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Modeling Social Justice

• Social welfare is more than overall benefit.

• Also concerns equity or just distribution of resources.

• Not obvious how to capture equity in the objective function.

• Still less obvious how to combine it with total benefit.
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Modeling Social Justice

• Some problem areas…

• Health care resources.

• Facility location (e.g., emergency services).

• Taxation (revenue vs. progressivity).

• Relief operations.

• Telecommunications (leximax, Nash bargaining solution)
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Outline

• Utilitarianism

• Rawlsian Difference Principle

• Axiomatics

• Measures of Inequality

• A Fair Division Problem

• Nash Bargaining Solution

• Raiffa-Kalai-Smorodinsky Bargaining

• Combining Equity and Utility

• Health Care Example

• References
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Utility vs. Equity

• Two classical criteria for distributive 

justice:

– Utilitarianism (total benefit)

– Difference principle of John Rawls

(equity)

• These have the must studied

philosophical underpinnings.
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Utilitarianism

• Utilitarianism seeks allocation of resources that 

maximizes total utility.

• Let xi = resources allocated to person i.

• Let ui (xi) = utility enjoyed by person i receiving resources xi

• We have an optimization problem 



max ( )i i

i

u x

x S

Utility

(production) 

functions

Set of feasible 

resource 

allocations
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Utilitarianism

For example,                            with different ai’s for 5 individuals ( ) p

i i i ih x a x
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Utilitarianism

Assume resource distribution is constrained only by a fixed budget. 

If ui (xi) = aixi
p, we have the optimization problem

 





max

1, 0, all 

p

i i

i

i i

i

a x

x x i

This has a closed-form solution
1

1 1

1 1

1

n
p p

i i j
j

x a a



 



 
  

 
 

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Utilitarianism

Optimal allocations equalize slope (i.e., equal marginal utility).
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Utilitarianism

• Arguments for utilitarianism 

• Can define utility to suit context.

• Utilitarian distributions incorporate some egalitarian factors:

• With concave utility functions, egalitarian distributions tend 

to create more utility. 

• Inegalitarian distributions create disutility, due to social 

disharmony.
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Utilitarianism

• Egalitarian distributions create more utility?

• This effect is limited.

• Utilitarian distributions can be very unequal.  Productivity 

differences are magnified in the allocations.

p = 0.5
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Utilitarianism

• Egalitarian distributions create more utility?

• In the example, the most egalitarian distribution (p  0) 

assigns resources in proportion to individual utility coefficient.
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Utilitarianism

• Unequal distributions create disutility?

• Perhaps, but modeling this requires nonseparable utility 

functions

that may result in a problem that is hard to model and solve.

1( , , )i nu x x
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Utilitarianism

• Unequal distributions create disutility?

• Perhaps, but modeling this requires nonseparable utility 

functions

that may result in a problem that is hard to model and solve.

• More fundamentally, this defense of utilitarianism is based on 

contingency, not principle.

1( , , )i nu x x
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Utilitarianism

• Unequal distributions create disutility?

• Perhaps, but modeling this requires nonseparable utility 

functions

that may result in a problem that is hard to model and solve.

• More fundamentally, this defense of utilitarianism is based on 

contingency, not principle.

• If we can evaluate the fairness of utilitarian distribution, then 

there must be another standard of equitable distribution.

• How do we model the standard we really have in mind?

1( , , )i nu x x
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Utilitarianism

• To sum up: A utility maximizing distribution may be 

unjust.

– Disadvantaged people may be neglected because 

they gain less utility per unit of resource.
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Rawlsian Difference Principle

• Rawls’ Difference Principle seeks to maximize the 

welfare of the worst off.  

• Also known as maximin principle.

• Another formulation: inequality is permissible only to the 

extent that it is necessary to improve the welfare of those 

worst off.

 



max min ( )i i
ix

u x

x S
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Rawlsian Difference Principle

• The root idea is that when I make a decision for myself, 

I make a decision for anyone in similar circumstances.

• It doesn’t matter who I am. (universality of reason)
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Rawlsian Difference Principle

• The root idea is that when I make a decision for myself, 

I make a decision for anyone in similar circumstances.

• It doesn’t matter who I am (universality of reason)

• Social contract argument

• I make decisions (formulate a social contract) in an original 

position, behind a veil of ignorance as to who I am.

• I must find the decision acceptable after I learn who I am.

• I cannot rationally assent to a policy that puts me on the bottom, 

unless I would have been even worse off under alternative 

policies.

• So the policy must maximize the welfare of the worst off.
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Rawlsian Difference Principle

• Rawls intended the principle for the design of 

social institutions.

• Not necessarily for other decisions.

• Yet it is not unreasonable for resource allocation in general.

• See J. Rawls, A Theory of Justice, 1971
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Rawlsian Difference Principle

• The difference rule can be refined with a leximax 

principle.

– If applied recursively.

• Leximax (lexicographic maximum) principle:

– Maximize welfare of least advantaged class…

– then next-to-least advantaged class…

– and so forth.



• There is no practical math programming model for 

leximax.

• But see W. Ogryczak & T. Sliwinski, ICCSA 2006.

Rawlsian Difference Principle

 



1 1leximax ( ), , ( )n nu x u x

x S



• There is no practical math programming model for 

leximax.

• But see W. Ogryczak & T. Sliwinski, ICCSA 2006.

• We can solve the problem sequentially (pre-emptive goal 

programming).

• Solve the maximin problem.  

• Fix the smallest ui to its maximum value.

• Solve the maximin problem over remaining ui’s.

• Continue to un.

Rawlsian Difference Principle

 



1 1leximax ( ), , ( )n nu x u x

x S



• The Difference and Leximax Principles need not result 

in equality.

• Consider the example presented earlier…

Rawlsian Difference Principle
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Rawlsian Difference Principle

Utilitarian distribution



Here, leximax principle results in equality

Rawlsian Difference Principle
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Utilitarianism

p = 0.5

But consider this distribution…



Utilitarianism

Leximax doesn’t result in equality
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Axiomatics

• The economics literature derives social welfare functions 

from axioms of rational choice.

• The social welfare function depends on degree of 

interpersonal comparability of utilities.

• Arrow’s impossibility theorem was the first result, but there are 

many others.

• Social welfare function

• A function f (u1,…,un) of individual utilities.

• An optimization model can find a distribution of utility that 

maximizes social welfare.



30

Axiomatics

• The economics literature derives social welfare functions 

from axioms of rational choice.

• The social welfare function depends on degree of 

interpersonal comparability of utilities.

• Arrow’s impossibility theorem was the first result, but there are 

many others.

• Social welfare function

• A function f (u1,…,un) of individual utilities.

• An optimization model can find a distribution of utility that 

maximizes social welfare.

