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Abstract

Optimization models typically seek to maximize overall benefit or
minimize total cost. Yet fairness is an important element of many
practical decisions, and it is much less obvious how to express it
mathematically. We provide a critical survey of various schemes that
have been proposed for formulating ethics-related criteria, including
those that integrate efficiency and fairness concerns. The survey
covers inequality measures, Rawlsian maximin and leximax criteria,
convex combinations of fairness and efficiency, alpha fairness and
proportional fairness (also known as the Nash bargaining solution),
Kalai-Smorodinsky bargaining, and recently proposed utility-threshold
and fairness-threshold schemes for combining utilitarian with maximin
or leximax criteria. The paper also examines group parity metrics that
are popular in machine learning. We present what appears to be the best
practical approach to formulating each criterion in a linear, nonlinear,
or mixed integer programming model. We also survey axiomatic and
bargaining derivations of fairness criteria from the social choice literature
while taking into account interpersonal comparability of utilities. Finally,
we cite relevant philosophical and ethical literature where appropriate.
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2 Formulating Fairness

1 Introduction

There is growing interest in incorporating fairness-related criteria into opti-
mization models. Practical applications in health care, disaster management,
telecommunications, facility location, and other areas increasingly raise issues
related to the fair allocation of resources. Yet it is far from obvious how
to formulate such ethical concerns mathematically. While it is normally
straightforward to formulate an objective function that reflects efficiency or
cost, fairness can be understood in multiple ways, with no generally accepted
method for representing any of them in a mathematical idiom. While methods
for formulating fairness concerns frequently appear in research papers, they
are often discussed and selected in an ad hoc manner.

We therefore undertake to provide a survey and assessment of a broad range
of fairness criteria that can be incorporated into an optimization model. We
focus on a representative selection of what appear to be the most interesting,
best known, or most useful mathematical formulations of fairness in the
literature, with particular emphasis on those that incorporate efficiency as well
as fairness. We do not attempt to impose a single definition of fairness because
different definitions are appropriate for different contexts. Our aim, rather,
is to elucidate the fairness concepts implicit in mathematical formulations
that have been proposed. We present these fairness formulations in clusters,
each characterizing a different type of fairness concept, to guide systematic
comparisons among them and assist the selection of a fitting formulation in
practice. In addition, we indicate how to convert each formulation to a linear,
nonlinear, or mixed integer programming model.

Specifically, we cover several inequality metrics, some of the more popular
group parity measures used in machine learning, Rawlsian maximin and
leximax criteria, various convex combinations of these with efficiency criteria,
alpha fairness and proportional fairness (the latter also known as the Nash
bargaining solution), the Kalai-Smorodinsky bargaining solution, and recently
proposed efficiency-threshold and fairness-threshold criteria for combining
utilitarianism with maximin and leximax criteria.

In the interest of brevity, we omit some fairness criteria that are designed for
particular domains or difficult to optimize. These include several of the fairness
measures developed specifically for telecommunications networks (cited in
Section 4.1). We also omit entropy-based metrics from the economics literature
due to the computational challenge they pose, such as the Theil index (Theil
1967, Cowell and Kuga 1981) and the related Atkinson index (Atkinson 1975).
Finally, we cover only the best known of the many statistical bias based metrics
that have been proposed for machine learning, as described in Section 5.

To our knowledge, there is no existing survey of this kind. Karsu
and Morton (2015) discuss several models in their excellent survey of
inequality-averse optimization, along with applications and some underlying
mathematical theory. Ogryczak et al (2014) survey fairness criteria that have
been used in communication networks and location models, with a discussion
of their properties and relationship with leximax criteria. Our contribution



Springer Nature 2021 LATEX template

Formulating Fairness 3

differs from these in that it aims for broad coverage of fairness concepts while
providing a practical guide for the analyst who wishes to incorporate fairness
concerns into an optimization model of a given application. It accordingly
includes a focus on how to formulate the various criteria for computationally
tractable solution by mathematical programming software. It also covers
fairness formulations developed since the earlier surveys, as well as fairness
measures from machine learning.

While we make no attempt to resolve underlying philosophical issues, we
provide references to relevant philosophical and ethical literature as specific
fairness criteria are considered. General philosophical surveys of fairness
concepts can be found in Bartneck et al (2021), Binns (2018), Coeckelbergh
(2022), Hellman (2011), Lamont and Favor (2017), and Roemer (1996). In
addition, Schminke et al (2015) and Colquitt and Rodell (2015) discuss fairness
concepts from an empirical and organizational perspective.

We begin below by stating a generic optimization problem that provides
a framework for the discussion to follow. In particular, we suppose that each
fairness criterion we consider is encapsulated in a social welfare function
(SWF) that serves as the objective function or a constraint of the optimization
model. We next briefly review results from social choice theory that derive
certain SWFs from axioms of rational choice, taking into account the degree
of interpersonal comparability of utilities. We also note bargaining procedures
that can be seen as justifying certain SWFs. The fairness criteria we study
in subsequent sections (aside from the convex combinations in Section 7) are
summarized in Tables 1–3, which indicate the section of the paper that deals
with each. The two concluding sections of the paper draw on the foregoing
discussion to suggest some general guidelines for selecting a fairness criterion
for a given application. The Appendix presents optimization models for all of
the SWFs listed in the tables.

2 Generic Optimization Problem

Optimization has long been used to support decision making, and many
practical optimization problems involve the allocation of resources. For
example, policymakers must allocate health resources in the Covid-19
pandemic, and airline crew schedulers allocate flight tasks. In these
applications, optimization offers the useful flexibility of including constraints,
such as resource capacity, to restrict feasible decisions. In recent years,
optimization also has been extensively studied in artificial intelligence,
especially in machine learning, where optimization models are often core
components.

Conventional optimization models typically strive for efficiency by
maximizing total benefit or minimizing total cost in some sense. Benefit
can be measured in many different ways, such as profit, revenue, output, or
health outcomes obtained, and cost can be measured by labor, materials, and
resources invested or undesirable outputs generated. The common thread in
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Table 1 Summary of fairness criteria, part 1. The second and third columns indicate
whether the fairness model introduces nonlinearity or integer variables.

Criterion Nonlin? Integer? Comments

Inequality measures

Relative range
(Section 4.1)

no no The spread between min and max utilities,
normalized by the mean.

Relative mean
deviation
(Section 4.1)

no no The normalized average deviation from the
mean. Takes in account all utilities, rather than
only the two extremes as in relative range.

Coefficient of
variation
(Section 4.1)

yes no The normalized standard deviation.

Jain’s index
(Section 4.1)

yes no A well-known metric developed for
telecommunication networks. It is a strictly
monotone function of the coefficient of variation.

Gini coefficient
(Section 4.2)

no no Perhaps the best known measure of inequality.
Proportional to the area between the Lorenz
curve and a diagonal line representing perfect
equality. Lies in the interval [0,1], with 0
indicating perfect equality.

Hoover index
(Section 4.2)

no no The fraction of total utility that must be
redistributed to achieve perfect equality. Also
related to the Lorenz curve, and proportional to
the relative mean deviation.

Group parity measures

Demographic
parity
(Section 5.1)

no no The parity of selection rates for a benefit across
two groups.

Equalized odds
(Section 5.2)

no no The parity of selection rates among qualified (or
unqualified) individuals across two groups.

Accuracy parity
(Section 5.3)

no no The parity of accuracy rates (fraction of
individuals correctly selected or rejected) across
two groups.

Predictive rate
parity
(Section 5.4)

yes yes The parity of qualification rates among selected
across two groups.
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Table 2 Summary of fairness criteria, part 2.

Criterion Nonlin? Integer? Comments

Fairness for the disadvantaged

Maximin
(Section 6.1)

no no Maximizes the minimum utility. Based on the
Rawlsian principle that inequality is justified
only to the extent that it improves the welfare
of the worst off. Once maximin is obtained,
does not consider the welfare of other
disadvantaged individuals.

Leximax
(Section 6.1)

no no Maximizes the welfare of the worst off, then the
2nd worst off, and so forth. Considers the welfare
of all disadvantaged individuals but requires
solving a sequence of optimization problems.

McLoone index
(Section 6.2)

no yes Compares total utility of those below the
median to what they would enjoy if brought up
to the median. Concerned only with the welfare
of the lower half.

Combining efficiency and fairness – Classical methods

Alpha fairness
(Section 8.1)

yes no Parameter α regulates fairness vs efficiency,
with α = 0 corresponding to a pure utilitarian
and α =∞ to a pure maximin criterion.

Proportional
fairness
(Section 8.1)

yes no Special case of alpha fairness with α = 1, also
known as the Nash bargaining solution, and used
in engineering applications. Has been justified
with axiomatic and bargaining arguments.

Kalai-
Smorodinsky
bargaining
(Section 8.2)

no no Maximizes minimum relative concession by
maximizing equal fraction of each party’s
potential gain. Has been defended as outcome
of a bargaining procedure and tends to favor
those with greater opportunity.
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Table 3 Summary of fairness criteria, part 3.

Criterion Nonlin? Integer? Comments

Combining efficiency and maximin fairness – Threshold methods

Efficiency
threshold
(Section 9.1)

no yes Uses a maximin criterion until efficiency cost of
fairness becomes too great, and then switches
some parties to a utilitarian criterion. The
break point is controlled by parameter ∆,
selected so that parties within ∆ of the lowest
utility are seen as sufficiently disadvantaged to
receive greater priority.

Fairness
threshold
(Section 9.2)

no no Uses a utilitarian criterion until unfairness
becomes too great, and then switches some
parties to a maximin criterion. The parameter
∆ is selected so that parties already more than
∆ above the lowest utility are not seen as
deserving greater utility if the other utilities
remain unchanged.

Combining efficiency and leximax fairness – Threshold methods

Efficiency
threshold,
predefined
priorities
(Section 10.1)

no yes Maximizes an efficiency threshold function that
combines utilitarian and maximin criteria, then
applies a leximax criterion to optimal solutions
if one or more have a utility spread of ∆ or less.
Assumes that priorities of the parties can be
fixed in advance.

Efficiency
threshold, no
predefined
priorities
(Section 10.2)

no yes Solves a sequence of optimization problems in
which the kth problem determines the kth
smallest utility in the socially optimal solution.
Each problem assumes the smallest k − 1
utilities have been fixed and maximizes a SWF
that combines utilitarian and maximin criteria
while giving the kth worst-off party priority
that is regulated by ∆.
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these models is that the benefits and/or costs are dispersed across stakeholders.
However, by pursuing an efficiency goal, a conventional optimization model
may lead to an unfair distribution of benefits and costs among the stakeholders.
Some may receive less than they should, and some more then they should,
relative to the others. The task before us is to incorporate fairness into a given
optimization model by reformulating the objective function and/or adding
constraints.

We begin by supposing that the given optimization model has the form
maxx{f(x) | x ∈ Sx}, where Sx is the feasible set and f(x) measures the
efficiency of the solution x in a desired sense. We also assume that the solution
x results in a distribution of utilities u = (u1, . . . , un) to stakeholders 1, . . . , n,
respectively, and we are concerned about the fairness of the distribution. These
stakeholders could be individuals, groups, organizations, geographic regions, or
other entities. Their utilities are determined by a vector-valued utility function
u = U(x) = (U1(x), . . . , Un(x)) whose value depends on x. These utilities
could be measured in terms of profit, negative cost, health outcomes, or some
other benefit the stakeholders receive.

In the discussion to follow, various fairness criteria are represented by
social welfare functions W (u). Formally, a social welfare function (SWF)
aggregates a utility vector u into a scalar value representing the desirability
of the distribution u. A wide variety of fairness concepts can be formulated
by selecting suitable SWFs. In particular, SWFs can be designed to balance
fairness with efficiency.

