Optimization Models for Social Justice

John Hooker Carnegie Mellon University

CPAIOR Master Class June 2019

Modeling Social Justice

- Social welfare is more than overall benefit.
 - Also concerns equity or just distribution of resources.
 - Not obvious how to capture equity in the **objective function**.
 - Still less obvious how to combine it with total benefit.

Modeling Social Justice

- Some problem areas...
 - Health care resources.
 - Facility location (e.g., emergency services).
 - Taxation (revenue vs. progressivity).
 - Relief operations.
 - Telecommunications (leximax, Nash bargaining solution)

Outline

- Utilitarianism
- Rawlsian Difference Principle
- Axiomatics
- Measures of Inequality
- A Fair Division Problem
- Nash Bargaining Solution
- Raiffa-Kalai-Smorodinsky Bargaining
- Combining Equity and Utility
- Health Care Example
- References

Utility vs. Equity

- Two classical criteria for distributive justice:
 - Utilitarianism (total benefit)
 - Difference principle of John Rawls (equity)
- These have the must studied philosophical underpinnings.

- Utilitarianism seeks allocation of resources that maximizes total utility.
 - Let x_i = resources allocated to person *i*.
 - Let $u_i(x_i)$ = utility enjoyed by person *i* receiving resources x_i
 - We have an optimization problem

For example, $h_i(x_i) = a_i x_i^p$ with different a_i 's for 5 individuals

Assume resource distribution is constrained only by a fixed budget. If $u_i(x_i) = a_i x_i^p$, we have the optimization problem

$$\max \sum_{i} a_{i} x_{i}^{p}$$
$$\sum_{i} x_{i} = 1, \ x_{i} \ge 0, \text{ all } i$$

This has a closed-form solution

$$\boldsymbol{X}_{i} = \boldsymbol{a}_{i}^{\frac{1}{1-p}} \left(\sum_{j=1}^{n} \boldsymbol{a}_{j}^{\frac{1}{1-p}} \right)^{-1}$$

Optimal allocations equalize slope (i.e., equal marginal utility).

Arguments for utilitarianism

- Can define utility to suit context.
- Utilitarian distributions incorporate some **egalitarian** factors:
- With **concave** utility functions, egalitarian distributions tend to create more utility.
- Inegalitarian distributions create disutility, due to social disharmony.

- Egalitarian distributions create more utility?
 - This effect is **limited**.
 - Utilitarian distributions can be very unequal. Productivity differences are magnified in the allocations.

- Egalitarian distributions create more utility?
 - In the example, the **most egalitarian** distribution $(p \rightarrow 0)$ assigns resources in proportion to individual utility coefficient.

- Unequal distributions create disutility?
 - Perhaps, but modeling this requires **nonseparable** utility functions $U_i(x_1, \dots, x_n)$

that may result in a problem that is hard to model and solve.

- Unequal distributions create disutility?
 - Perhaps, but modeling this requires **nonseparable** utility functions $U_i(x_1, \dots, x_n)$

that may result in a problem that is hard to model and solve.

• More fundamentally, this defense of utilitarianism is based on **contingency**, **not principle**.

- Unequal distributions create disutility?
 - Perhaps, but modeling this requires **nonseparable** utility functions $U_i(x_1, \dots, x_n)$

that may result in a problem that is hard to model and solve.

- More fundamentally, this defense of utilitarianism is based on **contingency**, **not principle**.
- If we can **evaluate** the fairness of utilitarian distribution, then there must be **another standard** of equitable distribution.
- How do we model the standard we really have in mind?

- To sum up: A utility maximizing distribution may be unjust.
 - Disadvantaged people may be neglected because they gain less utility per unit of resource.

- Rawls' **Difference Principle** seeks to maximize the welfare of the worst off.
 - Also known as maximin principle.
 - Another formulation: inequality is permissible only to the extent that it is necessary to improve the welfare of those worst off.

 $\max_{x} \min_{i} \{u_{i}(x_{i})\}$ $x \in S$

- The root idea is that when I make a decision for myself, I make a decision for **anyone** in similar circumstances.
 - It doesn't matter who I am. (universality of reason)

- The root idea is that when I make a decision for myself, I make a decision for **anyone** in similar circumstances.
 - It doesn't matter who I am (universality of reason)
- Social contract argument
 - I make decisions (formulate a social contract) in an original position, behind a veil of ignorance as to who I am.
 - I must find the decision acceptable after I learn who I am.
 - I cannot rationally assent to a policy that puts me on the bottom, unless I would have been even worse off under alternative policies.
 - So the policy must **maximize** the welfare of the **worst off**.

- Rawls intended the principle for the design of **social institutions**.
 - Not necessarily for other decisions.
 - Yet it is not unreasonable for resource allocation in general.
 - See J. Rawls, A Theory of Justice, 1971

- The difference rule can be refined with a **leximax** principle.
 - If applied recursively.
- Leximax (lexicographic maximum) principle:
 - Maximize welfare of least advantaged class...
 - then next-to-least advantaged class...
 - and so forth.

There is no *practical* math programming model for leximax.

leximax $\{u_1(x_1), \dots, u_n(x_n)\}$ $x \in S$

• But see W. Ogryczak & T. Sliwinski, ICCSA 2006.

There is no *practical* math programming model for leximax.

leximax $\{u_1(x_1), \dots, u_n(x_n)\}$ $x \in S$

- But see W. Ogryczak & T. Sliwinski, *ICCSA 2006*.
- We can solve the problem sequentially (pre-emptive goal programming).
 - Solve the maximin problem.
 - Fix the smallest u_i to its maximum value.
 - Solve the maximin problem over remaining u_i 's.
 - Continue to u_n .

- The Difference and Leximax Principles need not result in equality.
 - Consider the example presented earlier...

Utilitarian distribution

Here, leximax principle results in equality

But consider this distribution...

Leximax doesn't result in equality

Axiomatics

- The economics literature derives social welfare functions from axioms of rational choice.
 - The social welfare function depends on degree of interpersonal comparability of utilities.
 - Arrow's impossibility theorem was the first result, but there are many others.

Social welfare function

- A function $f(u_1,...,u_n)$ of individual utilities.
- An optimization model can find a distribution of utility that maximizes social welfare.

Axiomatics

- The economics literature derives social welfare functions from axioms of rational choice.
 - The social welfare function depends on degree of interpersonal comparability of utilities.
 - Arrow's impossibility theorem was the first result, but there are many others.

Social welfare function

- A function $f(u_1,...,u_n)$ of individual utilities.
- An optimization model can find a distribution of utility that maximizes social welfare.

Problem

• The SWF that results is little more than a restatement of the interpersonal comparability assumption.

Interpersonal Comparability

- Social Preferences
 - Let $u = (u_1, ..., u_n)$ be the vector of utilities allocated to individuals.
 - A social welfare function ranks distributions: u is preferable to u' if f(u) > f(u').
- Invariance transformations.
 - These are transformations ϕ of utility vectors under which the ranking of distributions does not change.
 - Each $\phi = (\phi_1, \dots, \phi_n)$, where ϕ_i is a transformation of individual utility u_i .

Interpersonal Comparability

- Ordinal noncomparability.
 - Any $\phi = (\phi_1, \dots, \phi_n)$ with strictly increasing ϕ_i s is an invariance transformation.
- Ordinal level comparability.
 - Any $\phi = (\phi_1, \dots, \phi_n)$ with strictly increasing and identical ϕ_i s is an invariance transformation.

Interpersonal Comparability

- Cardinal nonncomparability.
 - Any $\phi = (\phi_1, \dots, \phi_n)$ with $\phi_i(u_i) = \alpha_i + \beta_i u_i$ and $\beta_i > 0$ is an invariance transformation.
- Cardinal unit comparability.
 - Any $\phi = (\phi_1, \dots, \phi_n)$ with $\phi_i(u_i) = \alpha_i + \beta u_i$ and $\beta > 0$ is an invariance transformation.
- Cardinal ratio scale comparability
 - Any $\phi = (\phi_1, \dots, \phi_n)$ with $\phi_i(u_i) = \beta u_i$ and $\beta > 0$ is an invariance transformation.

Axioms

- Anonymity
 - Social preferences are the same if indices of u_is are permuted.
- Strict pareto
 - If u > u', then *u* is preferred to u'.
- Independence of irrelevant alternatives
 - The preference of *u* over *u*' depends only on *u* and *u*' and not on what other utility vectors are possible.
- Separability of unconcerned individuals
 - Individuals *i* for which u_i = u_i' don't affect the ranking of u and u'.

Axiomatics

Theorem

Given **ordinal level comparability**, any social welfare function *f* that satisfies the axioms is lexicographically increasing or lexicographically decreasing. So we get a **leximax** or **leximin** objective.

Theorem

Given **cardinal unit comparability**, any social welfare function *f* that satisfies the axioms has the form $f(u) = \sum_i a_i u_i$ for $a_i \ge 0$. Se we get a **utilitarian** objective.

Axiomatics

Theorem

Given **cardinal noncomparability**, any social welfare function *f* that satisfies the axioms (except anonimity and separability) has the form $f(u) = u_i$ for some fixed *i*. So individual *i* is a **dictator**.