• Problem

• The SWF that results is little more than a restatement of the 

interpersonal comparability assumption.
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Interpersonal Comparability

• Social Preferences

• Let u = (u1,…,un) be the vector of utilities allocated to 

individuals.

• A social welfare function ranks distributions:  

u is preferable to u if f (u) > f (u).

• Invariance transformations.  

• These are transformations  of utility vectors under which the 

ranking of distributions does not change.

• Each  = (1,…,n), where i is a transformation of individual 

utility ui.
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Interpersonal Comparability

• Ordinal noncomparability.

• Any  = (1,…,n)  with strictly increasing is is an invariance 

transformation.

• Ordinal level comparability.

• Any  = (1,…,n)  with strictly increasing and identical is is 

an invariance transformation.
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Interpersonal Comparability

• Cardinal nonncomparability.

• Any  = (1,…,n)  with i(ui) = i + iui and i > 0 is an 

invariance transformation.

• Cardinal unit comparability.

• Any  = (1,…,n)  with i(ui) = i + ui and  > 0 is an invariance 

transformation.

• Cardinal ratio scale comparability

• Any  = (1,…,n)  with i(ui) = ui and  > 0 is an invariance 

transformation.
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Axioms

• Anonymity

• Social preferences are the same if indices of uis are 

permuted.

• Strict pareto

• If u > u, then u is preferred to u.

• Independence of irrelevant alternatives

• The preference of u over u depends only on u and u and not 

on what other utility vectors are possible. 

• Separability of unconcerned individuals

• Individuals i for which ui = ui don’t affect the ranking of 

u and u.
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Axiomatics

Theorem

Given ordinal level comparability, any social welfare function f that 

satisfies the axioms is lexicographically increasing or lexicographically 

decreasing.  So we get a leximax or leximin objective.

Theorem

Given cardinal unit comparability, any social welfare function f that 

satisfies the axioms has the form f(u) =i aiui for ai  0.  Se we get a 

utilitarian objective.
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Axiomatics

Theorem

Given cardinal noncomparability, any social welfare function f that 

satisfies the axioms (except anonimity and separability) has the form 

f(u) = ui for some fixed i.  So individual i is a dictator.

Theorem

Given cardinal ratio scale comparability, any social welfare function 

f that satisfies the axioms has the form f(u) =i ui
p/p.  Se we get the 

utility function used in the example.
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Measures of Inequality

• Assume we wish to minimize inequality.

• We will survey several measures of inequality.

• They have different strengths and weaknesses.

• Minimizing inequality may result in less total utility.

• Pigou-Dalton condition.

• One criterion for evaluating an inequality measure.

• If utility is transferred from one who is better off to one who is 

worse off, social welfare should increase.
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Measures of Inequality

• Measures of Inequality

• Relative range, max, min

• Relative mean deviation

• Variance, coefficient of variation

• McLoone index

• Gini coefficient

• Atkinson index

• Hoover index

• Theil index
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Relative Range

max minu u

u

where  max max i
i

u u  min min i
i

u u  (1/ ) i

i

u n u

Rationale:

• Perceived inequality is relative to the best off.

• A distribution should be judged by the position of the worst-off.

• Therefore, minimize gap between top and bottom.

Problems:

• Ignores distribution between extremes.

• Violates Pigou-Dalton condition
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Relative Range

max minu u

u









0

0

min

0

cx c

dx d

Ax b

x

becomes

 

 

  

 

0

0

min

1

, 0

cx c z

Ax bz

dx d z

x z

This is a fractional linear programming problem.

Use Charnes-Cooper transformation to an LP.  In general,

after change of variable x = x/z and fixing denominator to 1.
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Relative Range

max minu u

u

Fractional LP model:


 

   





max min

max min

min
(1/ )

,  ,  all 

, 0 ,   all ,

i

i

i i

i i i i i i

i

u u

n u

u u u u i

u a x x b i x B



  

      

 





max min

max min

min

, ,  all 

, 0 ,   all ,

(1/ ) 1

i i

i i i i i i

i

i

i

u u

u u u u i

u a x x b z i x Bz

n u

LP model:
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Relative Max

maxu

u

Rationale:

• Perceived inequality is relative to the best off.

• Possible application to salary levels (typical vs. CEO)

Problems:

• Ignores distribution below the top.

• Violates Pigou-Dalton condition
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Relative Max

maxu

u

Fractional LP model:



   





max

max

min
(1/ )

,  all 

, 0 ,   all ,

i

i

i

i i i i i i

i

u

n u

u u i

u a x x b i x B



      

 





max

max

min

 all 

, 0 ,   all ,

(1/ ) 1

i

i i i i i i

i

i

i

u

u u i

u a x x b z i x Bz

n u

LP model:
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Relative Min

minu

u

Rationale:

• Measures adherence to Rawlsian Difference Principle.

• …relativized to mean

Problems:

• Ignores distribution above the bottom.

• Violates Pigou-Dalton condition
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Relative Min

minu

u

Fractional LP model:



   





min

min

max
(1/ )

,  all 

, 0 ,   all ,

i

i

i

i i i i i i

i

u

n u

u u i

u a x x b i x B



      

 





min

min

max

 all 

, 0 ,   all ,

(1/ ) 1

i

i i i i i i

i

i

i

u

u u i

u a x x b z i x Bz

n u

LP model:
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Relative Mean Deviation

 i

i

u u

u

Rationale:

• Perceived inequality is relative to average.

• Entire distribution should be measured.

Problems:

• Violates Pigou-Dalton condition

• Insensitive to transfers on the same side of the mean.

• Insensitive to placement of transfers from one side of the mean to 

the other.
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Relative Mean Deviation

Fractional LP model:

 

 



   



   







( )

max

, ,  all 

(1/ )

, 0 ,   all ,

i i

i

i i i i

i

i

i i i i i i

i

u u

u

u u u u u u i

u n u

u a x x b i x B

LP model:

 i

i

u u

u

 

 



    

 

      







max ( )

1, 1, all 

(1/ ) 1

, 0 , all ,

i i

i

i i i i

i

i

i i i i i i

i

u u

u u u u i

n u

u a x x b z i x Bz
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Variance

 2(1/ ) ( )i

i

n u u

Rationale:

• Weight each utility by its distance from the mean.

• Satisfies Pigou-Dalton condition.

• Sensitive to transfers on one side of the mean.

• Sensitive to placement of transfers from one side of the mean to the 

other.

Problems:

• Weighting is arbitrary?

• Variance depends on scaling of utility.
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Variance

Convex nonlinear model: 



   







2min (1/ ) ( )

(1/ )

, 0 , all ,

i

i

i

i

i i i i i i

i

n u u

u n u

u a x x b i x B

 2(1/ ) ( )i

i

n u u
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Coefficient of Variation

 
 

 


1/2

2(1/ ) ( )i

i

n u u

u

Rationale:

• Similar to variance.

• Invariant with respect to scaling of utilities.