One can use a SWF to introduce fairness into a problem by formulating
a welfare optimizing model or a welfare constraining model. A welfare
maximizing model replaces the original objective function f(x) with W (u)
and therefore maximizes social welfare, while a welfare constraining model
maximizes the original objective function f(x) subject to a lower bound on
W (u). A welfare maximizing model has the generic form

max
u,x

{
W (u)

∣∣ u = U(x), x ∈ Sx
}

(1)

and a welfare constraining model has the form

max
u,x

{
f(x)

∣∣W (u) ≥ LB, u = U(x), x ∈ Sx
}

(2)

where LB is a lower bound on social welfare, representing the minimum
acceptable level of fairness.

A simple medical triage problem exemplifies a welfare maximizing model.
There are n patients who require treatment, but subject to a limited budget
B. Patient i receives treatment when binary variable xi = 1, and the cost of
treatment is ci. The resulting utility ui experienced by patient i, measured
in quality-adjusted life years (QALYs), is ai without treatment and ai + bi
with treatment. Thus the utility function is given by Ui(x) = ai + bixi for
i = 1, . . . , n. If the original objective function f(x) measures total QALYs that
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result from the treatment decisions, maximizing f(x) may divert all resources
away from patients who are the most expensive to treat. Physicians may
wish to avoid this by replacing f(x) with a SWF that takes into account the
distribution of utilities across patients. This leads to the welfare maximizing
model

max
u,x

W (u)

∣∣∣∣∣∣
∑
i

cixi ≤ B

ui = ai + bixi, xi ∈ {0, 1}, all i


The choice of social welfare function W (u) should reflect how fairness and
efficiency are to be understood and balanced in this context.

As a second example, suppose a city wishes to locate a limited number
of ambulance stations to minimize response time. Here ui is the negation
of the expected response time for neighborhood i. If the original objective
function f(x) is the negation of the average expected response time across all
neighborhoods, maximizing f(x) may yield a much longer expected response
time for sparsely populated outlying areas than for densely populated urban
areas. The city might address this by maximizing a SWF that balances fairness
and efficiency.

A welfare constraining model is appropriate when f(x) measures a type of
benefit or cost different from that distributed to stakeholders. In the health
care example, the original objective f(x) may represent the negation of total
cost rather than total QALYs generated. A clinic may wish to minimize cost
subject to a lower bound on the social welfare that results from the distribution
of health benefits to patients.

Another example might arise when a bank uses machine learning to
estimate credit risk when processing mortgage loan applications. The bank may
wish to minimize risk while seeking a fair distribution of loans to applicants.
Let xi denote the approved loan amount to applicant i (possibly zero), where xi
is at most the requested loan amount ai. Since the approved loan is the primary
benefit of interest to an applicant, we can define his/her expected utility as
ui = Ui(xi) = ai + pixi, with pi denoting the likelihood of loan approval. We
suppose the bank is able to determine pi all for applicants, perhaps with a
separate estimation model. For an approved loan of amount xi, the bank is
subject to risk Ri(xi), where Ri is a risk function based on applicant i’s profile.
The bank’s objective is to grant loans within the available budget B, so that
the overall risk is minimized and the utility distribution among applicants is
reasonably fair. The resulting welfare constraining model is

min
u,x

∑
i

Ri(xi)

∣∣∣∣∣∣
∑
i

xi ≤ B, W (u) ≥ LB

ui = ai + pixi, xi ∈ [0, ai], all i


where the social welfare function W (u) reflects how fairness should be
interpreted in this context. The lower bound LB should be the minimum
acceptable level of fairness.
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Welfare maximizing models have the advantage that they allow one to
regulate the trade-off between efficiency and fairness by using a SWF that
is designed for this purpose. On the other hand, welfare constraining models
may be preferable when there is no suitable SWF that incorporates the
original objective as well as fairness, or when one wishes to impose a minimum
acceptable level of fairness.

To simplify notation, we will suppose henceforth that the constraint
u = U(x) is encoded in constraints represented by (u,x) ∈ S, so that problems
(1) and (2) respectively become

max
u,x

{
W (u)

∣∣ (u,x) ∈ S
}

(3)

max
u,x

{
f(x)

∣∣W (u) ≥ LB, (u,x) ∈ S
}

(4)

Thus (u,x) ∈ S if and only if u = U(x) and x ∈ Sx.
A major element of this paper is showing (in the Appendix) how to

write the optimization problem (3) or (4) in a form suitable for one
of the highly advanced mathematical programming solvers now available.
Naturally, the difficulty of (3) and (4) depends to a great degree on the
nature of the constraints that describe the feasible set S. We focus here
on any computational difficulties introduced by incorporating fairness. In
particular, we indicate for each SWF in Tables 1–3 whether formulating it
adds nonlinearities or integer variables to an optimization model. Thus, for
example, if the constraints (x,u) ∈ S are linear, the resulting model is a
linear programming (LP) problem if the SWF adds no nonlinearities or integer
variables, and it is a mixed integer/linear programming (MILP) if the SWF
adds only integer variables. Powerful solvers exist for LP and MILP models,
as well as for some types of nonlinear models. Specifics are discussed in the
Appendix.

3 Axiomatic and Bargaining Derivations

Certain social welfare functions discussed below have interesting axiomatic or
bargaining derivations. These derivations, however, rely on assumptions that
may limit their applicability to practical modeling situations. In particular, the
classical axiomatic results assume that utilities can be meaningfully compared
across individuals only to a limited degree.

The use of a social welfare function presupposes a certain amount of
interpersonal comparability, and different SWFs presuppose different types of
comparability. In fact, by adopting certain additional axioms, one can show
that assuming a given type of interpersonal comparability necessarily results
in a SWF of a particular form, such as utilitarian, maximin, or proportional
fairness (Roberts 1980, Gaertner 2009).

Interpersonal comparability is characterized by defining an invariance
transformation φ(u) = (φ1(u1), . . . , φn(un)). This is a transformation of
utility vectors that does not alter the social ranking of the vectors. Thus u is
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preferable to u′ if and only if it remains preferable after applying an invariance
transformation; that is, W (u) > W (u′) if and only if W (φ(u)) > W (φ(u′)).
For example, unit comparability corresponds to an invariance transformation
φ(u) of the form φi(ui) = βui + γi, where β > 0 is independent of i. Thus
gains and losses of utility can be compared across individuals, but the relative
level of utilities cannot. Level comparability corresponds to an invariance
transformation of the form φ(u) = (φ0(u1), . . . , φ0(un)), where φ0 is strictly
increasing. This allows the relative utility levels of different individuals to be
compared. That is, one can say meaningfully that one individual enjoys more
utility than another.

Given two additional axioms, unit comparability implies that the SWF
must be utilitarian, which means that that it is simply the total utility

∑
i ui.

One axiom is anonymity, which says that interchanging individuals has no
effect on the ranking of utility vectors. Thus W (u) > W (u′) if and only if
W (uπ) > W (u′π), where uπ is a permutation of the utilities in u. The second
is a strict Pareto axiom, which requires that W (u) ≥W (u′) if u ≥ u′, and
W (u) > W (u′) if in addition ui > u′i for some i.

Given these same two axioms, level comparability implies that the social
welfare criterion must be either maximin or minimax, meaning that W (u) is
either mini{ui} or −maxi{ui}. We obtain the maximin criterion in particular
(famously defended by John Rawls and discussed below in Section 6.1) if we
adopt an additional axiom that a maximin outcome is preferable to a minimax
outcome.1

It is important to note that the unit comparability assumption implies
not only that utilities across persons have unit comparability, but that they
have no greater degree of comparability, and similarly for level comparability
(Hooker 2013). Thus, the utilitarian principle is derived from the rather
strict premise that the relative level of utility across individuals cannot be
meaningfully compared. This already rules out a Rawlsian criterion, which
requires identifying the smallest individual utility. Similarly, the maximin
principle is derived from the premise that gains and losses in individual utilities
cannot be meaningfully quantified, which rules out a utilitarian criterion.

Interpersonal comparability is also restricted in the classical proof of the
Nash bargaining solution (Nash 1950), also known as proportional fairness
(Section 8.1). Here the assumption is scale invariance, which corresponds to an
invariance transformation φ of the form φi(ui) = βiui, where each βi > 0. This
already rules out both utilitarian and Rawlsian criteria. The Nash bargaining
solution can be derived if we also assume anonymity and Pareto axioms,
along with the independence of irrelevant alternatives. The last essentially
says that if u∗ is the Nash bargaining solution for a given feasible set of
utilities, it remains the solution if the set is reduced without excluding u∗. If we
replace this independence axiom with a monotonicity property (discussed in

1We assume, with no significant loss of generality for present purposes, that social welfare is a
function solely of the utility vector u. If we formulate social welfare as a function of x and the
utility functions Ui(x), then we need an independence axiom to derive the utilitarian result. An
additional separability axiom is required to prove the maximin/minimax result.
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Section 8.2), while retaining scale invariance, we obtain the Kalai-Smorodinsky
bargaining solution (Kalai and Smorodinsky 1975).

Full interpersonal comparability tends to be assumed in practical
optimization models, since utility is often identified with profit, negative cost,
or other forms of benefit that are routinely compared across individuals. The
classical axiomatic results surveyed here are therefore not directly applicable in
such cases. Nonetheless, one must bear in mind that utilitarian and Rawlsian
criteria presuppose at least unit and level comparability, respectively, and other
SWFs may presuppose greater degrees of interpersonal comparability.

A more recent axiomatic result of Lan and Chiang (2011) does not
explicitly rely on an interpersonal noncomparability assumption. It states that
a SWF satisfying certain axioms must belong to a certain broad family of
functions, where specific members of this family include alpha fairness (of
which proportional fairness is a special case) as well as maximin and minimax
criteria. As we note in Section 8.1, an axiom of partition is key to the result
and is rather difficult to assess in a practical context. In such cases, it may be
more natural to judge the plausibility of an SWF itself than the set of axioms
that lead to it.

Bargaining justifications have also been given for certain SWFs. For
example, Harsanyi (1977), Rubinstein (1982), and Binmore et al (1986)
show that the Nash solution is the (asymptotic) outcome of certain rational
bargaining procedures. Similar arguments can be advanced for the Kalai-
Smorodinsky bargaining solution. Sections 8.1 and 8.2 describe the bargaining
procedures in greater detail. They typically assume that there is a default
position at which bargaining starts, and to which the parties revert if
negotiation fails. The default position has an influence on the outcome of
bargaining even when it succeeds, and an inequitable starting point may lead
to an outcome that parties consider unfair. Aside from this, it is a fundamental
philosophical question as to whether procedural justice (which one might
claim is achieved by a fair negotiation process) can be relied upon to produce
substantive justice (a fair outcome) (Nozick 1974, Rawls 1971, Scanlon 2003,
Cropanzana et al 2007). These considerations must be taken into account when
assessing a bargaining argument for a particular SWF.

4 Inequality Measures

Equality is not the same concept (or cluster of concepts) as fairness, but there
are contexts in which one may wish to achieve fairness by reducing the level
of inequality. No philosophical consensus exists on the relationship between
equality and fairness. Views range from the assertion that fairness imposes an
irreducible obligation to promote equality for its own sake, even at the cost of
reducing total utility, to the claim that fairness requires equality only when
greater equality would lead to greater total utility (Frankfurt 2015, Parfit
1997, Scanlon 2003). In any event, an inequality metric can be appropriate in
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a context where a specifically egalitarian distribution is the primary goal, or
where it is believed that greater fairness can be achieved by reducing inequality.

