Optimization Models for Social Justice

John Hooker
Carnegie Mellon University

CPAIOR Master Class
June 2019

Modeling Social Justice

- Social welfare is more than overall benefit.
- Also concerns equity or just distribution of resources.
- Not obvious how to capture equity in the objective function.
- Still less obvious how to combine it with total benefit.

Modeling Social Justice

- Some problem areas...
- Health care resources.
- Facility location (e.g., emergency services).
- Taxation (revenue vs. progressivity).
- Relief operations.
- Telecommunications (leximax, Nash bargaining solution)

Outline

- Utilitarianism
- Rawlsian Difference Principle
- Axiomatics
- Measures of Inequality
- A Fair Division Problem
- Nash Bargaining Solution
- Raiffa-Kalai-Smorodinsky Bargaining
- Combining Equity and Utility
- Health Care Example
- References

Utility vs. Equity

- Two classical criteria for distributive justice:
- Utilitarianism (total benefit)
- Difference principle of John Rawls (equity)
- These have the must studied
 philosophical underpinnings.

Utilitarianism

- Utilitarianism seeks allocation of resources that maximizes total utility.
- Let $x_{i}=$ resources allocated to person i.
- Let $u_{i}\left(x_{i}\right)=$ utility enjoyed by person i receiving resources x_{i}
- We have an optimization problem

$$
\left.\max \sum_{i} u_{i}\left(x_{i}\right) \longleftarrow \begin{array}{l}
\text { Utility } \\
\text { (production) } \\
\text { functions }
\end{array}\right)
$$

Utilitarianism

For example, $\quad h_{i}\left(x_{i}\right)=a_{i} x_{i}^{p}$ with different a_{i} 's for 5 individuals

Utilitarianism

Assume resource distribution is constrained only by a fixed budget.
If $u_{i}\left(x_{i}\right)=a_{i} x_{i}^{p}$, we have the optimization problem

$$
\begin{aligned}
& \max \sum_{i} a_{i} x_{i}^{p} \\
& \sum_{i} x_{i}=1, \quad x_{i} \geq 0, \text { all } i
\end{aligned}
$$

This has a closed-form solution

$$
x_{i}=a_{i}^{\frac{1}{1-p}}\left(\sum_{j=1}^{n} a_{j}^{\frac{1}{1-p}}\right)^{-1}
$$

Utilitarianism

Optimal allocations equalize slope (i.e., equal marginal utility).

Utilitarianism

- Arguments for utilitarianism
- Can define utility to suit context.
- Utilitarian distributions incorporate some egalitarian factors:
- With concave utility functions, egalitarian distributions tend to create more utility.
- Inegalitarian distributions create disutility, due to social disharmony.

Utilitarianism

- Egalitarian distributions create more utility?
- This effect is limited.
- Utilitarian distributions can be very unequal. Productivity differences are magnified in the allocations.

Utilitarianism

- Egalitarian distributions create more utility?
- In the example, the most egalitarian distribution ($p \rightarrow 0$) assigns resources in proportion to individual utility coefficient.

Utilitarianism

- Unequal distributions create disutility?
- Perhaps, but modeling this requires nonseparable utility functions

$$
u_{i}\left(x_{1}, \cdots, x_{n}\right)
$$

that may result in a problem that is hard to model and solve.

Utilitarianism

- Unequal distributions create disutility?
- Perhaps, but modeling this requires nonseparable utility functions

$$
u_{i}\left(x_{1}, \cdots, x_{n}\right)
$$

that may result in a problem that is hard to model and solve.

- More fundamentally, this defense of utilitarianism is based on contingency, not principle.

Utilitarianism

- Unequal distributions create disutility?
- Perhaps, but modeling this requires nonseparable utility functions

$$
u_{i}\left(x_{1}, \cdots, x_{n}\right)
$$

that may result in a problem that is hard to model and solve.

- More fundamentally, this defense of utilitarianism is based on contingency, not principle.
- If we can evaluate the fairness of utilitarian distribution, then there must be another standard of equitable distribution.
- How do we model the standard we really have in mind?

Utilitarianism

- To sum up: A utility maximizing distribution may be unjust.
- Disadvantaged people may be neglected because they gain less utility per unit of resource.