Problems:

• When minimizing inequality, there is an incentive to reduce average 

utility.

• Should be minimized only for fixed total utility.
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 
 

 






1/2

2(1/ ) ( )

min

0

i

i

n u u

u

Au b

u

becomes

Again use change of variable u = u/z and fix denominator to 1.

Coefficient of Variation

 
 

 


1/2

2(1/ ) ( )i

i

n u u

u

 
  

 

 

 

 





1/2

2min (1/ ) ( 1)

(1/ ) 1

0

i

i

i

i

n u

Au bz

n u

u

Can drop 

exponent 

to make 

problem 

convex
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Fractional nonlinear 

model:

 
 

 



   







1/2

2(1/ ) ( )

max

(1/ )

, 0 , all ,

i

i

i

i

i i i i i i

i

n u u

u

u n u

u a x x b i x B

Convex nonlinear 

model:

Coefficient of Variation

 
 

 


1/2

2(1/ ) ( )i

i

n u u

u

 

 

      







2min (1/ ) ( 1)

(1/ ) 1

, 0 , all ,

i

i

i

i

i i i i i i

i

n u

n u

u a x x b z i x Bz
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McLoone Index




:

(1/ 2)
i

i

i u m

u

u

Rationale:

• Ratio of average utility below median to overall average.

• No one wants to be “below average.”

• Pushes average up while pushing inequality down.

Problems:

• Violates Pigou-Dalton condition.

• Insensitive to upper half.
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Fractional MILP model:

 

    

 



   











max

(1 ),  all 

, ,   all 

/ 2

, 0 , all ,

0,1 ,  all 

i

i

i

i

i i i

i i i i

i

i

i i i i i i

i

i

v

u

m My u m M y i

v u v My i

y n

u a x x b i x B

y i

McLoone Index




:

(1/ 2)
i

i

i u m

u

u

Defines median m

Defines vi = ui if 

ui is below median

Half of utilities 

are below median

Selects utilities below median
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MILP model:

 



      

   



      









max

(1 ),  all 

, ,  all 

/ 2

, 0 , all ,

0,1 ,  all 

i
i

i i i

i i i i

i

i

i i i i i i

i

i

v

m My u m M y i

v u v My i

y n

u a x x b z i x Bz

y i

McLoone Index




:

(1/ 2)
i

i

i u m

u

u
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Gini Coefficient

2

,

(1/ )

2

i j

i j

n u u

u

Rationale:

• Relative mean difference between all pairs.

• Takes all differences into account.

• Related to area above cumulative distribution (Lorenz curve).

• Satisfies Pigou-Dalton condition.

Problems:

• Insensitive to shape of Lorenz curve, for a given area.
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Gini Coefficient

2

,

(1/ )

2

i j

i j

n u u

u
C

u
m

u
la

ti
v
e

 u
ti
lit

y


blue area

Gini coeff.
area of triangle

Lorenz curve

Individuals ordered by increasing utility
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Fractional LP model:

LP model:

Gini Coefficient

2

,

(1/ )

2

i j

i j

n u u

u
 

 



   



   







2(1/ 2 ) ( )

max

, ,  all ,

(1/ )

, 0 , all ,

ij ij

ij

ij i j ij j i

i

i

i i i i i i

i

n u u

u

u u u u u u i j

u n u

u a x x b i x B

 

 



      

 

      







2max (1/ 2 ) ( )

,  ,  all ,

(1/ ) 1

, 0 , all ,

ij ij

ij

ij i j ij j i

i

i

i i i i i i

i

n u u

u u u u u u i j

n u

u a x x b z i x Bz
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Atkinson Index

  
      



1/

1 (1/ )

p
p

i

i

x
n

x

Rationale:

• Best seen as measuring inequality of resources xi.

• Assumes allotment y of resources results in utility yp

• This is average utility per individual.
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Atkinson Index

  
      



1/

1 (1/ )

p
p

i

i

x
n

x

Rationale:

• Best seen as measuring inequality of resources xi.

• Assumes allotment y of resources results in utility yp

• This is average utility per individual.

• This is equal resource allotment to each individual that results in 

same total utility.
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Atkinson Index

  
      



1/

1 (1/ )

p
p

i

i

x
n

x

Rationale:

• Best seen as measuring inequality of resources xi.

• Assumes allotment y of resources results in utility yp

• This is average utility per individual.

• This is equal resource allotment to each individual that results in 

same total utility.

• This is additional resources per individual necessary to sustain 

inequality.
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Atkinson Index

  
      



1/

1 (1/ )

p
p

i

i

x
n

x

Rationale:

• p indicates “importance” of equality.

• Similar to Lp norm

• p = 1 means inequality has no importance

• p = 0 is Rawlsian (measures utility of worst-off individual).

Problems:

• Measures utility, not equality.

• Doesn’t evaluate distribution of utility, only of resources.

• p describes utility curve, not importance of equality.
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 
 

 

 


max

, 0

p
p i

i i

p
i

x
x

x x

Ax b x

To minimize index, 

solve fractional

problem

Atkinson Index

  
      



1/

1 (1/ )

p
p

i

i

x
n

x

After change of variable  

xi = xi/z, this becomes



 

  





max

(1/ ) 1

, 0

p

i

i

i

i

x

n x

Ax bz x
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Fractional nonlinear 

model:


 







max

(1/ )

, 0

p

i

i

p

i

i

i

i

x

x

x n x

x B x

Concave nonlinear 

model:

Atkinson Index

  
      



1/

1 (1/ )

p
p

i

i

x
n

x



 

  







max

(1/ ) 1

, 0

p

i

i

i

i

i

i

x

n x

x Bz x
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Hoover Index




(1/ 2)

i

i

i

i

u u

u

Rationale:

• Fraction of total utility that must be redistributed to achieve total 

equality.

• Proportional to maximum vertical distance between Lorenz curve 

and 45o line.

• Originated in regional studies, population distribution, etc. (1930s).

• Easy to calculate.

Problems:

• Less informative than Gini coefficient?
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C
u

m
u

la
ti
v
e

 u
ti
lit

y

Hoover index max vertical distance

Lorenz curve

Hoover Index




(1/ 2)

i

i

i

i

u u

u

Total utility = 1

Individuals ordered by increasing utility
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Theil Index

 
 
 

(1/ ) lni i

i

u u
n

u u

Rationale:

• One of a family of entropy measures of inequality.

• Index is zero for complete equality (maximum entropy)

• Measures nonrandomness of distribution.

• Described as stochastic version of Hoover index.

Problems:

• Motivation unclear.

• A. Sen doesn’t like it.
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Nasty nonconvex

model:

 
 
 



   







min (1/ ) ln

(1/ )

, 0 , all ,

i i

i

i

i

i i i i i i

i

u u
n

u u

u n u

u a x x b i x B

Theil Index

 
 
 

(1/ ) lni i

i

u u
n

u u
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A Fair Division Problem

• From Yaari and Bar-Hillel, 1983.