Inequality measures have been used for fairness-related optimization in a
broad range of applications. Examples of these papers are summarized in Karsu
and Morton (2015). More recently, inequality measures are also considered
in the growing area of algorithmic fairness. For instance, Leonhardt et al
(2018) study Gini coefficient type measures for estimating the disparity in user
satisfaction and recommendation quality of recommender systems. Speicher
et al (2018) and Sühr et al (2019) respectively adopt a generalized entropy
index to evaluate the degree of unfairness in predictors trained by machine
learning and in two-sided matching platforms.

Several statistics have been proposed or measuring inequality (Cowell 2000,
Jenkins and Van Kerm 2011), and we discuss some of the best-known ones: the
relative range, relative mean deviation, coefficient of variation, Jain’s index,
the Gini coefficient, and the Hoover index. Linearized optimization models
are presented in the Appendix. The McLoone index can also be regarded as
a measure of inequality, but we consider it in the next section as measuring
fairness for the disadvantaged.

Since greater inequality is viewed as less fair, thus less desirable, SWFs
in this section are written as the negation of the inequality measure. All of
the inequality measures we consider are normalized by the mean utility and
are therefore unchanged after multiplying the utilities by a common positive
scalar. Thus, increasing everyone’s utility (by the same factor) has no effect on
social welfare as measured by the criteria in this section. This is a distinction
from the SWFs we review in Sections 6 - 10, which consider overall absolute
welfare levels.

4.1 Measures of relative dispersion

The relative range of utilities is an inequality metric that, when negated, yields
the SWF

W (u) = −(1/ū)
(
umax − umin

)
where umax = maxi{ui}, umin = mini{ui}, and ū = (1/n)

∑
i ui. Although the

SWF is nonlinear, it is a ratio of affine functions and can therefore be linearized
using the change of variable employed in linear-fractional programming
(Charnes and Cooper 1962). The Appendix shows how this and the other
inequality metrics considered here can be reformulated using a similar change
of variable.

Another dispersion metric is the relative mean deviation, which measures
inequality more comprehensively by considering all utilities rather than only
the minimum and maximum. The SWF is

W (u) = −(1/ū)
∑
i

|ui − ū|

and can be linearized.
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The coefficient of variation is the normalized standard deviation. It may
be appropriate when large deviations from the mean are disproportionately
significant, but it has the possible drawback of introducing an irreducibly
nonlinear objective function. The SWF is

W (u) = − 1

ū

[ 1

n

∑
i

(ui − ū)2
] 1

2

Although the numerator is nonaffine, the change of variable mentioned earlier
yields a convex objective function (as noted in the Appendix).

Jain’s index (Jain et al 1984) is perhaps the best-known of the several fair-
ness measures that have been developed specifically for telecommunications.
It is given by the SWF

W (u) = ū2
( 1

n

∑
i

u2
i

)−1

=
1

1 + c2v

where cv is the coefficient of variation. Larger values of the index indicate
greater equality, with 1 corresponding to perfect equality and 1/n to perfect
inequality. Since the index is a strictly decreasing function of cv, it can be
maximized by maximizing the SWF given above for the coefficient of variation.
Other metrics developed specifically for networks and telecommunications
include QoE fairness (Georgopoulos et al 2013, Hoßfeld et al 2018), TCP
fairness (Pokhrel et al 2016), G’s fairness index, and Bossaert’s fairness index
(Mehta 2020).

4.2 Gini coefficient and Hoover index

The Gini coefficient is by far the best known measure of inequality, as it is
routinely used to measure income and wealth inequality (Gini 1912, Yitzhaki
and Schechtman 2013). It is proportional to the area between the Lorenz
curve and a diagonal line representing perfect equality and therefore vanishes
under perfect equality. The Lorenz curve plots the cumulative proportion of
wealth or benefits in the bottom q% of the population, thus indicating the
degree of inequality via its deviation from the perfect equality line. Different
utility distributions can, of course, have the same Gini coefficient. The SWF
is W (u) = −G(u), where

G(u) =
1

2ūn2

∑
i,j

|ui − uj |

Again due to linear-fractional programming, the Gini criterion can be
linearized.

The Hoover index is also related to the Lorenz curve, as it is proportional
to the maximum vertical distance between the Lorenz curve and a diagonal
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line representing perfect equality (Hoover 1936). It is also proportional to the
relative mean deviation. and can be interpreted as the fraction of total utility
that would have to be redistributed to achieve perfect equality. The SWF is

W (u) = − 1

2nū

∑
i

|ui − ū|

The Hoover index can be minimized by solving the same model as for the
relative mean deviation.

5 Group Parity Measures

The mathematical formulation of fairness has become a major issue in the
field of machine learning, because machine learning algorithms are employed
to make high-stake decisions and require precisely coded criteria for assessing
whether those decisions are fair. The focus of fair machine learning has
been primarily on mitigating biases against historically disadvantaged groups
and ensuring that certain minority groups, often defined by law, receive fair
treatment. One well-known example that motivates extensive interest in such
fairness interpretation in machine learning is the series of research efforts on
whether the COMPAS software, supported by a recidivism risk prediction
algorithm, is biased against African-Americans (Angwin et al 2016, Dieterich
et al 2016, Chouldechova 2017).

The AI community has seized upon traditional statistical measures of
classification errors to detect bias. These statistical measures reflect the degree
of inequality in selected classification performance metrics among groups, thus
are often referred to as group parity measures. It is worth noting that group
parity measures are similar to the previous inequality measures in that both
types focus on equality as a proxy of fairness, but a key difference between
the two is that group parity measures compare equality between two specified
groups instead of among individuals. We follow the literature in referring to
these metrics as parity metrics, even though they actually measure the degree
of disparity rather than parity.

In a typical scenario, a machine is trained to make yes-no decisions as
to who receives a certain benefit, such as a mortgage loan, a job interview,
parole, and so forth. A large training set is used to train the machine to
select appropriate individuals as reliably as possible, based on various features
they possess. The aim is to predict who will pay their mortgage, become
a valued employee, or avoid future crimes. These tasks conventionally use
supervised learning methods to train predictive models from labelled data
with a standard efficiency-driven objective to maximize prediction accuracy. In
particular, majority of the literature on fair machine learning studies fairness
in classification, and we focus on this setup as well.

A fairness test compares decisions for a minority or protected group with
those for the remainder of the population. Four statistics are defined for the
two groups:



Springer Nature 2021 LATEX template

Formulating Fairness 15

TP (true positives): the number of individuals corrected selected for a benefit.
FP (false positives): the number of individuals incorrectly selected.
TN (true negatives): the number of individuals correctly rejected.
FN (false negatives): the number of individuals incorrectly rejected.

Various metrics involving these four statistics are compared between the
minority group and the rest of the population, each yielding a measure of
parity between the groups.

We will set ai = 1 when individual i should be selected, and ai = 0
otherwise. We let N be an index set for individuals in the protected group,
and N ′ for those in the remainder of the population. Rather than a vector u
of utilities distributed across individuals, we have a vector δ = (δ1, . . . , δn) of
individual 0-1 decisions, where δi = 1 indicates that individual i is selected.
We can view social welfare as a function W (δ) of these decisions rather than
a function W (u) of utilities. Of course, one could view δ as a simplified
representation of utilities in which each individual receives utility 0 or 1.
A typically fair machine learning model applies W (δ) to seek fairness by
bounding W (δ) rather than maximizing W (δ). Therefore, the model is trained
using an optimization problem (4) that maximizes some other objective, e.g.
an efficiency objective based on the classification accuracy, subject to these
bounds.

Unfortunately, it is unclear how the group parity implications of a decision
vector δ should be measured. There are a wide variety of classification error
metrics, some of which are pairwise incompatible, with no consensus on which
is most suitable for any given application (e.g. Kleinberg et al 2016, Friedler
et al 2016). In addition, the focus on classification error affords a rather
narrow perspective on the fairness problem, because the underlying concern
is generally distributive justice in a broader sense with respect to utilities.
More explicitly, discrimination against a protected group is often undesirable
because the resulting classification disparity between groups leads to an unfair
distribution of utilities. Finally, there is no obvious criterion for which groups
should be designated as protected, unless one is content to recognize only those
sanctioned by law.

The AI community might well consider the option of training machines to
maximize a more comprehensive measure of social welfare, such as one of those
discussed in the following sections, to better align fairness concepts with social
well-being. We are already beginning to see some movement in this direction
(Heidari et al 2018, Corbett-Davies and Goel 2018, Heidari et al 2019, Hu
and Chen 2020). The classification vector δ can be viewed as a set of decision
variables on which utilities depend, perhaps as given by a utility function
u = U(δ). Then social welfare is assessed by a function W (u) as in model
(3). In the simplest case, one could set Ui(δi) = ciδi + di, where ci + di is the
utility experienced by individual i if selected, and di if not selected. Of course,
legal requirements may dictate that bounds are placed directly on one of the
parity measures.
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In any event, the discussion below is restricted to fairness metrics W (δ)
defined directly in terms of the classification decision vector δ. We consider four
of the best known group parity metrics: demographic parity, equalized odds,
accuracy parity, and predictive rate parity. For brevity, we refer to individuals
in the protected group as minority individuals, and those in the remainder of
the population as majority individuals. As in Section 4, we view the SWF as
the negation of disparity so as to pose the problem as one of maximizing social
welfare.

We also omit some of the fairness metrics that have been proposed for
machine learning. Most of them are surveyed in Verma and Rubin (2018) and
are similar to those discussed here. Beyond these, the Matthews correlation
coefficient (Matthews 1975, Chicco and Jurman 2020) is often regarded as
the most comprehensive measure of classification accuracy, but it corresponds
to a complicated, nonconvex SWF that could be quite difficult to optimize.
Counterfactual fairness (Kusner et al 2017, Russell et al 2017) aims to select
minority applicants with the same probability that would apply if they had
been majority applicants. For example, financial irresponsibility of a mortgage
applicant, which cannot be directly observed, may correlate with residence in
a low-income neighborhood. This may lead to bias against minority applicants
whose residence in the neighborhood is due to social conditions that have
nothing to do with financial irresponsibility. Counterfactual fairness strives
to avoid this confounding of factors by constructing a causal network and
using Bayesian inference to isolate the effect of financial responsibility (Pearl
2000, Pearl et al 2016). It is unclear at this point how to incorporate this
scheme into an optimization model. Beyond fairness in classification and
supervised learning, recent research has also seen progress on fairness in
unsupervised learning (e.g., Abraham et al 2019, Deepak and Abraham 2020)
and reinforcement learning (e.g., Weng 2019, Siddique et al 2020). These
machine learning frameworks are generally difficult to interpret as optimization
models and tend to require customized fairness definitions.

5.1 Demographic parity

The simplest group parity metric is based on demographic parity, also known
as proportional/statistical parity. It is achieved when the fraction of minority
individuals selected is the same as the fraction of majority individuals selected.
It is defined by comparing the ratio

(TP + FP)/(TP + FP + TN + FN)

across the two groups. The social welfare function is W (δ) = 1− |B(δ)|, where

B(δ) =
1

|N |
∑
i∈N

δi −
1

|N ′|
∑
i∈N ′

δi (5)

Thus 0 ≤W (δ) ≤ 1, and complete parity is obtained when W (δ) = 1.
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Since Dwork et al (2012) proposed the use of demographic parity for
fairness in classification, it has been widely studied and applied. Despite its
popularity, critics of demographic parity view the measure as unsuitable for
most practical purposes because it requires strict equality of outcomes. For
example, it would discriminate against a minority group that happens to be
more qualified for loans than the majority on the average, since it requires
that a minority individual receive a loan with no greater probability than a
majority individual.