Rawlsian Difference Principle

- Rawls' Difference Principle seeks to maximize the welfare of the worst off.
- Also known as maximin principle.
- Another formulation: inequality is permissible only to the extent that it is necessary to improve the welfare of those worst off.

$$
\begin{aligned}
& \max _{x} \min _{i}\left\{u_{i}\left(x_{i}\right)\right\} \\
& x \in S
\end{aligned}
$$

RawIsian Difference Principle

- The root idea is that when I make a decision for myself, I make a decision for anyone in similar circumstances.
- It doesn't matter who I am. (universality of reason)

RawIsian Difference Principle

- The root idea is that when I make a decision for myself, I make a decision for anyone in similar circumstances.
- It doesn't matter who I am (universality of reason)
- Social contract argument
- I make decisions (formulate a social contract) in an original position, behind a veil of ignorance as to who I am.
- I must find the decision acceptable after I learn who I am.
- I cannot rationally assent to a policy that puts me on the bottom, unless I would have been even worse off under alternative policies.
- So the policy must maximize the welfare of the worst off.

RawIsian Difference Principle

- Rawls intended the principle for the design of social institutions.
- Not necessarily for other decisions.
- Yet it is not unreasonable for resource allocation in general.
- See J. Rawls, A Theory of Justice, 1971

Rawlsian Difference Principle

- The difference rule can be refined with a leximax principle.
- If applied recursively.
- Leximax (lexicographic maximum) principle:
- Maximize welfare of least advantaged class...
- then next-to-least advantaged class...
- and so forth.

RawIsian Difference Principle

- There is no practical math programming model for leximax.

$$
\begin{aligned}
& \operatorname{leximax} \\
& x \in S
\end{aligned}
$$

- But see W. Ogryczak \& T. Sliwinski, ICCSA 2006.

Rawlsian Difference Principle

- There is no practical math programming model for leximax.

$$
\begin{aligned}
& \operatorname{leximax} \\
& x \in S
\end{aligned}\left\{u_{1}\left(x_{1}\right), \ldots, u_{n}\left(x_{n}\right)\right\}
$$

- But see W. Ogryczak \& T. Sliwinski, ICCSA 2006.
- We can solve the problem sequentially (pre-emptive goal programming).
- Solve the maximin problem.
- Fix the smallest u_{i} to its maximum value.
- Solve the maximin problem over remaining u_{i} 's.
- Continue to u_{n}.

RawIsian Difference Principle

- The Difference and Leximax Principles need not result in equality.
- Consider the example presented earlier...

RawIsian Difference Principle

Utilitarian distribution

RawIsian Difference Principle

Here, leximax principle results in equality

Utilitarianism

But consider this distribution...

Utilitarianism

Leximax doesn't result in equality

Axiomatics

- The economics literature derives social welfare functions from axioms of rational choice.
- The social welfare function depends on degree of interpersonal comparability of utilities.
- Arrow's impossibility theorem was the first result, but there are many others.
- Social welfare function
- A function $f\left(u_{1}, \ldots, u_{n}\right)$ of individual utilities.
- An optimization model can find a distribution of utility that maximizes social welfare.

Axiomatics

- The economics literature derives social welfare functions from axioms of rational choice.
- The social welfare function depends on degree of interpersonal comparability of utilities.
- Arrow's impossibility theorem was the first result, but there are many others.
- Social welfare function
- A function $f\left(u_{1}, \ldots, u_{n}\right)$ of individual utilities.
- An optimization model can find a distribution of utility that maximizes social welfare.
- Problem
- The SWF that results is little more than a restatement of the interpersonal comparability assumption.

Interpersonal Comparability

- Social Preferences
- Let $u=\left(u_{1}, \ldots, u_{n}\right)$ be the vector of utilities allocated to individuals.
- A social welfare function ranks distributions: u is preferable to u^{\prime} if $f(u)>f\left(u^{\prime}\right)$.
- Invariance transformations.
- These are transformations ϕ of utility vectors under which the ranking of distributions does not change.
- Each $\phi=\left(\phi_{1}, \ldots, \phi_{n}\right)$, where ϕ_{i} is a transformation of individual utility u_{i}.

Interpersonal Comparability

- Ordinal noncomparability.
- Any $\phi=\left(\phi_{1}, \ldots, \phi_{n}\right)$ with strictly increasing ϕ_{i} s is an invariance transformation.
- Ordinal level comparability.
- Any $\phi=\left(\phi_{1}, \ldots, \phi_{n}\right)$ with strictly increasing and identical ϕ_{i} is an invariance transformation.