• 12 grapefruit and 12 avocados are to be divided 

between Persons 1 and 2.

• How to divide justly?

Person 1 Person 2

100 50

0 50

Utility provided by one fruit of each kind
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A Fair Division Problem

The optimization problem:

  

  



1 2

1 11 2 12 22

1 2

max  ( , )

100 , 50 50

12, 1,2

0,  all ,

i i

ij

f u u

u x u x x

x x i

x i j

Social welfare function

where  ui = utility for person i

xij = allocation of fruit i (grapefruit, avocados) 

to person j
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u1

u2

Utilitarian Solution

1200

1200

(1200,600)

 1 2 1 2( , )f u u u u

Optimal solution
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u1

u2

Rawlsian (maximin) solution

1200

1200

(800,800)

 1 2 1 2( , ) min ,f u u u u
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Bargaining Solutions

• A bargaining solution is an equilibrium allocation in 

the sense that none of the parties wish to bargain 

further.

• Because all parties are “satisfied” in some sense, the 

outcome may be viewed as “fair.”

• Bargaining models have a default outcome, which is the 

result of a failure to reach agreement.

• The default outcome can be seen as a starting point.



74

Bargaining Solutions

• Several proposals for the default outcome (starting 

point):

• Zero for everyone.  Useful when only the resources being 

allocated are relevant to fairness of allocation.

• Equal split.  Resources (not necessarily utilities) are divided 

equally.  May be regarded as a “fair” starting point.

• Strongly pareto set.  Each party receives resources that 

can benefit no one else.  Parties can always agree on this.
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Nash Bargaining Solution

• Maximizes the product of the gains achieved by the 

bargainers, relative to the fallback position.

• Not the same as Nash equilibrium.

• Also known as proportional fairness.

• Popular in engineering applications.

• Used in bandwidth allocation, traffic signal timing, etc.
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Nash Bargaining Solution

• The Nash bargaining solution maximizes the social 

welfare function

where d is the default outcome.

• Assume feasible set is convex, so that Nash solution is 

unique (due to strict concavity of f ).

 ( ) ( )i i

i

f u u d



u1

77

u2

Nash Bargaining Solution

d

u

Nash solution maximizes 

area of rectangle

Feasible set



u1

78

u2

Nash Bargaining Solution

d

u

Nash solution maximizes 

area of rectangle

Feasible set



u1

79

u2

Nash Bargaining Solution

d

u*

Nash solution maximizes 

area of rectangle

Feasible set
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Nash Bargaining Solution

• The optimization problem has a concave objective 

function if we maximize log f(u).

• Problem is relatively easy if feasible set S is convex.

  



max log ( ) log( )i i i i

ii

u d u d

u S
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u1

u2

1200

1200

(1200,600)

Nash Bargaining Solution
From Zero

(0,0)
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u1

u2

Nash Bargaining Solution
From Equality

1200

1200

(900,750)

(600,600)
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Nash Bargaining Solution

• Strongly pareto set gives Person 2 all 12 avocados.

• Nothing for Person 1.

• Results in utility (u1,u2) = (0,600)

Person 1 Person 2

100 50

0 50

Utility provided by one fruit of each kind
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u1

u2

1200

1200

(600,900)

(0,600)

Nash Bargaining Solution
From Strongly Pareto Set
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Axiomatic Justification

• Axiom 1. Invariance under translation and rescaling.

• If we map ui  aiui + bi, di  aidi + bi, 

then bargaining solution ui*  aiui* + bi.

u1

u2

u* u*

u1

u2

d
d

This is cardinal noncomparability.
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Axiomatic Justification

• Axiom 1. Invariance under translation and rescaling.

• If we map ui  aiui + bi, di  aidi + bi, 

then bargaining solution ui*  aiui* + bi.

u1

u2

u*

u1

u2

• Strong assumption – failed, e.g., by utilitarian welfare function

Utilitarian 

solution

d
d

Utilitarian 

solution
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Axiomatic Justification

• Axiom 2. Pareto optimality.

• Bargaining solution is pareto optimal.

• Axiom 3.  Symmetry.   

• If all di’s are equal and feasible set is symmetric, then all ui*s 

are equal in bargaining solution.

u1

u2

u*

d
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Axiomatic Justification

• Axiom 4.  Independence of irrelevant alternatives.   

• Not the same as Arrow’s axiom.

• If u* is a solution with respect to d…

u1

u2

u*

d
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Axiomatic Justification

• Axiom 4.  Independence of irrelevant alternatives.   

• Not the same as Arrow’s axiom.

• If u* is a solution with respect to d, then it is a solution in a 

smaller feasible set that contains u* and d.

u1

u2

u*

d

u*
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Axiomatic Justification

• Axiom 4.  Independence of irrelevant alternatives.   

• Not the same as Arrow’s axiom.

• If u* is a solution with respect to d, then it is a solution in a 

smaller feasible set that contains u* and d.

• This basically says that the solution behaves like an optimum.

u1

u2

u*

d

u*
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Axiomatic Justification

Theorem.  Exactly one solution satisfies Axioms 1-4, 

namely the Nash bargaining solution.

Proof (2 dimensions).

First show that the Nash solution satisfies the axioms.

Axiom 1.  Invariance under transformation.   If

    1 1( ) ( )i i

i i

u d u d

           ( ) ( ) ( ) ( )i i i i i i i i i i i i

i i

a u b a d b a u b a d b

then
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Axiomatic Justification

Axiom 2.  Pareto optimality.  Clear because social welfare function 

is strictly monotone increasing.

Axiom 3.  Symmetry.  Obvious.

Axiom 4.  Independence of irrelevant alternatives.  Follows from the 

fact that u* is an optimum.

Now show that only the Nash solution satisfies the 

axioms…
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Axiomatic Justification

Let u* be the Nash solution for a given problem.  Then it satisfies the 

axioms with respect to d.  Select a transformation that sends

(u1,u2)  (1,1),    (d1,d2)  (0,0)

The transformed problem has Nash solution (1,1), by Axiom 1:

u1

u2

(1,1)

d
d

u*
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Axiomatic Justification

Let u* be the Nash solution for a given problem.  Then it satisfies the 

axioms with respect to d.  Select a transformation that sends

(u1,u2)  (1,1),    (d1,d2)  (0,0)

The transformed problem has Nash solution (1,1), by Axiom 1:

By Axioms 2 & 3,

(1,1) is the only

bargaining solution 

in the triangle: 

u1

u2

(1,1)

d
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Axiomatic Justification

Let u* be the Nash solution for a given problem.  Then it satisfies the 

axioms with respect to d.  Select a transformation that sends

(u1,u2)  (1,1),    (d1,d2)  (0,0)

The transformed problem has Nash solution (1,1), by Axiom 1:

By Axioms 2 & 3,

(1,1) is the only

bargaining solution 

in the triangle: 

u1

u2

(1,1)

d

So by Axiom 4, 

(1,1) is the only

bargaining solution 

in blue set.  
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Axiomatic Justification

Let u* be the Nash solution for a given problem.  Then it satisfies the 

axioms with respect to d.  Select a transformation that sends

(u1,u2)  (1,1),    (d1,d2)  (0,0)

The transformed problem has Nash solution (1,1), by Axiom 1:

u1

u2

(1,1)

d

So by Axiom 4, 

(1,1) is the only

bargaining solution 

in blue set.  