5.2 Equalized odds

The equalized odds metric is based on two related but distinct criteria. One
is that the fraction of qualified minority persons selected is the same as the
fraction of qualified majority persons selected (Hardt et al 2016). The other
is that the fraction of unqualified minority persons selected is the same as the
fraction of unqualified majority persons selected (Zafar et al 2017). The former
is also known as equality of opportunity and is defined by comparing the ratio
TP/(TP + FN). It has the SWF W (δ) = 1 − |B(δ)| across the two groups,
where

B(δ) =

∑
i∈N aiδi∑
i∈N ai

−
∑
i∈N ′ aiδi∑
i∈N ′ ai

(6)

The latter criterion is based on the ratio FP/(FP + TN) and again has the
SWF W (δ) = 1− |B(δ)|, but with

B(δ) =

∑
i∈N (1− ai)δi∑
i∈N (1− ai)

−
∑
i∈N ′(1− ai)δi∑
i∈N ′(1− ai)

(7)

5.3 Accuracy parity

The two-sided evaluation in equalized odds can be obviated simply by
measuring the fraction of predictions that are accurate, which is the ratio

(TP + TN)/(TP + TN + FP + FN)

The SWF is W (u) = 1− |B(δ)|, where

B(δ) =
1

|N |
∑
i∈N

(
aiδi+(1−ai)(1−δi)

)
− 1

|N ′|
∑
i∈N ′

(
aiδi+(1−ai)(1−δi)

)
(8)

Accuracy parity is less studied than the previous two measures, perhaps
because it does not distinguish between true positives and true negatives. It
is less often used in the design of fair classifiers than as a tool to evaluate
existing classifiers. For example, Berk et al (2018) list accuracy parity as one
of the meaningful fairness definitions in criminal justice risk assessment.
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5.4 Predictive rate parity

When one wishes to compare what fraction of individuals selected from each
group should have been selected, the relevant measure is predictive rate parity,
defined as TP/(TP + FP). The SWF is W (δ) = |1−B(δ)|, with

B(δ) =

∑
i∈N aiδi∑

ı∈N δi
−
∑
i∈N ′ aiδi∑

ı∈N ′ δi
(9)

This disparity measure results in a difficult optimization problem, as explained
in the Appendix. Predictive parity is primarily considered in risk assessment
contexts, such as recidivism prediction (Dieterich et al 2016, Chouldechova
2017) and child maltreatment screening (Chouldechova et al 2018).

6 Fairness for the Disadvantaged

Rather than focus solely on inequality, fairness measures can prioritize the
disadvantaged. Far and away the most famous of such measures is the
difference principle of John Rawls (1999), a maximin criterion that is based on
careful philosophical argument and debated in a vast literature (surveyed in
Freeman 2003, Richardson and Weithman 1999). The difference principle can
be plausibly extended to a lexicographic maximum principle. There is also the
McLoone index, which is a statistical measure that emphasizes the lot of the
less advantaged.

6.1 Maximin and leximax criteria

The Rawlsian difference principle states that inequality should exist only to
the extent that it is necessary to improve the lot of the worst-off. It is defended
with a social contract argument that, in its simplest form, maintains that
the structure of society must be negotiated in an “original position” in which
people do not yet know their station in society. Rawls argues that one can
rationally assent to the possibility of ending up on the bottom only if one would
have been even worse off in any other social structure, whence an imperative
to maximize the lot of the worst-off. The principle is intended to apply only
to the design of social institutions, and only to the distribution of “primary
goods,” which are goods that any rational person would want. Yet it can
be adopted as a general criterion for distributing utility, namely a maximin
criterion that maximizes the simple SWF W (u) = mini{ui}. This objective is
readily linearized.

The maximin criterion has been a popular fairness measure in the technical
as well as the philosophical literature. Early works on fair resource allocation,
such as bandwidth allocation, often choose the maximin criterion to seek the
best possible performance for the worst-off service among services competing
for bandwidth (Luss 1999, Ogryczak and Śliwiński 2002, Ogryczak et al 2008).
Recent research has applied the criterion to more diverse problem contexts. For
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example, Stelmakh et al (2018) design an algorithm for making paper-reviewer
assignment that maximizes the review quality of the most disadvantaged
paper, and Nanda et al (2020) formalize a maximin fairness measure for
ridesharing. Samorini et al (2021) use the maximin criterion in medical
appointment scheduling to ensure that disadvantaged groups are not subjected
to excessive waiting times. Here the criterion is applied to groups rather than
individuals. This is consonant with Rawls’ original theory, which applies it to
social classes. The objective function minimizes a linear combination of the
worst group waiting time and other cost measures, as discussed in Section 7.
In addition, the Rawlsian view of fairness is gaining recognition in machine
learning as an alternative to the dominant statistical bias based group parity
metrics (Hashimoto et al 2018, Heidari et al 2019, Shah et al 2021).

The maximin criterion can force equality even when doing so is very costly
in terms of total utility. Suppose, for example that S is defined only by a
budget constraint

∑
i xi ≤ B (with x ≥ 0) and utility functions ui = aixi.

Then the maximin solution equalizes the utilities, with each individual
experiencing utility u0 = B/

∑
i(1/ai). If individual k’s welfare is very

expensive to provide, perhaps due to an incurable disease, then ak is very
small, and individual k consumes almost all the resources, u0/ak. The utility
of everyone else is reduced to the same low level u0 that can be achieved for
individual k. One might impose an upper bound dk on individual k’s resource
consumption, but then the maximin criterion is satisfied by reducing everyone’s
utility even more, namely to individual k’s utility akdk. This leaves unused
resources B − dkak

∑
i(1/ai), but the maximin criterion provides no incentive

to distribute them.
The maximin criterion can be plausibly extended to lexicographic

maximization (leximax), which can remove the problem of leftover resources
in the previous example. Leximax is achieved by first maximizing the smallest
utility subject to resrouce constraints, then the second smallest, and so forth.
While this can avoid leftover resources, it does not avoid the possibly high
cost of equality in the absence of constraints that prevent it. As noted in
the Appendix, a leximax solution can be computed by solving a sequence of
optimization problems.

6.2 McLoone index

The McLoone index compares the total utility of individuals at or below the
median utility to the utility they would enjoy if all were brought up to the
median utility. The index is 1 if nobody’s utility is strictly below the median,
and it approaches 0 if the utility distribution has a very long lower tail (on
the assumption that all utilities are positive.) The McLoone index benefits the
disadvantaged by rewarding equality in the lower half of the distribution, but
it is unconcerned by the existence of very rich individuals in the upper half.
The SWF is

W (u) =
1

|I(u)|ũ
∑
i∈I(u)

ui
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where ũ is the median of utilities in u and I(u) is the set of indices of utilities
at or below the median, so that I(u) = {i | ui ≤ ũ}.

The McLoone criterion can be formulated with 0-1 variables and a
fractional objective function. This objective function can, in turn, be linearized
by a change of variable, resulting in an MILP model if the feasible set S is a
polyhedron.

7 Convex Combinations

We now move to schemes that combine efficiency and fairness. The most
obvious approach is to maximize a convex combination of the two:

W (u) = (1− λ)
∑
i

ui + λΦ(u)

where Φ(u) is a fairness measure and the utilitarian sum measures efficiency.
A perennial problem with convex combinations is that it is difficult to interpret
λ, particularly when Φ(u) is measured in units other than utility. For example,
if we use the Gini coefficient G(u) as a measure of unfairness, then we must
combine utility with a dimensionless quantity Φ(u) = 1−G(u). Larger values
of λ give greater weight to equality, but in a practical situation it is unclear
how to attribute any meaning to a chosen value of λ.

Eisenhandler and Tzur (2019) use a product rather than a convex
combination of total utility and 1 − G(u), which nicely reduces to an SWF
that is easily linearized:

W (u) =
∑
i

ui −
1

n

∑
i<j

|uj − ui|

Yet we again have a convex combination of total utility and an equality
metric (one that is proportional to the negative mean absolute difference); in
particular, it is a convex combination in which λ = 1/2. This may be reasonable
for the intended application, but one may ask why this particular value of λ is
suitable, and whether other values should be used in other contexts. Aside from
this are the general issues raised by using equality as a surrogate for fairness.

Mostajabdaveh et al (2019) use a linear combination that is equivalent to∑
i ui + µ(1−G(u))

∑
i ui, where µ ∈ [0, 1]. This at least combines quantities

measured in the same units. Yet we again have the problem of justifying a
weight µ. In fact, this combination is equivalent to the convex combination
implied by the Eisenhandler and Tzur criterion, except that λ is µ/(1 + µ)
rather than 1

2 .
One can combine utility with the Rawlsian maximin criterion by using the

convex combination

W (u) = (1− λ)
∑
i

ui + λmin
i
{ui} (10)
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This, like the proposal of Mostajabdaveh et al, combines quantities that are
measured in the same units. Yet it is again unclear how to select a suitable
value of λ. Note that if we index utilities so that u1 ≤ · · · ≤ un, (10) is simply
a weighted sum u1 + (1− λ)

∑
i>1 ui that gives somewhat more weight to the

lowest utility. Yet how much more is appropriate?
One can refine criterion (10) by giving gradually decreasing weights w1 >

w2 > · · · > wn to the utilities in an SWF of the form

W (u) =
∑
i

wiui (11)

where, again, u1 ≤ · · · ≤ un. This obviously requires that many weights be
assigned rather than one. In addition, since we do not know how to index
the utilities by size in advance, we have the difficult modeling challenge of
ensuring that weight wi is assigned to the ith smallest utility. There is a long
line of work studying this formulation as the objective function for multi-
criteria decision making (e.g., Yager 1997, Ogryczak and Śliwiński 2003). Hu
and Chen (2020) provide a novel perspective on this SWF in machine learning:
they view (11) as the objective function in a classifier training model and
establish its correspondence with the commonly studied fairness constrained
loss-minimization training models.

In some contexts, it may be possible to obtain weights for optimization
purposes by eliciting preferences from relevant stakeholders. Various methods
are described in Gralla et al (2014), Carland et al (2018), lmaz and Kabak
(2020), and Hasnain et al (2021). An alternate approach, proposed by Argyris
et al (2022), does not rely on single set of weights given in advance. Rather,
it requires that the resulting distribution of benefits be at least as fair as
a “reference” distribution, perhaps representing a floor on the degree of
acceptable fairness. Since stakeholders have different views on fairness, the
reference distribution must be at least as fair as what is required by any
of their fairness concepts. These concepts are expressed as weighted ordered
averages of utilities, which allow a continuum of fairness criteria ranging from
pure utilitarian to pure maximin. Since the full range rarely allows direct
comparison with the reference distribution, the stakeholders must agree on
a narrower range. The resulting dominance constraints are formulated in an
MILP model.

It may occasionally be useful to combine equality with a second fairness
criterion, rather than with efficiency. This possibility is explored by Rea et al
(2021). They define both fairness criteria in terms of the deviations between the
amount of resources that stakeholders request and the amount they actually
receive. The equality criterion measures the extent to which these deviations
are equal. The second criterion is similar but gives greater weight to deviations
corresponding to stakeholders who are seen as entitled to a closer match
between request and allocation. This approach requires two types of weights,
one that defines the convex combination of the two fairness criteria, and a set
of weights that indicate the relative entitlement of the stakeholders.
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8 Alpha Fairness and Kalai-Smorodinksy
Bargaining

Alpha fairness and Kalai-Smorodinksy bargaining provide alternative and
perhaps more satisfactory means of combing fairness and efficiency than convex
combinations. Alpha fairness regulates the combination with a continuous
parameter α, where larger values of α signify a greater emphasis on fairness.
A famous special case is the Nash bargaining solution, which corresponds
to α = 1. Kalai-Smordinsky bargaining, proposed as an alternative to Nash
bargaining, allots the parties the largest possible fraction of their potential
utility while observing fairness by equalizing that fraction across parties.