Interpersonal Comparability

- Cardinal nonncomparability.
- Any $\phi=\left(\phi_{1}, \ldots, \phi_{n}\right)$ with $\phi_{i}\left(u_{i}\right)=\alpha_{i}+\beta_{i} u_{i}$ and $\beta_{i}>0$ is an invariance transformation.
- Cardinal unit comparability.
- Any $\phi=\left(\phi_{1}, \ldots, \phi_{n}\right)$ with $\phi_{i}\left(u_{i}\right)=\alpha_{i}+\beta u_{i}$ and $\beta>0$ is an invariance transformation.
- Cardinal ratio scale comparability
- Any $\phi=\left(\phi_{1}, \ldots, \phi_{n}\right)$ with $\phi_{i}\left(u_{i}\right)=\beta u_{i}$ and $\beta>0$ is an invariance transformation.

Axioms

- Anonymity
- Social preferences are the same if indices of u_{i} are permuted.
- Strict pareto
- If $u>u^{\prime}$, then u is preferred to u^{\prime}.
- Independence of irrelevant alternatives
- The preference of u over u^{\prime} depends only on u and u^{\prime} and not on what other utility vectors are possible.
- Separability of unconcerned individuals
- Individuals i for which $u_{i}=u_{i}^{\prime}$ don't affect the ranking of u and u^{\prime}.

Axiomatics

Theorem

Given ordinal level comparability, any social welfare function f that satisfies the axioms is lexicographically increasing or lexicographically decreasing. So we get a leximax or leximin objective.

Theorem

Given cardinal unit comparability, any social welfare function f that satisfies the axioms has the form $f(u)=\Sigma_{i} a_{i} u_{i}$ for $a_{i} \geq 0$. Se we get a utilitarian objective.

Axiomatics

Theorem

Given cardinal noncomparability, any social welfare function f that satisfies the axioms (except anonimity and separability) has the form $f(u)=u_{i}$ for some fixed i. So individual i is a dictator.

Theorem

Given cardinal ratio scale comparability, any social welfare function f that satisfies the axioms has the form $f(u)=\Sigma_{i} u_{i}^{p / p}$. Se we get the utility function used in the example.

Measures of Inequality

- Assume we wish to minimize inequality.
- We will survey several measures of inequality.
- They have different strengths and weaknesses.
- Minimizing inequality may result in less total utility.
- Pigou-Dalton condition.
- One criterion for evaluating an inequality measure.
- If utility is transferred from one who is better off to one who is worse off, social welfare should increase.

Measures of Inequality

- Measures of Inequality
- Relative range, max, min
- Relative mean deviation
- Variance, coefficient of variation
- McLoone index
- Gini coefficient
- Atkinson index
- Hoover index
- Theil index

Relative Range

$$
\frac{u_{\max }-u_{\min }}{\bar{u}}
$$

where $\quad u_{\max }=\max _{i}\left\{u_{i}\right\} \quad u_{\min }=\min _{i}\left\{u_{i}\right\} \quad \bar{u}=(1 / n) \sum_{i} u_{i}$

Rationale:

- Perceived inequality is relative to the best off.
- A distribution should be judged by the position of the worst-off.
- Therefore, minimize gap between top and bottom.

Problems:

- Ignores distribution between extremes.
- Violates Pigou-Dalton condition

Relative Range

$$
\frac{u_{\max }-u_{\min }}{\bar{u}}
$$

This is a fractional linear programming problem.
Use Charnes-Cooper transformation to an LP. In general,

$$
\begin{array}{ll}
\min \frac{c x+c_{0}}{d x+d_{0}} & \text { min } c x^{\prime}+c_{0} z \\
A x \geq b & \text { becomes } \\
A x^{\prime} \geq b z \\
x \geq 0 & \\
d x^{\prime}+d_{0} z=1 \\
x^{\prime}, z \geq 0
\end{array}
$$

after change of variable $x=x^{\prime} / z$ and fixing denominator to 1 .

Relative Range

$$
\frac{u_{\max }-u_{\min }}{\bar{u}}
$$

Fractional LP model: $\min \frac{u_{\text {max }}-u_{\text {min }}}{(1 / n) \sum_{i} u_{i}}$

$$
\begin{aligned}
& u_{\max } \geq u_{i}, \quad u_{\min } \leq u_{i}, \text { all } i \\
& u_{i}=a_{i} x_{i}, \quad 0 \leq x_{i} \leq b_{i}, \quad \text { all } i, \quad \sum_{i} x_{i}=B
\end{aligned}
$$

LP model: $\min u_{\text {max }}-u_{\text {min }}$

$$
\begin{aligned}
& u_{\text {max }} \geq u_{i}^{\prime}, u_{\text {min }} \leq u_{i}^{\prime}, \text { all } i \\
& u_{i}^{\prime}=a_{i} x_{i}^{\prime}, 0 \leq x_{i}^{\prime} \leq b_{i} z, \text { all } i, \quad \sum_{i} x_{i}^{\prime}=B z \\
& (1 / n) \sum_{i} u_{i}^{\prime}=1
\end{aligned}
$$