By Axiom 1, u* is 

the only bargaining 

solution in the 

original problem.

d

u*
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Axiomatic Justification

• Problems with axiomatic justification.

• Axiom 1 (invariance under transformation) is very strong.

• Axiom 1 denies interpersonal comparability.

• So how can it reflect moral concerns?

u1

u2

u*

u1

u2

Utilitarian 

solution
Utilitarian 

solution



Axiomatic Justification

• Problems with axiomatic justification.

• Axiom 1 (invariance under transformation) is very strong.

• Axiom 1 denies interpersonal comparability.

• So how can it reflect moral concerns?

• Most attention has been focused on Axiom 4

(independence of irrelevant alternatives).

• Will address this later.
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Players 1 and 2 make offers s, t.

u1

u2

s

d

Bargaining Justification

t
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Players 1 and 2 make offers s, t.

Let  p = P(player 2 will reject s), as estimated by player 1.

u1

u2

s

d

Bargaining Justification

t
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Players 1 and 2 make offers s, t.

Let  p = P(player 2 will reject s), as estimated by player 1.

Then player 1 will stick with s, rather than make a counteroffer, if

u1

u2

s

d

Bargaining Justification

t

  1 1 1(1 )p s pd t

s1t1d1
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Players 1 and 2 make offers s, t.

Let  p = P(player 2 will reject s), as estimated by player 1.

Then player 1 will stick with s, rather than make a counteroffer, if

u1

u2

s

d

Bargaining Justification

t

  1 1 1(1 )p s pd t

s1t1d1

So player 1 will stick with s if


 



1 1
1

1 1

s t
p r

s d
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It is rational for player 1 to make a counteroffer s, rather than player 2, if 

u1

u2

s

Bargaining Justification

t

 
  

 

1 1 2 2
1 2

1 1 2 2

s t t s
r r

s d t d

s1t1d1

So player 1 will stick with s if


 



1 1
1

1 1

s t
p r

s d

d2

s2

t2
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It is rational for player 1 to make a counteroffer s, rather than player 2, if 

u1

u2

s

d

Bargaining Justification

t

 
  

 

1 1 2 2
1 2

1 1 2 2

s t t s
r r

s d t d

It is rational for player 2 to make the next 

counteroffer if

     
  

1 1 2 2
1 2

1 1 2 2

s t t s
r r

s d t ds
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u1

u2

s

Bargaining Justification

t

 
  

 

1 1 2 2
1 2

1 1 2 2

s t t s
r r

s d t d

But

     
  

1 1 2 2
1 2

1 1 2 2

s t t s
r r

s d t ds

 


 

1 1 2 2

1 1 2 2

s t t s

s d t d
s1t1d1

d2

s2

t2

It is rational for player 1 to make a counteroffer s, rather than player 2, if 

It is rational for player 2 to make the next 

counteroffer if
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u1

u2

s

Bargaining Justification

t

 
  

 

1 1 2 2
1 2

1 1 2 2

s t t s
r r

s d t d

But

     
  

1 1 2 2
1 2

1 1 2 2

s t t s
r r

s d t ds

 


 

1 1 2 2

1 1 2 2

s t t s

s d t d

 


 

1 1 2 2

1 1 2 2

t d s d

s d t d

s1t1d1

d2

s2

t2

It is rational for player 1 to make a counteroffer s, rather than player 2, if 

It is rational for player 2 to make the next 

counteroffer if
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So we have

u1

u2

s

Bargaining Justification

t

s

s1t1d1

d2

s2

t2

    1 1 2 2 1 1 2 2( )( ) ( )( )s d s d t d t d

But

     
  

1 1 2 2
1 2

1 1 2 2

s t t s
r r

s d t d

 


 

1 1 2 2

1 1 2 2

s t t s

s d t d

 


 

1 1 2 2

1 1 2 2

t d s d

s d t d

It is rational for player 2 to make the next 

counteroffer if
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So we have

u1

u2

s

Bargaining Justification

t

Similarly

s

s1t1d1

d2

s2

t2

    1 1 2 2 1 1 2 2( )( ) ( )( )s d s d t d t d

  


  

1 1 2 2

1 1 2 2

s t t s

s d t d

It is rational for player 2 to make the next 

counteroffer if

     
  

1 1 2 2
1 2

1 1 2 2

s t t s
r r

s d t d
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So we have

u1

u2

s

Bargaining Justification

t

Similarly

s

 


  

1 1 2 2

1 1 2 2

t d s d

s d t d

s1t1d1

d2

s2

t2

    1 1 2 2 1 1 2 2( )( ) ( )( )s d s d t d t d

  


  

1 1 2 2

1 1 2 2

s t t s

s d t d

It is rational for player 2 to make the next 

counteroffer if

     
  

1 1 2 2
1 2

1 1 2 2

s t t s
r r

s d t d
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So we have

u1

u2

s

Bargaining Justification

t

s

s1t1d1

d2

s2

t2

    1 1 2 2 1 1 2 2( )( ) ( )( )s d s d t d t d

and we have      1 1 2 2 1 1 2 2( )( ) ( )( )t d t d s d s d

Similarly

 


  

1 1 2 2

1 1 2 2

t d s d

s d t d

  


  

1 1 2 2

1 1 2 2

s t t s

s d t d
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So we have

u2

s

Bargaining Justification

t

s

    1 1 21 2 21 2 ( )(( ) ))(s t ts d dd d

and we have     1 11 2 22 21 ( )(( )( ) )t d t d s d s d

d

This implies an improvement in the 

Nash social welfare function
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So we have

u2

s

Bargaining Justification

t

s

    1 1 21 2 21 2 ( )(( ) ))(s t ts d dd d

and we have     1 11 2 22 21 ( )(( )( ) )t d t d s d s d

d

This implies an improvement in the 

Nash social welfare function.

Given a minimum distance between 

offers, continued bargaining 

converges to Nash solution.
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Bargaining Justification

Problem with bargaining justifications.

Why should a bargaining procedure that is 

rational from an individual viewpoint 

result in a just distribution?

Why should “procedural justice” = justice?  

For example, is the outcome of bargaining in a 

free market necessarily just?

A deep question in political theory.

