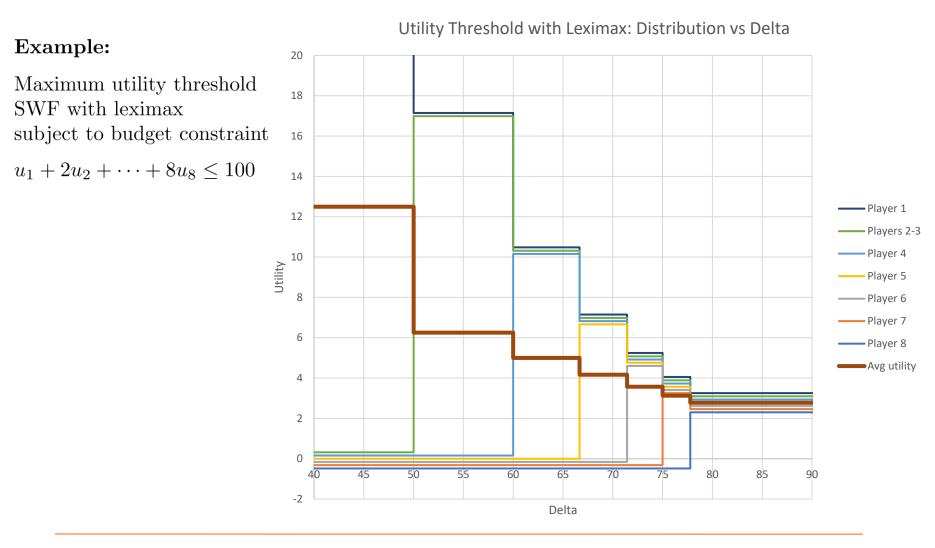

Rationale

- Trade-off parameter Δ has a **practical interpretation**.
- Suitable when efficiency is the initial concern, but one does not want to create excessive inequality (traffic management, telecom, disaster recovery).

Elçi, JH, and Zhang 2022

Problem

• As with threshold model, many solutions with different equity properties have same social welfare value.


Utility + leximax, sequence of SWFs

SWFs W_1, \ldots, W_n are maximized sequentially, where W_1 is the utility threshold SWF defined earlier, and W_k for $k \ge 2$ is

$$W_{k}(\boldsymbol{u}) = \sum_{i=1}^{k-1} (n-i+1)u_{\langle i\rangle} + (n-k+1)\min\left\{u_{\langle 1\rangle} + \Delta, u_{\langle k\rangle}\right\} + \sum_{i=k}^{n} \max\left\{0, \ u_{\langle i\rangle} - u_{\langle 1\rangle} - \Delta\right\}$$

where $u_{\langle 1 \rangle}, \ldots, u_{\langle n \rangle}$ are u_1, \ldots, u_n in nondecreasing order.

Chen & JH 2021

Rationale

- Takes into account utility levels of all individuals in the fair region.
- Tractable MILP models in practice, valid inequalities known.

Possible problems

- Requires solving a sequence of MILPs.
- Hard to explain and justify on first principles.

Threshold Methods – Healthcare Example

- Based on budget decisions in UK National Health Service
- Allocate limited treatment resources to disease/prognosis categories of patients.
- Based on cost, number of patients, and QALY estimates with and without treatment.*
- We will use a leximax-utility threshold SWF.
- Solution time = fraction of second for each value of Δ .

Problem due to JH & Williams 2012

*QALY = quality adjusted life-year. Data reflect a particular situation and are not valid in general. Solutions presented here should not be taken as a general recommendation for healthcare resource allocation, but only as an illustration of social welfare functions.