Theorem

Given **cardinal ratio scale comparability**, any social welfare function *f* that satisfies the axioms has the form $f(u) = \sum_i u_i^p / p$. Se we get the utility function used in the example.
Measures of Inequality

- Assume we wish to minimize inequality.
 - We will survey several measures of inequality.
 - They have different strengths and weaknesses.
 - Minimizing inequality may result in less total utility.
- Pigou-Dalton condition.
 - One criterion for evaluating an inequality measure.
 - If utility is transferred from one who is better off to one who is worse off, social welfare should increase.

Measures of Inequality

- Measures of Inequality
 - Relative range, max, min
 - Relative mean deviation
 - Variance, coefficient of variation
 - McLoone index
 - Gini coefficient
 - Atkinson index
 - Hoover index
 - Theil index

Relative Range

$$\frac{U_{\max} - U_{\min}}{\overline{U}}$$

where $u_{\max} = \max_{i} \{u_{i}\}$ $u_{\min} = \min_{i} \{u_{i}\}$ $\overline{u} = (1 / n) \sum_{i} u_{i}$

Rationale:

- Perceived inequality is relative to the best off.
- A distribution should be judged by the position of the worst-off.
- Therefore, minimize gap between top and bottom.

- Ignores distribution between extremes.
- Violates Pigou-Dalton condition

Relative Range

$$\frac{U_{\max} - U_{\min}}{\overline{u}}$$

This is a **fractional linear programming** problem.

Use Charnes-Cooper transformation to an LP. In general,

$$\min \frac{cx + c_0}{dx + d_0} \qquad \qquad \min cx' + c_0 z \\ Ax \ge b \qquad \qquad \text{becomes} \qquad \begin{array}{l} Ax' \ge bz \\ dx' + d_0 z = 1 \\ x \ge 0 \end{array} \\ x', z \ge 0 \end{array}$$

after change of variable x = x'/z and fixing denominator to 1.

Relative Range

$$\begin{split} \frac{U_{\max} - U_{\min}}{\overline{u}} \\ \hline \mathbf{F} \text{ractional LP model:} & \min \frac{U_{\max} - U_{\min}}{(1/n)\sum_{i} u_{i}} \\ & u_{\max} \geq u_{i}, \ u_{\min} \leq u_{i}, \ \text{all } i \\ & u_{i} = a_{i}x_{i}, \ 0 \leq x_{i} \leq b_{i}, \ \text{all } i, \ \sum_{i} x_{i} = B \\ \hline \text{LP model:} & \min u_{\max} - u_{\min} \\ & u_{\max} \geq u'_{i}, \ u_{\min} \leq u'_{i}, \ \text{all } i \\ & u'_{i} = a_{i}x'_{i}, \ 0 \leq x'_{i} \leq b_{j}z, \ \text{all } i, \ \sum_{i} x'_{i} = Bz \\ & (1/n)\sum_{i} u'_{i} = 1 \end{split}$$

Relative Max

 $\frac{u_{\max}}{\overline{u}}$

Rationale:

- Perceived inequality is relative to the best off.
- Possible application to salary levels (typical vs. CEO)

- Ignores distribution below the top.
- Violates Pigou-Dalton condition

Relative Min

Rationale:

- Measures adherence to Rawlsian Difference Principle.
- ...relativized to mean

- Ignores distribution above the bottom.
- Violates Pigou-Dalton condition

Relative Mean Deviation

$$\frac{\sum_{i} |u_{i} - \overline{u}|}{\overline{u}}$$

Rationale:

- Perceived inequality is relative to average.
- Entire distribution should be measured.

- Violates Pigou-Dalton condition
- Insensitive to transfers on the same side of the mean.
- Insensitive to placement of transfers from one side of the mean to the other.

Relative Mean Deviation $\sum |u_i - \overline{u}|$ ū $\max \frac{\sum_{i} (u_i^+ + u_i^-)}{\overline{u}}$ Fractional LP model: $u_i^+ \ge u_i - \overline{u}, \ u_i^- \ge \overline{u} - u_i, \ \text{all } i$ $\overline{u} = (1/n)\sum_{i} u_{i}$ $u_i = a_i x_i, \ 0 \le x_i \le b_i, \ \text{all } i, \ \sum_i x_i = B$ $\max \sum_{i} (u_i^+ + u_i^-)$ LP model: $u_i^+ \ge u_i' - 1, \ u_i^- \le u_i' - 1, \ \text{all } i$ $(1/n)\sum_{i}u'_{i}=1$ $u'_i = a_i x'_i, \ 0 \le x'_i \le b_i z, \ \text{all } i, \ \sum x'_i = Bz$

Variance

 $(1/n)\sum_{i}(u_{i}-\overline{u})^{2}$

Rationale:

- Weight each utility by its distance from the mean.
- Satisfies Pigou-Dalton condition.
- Sensitive to transfers on one side of the mean.
- Sensitive to placement of transfers from one side of the mean to the other.

- Weighting is arbitrary?
- Variance depends on scaling of utility.

Variance

$$(1/n)\sum_{i}(u_{i}-\overline{u})^{2}$$

Convex nonlinear model: $\min(1/n)\sum_{i}(u_{i}-\overline{u})^{2}$ $\overline{u} = (1/n)\sum_{i}u_{i}$ $u_{i} = a_{i}x_{i}, \ 0 \le x_{i} \le b_{i}, \ \text{all } i, \ \sum_{i}x_{i} = B$

Coefficient of Variation

$$\frac{\left((1/n)\sum_{i}(u_{i}-\overline{u})^{2}\right)^{1/2}}{\overline{u}}$$

Rationale:

- Similar to variance.
- Invariant with respect to scaling of utilities.

- When minimizing inequality, there is an incentive to reduce average utility.
- Should be minimized only for fixed total utility.

Coefficient of Variation

$$\frac{\left((1/n)\sum_{i}(u_{i}-\overline{u})^{2}\right)^{1/2}}{\overline{u}}$$

Again use change of variable u = u'/z and fix denominator to 1.

$$\min \frac{\left((1/n)\sum_{i}(u_{i}-\bar{u})^{2}\right)^{1/2}}{\bar{u}} \qquad \min \left((1/n)\sum_{i}(u_{i}'-1)^{2}\right)^{1/2}} \qquad \min \left((1/n)\sum_{i}(u_{i}'-1)^{2}\right)^{1/2} \qquad \sum_{i=1}^{n} \sum_{i=1}$$

Coefficient of Variation

$$\begin{split} \underbrace{\left((1/n) \sum_{i} (u_{i} - \overline{u})^{2} \right)^{1/2}}_{i} \\ \overline{u} \\ Fractional nonlinear \\ model: \\ & \max \frac{\left((1/n) \sum_{i} (u_{i} - \overline{u})^{2} \right)^{1/2}}{\overline{u}} \\ & \overline{u} = (1/n) \sum_{i} (u_{i} - \overline{u})^{2} \\ & \overline{u} = (1/n) \sum_{i} u_{i} \\ & u_{i} = a_{i} x_{i}, \ 0 \leq x_{i} \leq b_{i}, \ \text{all } i, \quad \sum_{i} x_{i} = B \\ \text{Convex nonlinear } & \min(1/n) \sum_{i} (u_{i}' - 1)^{2} \\ & (1/n) \sum_{i} u_{i}' = 1 \\ & u_{i}' = a_{i} x_{i}', \ 0 \leq x_{i}' \leq b_{i} z, \ \text{all } i, \quad \sum_{i} x_{i}' = B z \end{split}$$

McLoone Index

$$\frac{(1/2)\sum_{i:u_i < m} u}{\overline{u}}$$

Rationale:

- Ratio of average utility below median to overall average.
- No one wants to be "below average."
- Pushes average up while pushing inequality down.

- Violates Pigou-Dalton condition.
- Insensitive to upper half.

McLoone Index

$$\frac{(1/2)\sum_{\substack{i:u_i < m \\ \hline u_i}} u_i}{\overline{u}}$$
MILP model: max $\sum_i v'_i$
 $m' - My_i \le u'_i \le m' + M(1 - y_i)$, all i
 $v'_i \le u'_i, v'_i \le My_i$, all i
 $\sum_i y_i < n/2$
 $u'_i = a_i x'_i, \ 0 \le x'_i \le b_i z$, all i , $\sum_i x'_i = Bz$
 $y_i \in \{0,1\}$, all i

Gini Coefficient

$$\frac{(1/n^2)\sum_{i,j}\left|u_i-u_j\right|}{2\overline{u}}$$

Rationale:

- Relative mean difference between all pairs.
- Takes all differences into account.
- Related to area above cumulative distribution (Lorenz curve).
- Satisfies Pigou-Dalton condition.

Problems:

• Insensitive to shape of Lorenz curve, for a given area.