Relative Max

$$
\frac{u_{\max }}{\bar{u}}
$$

Rationale:

- Perceived inequality is relative to the best off.
- Possible application to salary levels (typical vs. CEO)

Problems:

- Ignores distribution below the top.
- Violates Pigou-Dalton condition

Relative Max

$$
\frac{u_{\max }}{\bar{u}}
$$

Fractional LP model: $\min \frac{u_{\text {max }}}{(1 / m) \sum_{i} u_{i}}$
$u_{\text {max }} \geq u_{i}$, all i
$u_{i}=a_{i} x_{i}, 0 \leq x_{i} \leq b_{i}$, all $i, \quad \sum_{i} x_{i}=B$
LP model: $\min u_{\text {max }}$

$$
\begin{aligned}
& u_{\max } \geq u_{i}^{\prime} \text { all } i \\
& u_{i}^{\prime}=a_{i} x_{i}^{\prime}, 0 \leq x_{i}^{\prime} \leq b_{i} z, \text { all } i, \quad \sum_{i} x_{i}^{\prime}=B z \\
& (1 / n) \sum_{i} u_{i}^{\prime}=1
\end{aligned}
$$

Relative Min

$$
\frac{u_{\min }}{\bar{u}}
$$

Rationale:

- Measures adherence to Rawlsian Difference Principle.
- ...relativized to mean

Problems:

- Ignores distribution above the bottom.
- Violates Pigou-Dalton condition

Relative Min

$$
\frac{u_{\min }}{\bar{u}}
$$

Fractional LP model: $\quad \max \frac{u_{\min }}{(1 / n) \sum_{i} u_{i}}$

$$
u_{\text {min }} \leq u_{i}, \text { all } i
$$

$$
u_{i}=a_{i} x_{i}, 0 \leq x_{i} \leq b_{i}, \text { all } i, \quad \sum_{i} x_{i}=B
$$

LP model: $\quad \max u_{\text {min }}$

$$
u_{\text {min }} \geq u_{i}^{\prime} \text { all } i
$$

$$
u_{i}^{\prime}=a_{i} x_{i}^{\prime}, 0 \leq x_{i}^{\prime} \leq b_{i} z, \quad \text { all } i, \quad \sum_{i} x_{i}^{\prime}=B z
$$

$$
(1 / n) \sum_{i} u_{i}^{\prime}=1
$$

Relative Mean Deviation

Rationale:

- Perceived inequality is relative to average.
- Entire distribution should be measured.

Problems:

- Violates Pigou-Dalton condition
- Insensitive to transfers on the same side of the mean.
- Insensitive to placement of transfers from one side of the mean to the other.

Relative Mean Deviation

Fractional LP model: $\max \frac{\sum_{i}\left(u_{i}^{+}+u_{i}^{-}\right)}{\bar{u}}$

$$
\begin{aligned}
& u_{i}^{+} \geq u_{i}-\bar{u}, u_{i}^{-} \geq \bar{u}-u_{i}, \text { all } i \\
& \bar{u}=(1 / n) \sum_{i} u_{i} \\
& u_{i}=a_{i} x_{i}, \quad 0 \leq x_{i} \leq b_{i}, \text { all } i, \quad \sum_{i} x_{i}=B
\end{aligned}
$$

LP model: $\quad \max \sum_{i}\left(u_{i}^{+}+u_{i}^{-}\right)$

$$
\begin{aligned}
& u_{i}^{+} \geq u_{i}^{\prime}-1, u_{i}^{-} \leq u_{i}^{\prime}-1, \text { all } i \\
& (1 / n) \sum_{i} u_{i}^{\prime}=1 \\
& u_{i}^{\prime}=a_{i} x_{i}^{\prime}, 0 \leq x_{i}^{\prime} \leq b_{i} z, \text { all } i, \quad \sum_{i} x_{i}^{\prime}=B z
\end{aligned}
$$

Variance

$$
(1 / n) \sum_{i}\left(u_{i}-\bar{u}\right)^{2}
$$

Rationale:

- Weight each utility by its distance from the mean.
- Satisfies Pigou-Dalton condition.
- Sensitive to transfers on one side of the mean.
- Sensitive to placement of transfers from one side of the mean to the other.

Problems:

- Weighting is arbitrary?
- Variance depends on scaling of utility.