Also applies to political districting analysis, 

currently a hot topic in USA.
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Raiffa-Kalai-Smorodinsky 

Bargaining Solution

• This approach begins with a critique of the Nash 

bargaining solution.

u1

u2

d

u*

Nash solution

“Ideal” solution

Feasible set
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Raiffa-Kalai-Smorodinsky Bargaining Solution

• This approach begins with a critique of the Nash 

bargaining solution.

• The new Nash solution is worse for player 2 even though the 

feasible set is larger.

u1

u2

Larger 

feasible set

New Nash solution

d
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Raiffa-Kalai-Smorodinsky Bargaining Solution

• Proposal:  Bargaining solution is pareto optimal point 

on line from d to ideal solution.

u1

u2 “Ideal” solution

d
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Raiffa-Kalai-Smorodinsky Bargaining Solution

• Proposal:  Bargaining solution is pareto optimal point 

on line from d to ideal solution.

• The players receive an equal fraction of their possible utility 

gains.

u1

u2 “Ideal” solution

u*




 


 

1 1 1 1

2 2 2 2

u d g d

u d g d

g

d

Feasible set
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Raiffa-Kalai-Smorodinsky Bargaining Solution

• Proposal:  Bargaining solution is pareto optimal point 

on line from d to ideal solution.

• Replace Axiom 4 with Axiom 4 (Monotonicity): A larger 

feasible set with same ideal solution results in a bargaining 

solution that is better (or no worse) for all players.

u1

u2

Larger 

feasible set

“Ideal” solution





 


 

1 1 1 1

2 2 2 2

u d g d

u d g d

g

d

u*



    





1 1 1 1

max

( )( ) ( )( ),   all 

i

i

i i i i

u

g d u d g d u d i

u S
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Raiffa-Kalai-Smorodinsky Bargaining Solution

• Optimization model.

• Not an optimization problem over original feasible set 

(we gave up Axiom 4).

• But it is an optimization problem (pareto optimality) 

over the line segment from d to ideal solution.





 


 

1 1 1 1

2 2 2 2

u d g d

u d g d
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Raiffa-Kalai-Smorodinsky Bargaining Solution

• Optimization model.

• Not an optimization problem over original feasible set 

(we gave up Axiom 4).

• But it is an optimization problem (pareto optimality) 

over the line segment from d to ideal solution.

    





1 1 1 1

max

( )( ) ( )( ),   all 

i

i

i i i i

u

g d u d g d u d i

u S

constants
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Raiffa-Kalai-Smorodinsky Bargaining Solution

• Optimization model.

• Not an optimization problem over original feasible set 

(we gave up Axiom 4).

• But it is an optimization problem (pareto optimality) 

over the line segment from d to ideal solution.

    





1 1 1 1

max

( )( ) ( )( ),   all 

i

i

i i i i

u

g d u d g d u d i

u S

constants

Linear constraint
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u1

u2

Raiffa-Kalai-Smorodinsky Bargaining Solution
From Zero

1200

1200

(800,800)

(0,0)
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u1

u2

1200

1200

(900,750)

(600,600)

Raiffa-Kalai-Smorodinsky Bargaining Solution
From Equality
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u1

u2

1200

1200

(600,900)

(0,600)

Raiffa-Kalai-Smorodinsky Bargaining Solution
From Strong Pareto Set
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Axiomatic Justification

• Axiom 1.  Invariance under transformation.

• Axiom 2.  Pareto optimality.

• Axiom 3.  Symmetry.

• Axiom 4.  Monotonicity.
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Axiomatic Justification

Theorem.  Exactly one solution satisfies Axioms 1-4, 

namely the RKS bargaining solution.

Proof (2 dimensions).

Easy to show that RKS solution satisfies the axioms.

Now show that only the RKS solution satisfies the axioms.
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Axiomatic Justification

Let u* be the RKS solution for a given problem.  Then it satisfies the 

axioms with respect to d.  Select a transformation that sends

(g1,g2)  (1,1),    (d1,d2)  (0,0)

The transformed problem has RKS solution u, by Axiom 1:

u1

u2

(1,1)

d

d

u*

g

u
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Axiomatic Justification

Let u* be the RKS solution for a given problem.  Then it satisfies the 

axioms with respect to d.  Select a transformation that sends

(g1,g2)  (1,1),    (d1,d2)  (0,0)

The transformed problem has RKS solution u, by Axiom 1:

By Axioms 2 & 3,

u is the only

bargaining solution 

in the red polygon: 

u1

u2

(1,1)

d

u
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Axiomatic Justification

Let u* be the RKS solution for a given problem.  Then it satisfies the 

axioms with respect to d.  Select a transformation that sends

(g1,g2)  (1,1),    (d1,d2)  (0,0)

The transformed problem has RKS solution u, by Axiom 1:

By Axioms 2 & 3,

u is the only

bargaining solution 

in the red polygon: 

The red polygon 

lies inside blue set.  

So by Axiom 4, its 

bargaining solution 

is no better than 

bargaining solution 

on blue set.  

So u is the only 

bargaining solution 

on blue set.u1

u2

(1,1)

d

u
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Axiomatic Justification

Let u* be the RKS solution for a given problem.  Then it satisfies the 

axioms with respect to d.  Select a transformation that sends

(g1,g2)  (1,1),    (d1,d2)  (0,0)

The transformed problem has RKS solution u, by Axiom 1:

By Axiom 1, u* is 

the only bargaining 

solution in the 

original problem.

g

u*

u1

u2

(1,1)

d

u
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Axiomatic Justification

• Problems with axiomatic justification.

• Axiom 1 is still in effect.

• It denies interpersonal comparability.

• Dropping Axiom 4 sacrifices optimization of a social welfare 

function.

• This may not be necessary if Axiom 1 is rejected.

• Needs modification for > 2 players (more on this shortly).
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Resistance to an agreement s depends on sacrifice relative to 

sacrifice under no agreement.  Here, player 2 is making a larger 

relative sacrifice:

s

Bargaining Justification

 


 

1 1 2 2

1 1 2 2

g s g s

g d g d

s1 g1d1

Minimizing resistance to 

agreement requires 

minimizing 

 
 

 
max i i

i
i i

g s

g d

d2

s2

g2
g
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Resistance to an agreement s depends on sacrifice relative to 

sacrifice under no agreement.  Here, player 2 is making a larger 

relative sacrifice:

s

Bargaining Justification

 


 

1 1 2 2

1 1 2 2

g s g s

g d g d

s1 g1d1

Minimizing resistance to 

agreement requires 

minimizing 

 
 

 
max i i

i
i i

g s

g d

d2

s2

g2
g

or equivalently, maximizing

min i i

i
i i

s d

g d

 
 

 
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Resistance to an agreement s depends on sacrifice relative to 

sacrifice under no agreement.  Here, player 2 is making a larger 

relative sacrifice:

s

Bargaining Justification

 


 

1 1 2 2

1 1 2 2

g s g s

g d g d

s1 g1d1

Minimizing resistance to 

agreement requires 

minimizing 

 
 

 
max i i

i
i i

g s

g d

d2

s2

g2
g

or equivalently, maximizing

min i i

i
i i

s d

g d

 
 

 

which is achieved by RKS 

point.
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This is the Rawlsian social contract argument applied to gains 

relative to the ideal.

s

Bargaining Justification

s1 g1d1

Minimizing resistance to 

agreement requires 

minimizing 

 
 

 
max i i

i
i i

g s

g d

d2

s2

g2
g

or equivalently, maximizing

which is achieved by RKS 

point.

min i i

i
i i

s d

g d

 
 

 
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Problem with RKS Solutioon

• However, the RKS solution is Rawlsian only for 

2 players.