Gini Coefficient $\frac{(1/n^2)\sum_{i,j}\left|u_i-u_j\right|}{2}$ $2\overline{u}$ Fractional LP model: $\max \frac{(1/2n^2)\sum_{ij}(u_{ij}^+ + u_{ij}^-)}{\overline{u}}$ $u_{ii}^{+} \ge u_{i} - u_{i}, \ u_{ii}^{-} \ge u_{i} - u_{i}, \ \text{all } i, j$ $\overline{u} = (1/n)\sum_{i} u_i$ $u_i = a_i x_i, \ 0 \le x_i \le b_i, \ \text{all } i, \ \sum_i x_i = B$ max $(1/2n^2)\sum_{ii}(u_{ij}^++u_{ij}^-)$ LP model: $u_{ij}^{+} \ge u_{i}' - u_{j}', \ u_{ij}^{-} \ge u_{j}' - u_{j}', \ \text{all } i, j$ $(1/n)\sum_{i} u'_{i} = 1$ $u'_i = a_i x'_i, \ 0 \le x'_i \le b_i z, \ \text{all } i, \ \sum_i x'_i = Bz$

$$1 - \left((1/n) \sum_{i} \left(\frac{\mathbf{x}_{i}}{\overline{\mathbf{x}}} \right)^{p} \right)^{1/p}$$

Rationale:

- Best seen as measuring inequality of **resources** x_i .
- Assumes allotment y of resources results in utility y^p
- This is average utility per individual.

$$1 - \left((1/n) \sum_{i} \left(\frac{\mathbf{x}_{i}}{\overline{\mathbf{x}}} \right)^{p} \right)^{1/p}$$

Rationale:

- Best seen as measuring inequality of **resources** x_i .
- Assumes allotment y of resources results in utility y^p
- This is average utility per individual.
- This is equal resource allotment to each individual that results in same total utility.

$$1 - \left((1/n) \sum_{i} \left(\frac{x_{i}}{\overline{x}} \right)^{p} \right)^{1/p}$$

Rationale:

- Best seen as measuring inequality of **resources** x_i .
- Assumes allotment y of resources results in utility y^p
- This is average utility per individual.
- This is equal resource allotment to each individual that results in same total utility.
- This is additional resources per individual necessary to sustain inequality.

$$1 - \left((1/n) \sum_{i} \left(\frac{\mathbf{x}_{i}}{\overline{\mathbf{x}}} \right)^{p} \right)^{1/p}$$

Rationale:

- *p* indicates "importance" of equality.
- Similar to L_p norm
- p = 1 means inequality has no importance
- p = 0 is Rawlsian (measures utility of worst-off individual).

- Measures utility, not equality.
- Doesn't evaluate distribution of utility, only of resources.
- *p* describes utility curve, not importance of equality.

$$1 - \left((1/n) \sum_{i} \left(\frac{\mathbf{x}_{i}}{\overline{\mathbf{x}}} \right)^{p} \right)^{1/p}$$

To minimize index, solve fractional problem After change of variable $x_i = x'_i/z$, this becomes

$$\max \sum_{i} \left(\frac{x_{i}}{\overline{x}}\right)^{p} = \frac{\sum_{i} x_{i}^{p}}{\overline{x}^{p}}$$
$$Ax \ge b, \ x \ge 0$$

$$\max \sum_{i} x_{i}^{\prime p}$$

$$(1/n) \sum_{i} x_{i}^{\prime} = 1$$

$$Ax^{\prime} \ge bz, \quad x^{\prime} \ge 0$$

$$1 - \left((1/n) \sum_{i} \left(\frac{x_{i}}{\overline{x}} \right)^{p} \right)^{1/p}$$

Fractional nonlinear model:

$$\max \frac{\sum_{i} x_{i}^{p}}{\overline{x}^{p}}$$
$$\overline{x} = (1/n) \sum_{i} x_{i}$$
$$\sum_{i} x_{i} = B, \ x \ge 0$$

Concave nonlinear model:

$$\max \sum_{i} x_{i}^{\prime p}$$

$$(1/n) \sum_{i} x_{i}^{\prime} = 1$$

$$\sum_{i} x_{i}^{\prime} = Bz, \quad x^{\prime} \ge 0$$

Hoover Index

$$(1/2)\frac{\sum_{i}\left|u_{i}-\overline{u}\right|}{\sum_{i}u_{i}}$$

Rationale:

- Fraction of total utility that must be redistributed to achieve total equality.
- Proportional to maximum vertical distance between Lorenz curve and 45° line.
- Originated in regional studies, population distribution, etc. (1930s).
- Easy to calculate.

Problems:

• Less informative than Gini coefficient?

Individuals ordered by increasing utility

Theil Index

 $(1/n)\sum_{i}\left(\frac{u_{i}}{\overline{u}}\ln\frac{u_{i}}{\overline{u}}\right)$

Rationale:

- One of a family of entropy measures of inequality.
- Index is zero for complete equality (maximum entropy)
- Measures nonrandomness of distribution.
- Described as stochastic version of Hoover index.

- Motivation unclear.
- A. Sen doesn't like it.

Theil Index

$$(1/n)\sum_{i}\left(\frac{u_{i}}{\overline{u}}\ln\frac{u_{i}}{\overline{u}}\right)$$

Nasty nonconvex model:

$$\min (1/n) \sum_{i} \left(\frac{u_{i}}{\overline{u}} \ln \frac{u_{i}}{\overline{u}} \right)$$
$$\overline{u} = (1/n) \sum_{i} u_{i}$$
$$u_{i} = a_{i} x_{i}, \ 0 \le x_{i} \le b_{i}, \ \text{all } i, \quad \sum_{i} x_{i} = B$$

A Fair Division Problem

- From Yaari and Bar-Hillel, 1983.
- 12 grapefruit and 12 avocados are to be divided between Persons 1 and 2.
- How to divide justly?

Utility provided by one fruit of each kind

Person 1	Person 2
100	50
0	50

A Fair Division Problem

The optimization problem:

Social welfare function max $f(u_1, u_2)$ $u_1 = 100x_{11}, u_2 = 50x_{12} + 50x_{22}$ $x_{i1} + x_{i2} = 12, i = 1, 2$ $x_{ij} \ge 0, \text{ all } i, j$

where u_i = utility for person *i* x_{ij} = allocation of fruit *i* (grapefruit, avocados) to person *j*

Utilitarian Solution $f(u_1, u_2) = u_1 + u_2$

Rawlsian (maximin) solution $f(u_1, u_2) = \min\{u_1, u_2\}$

Bargaining Solutions

- A **bargaining solution** is an equilibrium allocation in the sense that none of the parties wish to bargain further.
 - Because all parties are "satisfied" in some sense, the outcome may be viewed as "fair."
 - Bargaining models have a **default** outcome, which is the result of a failure to reach agreement.
 - The default outcome can be seen as a **starting point**.

Bargaining Solutions

- Several proposals for the default outcome (starting point):
 - **Zero** for everyone. Useful when only the resources being allocated are relevant to fairness of allocation.
 - Equal split. Resources (not necessarily utilities) are divided equally. May be regarded as a "fair" starting point.
 - **Strongly pareto set**. Each party receives resources that can benefit no one else. Parties can always agree on this.

- Maximizes the **product of the gains** achieved by the bargainers, relative to the fallback position.
 - Not the same as Nash equilibrium.
 - Also known as **proportional fairness.**
 - Popular in engineering applications.
 - Used in **bandwidth allocation**, **traffic signal timing**, etc.

The Nash bargaining solution maximizes the social welfare function

$$f(u) = \prod_i (u_i - d_i)$$

where *d* is the default outcome.

• Assume feasible set is **convex**, so that Nash solution is unique (due to strict concavity of *f*).

• The **optimization problem** has a concave objective function if we maximize log *f*(*u*).

$$\max \log \prod_{i} (u_i - d_i) = \sum_{i} \log(u_i - d_i)$$
$$u \in S$$

• Problem is relatively easy if feasible set S is convex.

Nash Bargaining Solution From Equality

- Strongly pareto set gives Person 2 all 12 avocados.
 - Nothing for Person 1.
 - Results in utility $(u_1, u_2) = (0,600)$

Utility provided by one fruit of each kind

Person 1	Person 2
100	50
0	50

Nash Bargaining Solution From Strongly Pareto Set

- Axiom 1. Invariance under translation and rescaling.
 - If we map $u_i \rightarrow a_i u_i + b_i$, $d_i \rightarrow a_i d_i + b_i$, then bargaining solution $u_i^* \rightarrow a_i u_i^* + b_i$.

This is cardinal noncomparability.

- Axiom 1. Invariance under translation and rescaling.
 - If we map $u_i \rightarrow a_i u_i + b_i$, $d_i \rightarrow a_i d_i + b_i$, then bargaining solution $u_i^* \rightarrow a_i u_i^* + b_i$.

• Strong assumption – failed, e.g., by utilitarian welfare function

- Axiom 2. Pareto optimality.
 - Bargaining solution is pareto optimal.
- Axiom 3. Symmetry.
 - If all *d*_{*i*}'s are equal and feasible set is symmetric, then all *u*_{*i*}'s are equal in bargaining solution.

- Axiom 4. Independence of irrelevant alternatives.
 - Not the same as Arrow's axiom.
 - If *u*^{*} is a solution with respect to *d*...