Variance

$$
(1 / n) \sum_{i}\left(u_{i}-\bar{u}\right)^{2}
$$

Convex nonlinear model: $\min (1 / n) \sum_{i}\left(u_{i}-\bar{u}\right)^{2}$

$$
\begin{aligned}
& \bar{u}=(1 / n) \sum_{i} u_{i} \\
& u_{i}=a_{i} x_{i}, 0 \leq x_{i} \leq b_{i}, \text { all } i, \quad \sum_{i} x_{i}=B
\end{aligned}
$$

Coefficient of Variation

$$
\frac{\left((1 / n) \sum_{i}\left(u_{i}-\bar{u}\right)^{2}\right)^{1 / 2}}{\bar{u}}
$$

Rationale:

- Similar to variance.
- Invariant with respect to scaling of utilities.

Problems:

- When minimizing inequality, there is an incentive to reduce average utility.
- Should be minimized only for fixed total utility.

Coefficient of Variation

$$
\frac{\left((1 / n) \sum_{i}\left(u_{i}-\bar{u}\right)^{2}\right)^{1 / 2}}{\bar{u}}
$$

Again use change of variable $u=u^{\prime} / z$ and fix denominator to 1 .

$$
\begin{array}{lll}
\min \frac{\left((1 / n) \sum_{i}\left(u_{i}-\bar{u}\right)^{2}\right)^{1 / 2}}{\bar{u}} & \min \left((1 / n) \sum_{i}\left(u_{i}^{\prime}-1\right)^{2}\right)^{1 / 2} \bigwedge_{n} & \text { becomes } \\
A u \geq b & A u^{\prime} \geq b z & \begin{array}{l}
\text { Can drop } \\
\text { exponent } \\
\text { to make }
\end{array} \\
u \geq 0 & (1 / n) \sum_{i} u_{i}^{\prime}=1 & \begin{array}{l}
\text { problem } \\
\text { convex }
\end{array} \\
& & u^{\prime} \geq 0
\end{array}
$$

Coefficient of Variation

$$
\frac{\left((1 / n) \sum_{i}\left(u_{i}-\bar{u}\right)^{2}\right)^{1 / 2}}{\bar{u}}
$$

Fractional nonlinear model:
$\max \frac{\left((1 / n) \sum_{i}\left(u_{i}-\bar{u}\right)^{2}\right)^{1 / 2}}{\bar{u}}$

$$
\begin{aligned}
& \bar{u}=(1 / n) \sum_{i} u_{i} \\
& u_{i}=a_{i} x_{i}, 0 \leq x_{i} \leq b_{i}, \text { all } i, \quad \sum_{i} x_{i}=B
\end{aligned}
$$

Convex nonlinear $\min (1 / n) \sum_{i}\left(u_{i}^{\prime}-1\right)^{2}$ model:

$$
\begin{aligned}
& (1 / n) \sum_{i} u_{i}^{\prime}=1 \\
& u_{i}^{\prime}=a_{i} x_{i}^{\prime}, \quad 0 \leq x_{i}^{\prime} \leq b_{i} z, \text { all } i, \quad \sum_{i} x_{i}^{\prime}=B z
\end{aligned}
$$

McLoone Index

Rationale:

- Ratio of average utility below median to overall average.
- No one wants to be "below average."
- Pushes average up while pushing inequality down.

Problems:

- Violates Pigou-Dalton condition.
- Insensitive to upper half.

McLoone Index

$$
\frac{(1 / 2) \sum_{i: u_{i}<m} u_{i}}{\bar{u}}
$$

Fractional MILP model:

$$
\max \frac{\sum_{i} v_{i}}{\sum_{i} u_{i}}
$$

Defines median $m \longrightarrow m-M y_{i} \leq u_{i} \leq m+M\left(1-y_{i}\right)$, all i
Defines $v_{i}=u_{i}$ if $\longrightarrow v_{i} \leq u_{i}, v_{i} \leq M y_{i}$, all i
u_{i} is below median
$\rightarrow \sum_{i} y_{i}<n / 2$
Half of utilities
are below median
$u_{i}=a_{i} x_{i}, 0 \leq x_{i} \leq b_{i}$, all $i, \quad \sum_{i} x_{i}=B$
$\longrightarrow y_{i} \in\{0,1\}$, all i
Selects utilities below median

McLoone Index

$\frac{(1 / 2) \sum_{i: u,<m} u_{i}}{\bar{u}}$

MILP model: $\max \sum_{i} v_{i}^{\prime}$

$$
\begin{aligned}
& m^{\prime}-M y_{i} \leq u_{i}^{\prime} \leq m^{\prime}+M\left(1-y_{i}\right), \text { all } i \\
& v_{i}^{\prime} \leq u_{i}^{\prime}, v_{i}^{\prime} \leq M y_{i}, \text { all } i \\
& \sum_{i} y_{i}<n / 2 \\
& u_{i}^{\prime}=a_{i} x_{i}^{\prime}, 0 \leq x_{i}^{\prime} \leq b_{i} z, \text { all } i, \quad \sum_{i} x_{i}^{\prime}=B z \\
& y_{i} \in\{0,1\}, \text { all } i
\end{aligned}
$$