• In fact, RKS leads to counterintuitive results for 3 players.

g

d

Red triangle is 

feasible set.

RKS point is d !
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Problem with RKS Solutioon

• However, the RKS solution is Rawlsian only for 

2 players.

• In fact, KLS leads to counterintuitive results for 3 players.

g

d

Red triangle is 

feasible set.

RKS point is d !

Rawlsian point is u.

u
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u1

u2

Summary

1200

1200

(0,0)

(600,600)(0,600)

Rawlsian

Utilitarian
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u1

u2

Summary

1200

1200

(0,0)

(600,600)(0,600)

Nash bargaining

Rawlsian

Utilitarian
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u1

u2

Summary

1200

1200

(0,0)

(600,600)(0,600)

Nash bargaining

Raiffa-Kalai-Smorodinsky bargaining

Rawlsian

Utilitarian
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Combining Equity and Efficiency

• Utilitarian and Rawlsian distributions seem too extreme 

in practice.

 How to combine them?
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Combining Equity and Efficiency

• Utilitarian and Rawlsian distributions seem too extreme 

in practice.

 How to combine them?

• Health care example 1:

– An large investment can extend the lives of a few terminal 

cancer victims a week (Rawlsian solution)

– Or prevent millions from contracting malaria (utilitarian solution).
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Combining Equity and Efficiency

• Utilitarian and Rawlsian distributions seem too extreme 

in practice.

 How to combine them?

• Health care example 1:

– An large investment can extend the lives of a few terminal 

cancer victims a week (Rawlsian solution) Extreme!

– Or prevent millions from contracting malaria (utilitarian solution).
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Combining Equity and Efficiency

• Utilitarian and Rawlsian distributions seem too extreme 

in practice.

 How to combine them?

• Health care example 2:

– A large investment can cure ALS, a horrible disease that afflicts 

0.002% of population (Rawlsian solution)

– Or cure dandruff, which afflicts about 3 billion people, or half the 

population (utilitarian solution).
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Combining Equity and Efficiency

• Utilitarian and Rawlsian distributions seem too extreme 

in practice.

 How to combine them?

• Health care example 2:

– A large investment can cure ALS, a horrible disease that afflicts 

0.002% of population (Rawlsian solution)

– Or cure dandruff, which afflicts about 3 billion people, or half the 

population (utilitarian solution). Extreme!
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Combining Equity and Efficiency

• Utilitarian and Rawlsian distributions seem too extreme 

in practice.

 How to combine them?

• One proposal:

– Maximize welfare of worst off (Rawlsian)...

– …until this requires undue sacrifice from others

– That is, until marginal utility cost of helping the worst off 

becomes extreme.
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Combining Equity and Efficiency

• In particular:

– Design a social welfare function (SWF) to be maximized

– Switch from Rawlsian to utilitarian when inequality exceeds .
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Combining Equity and Efficiency

• In particular:

– Design a social welfare function (SWF) to be maximized

– Switch from Rawlsian to utilitarian when inequality exceeds .

– Build mixed integer programming model.

– Let ui = utility allocated to person i

• For 2 persons:

– Maximize  mini {u1, u2}   (Rawlsian) when  |u1  u2|  

– Maximize u1 + u2 (utilitarian) when |u1  u2| > 
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u1

u2





Two-person Model

Contours of social 

welfare function for 

2 persons.
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u1

u2





Two-person Model

Contours of social 

welfare function for 

2 persons.

Rawlsian region

 1 2min ,u u
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u1

u2





Two-person Model

Contours of social 

welfare function for 

2 persons.

Utilitarian region

Rawlsian region

1 2u u

 1 2min ,u u
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u1

u2





Feasible set

Person 1 is harder 

to treat.

But maximizing 

person 1’s health 

requires too much 

sacrifice from 

person 2.

Optimal 

allocation

Suboptimal
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Advantages

• Only one parameter 

– Focus for debate.

–  has intuitive meaning (unlike weights) 

– Examine consequences of different settings for 

– Find least objectionable setting

– Results in a consistent policy
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u1

u2





Social Welfare Function

We want continuous 

contours…



155

u1

u2





Social Welfare Function

We want continuous 

contours…

1 2u u

So we use affine 

transform of Rawlsian 

criterion

   1 2 12min ,u u u
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Social Welfare Function

The social welfare problem becomes

      
  

 

1 2

1 2 1 2
1 2

1 2

max ( , )

2min , , if  
( , )

,                     otherwise

constraints on feasible set

f u u

u u u u
f u u

u u
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u1

u2

u1

u2

MILP Model

Hypograph (epigraph when minimizing) is union of 2 polyhedra.
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u1

u2

u1

u2

MILP Model

Epigraph is union of 2 polyhedra.

Because they have different recession cones, there is no MILP model.

(0,1,0)

(1,1,2)

(1,0,0)

Recession

directions

(u1,u2,z)

(0,1,1)

(1,0,1)
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u1

u2





M

M

MILP Model

Impose constraints  |u1  u2|  M



160

u1

u2

u1

u2

MILP Model

This equalizes recession cones.