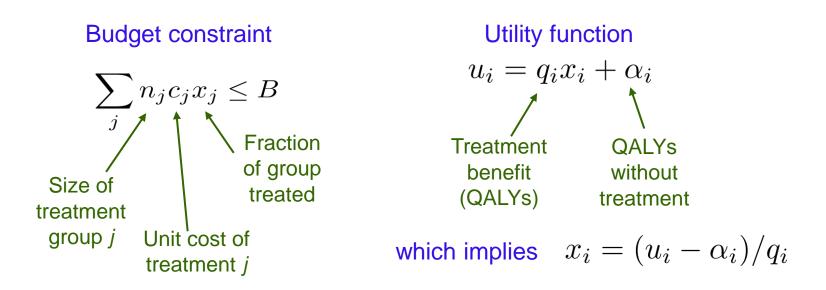
Intervention	$\begin{array}{c} \text{Cost} \\ \text{per person} \\ c_i \\ (\pounds) \end{array}$	$\begin{array}{c} \text{QALYs} \\ \text{gained} \\ q_i \end{array}$	Cost per QALY (£)	$\begin{array}{c} {\rm QALYs} \\ {\rm without} \\ {\rm intervention} \\ \alpha_i \end{array}$	$\begin{array}{c} \text{Subgroup} \\ \text{size} \\ n_i \end{array}$
Pacemaker for atriove	entricular hear	rt block			
Subgroup A	3500	3	1167	13	35
Subgroup B	3500	5	700	10	45
Subgroup C	3500	10	350	5	35
Hip replacement					
Subgroup A	3000	2	1500	3	45
Subgroup B	3000	4	750	4	45
Subgroup C	3000	8	375	5	45
Valve replacement for	aortic stenos	is			
Subgroup A	4500	3	1500	2.5	20
Subgroup B	4500	5	900	3	20
Subgroup C	4500	10	450	3.5	20
CABG ¹ for left main	disease				
Mild angina	3000	1.25	2400	4.75	50
Moderate angina	3000	2.25	1333	3.75	55
Severe angina	3000	2.75	1091	3.25	60
CABG for triple vesse	el disease				
Mild angina	3000	0.5	6000	5.5	50
Moderate angina	3000	1.25	2400	4.75	55
Severe angina	3000	2.25	1333	3.75	60
CABG for double vess	sel disease				
Mild angina	3000	0.25	12,000	5.75	60
Moderate angina	3000	0.75	4000	5.25	65
Severe angina	3000	1.25	2400	4.75	70

& cost data

Part 1

QALY

Intervention	$\begin{array}{c} \text{Cost} \\ \text{per person} \\ c_i \\ (\pounds) \end{array}$	$\begin{array}{c} \text{QALYs} \\ \text{gained} \\ q_i \end{array}$	Cost per QALY (£)	$\begin{array}{c} \text{QALYs} \\ \text{without} \\ \text{intervention} \\ \alpha_i \end{array}$	$\begin{array}{c} {\rm Subgroup} \\ {\rm size} \\ n_i \end{array}$
Heart transplant					
	22,500	4.5	5000	1.1	2
Kidney transplant					
Subgroup A	15,000	4	3750	1	8
Subgroup B	15,000	6	2500	1	8
Kidney dialysis					
Less than 1 year su	urvival				
Subgroup A	5000	0.1	50,000	0.3	8
1-2 years survival					
Subgroup B	12,000	0.4	30,000	0.6	6
2-5 years survival					
Subgroup C	20,000	1.2	16,667	0.5	4
Subgroup D	28,000	1.7	16,471	0.7	4
Subgroup E	36,000	2.3	$15,\!652$	0.8	4
5-10 years survival					
Subgroup F	46,000	3.3	13,939	0.6	3
Subgroup G	56,000	3.9	14,359	0.8	2
Subgroup H	66,000	4.7	14,043	0.9	2
Subgroup I	77,000	5.4	14,259	1.1	2
At least 10 years s	urvival		-		
Subgroup J	88,000	6.5	13,538	0.9	2
Subgroup K	100,000	7.4	13,514	1.0	1
Subgroup L	111,000	8.2	13,537	1.2	1