8.1 Alpha fairness and Nash bargaining

Alpha fairness (Mo and Walrand 2000, Verloop et al 2010) is represented by
a family of SWFs having the form

Wα(u) =


1

1− α
∑
i

u1−α
i for α ≥ 0, α 6= 1∑

i

log(ui) for α = 1

These SWFs form a continuum that stretches from a utilitarian criterion
(α = 0) to a maximin criterion as α → ∞. Bertsimas et al (2012) study
worst-case fairness/efficiency trade-offs implied by this criterion.

The parameter α can be interpreted as quantifying the fairness/efficiency
trade-off, because utility uj must be reduced by (uj/ui)

α units to compensate
for a unit increase in ui (< uj) while maintaining constant social welfare.
This gives priority to less-advantaged parties, as we desire, with α indicating
how much priority. Yet it is not obvious what kind of trade-off, and therefore
what value of α, is appropriate for a given application. There is no apparent
interpretation of α independent of its role in the SWF.

As noted in Section 3, axioms given by Lan and Chiang (2011) imply that
an SWF must belong to a family of functions of which alpha fairness is a
member (see also Lan et al 2010). The functions in this family have logarithmic
or power law form and include unnormalized Theil and Atkinson indices (which
are logarithmically based) as well as the maximin criterion and alpha fairness.
These functional forms are primarily determined by an axiom of partition that
may be stated as follows. There exists a mean function (Kolmogorov 1930) h
such that for any partition (u1,u2) of u and any two distributions u and u′,

W (tu)

W (tu′)
= h

(W (u1)

W (u′1)
,
W (u2)

W (u′2)

)
(12)

where t > 0 is an arbitrary scalar. Lan and Chiang show that, in this context,
h(y1, y2) must be the geometric or a power mean of y1 and y2, from which
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Fig. 1 (a) Nash bargaining solution for two parties. (b) Kalai-Smorodinsky bargaining
solution for two parties. In both cases, the default position is the origin.

their main result follows. Condition (12) can be seen as related to ratio scale
comparability (Roberts 1980), which differs from unit comparability in that
the invariance transformation is φi(ui) = βui rather than φi(ui) = βui+γi. It
is unclear how one might assess whether the rather abstract axiom of partition
is appropriate for a particular practical application.

Proportional fairness results from setting α = 1 and is often measured by
the product Πiui rather than its logarithm. Maximizing proportional fairness
yields the Nash bargaining solution (Nash 1950), which should not be confused
with the Nash equilibrium of game theory. It corresponds to selecting a point
u in the feasible set that maximizes the volume of the hyperrectangle with
opposite corners at u and the origin. This is illustrated in Fig. 1(a), where
each point on the plot represents the utility outcomes for two parties that
result from some distribution of resources. The set of feasible utility vectors
is the area under the curve. The Nash bargaining solution is the black dot,
which is the feasible point that maximizes the area of the shaded rectangle.
Proportional fairness is frequently used in engineering, such as for bandwidth
allocation in telecommunication networks and traffic signal timing (Mazumdar
et al 1991, Kelly et al 1998).

As remarked in Section 3, there are axiomatic and bargaining justifications
for proportional fairness. Nash’s (1950) axiomatic proof relies on an
assumption of scale invariance that may be unrealistic for practical
applications. Harsanyi (1977), Rubinstein (1982), and Binmore et al (1986)
show that proportional fairness is the (asymptotic) outcome of certain rational
bargaining procedures. The procedures assume that the parties begin with a
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default utility allocation d = (d1, . . . , dn) on which they fall back if bargaining
fails, in which case the SWF is

∏
i(ui − di). An unfair starting point d could

lead to an unfair outcome even under a bargaining procedure that is considered
fair. This is, of course, not an issue if nothing more than a fair procedure is
desired.

The most straightforward result is Harsanyi’s, which is based on a
bargaining procedure proposed by Zeuthen (1930). In the current round of a
two-party negotiation, let ui be the utility party 1 would receive under party i’s
last offer, and let p2 be party 1’s estimate of the probability that party 2 will
stick with its last offer rather than accept party 1’s last offer. It is assumed that
party 1 will stick with its last offer only if the expected utility (1−p2)u1 +p2d1

of doing so is at least the utility u2 party 1 would receive from party 2’s last
offer. Party 2’s decision is analogous. If there is a minimum distance between
offers, the utilities converge to the Nash bargaining solution. The suitability
of this bargaining procedure must be assessed for a particular application.

A potential issue with proportional fairness, and alpha fairness in general,
is that it can assign equality the same social welfare as arbitrarily extreme
inequality. In a 2-player situation, for example, the distribution u = (1, 1) has
the same social welfare value as (t, T ), where

t =

{
1/T, if α = 1(
2− T 1−α)1/(1−α)

, if α > 1 and T 1−α < 2

Thus for α = 1, we have t → 0 has T → ∞, and for α > 1, t → 21/(1−α)

as T → ∞, even when social welfare is held fixed. Alpha fairness therefore
judges an egalitarian solution to be no better than a solution in which one
party has infinitely more wealth than the other. This anomaly does not arise
when 0 ≤ α < 1.

8.2 Kalai-Smorodinsky bargaining

The Kalai-Smorodinsky (K-S) bargaining solution provides parties the largest
possible fraction of their “ideal” utility, subject to the condition that the
fraction is the same for all parties (Kalai and Smorodinsky 1975). A party’s
ideal utility is the maximum feasible utility that party could receive if the
utilities of the other parties were ignored. Increases in utility are measured
with respect to the default utility allocation.

One motivation for the K-S criterion is that it maximizes total utility
while maintaining fairness for all parties, where fairness takes into account
the fact that allocating utility to some parties is more costly than to others.
This perspective can be suitable in bargaining contexts, as when labor and
management negotiate wages (Alexander 1992). They may see a solution as fair
when the two parties make the same relative concession. A technical motivation
for the criterion is that it has a monotonicity property that the Nash solution
lacks: when the feasible set is enlarged, the negotiated utilities of the parties
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never decrease. This property is not necessarily desirable, as when enlargement
allows one player to enjoy much greater utility at a small cost to other parties.
In any event, the K-S bargaining solution is defended by Thompson (1994) and
is arguably consistent with the contractarian ethical philosophy developed by
Gauthier (1983).

Mathematically, the objective is to find the largest scalar β such that u =
(1−β)d+βumax is a feasible utility vector, where each umax

i is the maximum
of ui over all feasible utility vectors u. The bargaining solution is the vector
u that maximizes β. Fig. 1(b) illustrates the idea for two parties when the
default position d is the origin. The K-S solution (black dot) is the highest
point at which the diagonal line intersects the feasible set. Formally, the SWF
for K-S bargaining might be defined

W (u) =

{∑
i ui, if u = (1− β)d+ βumax for some β with 0 ≤ β ≤ 1

0, otherwise

where umax
i = maxx,u{ui

∣∣ (u,x) ∈ S} for each i.
Kalai and Smorodinsky show that their solution can be derived from

the same axioms as proportional fairness if the independence of irrelevant
alternatives is replaced by the monotonicity property mentioned above. The
proof again relies on scale invariance. A bargaining justification might be given
by arguing that it is rational for each player to minimize relative concession,
and repeated rounds of bargaining will lead under suitable conditions to an
equilibrium in which their relative concessions are equal and minimized.

On the other hand, the K-S scheme may allocate far more utility to an
individual whose welfare is easily improved than to one who is less fortunate.
For example, it may allocate treatment resources to persons suffering from
the common cold to provide them the same fraction of their maximum health
potential as patients with chronic kidney failure. The K-S model offers no
means to prevent this kind of outcome by adjusting the trade-off between
fairness and efficiency, as is possible with alpha fairness.

More generally, one can ask why the potential utility that fortune or
fate has granted to some individuals should necessarily be relevant to a fair
allocation. Perhaps fairness sometimes demands a contrasting approach: rather
than rewarding fortunate individuals strictly in proportion to their potential,
we should give greater emphasis to improving the lot of those in less fortunate
circumstances (Dworkin 1981a; 1981b; 2000; Barry 1988).

9 Threshold Criteria with Maximin Fairness

Williams and Cookson (2000) suggest two ways to combine utilitarian and
maximin objectives using threshold criteria. One, based on a efficiency-driven
threshold on utilities, begins with a maximin criterion but switches to a
utilitarian criterion when the cost of fairness becomes too great. The other,
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based on a fairness-driven threshold on utilities, begins with utilitarianism and
switches to a maximin criterion when unfairness becomes too great.

We consider these criteria and their extensions in some detail because they
provide a contrasting alternative to classical criteria. They also introduce a
fairness/efficiency trade-off parameter ∆ than may be easier to interpret in
practice than α in alpha fairness, as well as a natural way to assess fairness
across groups of different sizes. On the other hand, there is no known axiomatic
or bargaining justification for these criteria. They also inherit limitations of
the maximin criterion for assessing fairness, a matter addressed in the next
section.

The threshold criteria were originally defined only for two persons, and it
is not obvious how to extend them to multiple parties. Hooker and Williams
(2013) provide an n-person extension of the efficiency-threshold criterion,
formulate it as a mixed integer programming problem, study its polyhedral
properties, and apply it to a healthcare provision problem. Elçi et al (2022)
suggest an n-person extension of the fairness-threshold criterion. It is more
straightforward to formulate and can, in fact, yield a linear programming
model.

The trade-off parameter ∆ is interpreted differently for an efficiency
threshold than for a fairness threshold. When an efficiency threshold is used,
parties with utility within ∆ of the worst-off are regarded as disadvantaged
and deserving of special priority. When a fairness threshold is used, parties
whose utility is already more than ∆ above the lowest are not regarded as
deserving greater utility if the other utilities remain unchanged. Thus, the
parameter ∆ can be connected to a practical situation in a way that α in
the alpha fairness criterion cannot: it allows the user to specify how deprived
an individual must be, relative to the worst-off individual, to warrant special
consideration. Naturally, stakeholders must still arrive at a consensus as to
what value of ∆ would be reasonable.

9.1 Efficiency-threshold criterion

The 2-person efficiency-threshold model of Williams and Cookson uses a
maximin criterion when the two utilities are sufficiently close to each other,
specifically |u1 − u2| ≤ ∆, and otherwise it uses a utilitarian criterion. This is
illustrated in Fig. 2, where the feasible set is the area under the curve. The
maximin solution (open circle) requires a substantial sacrifice from person 2. As
a result, the utilitarian solution (black dot) earns slightly more social welfare
and is the preferred choice. The SWF can be written

W (u1, u2) =

{
u1 + u2, if |u1 − u2| ≥ ∆
2 min{u1, u2}+ ∆, otherwise

The maximin criterion is modified from the standard formula min{u1, u2} to
ensure continuity of the SWF as one shifts between the utilitarian and the
maximin objective.
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Fig. 2 Contours for the efficiency-threshold SWF.

Hooker and Williams (2012) generalize the SWF to n parties as follows. The
utility ui of party i belongs to the fair region if ui − umin ≤ ∆ and otherwise
to the utilitarian region, where umin = mini{ui}. A party whose utility is in
the fair region is considered sufficiently disadvantaged to deserve priority. The
generalized SWF W (u) counts all utilities in the fair region as equal to umin, so
that they are treated in solidarity with the worst-off, and all other utilities as
themselves. Copies of ∆ are added to the SWF to ensure continuity of W (u).

W (u) = (n− 1)∆ +

n∑
i=1

max
{
ui −∆, umin

}
(13)

The parameter ∆ regulates the fairness/efficiency trade-off, with ∆ = 0
corresponding to a purely utilitarian objective and ∆ =∞ to a purely maximin
objective.