- Axiom 4. Independence of irrelevant alternatives.
 - Not the same as Arrow's axiom.
 - If *u*^{*} is a solution with respect to *d*, then it is a solution in a smaller feasible set that contains *u*^{*} and *d*.

- Axiom 4. Independence of irrelevant alternatives.
 - Not the same as Arrow's axiom.
 - If u* is a solution with respect to d, then it is a solution in a smaller feasible set that contains u* and d.
 - This basically says that the solution behaves like an **optimum**.

Theorem. Exactly one solution satisfies Axioms 1-4, namely the Nash bargaining solution.

Proof (2 dimensions).

First show that the Nash solution satisfies the axioms.

Axiom 1. Invariance under transformation. If

$$\prod_{i} (u_{i}^{*} - d_{1}) \geq \prod_{i} (u_{i} - d_{1})$$

then
$$\prod_{i} ((a_{i}u_{i}^{*} + b_{i}) - (a_{i}d_{i} + b_{i})) \geq \prod_{i} ((a_{i}u_{i} + b_{i}) - (a_{i}d_{i} + b_{i}))$$

Axiom 2. Pareto optimality. Clear because social welfare function is strictly monotone increasing.

Axiom 3. Symmetry. Obvious.

Axiom 4. Independence of irrelevant alternatives. Follows from the fact that u^* is an optimum.

Now show that **only** the Nash solution satisfies the axioms...

Let *u*^{*} be the Nash solution for a given problem. Then it satisfies the axioms with respect to *d*. Select a transformation that sends

 $(u_1, u_2) \rightarrow (1, 1), \quad (d_1, d_2) \rightarrow (0, 0)$

The transformed problem has Nash solution (1,1), by Axiom 1:

Let u^* be the Nash solution for a given problem. Then it satisfies the axioms with respect to d. Select a transformation that sends

 $(u_1, u_2) \rightarrow (1, 1), \quad (d_1, d_2) \rightarrow (0, 0)$

The transformed problem has Nash solution (1,1), by Axiom 1:

By Axioms 2 & 3, (1,1) is the **only** bargaining solution in the triangle:

Let *u*^{*} be the Nash solution for a given problem. Then it satisfies the axioms with respect to *d*. Select a transformation that sends

 $(u_1, u_2) \rightarrow (1, 1), \quad (d_1, d_2) \rightarrow (0, 0)$

The transformed problem has Nash solution (1,1), by Axiom 1:

By Axioms 2 & 3, (1,1) is the **only** bargaining solution in the triangle:

So by Axiom 4, (1,1) is the only bargaining solution in blue set.

Let *u*^{*} be the Nash solution for a given problem. Then it satisfies the axioms with respect to *d*. Select a transformation that sends

 $(u_1, u_2) \rightarrow (1, 1), \quad (d_1, d_2) \rightarrow (0, 0)$

The transformed problem has Nash solution (1,1), by Axiom 1:

- **Problems** with axiomatic justification.
 - Axiom 1 (invariance under transformation) is very strong.
 - Axiom 1 denies interpersonal comparability.
 - So how can it reflect moral concerns?

- **Problems** with axiomatic justification.
 - **Axiom 1** (invariance under transformation) is very strong.
 - Axiom 1 denies interpersonal comparability.
 - So how can it reflect moral concerns?
- Most attention has been focused on **Axiom 4** (independence of irrelevant alternatives).
 - Will address this later.

Players 1 and 2 make offers s, t.

Players 1 and 2 make offers *s*, *t*. Let p = P(player 2 will reject s), as estimated by player 1.

Players 1 and 2 make offers *s*, *t*. Let p = P(player 2 will reject s), as estimated by player 1. Then player 1 will stick with *s*, rather than make a counteroffer, if

 u_2

 $(1-p)s_1 + pd_1 \geq t_1$

Players 1 and 2 make offers *s*, *t*. Let p = P(player 2 will reject s), as estimated by player 1. Then player 1 will stick with *s*, rather than make a counteroffer, if

 $(1-p)s_{1} + pd_{1} \ge t_{1}$ u_{2} $d \bullet t$ $d \bullet t_{1}$ s $d \bullet t_{1}$ s_{1} u_{1} $p \le \frac{s_{1} - t_{1}}{s_{1} - d_{1}} = r_{1}$

It is rational for player 1 to make a counteroffer s', rather than player 2, if

$$r_1 = \frac{s_1 - t_1}{s_1 - d_1} \le \frac{t_2 - s_2}{t_2 - d_2} = r_2$$

It is rational for player 1 to make a counteroffer s', rather than player 2, if

$$r_1 = \frac{s_1 - t_1}{s_1 - d_1} \le \frac{t_2 - s_2}{t_2 - d_2} = r_2$$

It is rational for player 1 to make a counteroffer s', rather than player 2, if

$$r_1 = \frac{s_1 - t_1}{s_1 - d_1} \le \frac{t_2 - s_2}{t_2 - d_2} = r_2$$

It is rational for player 2 to make the next counteroffer if c'

$$r' = \frac{S'_1 - t_1}{S'_1 - d_1} \ge \frac{t_2 - S'_2}{t_2 - d_2} = r'_2$$

$$\frac{s_{1}-t_{1}}{s_{1}-d_{1}} \leq \frac{t_{2}-s_{2}}{t_{2}-d_{2}}$$

It is rational for player 1 to make a counteroffer s', rather than player 2, if

$$r_1 = \frac{s_1 - t_1}{s_1 - d_1} \le \frac{t_2 - s_2}{t_2 - d_2} = r_2$$

So we have $(s_1 - d_1)(s_2 - d_2) \le (t_1 - d_1)(t_2 - d_2)$

So we have $(s_1 - d_1)(s_2 - d_2) \le (t_1 - d_1)(t_2 - d_2)$

So we have $(s_1 - d_1)(s_2 - d_2) \le (t_1 - d_1)(t_2 - d_2)$

So we have
$$(s_1 - d_1)(s_2 - d_2) \le (t_1 - d_1)(t_2 - d_2)$$

and we have $(t_1 - d_1)(t_2 - d_2) \le (s_1' - d_1)(s_2' - d_2)$

milarly
$$\frac{s_1' - t_1}{s_1' - d_1} \ge \frac{t_2 - s_2'}{t_2 - d_2}$$

 $\iff \frac{t_1 - d_1}{s_1' - d_1} \le \frac{s_2' - d_2}{t_2 - d_2}$

So we have and we have

$$(s_1 - d_1)(s_2 - d_2) \le (t_1 - d_1)(t_2 - d_2)$$
$$(t_1 - d_1)(t_2 - d_2) \le (s_1' - d_1)(s_2' - d_2)$$

U₂ t s's This implies an improvement in the Nash social welfare function

So we have and we have

$$(s_1 - d_1)(s_2 - d_2) \le (t_1 - d_1)(t_2 - d_2)$$
$$(t_1 - d_1)(t_2 - d_2) \le (s_1' - d_1)(s_2' - d_2)$$

This implies an improvement in the Nash social welfare function.

Given a minimum distance between offers, continued bargaining converges to Nash solution.

Problem with bargaining justifications.

Why should a bargaining procedure that is rational from an **individual** viewpoint result in a **just distribution?**

Why should "**procedural justice**" = **justice**? For example, is the outcome of bargaining in a free market necessarily just?

A deep question in political theory.

Also applies to **political districting analysis**, currently a hot topic in USA.

• This approach begins with a critique of the Nash bargaining solution.

- This approach begins with a critique of the Nash bargaining solution.
 - The new Nash solution is **worse** for player 2 even though the feasible set is **larger**.

• **Proposal**: Bargaining solution is pareto optimal point on line from *d* to ideal solution.

- **Proposal**: Bargaining solution is pareto optimal point on line from *d* to ideal solution.
 - The players receive an equal fraction of their possible utility gains.

- **Proposal**: Bargaining solution is pareto optimal point on line from *d* to ideal solution.
 - Replace Axiom 4 with **Axiom 4' (Monotonicity)**: A larger feasible set with same ideal solution results in a bargaining solution that is better (or no worse) for all players.

Optimization model.

- Not an optimization problem over original feasible set (we gave up Axiom 4).
- But it is an optimization problem (pareto optimality) over the line segment from *d* to ideal solution.

$$\max \sum_{i} u_{i}$$

$$(g_{1} - d_{1})(u_{i} - d_{i}) = (g_{i} - d_{i})(u_{1} - d_{1}), \text{ all } i$$

$$u \in S$$

$$\frac{u_{1}^{*} - d_{1}}{u_{2}^{*} - d_{2}} = \frac{g_{1} - d_{1}}{g_{2} - d_{2}}$$

- Optimization model.
 - Not an optimization problem over original feasible set (we gave up Axiom 4).
 - But it is an optimization problem (pareto optimality) over the line segment from *d* to ideal solution.

constants

$$\begin{array}{c}
\max \sum_{i} u_{i} \\
(g_{1} - d_{1})(u_{i} - d_{i}) = (g_{i} - d_{i})(u_{1} - d_{1}), \text{ all } i \\
u \in S
\end{array}$$

- Optimization model.
 - Not an optimization problem over original feasible set (we gave up Axiom 4).
 - But it is an optimization problem (pareto optimality) over the line segment from *d* to ideal solution.

constants

$$\begin{array}{c}
\max \sum_{i} u_{i} \\
(g_{1} - d_{1})(u_{i} - d_{i}) = (g_{i} - d_{i})(u_{1} - d_{1}), \text{ all } i \\
u \in S
\end{array}$$
Linear constraint

Raiffa-Kalai-Smorodinsky Bargaining Solution From Equality

Raiffa-Kalai-Smorodinsky Bargaining Solution From Strong Pareto Set

- Axiom 1. Invariance under transformation.
- Axiom 2. Pareto optimality.
- Axiom 3. Symmetry.
- Axiom 4'. Monotonicity.