Gini Coefficient

$$
\frac{\left(1 / n^{2}\right) \sum_{i, j}\left|u_{i}-u_{j}\right|}{2 \bar{u}}
$$

Rationale:

- Relative mean difference between all pairs.
- Takes all differences into account.
- Related to area above cumulative distribution (Lorenz curve).
- Satisfies Pigou-Dalton condition.

Problems:

- Insensitive to shape of Lorenz curve, for a given area.

Gini Coefficient

$$
\frac{\left(1 / n^{2}\right) \sum_{i, j}\left|u_{i}-u_{j}\right|}{2 \bar{u}}
$$

Individuals ordered by increasing utility

Gini Coefficient

$$
\frac{\left(1 / n^{2}\right) \sum_{i, j}\left|u_{i}-u_{j}\right|}{2 \bar{u}}
$$

Fractional LP model: $\max \frac{\left(1 / 2 n^{2}\right) \sum_{i=}\left(u_{i}^{+}+u_{i j}\right)}{\bar{u}}$

$$
\begin{aligned}
& u_{i j}^{+} \geq u_{i}-u_{j}, u_{i j}^{-} \geq u_{j}-u_{i}, \text { all } i, j \\
& \bar{u}=(1 / n) \sum_{i} u_{i} \\
& u_{i}=a_{i} x_{i}, 0 \leq x_{i} \leq b_{i}, \text { all } i, \quad \sum_{i} x_{i}=B
\end{aligned}
$$

LP model: $\max \left(1 / 2 n^{2}\right) \sum_{i j}\left(u_{i j}^{+}+u_{j}^{j}\right)$

$$
\begin{aligned}
& u_{i j}^{+} \geq u_{i}^{\prime}-u_{j}^{\prime}, u_{i j}^{-} \geq u_{j}^{\prime}-u_{i}^{\prime}, \text { all } i, j \\
& (1 / n) \sum_{i} u_{i}^{\prime}=1 \\
& u_{i}^{\prime}=a_{i} x_{i}^{\prime}, \quad 0 \leq x_{i}^{\prime} \leq b_{i} z, \text { all } i, \quad \sum_{i} x_{i}^{\prime}=B z
\end{aligned}
$$

Atkinson Index

$$
1-(\underbrace{(1 / n) \sum_{i}\left(\frac{x_{i}}{\bar{x}}\right)^{p}}_{\uparrow})^{1 / p}
$$

Rationale:

- Best seen as measuring inequality of resources x_{i}.
- Assumes allotment y of resources results in utility y^{p}
- This is average utility per individual.

Atkinson Index

$$
1-\frac{\left((1 / n) \sum_{i}\left(\frac{x_{i}}{\bar{x}}\right)^{p}\right)^{1 / p}}{\hat{\tau}}
$$

- Best seen as measuring inequality of resources x_{i}.
- Assumes allotment y of resources results in utility y^{p}
- This is average utility per individual.
- This is equal resource allotment to each individual that results in same total utility.

Atkinson Index

$$
1-\left((1 / n) \sum_{i}\left(\frac{x_{i}}{\bar{x}}\right)^{p}\right)^{1 / p}
$$

Rationale:

- Best seen as measuring inequality of resources x_{i}.
- Assumes allotment y of resources results in utility y^{p}
- This is average utility per individual.
- This is equal resource allotment to each individual that results in same total utility.
- This is additional resources per individual necessary to sustain inequality.

Atkinson Index

$$
1-\left((1 / n) \sum_{i}\left(\frac{x_{i}}{\bar{x}}\right)^{p}\right)^{1 / p}
$$

Rationale:

- p indicates "importance" of equality.
- Similar to L_{p} norm
- $p=1$ means inequality has no importance
- $p=0$ is Rawlsian (measures utility of worst-off individual).

Problems:

- Measures utility, not equality.
- Doesn't evaluate distribution of utility, only of resources.
- p describes utility curve, not importance of equality.