Hooker and Williams extend the threshold function (13) to problems
in which utility is distributed to groups of different sizes, using a simple
modification that is not available for SWFs hitherto considered. The resulting
SWF assesses fairness by comparing the average utility of individuals in each
group, while assessing efficiency by considering the total utility allotted to
each group (which depends on the group size). This is useful when allocating
resources to geographic regions, demographic groups, organizations, and so
forth. Let si and ui respectively denote the number of individuals in group i
and the utility of each individual in the group. The function W g(u) considers
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a group i to be in the fair region when its per capita ui is within ∆ of umin.

W g(u) =
(∑

i

si − 1
)

∆ +
∑
i

si max
{
ui −∆, umin

}
(14)

Hooker and Williams also formulate mixed integer programming models for
maximizing W (u) and W g(u). The practicality of the models is verified with
experiments on a healthcare resource allocation instance of realistic size.

Gerdessen et al (2018) make several observations regarding properties of
the SWF (13). In particular, the solutions obtained by varying ∆ need not all
lie on the Pareto frontier defined by the convex combination (10) of utilitarian
and maximin objectives. This is in fact to be expected, because the convex
combination balances total utility with only the welfare of the worst-off party,
while (13) takes into account how many parties are disadvantaged (i.e, in the
fair region).

The efficiency-threshold criterion also escapes an anomaly that, as noted
earlier, characterizes alpha fairness. It cannot assign equality the same social
value as arbitrarily extreme inequality. In a 2-person context, for example,
an egalitarian distribution u = (1, 1) can have the same social value as a
distribution in which one party has no utility and the other ∆+2, but the gap
can be no greater than this.

A weakness of the efficiency-threshold criteria (13) and (14) is that the
actual utility levels of the disadvantaged parties, other than the very worst-off,
have no effect on the value of the SWF. As a result, many solutions that deliver
the same social welfare differ greatly with respect to fairness. This problem is
addressed in Section 10 by combining a utilitarian with a leximax criterion.

9.2 Fairness-threshold criterion

Williams and Cookson define the 2-person fairness-threshold SWF to be
utilitarian when |u1−u2| ≤ ∆ and otherwise maximin. In Fig. 3, the utilitarian
solution (open dot) is unfair to person 1, and the welfare-maximizing solution
is more egalitarian (black dot).

W (u1, u2) =

{
2 min{u1, u2}+ ∆, if |u1 − u2| ≥ ∆
u1 + u2, otherwise

Elçi et al (2022) generalize this SWF to n parties in a manner similar to
the Hooker-Williams approach. The main difference is that utility ui belongs
to the fair region if ui−umin ≥ ∆, otherwise it is in the utilitarian region. Yet
we continue to count utilities in the fair region as equal to umin and those in
the utilitarian region utilities as themselves. This yields the SWFs

W (u) = n∆ +

n∑
i=1

min{ui −∆, umin} (15)
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Fig. 3 Contours for the fairness-threshold SWF.

W g(u) =
( n∑
i=1

si

)
∆ +

n∑
i=1

si min{ui −∆, umin} (16)

As before, W g(u) is designed for distribution over groups.
These SWFs have two main effects. One is that a utilitarian criterion is

applied to everyone whose utility is within ∆ of the lowest. The other is
that increasing a utility that is already more than ∆ greater than the lowest
adds nothing to social welfare if the other utilities remain unchanged. Like
the efficiency-threshold criterion, the fairness-threshold criterion can equate
solutions that have very different fairness characteristics.

10 Threshold Criteria with Leximax Fairness

As pointed out in the previous section, threshold-based combinations that rely
on maximin fairness are sensitive to the utility level of only the very worst-off
party. The resulting SWFs equate distributions that can differ substantially in
their fairness characteristics. This tends to become a problem in practice when
the constraint set severely restricts the maximum utility of some individual.
The solution will almost certainly assign this person the maximum utility,
regardless of what the rest of the problem is like. The fairness situation of other
disadvantaged parties become irrelevant, so long as their utilities are within
∆ of the lowest. As a result, fairness plays almost no role in the solution.
This situation can be addressed to some degree by replacing maximin fairness
with leximax fairness. We consider two proposals for doing so, both extensions
of the efficiency-threshold based approach in Hooker and Williams (2012).
One assumes that utility recipients can be ranked by priority in advance. The
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other makes no such assumption and obtains a socially optimal distribution by
maximizing a sequence of SWFs, each of which combines utility and a maximin
criterion.

10.1 Predetermined preference order

McElfresh and Dickerson (2018) propose a method for combining utilitarian
and leximax criteria in the context of kidney exchange. It relies on the
assumption that the parties can be given a preference ordering in advance. It
first maximizes a SWF that combines utilitarian and maximin criteria in a way
that treats the most-preferred party as the worst-off. If all optimal solutions
of this problem lie in the utilitarian region, a utilitarian criterion is used to
select one of the optimal solutions. (Here, a utility vector u is said to be in
the fair region if maxi{ui} − mini{ui} ≤ ∆, and otherwise in the utilitarian
region.) Otherwise a leximax criterion is used for all of the optimal solutions,
subject to the preference ordering (i.e., maximize u1 first, then u2 etc.). If we
index the parties in order of decreasing preference, the SWF is

W (u) =


nu1, if |ui − uj | ≤ ∆ for all i, j∑
i

ui + sgn(u1 − ui)∆, otherwise (17)

McElfresh and Dickerson state that W (u) has continuous contours, but
this is true only for n = 2. For a counterexample with n = 3, we note that
W (0, 0,∆ + ε) = ε and W (0, ε,∆ + ε) = 2ε − ∆ for arbitrarily small ε > 0.
Thus a slight change in the utility distribution could bring about a large and
unexpected change in the measurement of social welfare.

Two additional issues should be considered. One is the need for preassigned
priorities. While it is possible to specify in advance a preference ranking of
parties in some applications, such as the kidney exchange problem, this is
not possible in many applications. Also the leximax criterion is not used until
optimal solutions of the SWF are already obtained, and then applied only to
the optimal solutions. It may be preferable to use a leximax criterion when
considering all feasible distributions, rather than those that are already optimal
in some sense.

10.2 A sequence of social welfare functions

Chen and Hooker (2020; 2022) avoid assuming a pre-determined preference
ordering of recipients by maximizing a sequence of social welfare functions
W1(u), . . . ,Wn(u). The SWFs successively give priority to the worst-off
recipient, the second worst-off, and so forth, while in each case considering the
impact on total utility by means of a threshold criterion. The first function
W1(u) is identical to the Hooker-Williams function in (15), and the remainder
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are defined as follows:

Wk(u) =

k−1∑
i=1

(n− i+ 1)u〈i〉 + (n− k + 1) min
{
u〈1〉 + ∆, u〈k〉

}
+

n∑
i=k

(
u〈i〉 − u〈1〉 −∆

)+
, k = 2, . . . , n

where γ+ = max{0, γ}, and where u〈1〉, . . . , u〈n〉 are u1, . . . , un in
nondecreasing order.

The parameter ∆ again regulates the efficiency/fairness trade-off by giving
preference to individuals whose utility is within ∆ of the lowest, with
greater weight to the more disadvantaged. Specifically, the weight assigned an
individual in the fair region is equal to the number of individuals in that region
with the same or greater utility, while individuals in the utilitarian region
receive unit weight. One may question how this particular weighting can be
justified, as well as why it should depend only on the ranking of utilities ui in
the fair region by magnitude rather than on their actual values (except for the
very smallest ui, which determines the fair region). Chen and Hooker answer
the latter question by observing that this value independence is necessary
to ensure continuity of the SWF. They provide a similar SWF for groups of
individuals having different sizes.

A socially optimal distribution (u∗〈1〉, . . . , u
∗
〈n〉) is obtained by letting u∗〈i〉 be

the value of u〈i〉 in an optimal solution that maximizes Wi(u), for i = 1, . . . , n.
The models and solution procedure are presented in the Appendix, which also
gives valid inequalities for the models. The procedure is used to solve healthcare
resource and earthquake shelter location problems of realistic size in a matter
of seconds for a given value ∆.

11 General Guidelines

There is no one best approach to formulating fairness in an optimization model.
Fairness is a collection of concepts, many of them rather vague, that can be
found in popular culture, academic literature, and legal settings. Nonetheless,
the various formulations surveyed here have characteristics that may be more
or less suitable for the type of fairness one wishes to achieve in a given context.
We conclude with an overview of these characteristics to assist one in exploring
the fairness landscape. We encourage the reader to consult the more detailed
discussion provided earlier, and perhaps cited literature, before settling on a
choice of model for a particular application.

Inequality metrics (Section 4) are of limited applicability because they take
no account of absolute welfare levels. Even if relative welfare is all that matters,
there may be an ethical difference between a distribution with extremes
at the bottom end and one with extremes at the top end, and inequality
measures do not distinguish these. Nonetheless, inequality measures can be
appropriate if they truly represent the only criterion of interest. The relative
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range suits applications in which one simply wants to avoid extreme outliers.
The relative mean deviation measures dispersion across the entire distribution.
It is proportional to the Hoover index, which is the fraction of total utility that
must be redistributed to achieve perfect equality. The coefficient of variation
and Gini coefficient have the advantage that they are widely used, and there
is a general appreciation of what they say about a distribution. Jain’s index
yields the same utility distribution as the coefficient of variation. All of these
measures but the coefficient of variation and Jain’s index have simple linear
models.

In machine learning, fairness is widely defined based on the inequality in
classification outcomes across groups. These group parity measures (Section 5)
judge whether a protected subpopulation, such as a minority group, receives
a fair distribution of yes and no decisions, as for example in the granting
of mortgage loans, job interviews, school admissions, or parole. Similar to
inequality metrics, these measures do not attempt to take account of overall
welfare, and assess distributive justice in a rather restricted sense. Some
of the group parity metrics are pairwise incompatible, and there is no
consensus as to which are appropriate for a given application. To take some
examples, demographic parity compares the fraction of individuals accepted
in the two groups. It is often too strict because it fails to recognize group
differences in qualifications. Equalized odds compares the fraction of qualified
(or unqualified) individuals accepted. Accuracy parity compares the fraction
of individuals correctly classified (by acceptance or rejection). Predictive rate
parity compares the fraction of selected individuals who are correctly selected.
The computational tractability of minimizing bias varies widely. The first three
SWFs mentioned here have easy linear models. The fourth poses an extremely
difficult mixed integer/nonlinear programming problem.

Fairness criteria can reflect concern for the disadvantaged as well as
inequality (Section 6). A famous example is the Rawlsian difference principle,
which gives rise to the maximin criterion. It is backed by a highly developed
social contract argument that can have considerable intuitive appeal. However,
the principle is intended only for the design of social institutions and can
have surprising implications when applied to welfare distribution in general.
For example, if improving the welfare of certain individuals is very expensive,
perhaps due to incurable disease, the maximin principle can require a massive
resource transfer that reduces everyone else to the same level of suffering.
Limiting the transfer does not help, because it reduces utility even further
and, worse, can allow some resources to go unused. The latter difficulty can
be remedied by extending the maximin to a leximax principle. A very different
option is to use the McLoone index, a statistical criterion that measures the
extent to which those in the lower half of the utility distribution are deprived. It
appears in discussions of educational equality and other public policy matters.

Pure fairness measures can be appropriate when there is no need to balance
fairness against the overall welfare of the population. However, practical
situations frequently call for both fairness and efficiency to be explicitly
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considered. One way to strive for both is simply to maximize a convex
combination of the two (Section 7). Yet it is unclear how to adjust their relative
weights, particularly when they are measured in different units.