Theorem. Exactly one solution satisfies Axioms 1-4', namely the RKS bargaining solution.

Proof (2 dimensions).

Easy to show that RKS solution satisfies the axioms.

Now show that **only** the RKS solution satisfies the axioms.

Let u^* be the RKS solution for a given problem. Then it satisfies the axioms with respect to d. Select a transformation that sends $(g_1,g_2) \rightarrow (1,1), \quad (d_1,d_2) \rightarrow (0,0)$

The transformed problem has RKS solution *u*', by Axiom 1:

Let u^* be the RKS solution for a given problem. Then it satisfies the axioms with respect to d. Select a transformation that sends $(g_1,g_2) \rightarrow (1,1), \quad (d_1,d_2) \rightarrow (0,0)$ The transformed problem has RKS solution u', by Axiom 1:

By Axioms 2 & 3, *u*' is the **only** bargaining solution in the red polygon:

Let u^* be the RKS solution for a given problem. Then it satisfies the axioms with respect to d. Select a transformation that sends $(g_1,g_2) \rightarrow (1,1), \quad (d_1,d_2) \rightarrow (0,0)$

The transformed problem has RKS solution *u*', by Axiom 1:

By Axioms 2 & 3, *u*' is the **only** bargaining solution in the red polygon:

The red polygon lies inside blue set. So by Axiom 4', its bargaining solution is no better than bargaining solution on blue set. So *u*' is the only bargaining solution on blue set.

Let u^* be the RKS solution for a given problem. Then it satisfies the axioms with respect to d. Select a transformation that sends $(g_1,g_2) \rightarrow (1,1), \quad (d_1,d_2) \rightarrow (0,0)$

The transformed problem has RKS solution *u*', by Axiom 1:

- **Problems** with axiomatic justification.
 - Axiom 1 is still in effect.
 - It denies interpersonal comparability.
 - Dropping Axiom 4 sacrifices optimization of a social welfare function.
 - This may not be necessary if Axiom 1 is rejected.
 - Needs modification for > 2 players (more on this shortly).

Resistance to an agreement *s* depends on sacrifice relative to sacrifice under no agreement. Here, player 2 is making a larger relative sacrifice:

Minimizing resistance to agreement requires minimizing

$$\max_{i} \left\{ \frac{\boldsymbol{g}_{i} - \boldsymbol{s}_{i}}{\boldsymbol{g}_{i} - \boldsymbol{d}_{i}} \right\}$$

Resistance to an agreement *s* depends on sacrifice relative to sacrifice under no agreement. Here, player 2 is making a larger relative sacrifice:

Minimizing resistance to agreement requires minimizing

$$\max_{i} \left\{ \frac{\boldsymbol{g}_{i} - \boldsymbol{s}_{i}}{\boldsymbol{g}_{i} - \boldsymbol{d}_{i}} \right\}$$

or equivalently, maximizing

 $\min_{i} \left\{ \frac{\boldsymbol{s}_{i} - \boldsymbol{d}_{i}}{\boldsymbol{g}_{i} - \boldsymbol{d}_{i}} \right\}$

Resistance to an agreement *s* depends on sacrifice relative to sacrifice under no agreement. Here, player 2 is making a larger relative sacrifice:

Minimizing resistance to agreement requires minimizing

$$\max_{i} \left\{ \frac{\boldsymbol{g}_{i} - \boldsymbol{s}_{i}}{\boldsymbol{g}_{i} - \boldsymbol{d}_{i}} \right\}$$

or equivalently, maximizing

 $\min_{i}\left\{\frac{\mathbf{s}_{i}-\mathbf{d}_{i}}{\mathbf{g}_{i}-\mathbf{d}_{i}}\right\}$

which is achieved by RKS point.

This is the **Rawlsian social contract** argument applied to **gains relative to the ideal**.

Minimizing resistance to agreement requires minimizing

$$\max_{i} \left\{ \frac{g_{i} - s_{i}}{g_{i} - d_{i}} \right\}$$

or equivalently, maximizing

 $\min_{i} \left\{ \frac{\mathbf{s}_{i} - \mathbf{d}_{i}}{\mathbf{g}_{i} - \mathbf{d}_{i}} \right\}$

which is achieved by RKS point.

Problem with RKS Solutioon

- However, the RKS solution is Rawlsian only for 2 players.
 - In fact, RKS leads to counterintuitive results for 3 players.

Problem with RKS Solutioon

- However, the RKS solution is Rawlsian only for 2 players.
 - In fact, KLS leads to counterintuitive results for 3 players.

Summary

Summary

Summary

- Utilitarian and Rawlsian distributions seem **too extreme** in practice.
 - How to combine them?

- Utilitarian and Rawlsian distributions seem **too extreme** in practice.
 - How to combine them?
- Health care example 1:
 - An large investment can extend the lives of a few terminal cancer victims a week (Rawlsian solution)
 - Or prevent millions from contracting malaria (utilitarian solution).

- Utilitarian and Rawlsian distributions seem **too extreme** in practice.
 - How to combine them?
- Health care example 1:
 - An large investment can extend the lives of a few terminal cancer victims a week (Rawlsian solution) Extreme!
 - Or prevent millions from contracting malaria (utilitarian solution).

- Utilitarian and Rawlsian distributions seem **too extreme** in practice.
 - How to combine them?
- Health care example 2:
 - A large investment can cure ALS, a horrible disease that afflicts
 0.002% of population (Rawlsian solution)
 - Or cure dandruff, which afflicts about 3 billion people, or half the population (utilitarian solution).
- Utilitarian and Rawlsian distributions seem **too extreme** in practice.
 - How to combine them?
- Health care example 2:
 - A large investment can cure ALS, a horrible disease that afflicts
 0.002% of population (Rawlsian solution)
 - Or cure dandruff, which afflicts about 3 billion people, or half the population (utilitarian solution). Extreme!

- Utilitarian and Rawlsian distributions seem **too extreme** in practice.
 - How to combine them?

• One proposal:

- Maximize welfare of **worst off** (Rawlsian)...
- ... until this requires **undue sacrifice** from others
- That is, until marginal utility cost of helping the worst off becomes extreme.

- In particular:
 - Design a **social welfare function (SWF)** to be maximized
 - Switch from **Rawlsian** to **utilitarian** when **inequality** exceeds Δ .

- In particular:
 - Design a **social welfare function (SWF)** to be maximized
 - Switch from **Rawlsian** to **utilitarian** when **inequality** exceeds Δ .
 - Build mixed integer programming model.
 - Let u_i = utility allocated to person *i*
- For 2 persons:
 - Maximize $\min_i \{u_1, u_2\}$ (Rawlsian) when $|u_1 u_2| \le \Delta$
 - Maximize $u_1 + u_2$ (utilitarian) when $|u_1 u_2| > \Delta$

Two-person Model

Contours of **social** u_2 **welfare function** for 2 persons.

Two-person Model

Two-person Model

Person 1 is harder to treat.

But maximizing person 1's health requires too much sacrifice from person 2.

Advantages

- Only one parameter Δ
 - Focus for debate.
 - Δ has **intuitive meaning** (unlike weights)
 - Examine **consequences** of different settings for Δ
 - Find least objectionable setting
 - Results in a consistent policy

Social Welfare Function

We want continuous contours...

Social Welfare Function

Social Welfare Function

The social welfare problem becomes

 $\max f(u_1, u_2)$ $f(u_1, u_2) = \begin{cases} 2\min\{u_1, u_2\} + \Delta, & \text{if } |u_1 - u_2| \le \Delta \\ u_1 + u_2, & \text{otherwise} \end{cases}$

constraints on feasible set

Hypograph (epigraph when minimizing) is union of 2 polyhedra.

Epigraph is union of 2 polyhedra.

Because they have different recession cones, there is no MILP model.

Impose constraints $|u_1 - u_2| \le M$

This equalizes recession cones.

We have the model...

 $\begin{array}{l} \max z \\ z \leq 2u_i + \Delta + (M - \Delta)\delta, \quad i = 1, 2 \\ z \leq u_1 + u_2 + \Delta(1 - \delta) \\ u_1 - u_2 \leq M, \quad u_2 - u_1 \leq M \\ u_1, u_2 \geq 0 \\ \delta \in \{0, 1\} \\ \end{array}$ constraints on feasible set $\begin{array}{l} u_1 \\ u_1 \\ u_1 \\ u_1 \end{array}$

We have the model...