(1,1,2) (1,1,2)Recession

directions

(u1,u2,z)
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u1

MILP Model

We have the model…

1 2

1 2 2 1

1 2

max

2 ( ) , 1,2

(1 )

,

, 0

{0,1}

constraints on feasible set

i

z

z u M i

z u u

u u M u u M

u u







   

   

   







162

MILP Model

We have the model…

1 2

1 2 2 1

1 2

max

2 ( ) , 1,2

(1 )

,

, 0

{0,1}

constraints on feasible set

i

z

z u M i

z u u

u u M u u M

u u







   

   

   





This is a convex hull formulation.
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n-person Model

Rewrite the 2-person social welfare function as…

   
 

       1 2 min 1 min 2 min( , ) 2f u u u u u u u

   max 0,
 1 2min ,u u
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n-person Model

Rewrite the 2-person social welfare function as…

This can be generalized to n persons:

   
 

       1 2 min 1 min 2 min( , ) 2f u u u u u u u

 




      min 1 min
1

( ) ( 1)
n

j

f u n nu u u

   max 0,
 1 2min ,u u
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n-person Model

Epigraph is a union of n! polyhedra with same recession direction 

(u,z) = (1,…,1,n) if we require |ui  uj|  M

So there is an MILP model…

Rewrite the 2-person social welfare function as…

This can be generalized to n persons:

   
 

       1 2 min 1 min 2 min( , ) 2f u u u u u u u

 




      min 1 min
1

( ) ( 1)
n

j

f u n nu u u

   max 0,
 1 2min ,u u
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n-person MILP Model

To avoid n! 0-1 variables, add auxiliary variables wij









 

     

    

 



 



max

,  all 

( ),   all ,  with 

(1 ) ,   all ,  with 

,  all ,   

0,  all 

{0,1},   all ,  with 

i ij
j i

ij i ij

ij j ij

i j

i

ij

z

z u w i

w u M i j i j

w u i j i j

u u M i j

u i

i j i j



167

u1

n-person MILP Model

To avoid n! 0-1 variables, add auxiliary variables wij

Theorem.  The model is correct (not easy to prove).









 

     

    

 



 



max

,  all 

( ),   all ,  with 

(1 ) ,   all ,  with 

,  all ,   

0,  all 

{0,1},   all ,  with 

i ij
j i

ij i ij

ij j ij

i j

i

ij

z

z u w i

w u M i j i j

w u i j i j

u u M i j

u i

i j i j
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u1

n-person MILP Model

To avoid n! 0-1 variables, add auxiliary variables wij

Theorem.  The model is correct (not easy to prove).

Theorem.  This is a convex hull formulation (not easy to prove).









 

     

    

 



 



max

,  all 

( ),   all ,  with 

(1 ) ,   all ,  with 

,  all ,   

0,  all 

{0,1},   all ,  with 

i ij
j i

ij i ij

ij j ij

i j

i

ij

z

z u w i

w u M i j i j

w u i j i j

u u M i j

u i

i j i j
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Pigou-Dalton Condition

The SWF satisfies Pigou-Dalton

for n = 2 but not for n  3.

But it satisfies a slightly weaker 

Cheateauneuf-Moyes condition.

Utility-invariant 

transfer A to B 

reduces 

SWF value

Assume u1 = 0
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Pigou-Dalton Condition

The SWF satisfies Pigou-Dalton

for n = 2 but not for n  3.

But it satisfies a slightly weaker 

Cheateauneuf-Moyes condition.

It examines 

transfers 

from people 

at the top

(all sacrificing 

equally) to 

people at the 

bottom

(all benefiting 

equally)

Utility-invariant 

transfer A to B 

reduces 

SWF value

Assume u1 = 0
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n-group Model

In practice, funds may be allocated to groups of different sizes

For example, disease/treatment categories.

Let       = average utility gained by a person in group i

= size of group i

iu

in
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



M

M

n-group Model

2-person case with n1 < n2.  Contours have slope  n1/n2

1u

2u
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u1

n-group MILP Model

Again add auxiliary variables wij









    

     

    

 



 



max

( 1) ,  all 

( ) ( ),   all ,  with 

(1 ) ,   all ,  with 

,  all ,   

0,  all 

{0,1},   all ,  with 

i i i ij
j i

ij j i ij j

ij j ij j

i j

i

ij

z

z n nu w i

w n u n M i j i j

w u n i j i j

u u M i j

u i

i j i j

Theorem.  The model is correct.

Theorem.  This is a convex hull formulation.
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u1

Health Example

Measure utility in QALYs (quality-adjusted life years).

QALY and cost data based on Briggs & Gray, (2000) etc.

Each group is a disease/treatment pair.

Treatments are discrete, so group funding is all-or-nothing.

Divide groups into relatively homogeneous subgroups.
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u1

Health Example

Add constraints to define feasible set…











   

    

    

 



 

 









max

( 1) ,  all 

( ) ( ),  all ,  with 

(1 ) ,  all ,  with 

, all ,   

0, all 

{0,1},  all ,  with 

 budget

{0

i i i ij
j i

ij j i ij j

ij j ij j

i j

i

ij

i i i i

i i i
i

i

z

z n nu w i

w n u n M i j i j

w u n i j i j

u u M i j

u i

i j i j

u q y

nc y

y ,1},  all i

yi indicates 

whether 

subgroup i

is funded
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QALY 

& cost 

data

Part 1
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QALY 

& cost 

data

Part 2
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Results

Total budget £3 million
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Results

Utilitarian solution
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Results

Rawlsian solution
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Results

Fund for all 
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Results
More dialysis with

larger , beginning 

with longer life span
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Results

Abrupt change at  = 5.60



184

Results

Come and go together
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Results

In-out-in
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Results

Most rapid change.  Possible range for 

politically acceptable compromise
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Puzzle

Curious fact: Rawlsian solution ( = ) achieves 

greater utility than some smaller values of .

Why?
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Puzzle

Curious fact: Rawlsian solution ( = ) achieves 

greater utility than some smaller values of .

Why?

Rawlsian solution cares only about the very worst-off 

(i.e., most serious category of kidney disease).

The MILP breaks ties by adding    utility  to SWF.

Utility is a larger factor when  =  than for smaller 

values of .
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Puzzle

Curious fact: Rawlsian solution ( = ) achieves 

greater utility than some smaller values of .

Why?

Rawlsian solution cares only about the very worst-off 

(i.e., most serious category of kidney disease).

The MILP breaks ties by adding    utility  to SWF.

Utility is a larger factor when  =  than for smaller 

values of .

Remedy 1.  View each disease as a single group with 

concave utility function (decreasing marginal utility)

Remedy 2.  Design a SWF that combines leximax

(rather than maximin) with utility



 = 0 2.4 4.0 5.5 11.3

Avg. QALYs per person

6.65 6.47 5.94 5.07 4.50

Pacemaker

Hip replace

Aortic valve

CABG

Heart trans.

Kidney trans.

Dialysis

Budget = £3 millionRemedy 1
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Remedy 1

Problem:  This doesn’t address fairness within disease 

categories (more serious vs. less serious cases).  
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Remedy 2

Design a SWF to combine leximax and utility.

Rather than maximize one function, compute

where

and        is i-th smallest of u1,…,un

and

 1leximax ( ), , ( )nF u F u

       

  

 



 
      

 
  
 
  

 



1
1 ( ) 1

1

( )   for ( )

( )

                                                          for ( )

k n

i i
i i t u

k n

i
i

u t u k u u k t u

F u

u k t u

 iu

      1   for 1, , ( )ku u k t u
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Remedy 2

Each Fk(u) is continuous and satisfies the 

Chateauneuf-Moyes condition.

How to model it in an MILP?  

Ongoing research…
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Questions/Discussion