Alpha fairness and Kalai-Smorodinsky bargaining offer more principled
solutions to the fairness-efficiency trade-off (Section 8). The parameter α
in alpha fairness regulates the trade-off on a scale that ranges from a
purely utilitarian to a purely maximin criterion. Axiomatic justifications
have been offered for this SWF, as well as bargaining justifications when
α = 1 (proportional fairness, or the Nash bargaining solution). However, these
justifications are perhaps less relevant to practice than the mere fact that one
can continuously adjust the trade-off to suit the occasion. Alpha fairness has,
in fact, seen fairly wide employment in engineering, despite the nonlinearity
of the SWF. Yet while α can be interpreted in terms of welfare-preserving
utility transfers, it is still unobvious how to justify any particular choice for
its value. Also, alpha fairness can assign the same social welfare to equality as
to extreme inequality (when α ≥ 1), although this becomes a practical issue
only for certain types of problem constraints.

The Kalai-Smorodinsky solution avoids this last issue entirely but poses
another. It is suitable for bargaining situations when the parties concerned see
equal relative concessions to be fair, as when buyer and seller negotiate a price,
or labor and management negotiate wages. However, it may be unsuitable
when some individuals have less utility potential due to physical impairment
or some other factor beyond their control. In such cases, fairness may require
special consideration for those who suffer misfortune, as in several other
schemes considered here. Also K-S bargaining offers no parameter to adjust
the fairness-efficiency trade-off.

Threshold SWFs (Section 9) combine utilitarian and maximin criteria using
a parameter ∆ that may be easier to interpret in practice than the α of alpha
fairness. They can assess fairness across groups of different sizes, and they
avoid the alpha fairness model’s anomaly of sometimes regarding equality as
ethically equivalent to extreme inequality. An efficiency-threshold model is
suitable when fairness is the initial concern, but one does not wish to pay
too high a cost for fairness. This may occur, for example, in health-related or
politically sensitive contexts. The parameter ∆ is chosen so that disadvantaged
parties whose utility is within ∆ of the lowest are seen as deserving special
priority. The SWF has a mixed integer model that is readily solved in practice.
An fairness-threshold model is better suited for situations in which efficiency is
the initial concern, but one does not want to create excessive inequality. This
may be the situation in traffic management, telecommunications, or disaster
recovery. In this context, the parameter ∆ has a somewhat different meaning:
it is chosen in such a way that one wishes to recognize no social benefit in
improving the lot of well-off individuals whose utility is already more than ∆
greater than the lowest, if the other utilities remain unchanged. The SWF has
a linear model.
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Threshold models that combine efficiency with the maximin criterion
inherit the tendency of the latter to ignore the actual utility levels of the
disadvantaged other than the very worst-off. This may result in less sensitivity
to fairness than desired, particularly when the utility of some individuals is
severely limited a priori by the constraint set. Two efficiency-threshold models
address this issue by combining efficiency with a leximax rather a maximin
criterion (Section 10). One assumes a predefined preference ordering for the
parties, which may be suitable for some situations, such as organ transplants.
However, the SWF is discontinuous, so that arbitrarily small changes in the
utilities can result in large changes in social welfare. Another model makes
no assumptions regarding preference, but it maximizes a sequence of SWFs
to balance efficiency and leximax fairness. It uses the same parameter ∆ as
maximin-based utility-threshold model. The sequential SWFs are continuous
and have mixed integer models that are readily solved in practice. However,
the complexity of both of these threshold models may impede acceptance
by stakeholders. At this writing, no fairness-threshold models have been
developed to combine efficiency with leximax fairness, although it appears that
this could be done along similar lines.

12 In Summary

Optimization models that incorporate social welfare functions provide a
framework for pursuing a fair utility distribution. A fairness-capturing SWF
can serve as the objective to be optimized, or it can be used to constrain the
feasible solutions. Decision makers must, however, select a utility function and
SWF that reflect the desired fairness perspective. The goal of this survey has
been to help structure this selection process by arranging SWFs into categories
and subcategories, interpreting each of these, and providing formulations of
the SWFs that are suitable for an optimization model.

When the fairness goal is to distribute utilities as equally as possible, one
can select an inequality metric (Section 4) or, in machine learning, a group
parity metric (Section 5). When the fairness goal is to avoid unacceptably
low utilities, one can select a SWF that reflects concern for the disadvantaged
(Section 6). When both fairness and efficiency goals are important, one can
consider SWFs that combine these (Sections 7–10) and select one that encodes
an acceptable principle for balancing them.

The selection and modeling of fairness criteria comprise a relatively new
research direction for the optimization community, one that requires not only
new mathematical formulations but interaction with additional fields of study.
While traditional optimization modeling relies on concepts from economics,
engineering, and management, fairness modeling brings ethics and philosophy
into the picture. This new collaboration may also be mutually beneficial, as
previous collaborations have been. The formulation, solution, and structural
analysis of optimization models may help clarify fairness concepts, even as
these activities receive guidance from the work of ethicists and philosophers.
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Appendix: Optimization Models

We present here what appear to be the most practical available optimization
models of the social welfare functions discussed in the foregoing text. We focus
on welfare maximizing models, but we indicate how a welfare constraining
model would differ in cases where the SWF does not incorporate efficiency.

Inequality Measures

Relative range. We assume with little loss of generality that the constraint
set implies ū > 0. Then since the SWF is a ratio of affine functions, the
formulation of W (u) in a welfare maximizing model can be linearized using
the same change of variable as in linear-fractional programming (Charnes and
Cooper 1962). Thus we introduce a scalar variable t and write u = u′/t and
x = x′/t, which yields the optimization model

min
x′,u′,t

u′min,u
′
max

{
u′max − u′min

∣∣∣∣ u′min ≤ u′i ≤ u′max, all i

ū′ = 1, t ≥ 0, (u′,x′) ∈ S′

}

where u′min, u
′
max are regarded as variables along with x′, u′, and t. If

(x̂′, û′, û′min, û
′
max, t̂) solves this problem, then u = û′/t̂ is a distribution

that minimizes the relative range. The tractability of this model depends on
whether the constraints defining S become harder after the change of variable.
The easiest case arises when the constraints are linear, as in linear-fractional
programming. If the original constraints are Au + Bx ≤ b, they become
another linear system Au′+Bx′ ≤ tb after the variable change. More generally,
if the original constraints have the form g(u,x) ≤ b for homogeneous g, they
retain essentially the same form g(u′,x′) ≤ tb after the variable change.

A welfare constraining model is simpler, because the SWF can be linearized
without a change of variable:

max
x,u

umin,umax

{
f(x)

∣∣∣∣ umin ≤ ui ≤ umax, all i

umax − umin ≤ UB · ū, (u,x) ∈ S

}

Here, UB is the desired upper bound on the relative range. The the model is
linear if f(x) is linear and S is polyhedral.

Relative mean deviation. This SWF can be linearized in a welfare
maximizing model by using the same change of variables as above:

min
x′,u′,v,t

{∑
i

vi

∣∣∣∣ −vi ≤ u′i − ū′ ≤ vi, all i

ū′ = 1, t ≥ 0, (u′,x′) ∈ S′

}
(18)
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where v1, . . . , vn are new variables. The welfare constraining model is

max
x,u,v

f(x)

∣∣∣∣∣∣
−vi ≤ ui − ū ≤ vi, all i∑
i

vi ≤ UB · ū, (u,x) ∈ S′

 (19)

where UB is the desired upper bound on the relative mean deviation.

Coefficient of variation. Although the numerator of the SWF is nonlinear,
we can use the same change of variable to formulate the welfare maximizing
model as

min
x′,u′,t

{[ 1

n

∑
i

(u′i − ū′)2
] 1

2

∣∣∣∣ ū′ = 1, t ≥ 0
(u′,x′) ∈ S′

}
(20)

We can obtain an optimal solution by solving the problem without the
exponent 1

2 . If the feasible set S′ is convex, this yields a convex nonlinear
programming problem in which all local optima are global optima. If S
is defined by linear constraints, it can be solved by particularly efficient
quadratic programming algorithms that are available in many state-of-the-art
optimization packages.

The welfare constraining model is

max
x,u

f(x)

∣∣∣∣∣∣
1

n

∑
i

(ui − ū)2 ≤ (UB · ū)2

(u,x) ∈ S

 (21)

where UB is the desired upper bound on the coefficient of variation. Since the
feasible set is not, in general, convex (even if S is convex and u ≥ 0), this
nonlinear optimization problem may be difficult to solve.

Jain’s index. Because Jain’s index is a strictly decreasing function of the
coefficient of variation, it can be maximized by solving the same model (20)
as for the latter. The welfare constraining model is (21) with UB set equal to
(LB−1−1)1/2, where LB is the desired lower bound on Jain’s index. Note that
UB is a real number because we can suppose LB ≤ 1, due to the fact that
Jain’s index is at most 1.

Gini coefficient. Again applying the change of variable from linear-
fractional programming, the Gini criterion can be linearized in a welfare
maximizing model as follows:

min
x′,u′,V,t

 1

2n2

∑
i,j

vij

∣∣∣∣ −vij ≤ u′i − u′j ≤ vij , all i, j

ū′ = 1, t ≥ 0, (u′,x′) ∈ S′


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where vij is a new variable for all i, j. The welfare constraining model is

max
x,u,V

f(x)

∣∣∣∣∣∣
−vi ≤ ui − uj ≤ vi, all i, j

1

n

∑
i

vi ≤ UB · 2ūn2, (u,x) ∈ S


where UB is the desired upper bound on the Gini coefficient.

Hoover index. The Hoover index can be minimized by solving the same
model (18) as for the relative mean deviation. The welfare constraining model
is (19) with UB is set to 2nUB′, where UB′ is the desired upper bound on the
Hoover index.

Group Parity Metrics

The welfare maximizing problem for group parity metrics has the form

min
δ,x

{
|B(δ)|

∣∣∣ (δ,x) ∈ S, δ ∈ {0, 1}n
}

where |B(δ)| is the desired measure of disparity. This is easily linearized:

min
δ,x,v

{
v
∣∣∣ − v ≤ B(δ) ≤ v, (δ,x) ∈ S, δ ∈ {0, 1}n

}
(22)

The welfare constraining model has the form

max
δ,x

{
f(x)

∣∣∣ |B(δ)| ≤ UB, (δ,x) ∈ S, δ ∈ {0, 1}n
}

which is linearized:

min
δ,x

{
f(x)

∣∣∣ −UB ≤ B(δ) ≤ UB, (δ,x) ∈ S, δ ∈ {0, 1}n
}

(23)

where UB is the desired upper bound on disparity.

Demographic parity. This metric is incorporated into (22) and (23) by
replacing B(δ) with the disparity measure (5). Since B(δ) is linear, this results
in MILP problems if the objective f(x) and constraints (δ,x) ∈ S are linear.
Existing classification algorithms in machine learning rarely use 0–1 variables
δi due to the computational burden they impose. One alternative strategy is
to use continuous relaxations of the bounds on B(δ). For instance, Zafar et al
(2017) define a convex proxy for demographic parity by replacing the discrete
variables δ with the continuous decision boundaries of the trained model, and
Olfat and Aswani (2018) substitute the decision boundaries with covariance
matrices to formulate a stronger but non-convex proxy of demographic parity.
Another strategy is to treat a given classification algorithm as a black box and
design separate pre-processing or post-processing schemes to attain fairness
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guarantees. As an example, Agarwal et al (2018) develop a systematic approach
that reduces fair classification to a sequence of cost-sensitive classifications.
They derive theoretical guarantees on the generated classifier for a variety of
fairness measures including demographic parity, equalized odds and accuracy
parity.