 $\max z$ $z \le 2u_i + \Delta + (M - \Delta)\delta, \quad i = 1, 2$ $z \le u_1 + u_2 + \Delta(1 - \delta)$ $u_1 - u_2 \le M, \quad u_2 - u_1 \le M$ $u_1, u_2 \ge 0$ $\delta \in \{0, 1\}$

This is a convex hull formulation.

n-person Model

Rewrite the 2-person social welfare function as...

$$f(u_{1}, u_{2}) = \Delta + 2u_{\min} + (u_{1} - u_{\min} - \Delta)^{+} + (u_{2} - u_{\min} - \Delta)^{+}$$

$$\alpha^{+} = \max\{0, \alpha\}$$

n-person Model

Rewrite the 2-person social welfare function as...

$$f(u_{1}, u_{2}) = \Delta + 2u_{\min} + (u_{1} - u_{\min} - \Delta)^{+} + (u_{2} - u_{\min} - \Delta)^{+}$$

$$\alpha^{+} = \max\{0, \alpha\}$$

This can be generalized to *n* persons:

$$f(u) = (n-1)\Delta + nu_{\min} + \sum_{j=1}^{n} (u_1 - u_{\min} - \Delta)^+$$

n-person Model

Rewrite the 2-person social welfare function as...

$$f(u_{1}, u_{2}) = \Delta + 2u_{\min} + (u_{1} - u_{\min} - \Delta)^{+} + (u_{2} - u_{\min} - \Delta)^{+}$$

$$\alpha^{+} = \max\{0, \alpha\}$$

This can be generalized to *n* persons:

$$f(u) = (n-1)\Delta + nu_{\min} + \sum_{j=1}^{n} (u_1 - u_{\min} - \Delta)^+$$

Epigraph is a union of *n*! polyhedra with same recession direction (u,z) = (1,...,1,n) if we require $|u_i - u_j| \le M$

So there is an MILP model...

n-person MILP Model

To avoid n! 0-1 variables, add auxiliary variables w_{ij}

$$\begin{array}{l} \max \ z \\ z \leq u_i + \sum_{j \neq i} w_{ij}, \ \text{all } i \\ w_{ij} \leq \Delta + u_i + \delta_{ij} (M - \Delta), \ \text{all } i, j \text{ with } i \neq j \\ w_{ij} \leq u_j + (1 - \delta_{ij})\Delta, \ \text{all } i, j \text{ with } i \neq j \\ u_i - u_j \leq M, \ \text{all } i, j \\ u_i \geq 0, \ \text{all } i \\ \delta_{ij} \in \{0, 1\}, \ \text{all } i, j \text{ with } i \neq j \end{array}$$

n-person MILP Model

To avoid n! 0-1 variables, add auxiliary variables w_{ii}

$$\begin{array}{ll} \max \ z \\ z \leq u_i + \sum_{j \neq i} w_{ij}, \ \text{all} \ i \\ w_{ij} \leq \Delta + u_i + \delta_{ij} (M - \Delta), \ \text{all} \ i, j \ \text{with} \ i \neq j \\ w_{ij} \leq u_j + (1 - \delta_{ij})\Delta, \ \text{all} \ i, j \ \text{with} \ i \neq j \\ u_i - u_j \leq M, \ \text{all} \ i, j \\ u_i \geq 0, \ \text{all} \ i \ J \\ \delta_{ij} \in \{0, 1\}, \ \text{all} \ i, j \ \text{with} \ i \neq j \end{array}$$

Theorem. The model is correct (not easy to prove).

n-person MILP Model

To avoid n! 0-1 variables, add auxiliary variables w_{ii}

$$\begin{array}{ll} \max \ z \\ z \leq u_i + \sum_{j \neq i} w_{ij}, \ \text{all} \ i \\ w_{ij} \leq \Delta + u_i + \delta_{ij} (M - \Delta), \ \text{all} \ i, j \ \text{with} \ i \neq j \\ w_{ij} \leq u_j + (1 - \delta_{ij})\Delta, \ \text{all} \ i, j \ \text{with} \ i \neq j \\ u_i - u_j \leq M, \ \text{all} \ i, j \\ u_i \geq 0, \ \text{all} \ i , j \ \text{with} \ i \neq j \\ \delta_{ij} \in \{0, 1\}, \ \text{all} \ i, j \ \text{with} \ i \neq j \end{array}$$

Theorem. The model is correct (not easy to prove).

Theorem. This is a convex hull formulation (not easy to prove).

Pigou-Dalton Condition

The SWF satisfies Pigou-Dalton for n = 2 but **not** for $n \ge 3$.

But it satisfies a slightly weaker Cheateauneuf-Moyes condition.

Pigou-Dalton Condition

The SWF satisfies Pigou-Dalton for n = 2 but **not** for $n \ge 3$.

But it satisfies a slightly weaker Cheateauneuf-Moyes condition.

It examines transfers from people at the top (all sacrificing equally) to people at the bottom (all benefiting equally)

n-group Model

In practice, funds may be allocated to groups of different sizes

For example, disease/treatment categories.

Let \overline{u}_i = average utility gained by a person in group *i*

 $n_i = \text{size of group } i$

n-group Model

2-person case with $n_1 < n_2$. Contours have slope = n_1/n_2

n-group MILP Model

Again add auxiliary variables w_{ij}

$$\begin{array}{l} \max \ z \\ z \leq (n_i - 1)\Delta + n_i \overline{u}_i + \sum_{j \neq i} w_{ij}, \ \text{all } i \\ w_{ij} \leq n_j (\overline{u}_i + \Delta) + \delta_{ij} n_j (M - \Delta), \ \text{all } i, j \text{ with } i \neq j \\ w_{ij} \leq \overline{u}_j + (1 - \delta_{ij}) n_j \Delta, \ \text{all } i, j \text{ with } i \neq j \\ \overline{u}_i - \overline{u}_j \leq M, \ \text{all } i, j \\ \overline{u}_i \geq 0, \ \text{all } i \\ \delta_{ij} \in \{0, 1\}, \ \text{all } i, j \text{ with } i \neq j \end{array}$$

Theorem. The model is correct.

Theorem. This is a convex hull formulation.

Health Example

Measure utility in QALYs (quality-adjusted life years).

QALY and cost data based on Briggs & Gray, (2000) etc.

Each group is a disease/treatment pair.

Treatments are discrete, so group funding is all-or-nothing.

Divide groups into relatively homogeneous subgroups.

Health Example

Add constraints to define feasible set...

max z $z \leq (n_i - 1)\Delta + n_i \overline{u}_i + \sum_{i \neq i} w_{ij}$, all i $w_{ij} \leq n_i (\overline{u}_i + \Delta) + \delta_{ij} n_i (M - \Delta)$, all i, j with $i \neq j$ $w_{ii} \leq \overline{u}_i + (1 - \delta_{ii})n_i\Delta$, all i, j with $i \neq j$ $\overline{u}_i - \overline{u}_i \leq M$, all i, j $\overline{u}_i \geq 0$, all *i* $\delta_{ii} \in \{0,1\}, \text{ all } i, j \text{ with } i \neq j$ y_i indicates $\overline{u}_{i} = q_{i}y_{i} + \alpha_{i}$ $\sum_{i} n_{i}c_{i}y_{i} \leq \text{budget}$ $y_{i} \in \{0,1\}, \text{ all } i$ whether subgroup i is funded

 U_1

Intervention	$\begin{array}{c} \text{Cost} \\ \text{per person} \\ c_i \\ (\pounds) \end{array}$	$\begin{array}{c} \text{QALYs} \\ \text{gained} \\ q_i \end{array}$	Cost per QALY (£)	$\begin{array}{c} {\rm QALYs} \\ {\rm without} \\ {\rm intervention} \\ \alpha_i \end{array}$	Subgroup size n_i
Pacemaker for atriove	entricular hear	rt block			
Subgroup A	3500	3	1167	13	35
Subgroup B	3500	5	700	10	45
Subgroup C	3500	10	350	5	35
Hip replacement					
Subgroup A	3000	2	1500	3	45
Subgroup B	3000	4	750	4	45
Subgroup C	3000	8	375	5	45
Valve replacement for	aortic stenos	is			
Subgroup A	4500	3	1500	2.5	20
Subgroup B	4500	5	900	3	20
Subgroup C	4500	10	450	3.5	20
CABG ¹ for left main	disease				
Mild angina	3000	1.25	2400	4.75	50
Moderate angina	3000	2.25	1333	3.75	55
Severe angina	3000	2.75	1091	3.25	60
CABG for triple vesse	el disease				
Mild angina	3000	0.5	6000	5.5	50
Moderate angina	3000	1.25	2400	4.75	55
Severe angina	3000	2.25	1333	3.75	60
CABG for double vess	sel disease				
Mild angina	3000	0.25	12,000	5.75	60
Moderate angina	3000	0.75	4000	5.25	65
Severe angina	3000	1.25	2400	4.75	70