Atkinson Index

$$
1-\left((1 / n) \sum_{i}\left(\frac{x_{i}}{\bar{x}}\right)^{p}\right)^{1 / p}
$$

To minimize index, solve fractional problem

$$
\begin{aligned}
& \max \sum_{i}\left(\frac{x_{i}}{\bar{x}}\right)^{p}=\frac{\sum_{i} x_{i}^{p}}{\bar{x}^{p}} \\
& A x \geq b, \quad x \geq 0
\end{aligned}
$$

After change of variable $x_{i}=x_{i}^{\prime} / z$, this becomes

Atkinson Index

$$
1-\left((1 / n) \sum_{i}\left(\frac{x_{i}}{\bar{x}}\right)^{p}\right)^{1 / p}
$$

Fractional nonlinear model:

$$
\begin{aligned}
& \max \frac{\sum_{i} x_{i}^{p}}{\bar{x}^{p}} \\
& \bar{x}=(1 / n) \sum_{i} x_{i} \\
& \sum_{i} x_{i}=B, \quad x \geq 0
\end{aligned}
$$

Concave nonlinear $\max \sum_{i} x_{i}^{\prime \rho}$ model:

$$
\begin{aligned}
& (1 / n) \sum_{i} x_{i}^{\prime}=1 \\
& \sum_{i} x_{i}^{\prime}=B z, x^{\prime} \geq 0
\end{aligned}
$$

Hoover Index
 (1/2) $\frac{\sum_{i}\left|u_{i}-\bar{u}\right|}{\sum_{i} u_{i}}$

Rationale:

- Fraction of total utility that must be redistributed to achieve total equality.
- Proportional to maximum vertical distance between Lorenz curve and 45° line.
- Originated in regional studies, population distribution, etc. (1930s).
- Easy to calculate.

Problems:

- Less informative than Gini coefficient?

Hoover Index

Hoover index = max vertical distance
Individuals ordered by increasing utility

Theil Index

$$
(1 / n) \sum_{i}\left(\frac{u_{i}}{\bar{u}} \ln \frac{u_{i}}{\bar{u}}\right)
$$

Rationale:

- One of a family of entropy measures of inequality.
- Index is zero for complete equality (maximum entropy)
- Measures nonrandomness of distribution.
- Described as stochastic version of Hoover index.

Problems:

- Motivation unclear.
- A. Sen doesn't like it.

Theil Index

$$
(1 / n) \sum_{i}\left(\frac{u_{i}}{\bar{u}} \ln \frac{u_{i}}{\bar{u}}\right)
$$

$\begin{aligned} & \text { Nasty nonconvex } \quad \min (1 / n) \\ & \text { model: }\end{aligned}\left(\frac{u_{i}}{\bar{u}} \ln \frac{u_{i}}{\bar{u}}\right)$

$$
\begin{aligned}
& \bar{u}=(1 / n) \sum_{i} u_{i} \\
& u_{i}=a_{i} x_{i}, 0 \leq x_{i} \leq b_{i}, \text { all } i, \quad \sum_{i} x_{i}=B
\end{aligned}
$$

A Fair Division Problem

- From Yaari and Bar-Hillel, 1983.
- 12 grapefruit and 12 avocados are to be divided between Persons 1 and 2.
- How to divide justly?

Utility provided by one fruit of each kind

	Person 1	Person 2
	100	50
	0	50

A Fair Division Problem

The optimization problem:

$$
\begin{aligned}
& \max f\left(u_{1}, u_{2}\right) \\
& u_{1}=100 x_{11}, \quad u_{2}=50 x_{12}+50 x_{22} \\
& x_{i 1}+x_{i 2}=12, \quad i=1,2 \\
& x_{i j} \geq 0, \text { all } i, j
\end{aligned}
$$

where $u_{i}=$ utility for person i
$x_{i j}=$ allocation of fruit i (grapefruit, avocados)
to person j

Utilitarian Solution

$$
f\left(u_{1}, u_{2}\right)=u_{1}+u_{2}
$$

Rawlsian (maximin) solution

$$
f\left(u_{1}, u_{2}\right)=\min \left\{u_{1}, u_{2}\right\}
$$

Bargaining Solutions

- A bargaining solution is an equilibrium allocation in the sense that none of the parties wish to bargain further.
- Because all parties are "satisfied" in some sense, the outcome may be viewed as "fair."
- Bargaining models have a default outcome, which is the result of a failure to reach agreement.
- The default outcome can be seen as a starting point.

Bargaining Solutions

- Several proposals for the default outcome (starting point):
- Zero for everyone. Useful when only the resources being allocated are relevant to fairness of allocation.
- Equal split. Resources (not necessarily utilities) are divided equally. May be regarded as a "fair" starting point.
- Strongly pareto set. Each party receives resources that can benefit no one else. Parties can always agree on this.