Equalized odds. This criterion replaces B(δ) in (22) and (23) with the
expression in (6) or (7), both of which are linear. As in the case of demographic
parity, these exact formulations are rarely used to train classification models.
Hardt et al (2016) design post-processing schemes to adjust the outcomes of
unfair classifiers to attain equalized odds guarantees. Zafar et al (2017) study
an in-processing perspective and propose tractable proxies for (6) and (7) by
replacing δ with continuous approximations.

Accuracy parity. Here, B(δ) is given by (8), which is again a linear
expression. Continuous approximations of δ can be used if desired.

Predictive rate parity. In this case, the expression (9) for B(δ) poses a
difficult optimization problem because variables occur in the denominator.
A change of variables similar to that in linear–fractional programming is
unhelpful in the welfare maximization model (22) for two reasons. One is
that the two ratios in B(δ) give rise to two scaling factors t, t′ that create
a nonconvex bilinear term tt′ even in a linear constraint set. The other is
that rescaling destroys the integrality of the 0–1 variables δi. Furthermore,
the welfare constraining model (23) cannot be linearized because the common
denominator of the two ratios is nonlinear. We therefore appear to have two
irreducibly difficult problems in nonlinear integer programming.

Fairness for the Disadvantaged

Minimax criterion. The welfare maximizing model is simply

max
x,u,w

{
w
∣∣ w ≤ ui, all i; (u,x) ∈ S

}
The welfare constraining model is

max
x,u

{
f(x)

∣∣ ui ≥ LB, all i; (u,x) ∈ S
}

where LB is the smallest acceptable individual utility.

Leximax criterion. A leximax solution for the welfare maximizing problem
can computed by solving a sequence of optimization problems

max
x,u,w

{
w

∣∣∣∣ w ≤ ui, ui ≥ ûik−1
, i ∈ Ik

(u,x) ∈ S

}
(24)
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for k = 1, . . . , n, where (x̂, û) is an optimal solution of problem k, ûi0 = −∞,
and ik is defined so that

ûik = min
i∈Ik
{ûi}, with Ik = {1, . . . , n} \ {i1, . . . , ik−1}

If there are two or more utilities ûi that achieve the minimum mini∈Ik{ûi}, it
is necessary to enumerate all solutions that result from breaking the tie to be
assured of finding a leximax soution. Ogryczak and Sliwinski (2006) showed
how to obtain a leximax solution with a single optimization model, but it is
impractical for most purposes due to the very large coefficients required in the
objective function.

We can suppose that the welfare constraining problem requires the rth
smallest utility to be at least LBr. To contruct one possible model of the
problem, we let binary variable yij = 1 when ui ≤ uj and binary variable
zir = 1 when ui is the rth smallest utility. In the model below, all the indices
i, j, r range over {1, . . . , n}.

max
x,u,y,z


f(x)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ui ≤ uj +M(1− yij), all i, j

yii = 1, all i; yij + yji = 1, all i, j with i 6= j∑
r

zir = 1,
∑
r

rzir =
∑
j

yji, all i

ui ≥
∑
r

LBrzir, all i; (u,x) ∈ S

yij , zir ∈ {0, 1}, all i, j, r


where M is an upper bound on the possible difference between any two utilities
ui, uj .

McLoone index. We can formulate the McLoone index by means of a mixed
integer programming (MIP) problem with a fractional objective function, by
using standard “big-M” modeling techniques from integer programming. The
model uses 0–1 variables δi, where δi = 1 when i ∈ I(u). The constant M is a
large number chosen so that ui < M for all i. The model is

max
x,u,m
y,z,δ


∑
i yi∑
i zi

∣∣∣∣∣∣∣∣∣∣∣

m−Mδi ≤ ui ≤ m+M(1− δi), all i

yi ≤ ui, yi ≤Mδi, δi ∈ {0, 1}, all i

zi ≥ 0, zi ≥ m−M(1− δi), all i∑
i

δi ≤ 1
2n, (u,x) ∈ S


where the new variable m represents the median, variable yi is ui if δi = 1
and 0 otherwise, and variable zi is m if δi = 1 and 0 otherwise in the optimal
solution. The objective function can be linearized by using the same change of
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variable as in linear-fractional programming:

max
x′,u′,m′

y′,z′,t,δ


∑
i

y′i

∣∣∣∣∣∣∣∣∣∣∣∣∣

u′i ≥ m′ −Mδi, all i

u′i ≤ m′ +M(1− δi), all i

y′i ≤ u′i, y′i ≤Mδi, δi ∈ {0, 1}, all i

z′i ≥ 0, z′i ≥ m′ −M(1− δi), all i∑
i

z′i = 1, t ≥ 0,
∑
i

δi ≤ 1
2n, (u′,x′) ∈ S′


The model is an MILP problem when the constraints defining S are linear.

The welfare constraining model can be linearized without a change of
variables, as follows:

max
x,u,m
y,z,δ


f(x)

∣∣∣∣∣∣∣∣∣∣∣

m−Mδi ≤ ui ≤ m+M(1− δi), all i

yi ≤ ui, yi ≤Mδi, δi ∈ {0, 1}, all i

zi ≥ 0, zi ≥ m−M(1− δi), all i∑
i

yi ≥ LB ·
∑
i

zi,
∑
i

δi ≤ 1
2n, (u,x) ∈ S


Here LB is the desired lower bound on the McLoone index.

Alpha Fairness and Kalai-Smorodinsky Bargaining

Alpha fairness and proportional fairness. The problem of maximizing the
alpha fairness SWF is

max
x,u

{
1

1− α
∑
i

u1−α
i

∣∣∣∣∣ (u,x) ∈ S

}

When α = 1 (representing proportional fairness), the objective function
becomes

∑
i log(ui). The model is irreducibly nonlinear, but it is concave for

all α ≥ 0. Thus any local optimum is a global optimum if the feasible set is
convex. The problem can be solved to optimality by such efficient algorithms as
the reduced gradient method, which is a generalization of the simplex method
for LP. The fact that the objective function has a simple closed-form gradient
simplifies solution. Maximizing alpha fairness may therefore be tractable for
reasonably large instances, particularly if the constraints defining S are linear.

Kalai-Smorodinsky bargaining. The optimization problem for the K-S
criterion is

max
β,x,u

{
β
∣∣ u = (1− β)d+ βumax, (u,x) ∈ S, β ≤ 1

}
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Threshold Criteria with Maximin Fairness

Efficiency-threshold criterion. Hooker and Williams (2012) formulate a
mixed integer (MIP) model for this criterion and prove its validity (a nontrivial
result). They introduce innocuous auxiliary constraints ui − uj ≤M for all
i, j, where M is a large number, to ensure MIP representability. The model
for maximizing the group-oriented SWF W g is

max
x,u,δ,v,w,z


(∑

i

si
)
∆ +

∑
i

sivi

∣∣∣∣∣∣∣∣∣∣∣

ui −∆ ≤ vi ≤ ui −∆δi, all i

w ≤ vi ≤ w + (M −∆)δi, all i

ui − ui ≤M, all i, j

ui ≥ 0, δi ∈ {0, 1}, all i

(u,x) ∈ S


(25)

The model for individuals is obtained by setting si = 1 for all i. This is
an MILP problem when the constraints (u,x) ∈ S are linear. Hooker and
Williams prove that this representation of W g(u) is sharp (i.e., its continuous
relation describes the convex hull of the feasible set) and is therefore the
tightest possible linear model. Sharpness may, of course, be lost when the
constraints (u,x) ∈ S are added. The practicality of the model was verified
with experiments on a healthcare resource allocation instance of realistic size.

Fairness-threshold criterion. Elçi et al (2022) provide a model for the
fairness-threshold SWF and prove its validity. The model is linear if the feasible
set S is a polyhedron.

max
x,u,v,w,z

n∆ +
∑
i

vi

∣∣∣∣∣∣∣∣∣
vi ≤ w ≤ ui, all i

vi ≤ ui −∆, all i

w ≥ 0

(u,x) ∈ S


The formulation for the group SWF W g(u) is the same, except that the
objective function is (∑

i

si

)
∆ +

∑
i

sivi

Threshold Criteria with Leximax Fairness

Predetermined preference order. While McElfresh and Dickerson (2018)
compute a solution of their model using an algorithm that is specialized to
kidney exchange, a general mixed integer model of the problem can be stated
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as follows:

max
u,x
w1,w2
y,φ,δ


w1 + w2

∣∣∣∣∣∣∣∣∣∣∣∣

w1 ≤ nu1, w1 ≤Mφ

w2 ≤
∑
i

(ui + yi), w2 ≤M(1− φ)

ui − uj −∆ ≤M(1− φ), all i, j
yi ≤ ∆, yi ≤ −∆ +Mδi, ui − u1 ≤M(1− δi), all i

(u,x) ∈ S; φ, δi ∈ {0, 1}, all i


where M is a large number.

A sequence of social welfare functions. Chen and Hooker (2022) obtain a
socially optimal distribution for their criterion by first solving a problem P1

given by

max
u,x

{
W1(u,x)

∣∣∣ |ui − uj | ≤M, all i, j; (u,x) ∈ S
}

(26)

and then solving problems Pk for k ≥ 2 given by

max
u,x

Wk(u,x)

∣∣∣∣∣∣
uij = ūij , j = 1, . . . , k − 1

ui ≥ ūik−1
, ui − ūi1 ≤M, i ∈ Ik
(u,x) ∈ S

 (27)

The indices ij are defined so that uij is the utility determined by solving Pj . In
particular, uij is the utility with the smallest value among the unfixed utilities
in an optimal solution obtained by solving Pj . Thus

ij = arg min
i∈Ij

{
u

[j]
i

}
where u[j] is an optimal solution of Pj and Ij = {1, . . . , n}\{i1, . . . , ij−1}. We

denote by ūij = u
[j]
ij

the solution value obtained for uij in Pj . We need only
solve Pk for k = 1, . . . ,K+1, where K is the largest k for which ūik ≤ ūi1 +∆.
The solution of the social welfare problem is then

ui =

{
ūi for i = i1, . . . , iK−1

u
[K]
i for i ∈ IK
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The mixed integer model for solving P1 with groups is (25). Using notation
similar to that in (24), the model for solving Pk with groups, k ≥ 2, is

max
x,u,δ,ε
v,w,τ,z


z

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

z ≤
(∑

i∈Ik si − 1
)
τ +

∑
i∈Ik sivi

0 ≤ vi ≤Mδi, i ∈ Ik
vi ≤ ui − ûi1 −∆ +M(1− δi), i ∈ Ik

τ ≤ ûi1 + ∆, τ ≤ w, w ≥ ûi1
w ≤ ui ≤ w +M(1− εi), i ∈ Ik

ui − ûi1 ≤M, i ∈ Ik∑
i∈Ik εi = 1; δi, εi ∈ {0, 1}, i ∈ Ik

(u,x) ∈ S


(28)

While this is not a sharp model in general for k ≥ 2, Chen and Hooker identify
valid inequalities that can strengthen the linear relaxation of Pk:

zk ≤
∑
i∈Ik

siui (29)

zk ≤
(∑
j∈Ik

si

)
uj + β

∑
j∈Ik\{i}

sj(uj − ūik−1
), i ∈ Ik (30)

where

β =
M −∆

M − (ūik−1
− ūi1)

=
(

1− ∆

M

)(
1−

ūik−1
− ūi1
M

)−1
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Ogryczak W, Śliwiński T (2002) On equitable approaches to resource
allocation problems: The conditional minimax solutions. Journal of
Telecommunications and Information Technology pp 40–48



Springer Nature 2021 LATEX template

Formulating Fairness 49
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