QALY

& cost

data

Part 1

	Intervention	Cost per person c_i	$\begin{array}{c} \text{QALYs} \\ \text{gained} \\ q_i \end{array}$	Cost per QALY	QALYs without intervention	$\begin{array}{c} \text{Subgroup} \\ \text{size} \\ n_i \end{array}$
		(£)		(£)	α_i	
		22,500	4.5	5000	1.1	2
	Kidney transplant					
	Subgroup A	15,000	4	3750	1	8
QALY	Subgroup B	15,000	6	2500	1	8
9 ooot	Kidney dialysis					
& COSI	Less than 1 year su	irvival				
data	Subgroup A	5000	0.1	50,000	0.3	8
	1-2 years survival					
	Subgroup B	12,000	0.4	30,000	0.6	6
Dort 2	2-5 years survival					
Part 2	Subgroup C	20,000	1.2	$16,\!667$	0.5	4
	Subgroup D	28,000	1.7	16,471	0.7	4
	Subgroup E	36,000	2.3	$15,\!652$	0.8	4
	5-10 years survival					
	Subgroup F	46,000	3.3	13,939	0.6	3
	Subgroup G	56,000	3.9	14,359	0.8	2
	Subgroup H	66,000	4.7	14,043	0.9	2
	Subgroup I	77,000	5.4	14,259	1.1	2
	At least 10 years su	urvival				
	Subgroup J	88,000	6.5	13,538	0.9	2
	Subgroup K	100,000	7.4	13,514	1.0	1
	Subgroup L	111,000	8.2	13,537	1.2	1

Results

Total budget £3 million

Δ	Pace-	Hip	Aortic	CABG			Heart	Kidney		Kidney dialysi			sis
range	maker	repl.	valve	L	3	2	trans.	trans.	< 1	1-2	2-5	5 - 10	> 10
0 - 3.3	111	111	111	111	111	111	1	11	0	0	000	0000	000
3.4 - 4.0	111	111	111	111	111	111	0	11	1	0	000	0000	000
4.0 - 4.4	111	111	111	111	111	111	0	01	1	0	000	0000	001
4.5 - 5.01	111	011	111	111	111	111	1	01	1	0	000	0000	011
5.02 - 5.55	111	011	011	111	111	111	0	01	1	0	000	0001	011
5.56 - 5.58	111	011	011	111	111	011	0	01	1	0	000	0001	111
5.59	111	011	011	110	111	111	0	01	1	0	000	0001	111
5.60 - 13.1	111	111	111	101	000	000	1	11	1	0	111	1111	111
13.2 - 14.2	111	011	111	011	000	000	1	11	1	1	111	1111	111
14.3 - 15.4	111	111	111	011	000	000	1	11	1	1	101	1111	111
15.5-up	111	011	111	011	001	000	1	11	1	0	011	1111	111

Results

Utilitarian solution

Δ	Pace-	Hip	Aortic	(CABO	3	Heart	Kidney		K	idney	dialy	sis
range 🗸	maker	repl.	valve	\mathbf{L}	3	2	trans.	trans.	< 1	1-2	2-5	5-10	> 10
0 - 3.3	111	111	111	111	111	111	1	11	0	0	000	0000	000
3.4 - 4.0	111	111	111	111	111	111	0	11	1	0	000	0000	000
4.0 - 4.4	111	111	111	111	111	111	0	01	1	0	000	0000	001
4.5 - 5.01	111	011	111	111	111	111	1	01	1	0	000	0000	011
5.02 - 5.55	111	011	011	111	111	111	0	01	1	0	000	0001	011
5.56 - 5.58	111	011	011	111	111	011	0	01	1	0	000	0001	111
5.59	111	011	011	110	111	111	0	01	1	0	000	0001	111
5.60 - 13.1	111	111	111	101	000	000	1	11	1	0	111	1111	111
13.2 - 14.2	111	011	111	011	000	000	1	11	1	1	111	1111	111
14.3 - 15.4	111	111	111	011	000	000	1	11	1	1	101	1111	111
15.5-up	111	011	111	011	001	000	1	11	1	0	011	1111	111

Results

Rawlsian solution

Δ	Pace-	Hip	Aortic	(CABO	3	Heart	Kidney		K	idney	dialy	sis	
range	\mathbf{maker}	repl.	valve	\mathbf{L}	3	2	trans.	trans.	< 1	1-2	2-5	5-10	> 10	
0-3.3	111	111	111	111	111	111	1	11	0	0	000	0000	000	
3.4 - 4.0	111	111	111	111	111	111	0	11	1	0	000	0000	000	
4.0 - 4.4	111	111	111	111	111	111	0	01	1	0	000	0000	001	
4.5 - 5.01	111	011	111	111	111	111	1	01	1	0	000	0000	011	
5.02 - 5.55	111	011	011	111	111	111	0	01	1	0	000	0001	011	
5.56 - 5.58	111	011	011	111	111	011	0	01	1	0	000	0001	111	
5.59	111	011	011	110	111	111	0	01	1	0	000	0001	111	
5.60 - 13.1	111	111	111	101	000	000	1	11	1	0	111	1111	111	
13.2 - 14.2	111	011	111	011	000	000	1	11	1	1	111	1111	111	
14.3–15.4 ↓	111	111	111	011	000	000	1	11	1	1	101	1111	111	
15.5-up	111	011	111	011	001	000	1	11	1	0	011	1111	111	
Fund for all Δ														
-----------------------	------------------------	-------	--------	--------------	------	-----	--------	--------	-----	-----	-------	--------	------	--
Δ	Pace-	Hip	Aortic	(CABC	3	Heart	Kidney		Ki	idney	dialy	sis	
range	maker	repl.	valve	\mathbf{L}	3	2	trans.	trans.	< 1	1-2	2-5	5 - 10	> 10	
0 - 3.3	111	111	111	111	111	111	1	11	0	0	000	0000	000	
3.4 - 4.0	111	111	111	111	111	111	0	11	1	0	000	0000	000	
4.0 - 4.4	111	111	111	111	111	111	0	01	1	0	000	0000	001	
4.5 - 5.01	111	011	111	111	111	111	1	01	1	0	000	0000	011	
5.02 - 5.55	111	011	011	111	111	111	0	01	1	0	000	0001	011	
5.56 - 5.58	111	011	011	111	111	011	0	01	1	0	000	0001	111	
5.59	111	011	011	110	111	111	0	01	1	0	000	0001	111	
5.60 - 13.1	111	111	111	101	000	000	1	11	1	0	111	1111	111	
13.2 - 14.2	111	011	111	011	000	000	1	11	1	1	111	1111	111	
14.3 - 15.4	111	111	111	011	000	000	1	11	1	1	101	1111	111	
15.5-up	111	011	111	011	001	000	1	11	1	0	011	1111	111	

More dialysis with larger Δ , beginning with longer life span

Δ	Pace-	Hip	Aortic	(CABO	÷	Heart	Kidney		Kidney dialysis
range	maker	repl.	valve	\mathbf{L}	3	2	trans.	trans.	< 1	1-2 $2-5$ $5-10 > 10$
0 - 3.3	111	111	111	111	111	111	1	11	0	0 000 0000 000
3.4 - 4.0	111	111	111	111	111	111	0	11	1	0 000 0000 000
4.0 - 4.4	111	111	111	111	111	111	0	01	1	0 000 0000 001
4.5 - 5.01	111	011	111	111	111	111	1	01	1	0 000 0000 011
5.02 - 5.55	111	011	011	111	111	111	0	01	1	0 000 0001 011
5.56 - 5.58	111	011	011	111	111	011	0	01	1	0 000 0001 111
5.59	111	011	011	110	111	111	0	01	1	0 000 0001 111
5.60 - 13.1	111	111	111	101	000	000	1	11	1	0 111 1111 111
13.2 - 14.2	111	011	111	011	000	000	1	11	1	1 111 1111 111
14.3 - 15.4	111	111	111	011	000	000	1	11	1	$1 \ 101 \ 1111 \ 111$
15.5-up	111	011	111	011	001	000	1	11	1	$0 \ 011 \ 1111 \ 111$

Abrupt change at $\Delta = 5.60$

Δ	Pace-	Hip	Aortic	(CABO	3	Heart	Kidney		Ki	dney	dialy	sis
range	maker	repl.	valve	\mathbf{L}	3	2	trans.	trans.	< 1	1-2	2-5	5 - 10	> 10
0–3.3	111	111	111	111	111	111	1	11	0	0	000	0000	000
3.4 - 4.0	111	111	111	111	111	111	0	11	1	0	000	0000	000
4.0 - 4.4	111	111	111	111	111	111	0	01	1	0	000	0000	001
4.5 - 5.01	111	011	111	111	111	111	1	01	1	0	000	0000	011
5.02 - 5.55	111	011	011	111	111	111	0	01	1	0	000	0001	011
$5.56 - 5.58$ \checkmark	111	011	011	111	111	011	0	01	1	0	000	0001	111
5.59	111	011	011	110	111	111	0	01	1	0	000	0001	111
5.60 - 13.1	111	111	111	101	000	000	1	11	1	0	111	1111	111
13.2 - 14.2	111	011	111	011	000	000	1	11	1	1	111	1111	111
14.3 - 15.4	111	111	111	011	000	000	1	11	1	1	101	1111	111
15.5–up	111	011	111	011	001	000	1	11	1	0	011	1111	111