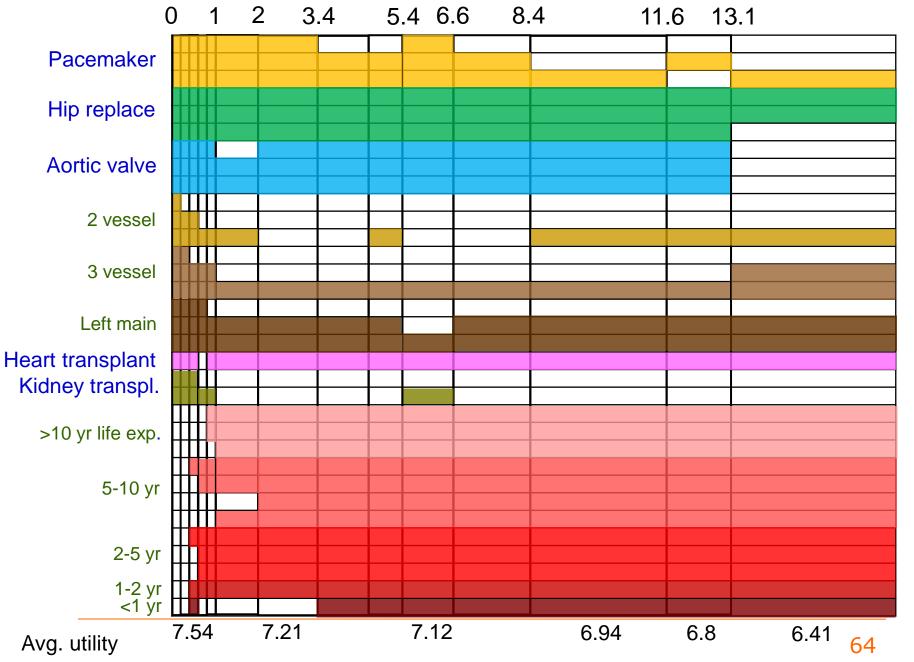

QALY

& cost

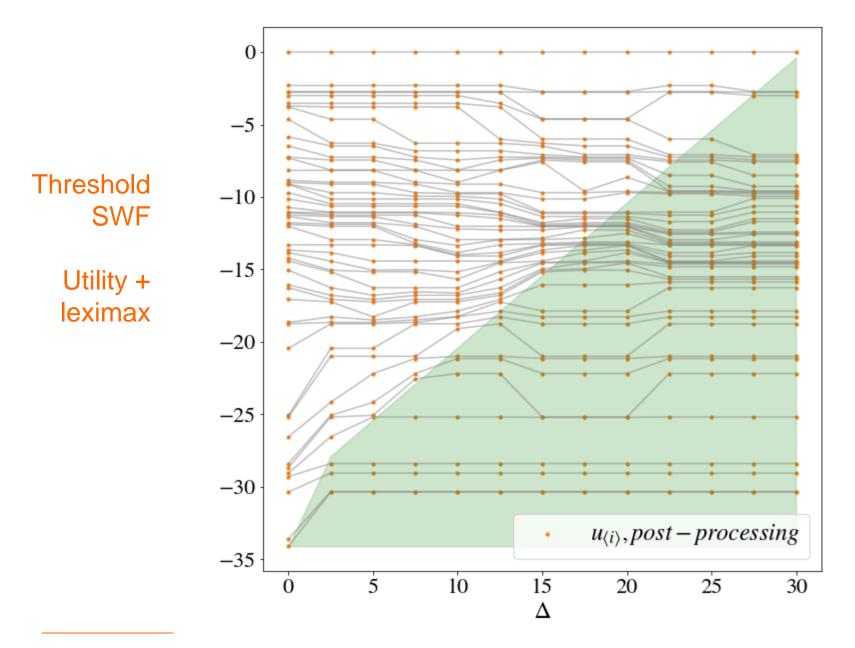
Part 2

data

Threshold Methods – Healthcare Example


So the optimization problem becomes

$$\max_{\boldsymbol{u}} \left\{ W(\boldsymbol{u}) \mid \sum_{j} \frac{n_{j}c_{j}}{q_{j}} u_{j} \leq B + \sum_{j} \frac{n_{j}c_{j}\alpha_{j}}{q_{j}}; \ \boldsymbol{\alpha} \leq \boldsymbol{u} \leq \boldsymbol{q} + \boldsymbol{\alpha} \right\}$$


Budget = £3 million

Threshold Methods – Disaster Preparedness Example

- Select earthquake shelter locations.
- Utility = negative distance of each neighborhood to nearest shelter, subject to limited budget.
- We will use a **leximax-utility SWFs**.
- 50 neighborhoods, 50 potential shelter locations.
- Solution time = 1 to 18 seconds for each value of Δ .

Problem due to Mostajabdaveh, Gutjahr & Salman 2019

Questions or comments?