				Come and go together											
Δ	Pace-	Hip	Aortic	(CABO	÷	Heart	Kidney		Ki	idney	dialy	sis		
range	maker	repl.	valve	\mathbf{L}	3	2	trans.	trans.	< 1	1-2	2-5	5-10	> 10		
0 - 3.3	111	111	111	111	111	111	1	11	0	0	000	0000	000		
3.4 - 4.0	111	111	111	111	111	111	0	11	1	0	000	0000	000		
4.0 - 4.4	111	111	111	111	111	111	0	01	1	0	000	0000	001		
4.5 - 5.01	111	011	111	111	111	111	1	01	1	0	000	0000	011		
5.02 - 5.55	111	011	011	111	111	111	0	01	1	0	000	0001	011		
5.56 - 5.58	111	011	011	111	111	011	0	01	1	0	000	0001	111		
5.59	111	011	011	110	111	111	0	01	1	0	000	0001	111		
5.60 - 13.1	111	111	111	101	000	000	1	11	1	0	111	1111	111		
13.2 - 14.2	111	011	111	011	000	000	1	11	1	1	111	1111	111		
14.3 - 15.4	111	111	111	011	000	000	1	11	1	1	101	1111	111		
15.5-up	111	011	111	011	001	000	1	11	1	0	011	1111	111		

	In-out-in														
A Dese Uir Asstic CADC Uset Videou Videou disbuis															
Δ	Pace-	Hip	Aortic	/ (CABC	÷	Heart	Kidney		K	idney	dialy:	sis		
range	maker	repl.	valve	L	3	2	trans.	trans.	< 1	1-2	2-5	5 - 10	> 10		
0 - 3.3	111	111	111	111	111	111	1	11	0	0	000	0000	000		
3.4 - 4.0	111	111	111	111	111	111	0	11	1	0	000	0000	000		
4.0 - 4.4	111	111	111	111	111	111	0	01	1	0	000	0000	001		
4.5 - 5.01	111	011	111	111	111	111	1	01	1	0	000	0000	011		
5.02 - 5.55	111	011	011	111	111	111	0	01	1	0	000	0001	011		
5.56 - 5.58	111	011	011	111	111	011	0	01	1	0	000	0001	111		
5.59	111	011	011	110	111	111	0	01	1	0	000	0001	111		
5.60 - 13.1	111	111	111	101	000	000	1	11	1	0	111	1111	111		
13.2 - 14.2	111	011	111	011	000	000	1	11	1	1	111	1111	111		
14.3 - 15.4	111	111	111	011	000	000	1	11	1	1	101	1111	111		
15.5-up	111	011	111	011	001	000	1	11	1	0	011	1111	111		

Most rapid change. Possible range for politically acceptable compromise

1

Δ	Pace-	Hip	Aortic	(CABO	3	Heart	Kidney		Ki	dney	dialy	sis
range	maker	repl.	valve	\mathbf{L}	3	2	trans.	trans.	< 1	1-2	2-5	5 - 10	> 10
0-3.3	111	111	111	111	111	111	1	11	0	0	000	0000	000
3.4 - 4.0	111	111	111	111	111	111	0	11	1	0	000	0000	000
4.0 - 4.4	111	111	111	111	111	111	0	01	1	0	000	0000	001
4.5 - 5.01	111	011	111	111	111	111	1	01	1	0	000	0000	011
5.02 - 5.55	111	011	011	111	111	111	0	01	1	0	000	0001	011
5.56 - 5.58	111	011	011	111	111	011	0	01	1	0	000	0001	111
5.59	111	011	011	110	111	111	0	01	1	0	000	0001	111
5.60 - 13.1	111	111	111	101	000	000	1	11	1	0	111	1111	111
13.2 - 14.2	111	011	111	011	000	000	1	11	1	1	111	1111	111
14.3 - 15.4	111	111	111	011	000	000	1	11	1	1	101	1111	111
15.5-up	111	011	111	011	001	000	1	11	1	0	011	1111	111

Puzzle

Curious fact: Rawlsian solution ($\Delta = \infty$) achieves greater utility than some smaller values of Δ . Why?

Δ	Pace-	Hip	Aortic	(CABC	r t	Heart	Kidney		Ki	dney	dialys	sis	Avg.
range	maker	repl.	valve	\mathbf{L}	3	2	trans.	trans.	< 1	1-2	2-5	5-10	> 10	QALYs
0 - 3.3	111	111	111	111	111	111	1	11	0	0	000	0000	000	7.54
3.4 - 4.0	111	111	111	111	111	111	0	11	1	0	000	0000	000	7.54
4.0 - 4.4	111	111	111	111	111	111	0	01	1	0	000	0000	001	7.51
4.5 - 5.01	111	011	111	111	111	111	1	01	1	0	000	0000	011	7.43
5.02 – 5.55	111	011	011	111	111	111	0	01	1	0	000	0001	011	7.36
5.56 - 5.58	111	011	011	111	111	011	0	01	1	0	000	0001	111	7.36
5.59	111	011	011	110	111	111	0	01	1	0	000	0001	111	7.20
5.60 - 13.1	111	111	111	101	000	000	1	11	1	0	111	1111	111	7.06
13.2 - 14.2	111	011	111	011	000	000	1	11	1	1	111	1111	111	7.03
14.3 - 15.4	111	111	111	011	000	000	1	11	1	1	101	1111	111	7.13
15.5–up	111	011	111	011	001	000	1	11	1	0	011	1111	111	7.19

Puzzle

Curious fact: Rawlsian solution ($\Delta = \infty$) achieves greater utility than some smaller values of Δ . Why?

Rawlsian solution cares only about the **very worst-off** (i.e., most serious category of kidney disease).

The MILP breaks ties by adding $\varepsilon \cdot$ utility to SWF.

Utility is a larger factor when $\Delta = \infty$ than for smaller values of Δ .

Puzzle

Curious fact: Rawlsian solution ($\Delta = \infty$) achieves greater utility than some smaller values of Δ . Why?

Rawlsian solution cares only about the **very worst-off** (i.e., most serious category of kidney disease).

The MILP breaks ties by adding $\varepsilon \cdot$ utility to SWF.

Utility is a larger factor when $\Delta = \infty$ than for smaller values of Δ .

Remedy 1. View each disease as a single group with concave utility function (decreasing marginal utility)

Remedy 2. Design a SWF that combines **leximax** (rather than maximin) with utility

Remedy 1

Problem: This doesn't address fairness **within** disease categories (more serious vs. less serious cases).

Remedy 2

Design a SWF to combine leximax and utility.

Rather than maximize one function, compute

leximax $(F_1(u),\ldots,F_n(u))$

where

$$F_{k}(u) = \begin{cases} \sum_{i=1}^{k} u_{\langle i \rangle} + (t(u) - k)(u_{\langle 1 \rangle} + \Delta) + \sum_{i=t(u)+1}^{n} u_{\langle i \rangle} & \text{for } k < t(u) \\ \sum_{i=1}^{n} u_{\langle i \rangle} & \text{for } k \ge t(u) \end{cases}$$

and $u_{(i)}$ is *i*-th smallest of u_1, \ldots, u_n

and $u_{\langle k \rangle} - u_{\langle 1 \rangle} \leq \Delta$ for $k = 1, \dots, t(u)$

Remedy 2

Each $F_k(u)$ is continuous and satisfies the Chateauneuf-Moyes condition.

How to model it in an MILP?

Ongoing research...

References

- K. Arrow, A. Sen and K. Suzumura, eds., *Handbook of Social Choice and Welfare*, Elsevier, 2002.
- R. Binns, Fairness in machine learning: Lessons from political philosophy, *Proceedings of Machine Learning Research* **81** (2018) 1-11.
- B. Eggleston and D. E. Miller, eds., *The Cambridge Companion to Utilitarianism*, Cambridge Univ. Press, 2014.
- W. Gaertner, A Primer in Social Choice Theory, Oxford Univ. Press, 2009.
- J. N. Hooker, Moral implications of rational choice theories, in C. Lütge, ed., *Handbook of the Philosophical Foundations of Business Ethics*, Springer (2013) 1459-1476.
- J. N. Hooker, Optimality conditions for distributive justice, *International Transactions on Operational Research* **17** (2010) 485-505.
- J. N. Hooker and T. W. Kim, Toward non-intuition-based machine and AI ethics: A deontological approach based on modal logic, *AIES Proceedings* (2018) 130-136.
- J. N. Hooker and H. P. Williams, Combining equity and utilitarianism in a mathematical programming model, *Management Science* **58** (2012) 1682-1693.
- Ö. Karsu and A. Morton, Inequity averse optimization in operational research, European Journal of Operational Research 245 (2015) 343-359 (see this for thorough exposition and comprehensive reference list).
- J. S. Mill, Utilitarianism, 1863.
- W. Ogryczak & T. Sliwinski, On direct methods for lexicographic min-max optimization, *ICCSA 2006*, LNCS 3982, pages 802-811.
- J. Rawls, A Theory of Justice, Belknap, 1971.
- M. E. Yaari and M. Bar-Hillel, On dividing justly, Social Choice and Welfare 1 (1984) 1-24.

Questions/Discussion