Nash Bargaining Solution

- Maximizes the product of the gains achieved by the bargainers, relative to the fallback position.
- Not the same as Nash equilibrium.
- Also known as proportional fairness.
- Popular in engineering applications.
- Used in bandwidth allocation, traffic signal timing, etc.

Nash Bargaining Solution

- The Nash bargaining solution maximizes the social welfare function

$$
f(u)=\prod_{i}\left(u_{i}-d_{i}\right)
$$

where d is the default outcome.

- Assume feasible set is convex, so that Nash solution is unique (due to strict concavity of f).

Nash Bargaining Solution

Nash Bargaining Solution

Nash Bargaining Solution

Nash Bargaining Solution

- The optimization problem has a concave objective function if we maximize $\log f(u)$.

$$
\begin{aligned}
& \max \log \prod_{i}\left(u_{i}-d_{i}\right)=\sum_{i} \log \left(u_{i}-d_{i}\right) \\
& u \in S
\end{aligned}
$$

- Problem is relatively easy if feasible set S is convex.

Nash Bargaining Solution

From Zero

Nash Bargaining Solution

From Equality

Nash Bargaining Solution

- Strongly pareto set gives Person 2 all 12 avocados.
- Nothing for Person 1.
- Results in utility $\left(u_{1}, u_{2}\right)=(0,600)$

Utility provided by one fruit of each kind

	Person 1	Person 2
	100	50
	0	50

Nash Bargaining Solution

From Strongly Pareto Set

Axiomatic Justification

- Axiom 1. Invariance under translation and rescaling.
- If we map $u_{i} \rightarrow a_{i} u_{i}+b_{i}, d_{i} \rightarrow a_{i} d_{i}+b_{i}$, then bargaining solution $u_{i}^{\star} \rightarrow a_{i} u_{i}^{\star}+b_{i}$.

This is cardinal noncomparability.

Axiomatic Justification

- Axiom 1. Invariance under translation and rescaling.
- If we map $u_{i} \rightarrow a_{i} u_{i}+b_{i}, d_{i} \rightarrow a_{i} d_{i}+b_{i}$, then bargaining solution $u_{i}^{*} \rightarrow a_{i} u_{i}^{*}+b_{i}$.

- Strong assumption - failed, e.g., by utilitarian welfare function

Axiomatic Justification

- Axiom 2. Pareto optimality.
- Bargaining solution is pareto optimal.
- Axiom 3. Symmetry.
- If all $d_{i}^{\prime} s$ are equal and feasible set is symmetric, then all $u_{i}^{*} s$ are equal in bargaining solution.

Axiomatic Justification

- Axiom 4. Independence of irrelevant alternatives.
- Not the same as Arrow's axiom.
- If u^{*} is a solution with respect to d...

Axiomatic Justification

- Axiom 4. Independence of irrelevant alternatives.
- Not the same as Arrow's axiom.
- If u^{*} is a solution with respect to d, then it is a solution in a smaller feasible set that contains u^{*} and d.

Axiomatic Justification

- Axiom 4. Independence of irrelevant alternatives.
- Not the same as Arrow's axiom.
- If u^{*} is a solution with respect to d, then it is a solution in a smaller feasible set that contains u^{*} and d.
- This basically says that the solution behaves like an optimum.

u_{1}

Axiomatic Justification

Theorem. Exactly one solution satisfies Axioms 1-4, namely the Nash bargaining solution.

Proof (2 dimensions).

First show that the Nash solution satisfies the axioms.

Axiom 1. Invariance under transformation. If

$$
\begin{gathered}
\prod_{i}\left(u_{i}^{*}-d_{1}\right) \geq \prod_{i}\left(u_{i}-d_{1}\right) \\
\text { then } \\
\prod_{i}\left(\left(a_{i} u_{i}^{*}+b_{i}\right)-\left(a_{i} d_{i}+b_{i}\right)\right) \geq \prod_{i}\left(\left(a_{i} u_{i}+b_{i}\right)-\left(a_{i} d_{i}+b_{i}\right)\right)
\end{gathered}
$$

Axiomatic Justification

Axiom 2. Pareto optimality. Clear because social welfare function is strictly monotone increasing.

Axiom 3. Symmetry. Obvious.

Axiom 4. Independence of irrelevant alternatives. Follows from the fact that u^{*} is an optimum.

Now show that only the Nash solution satisfies the axioms...

Axiomatic Justification

Let u^{*} be the Nash solution for a given problem. Then it satisfies the axioms with respect to d. Select a transformation that sends

$$
\left(u_{1}, u_{2}\right) \rightarrow(1,1), \quad\left(d_{1}, d_{2}\right) \rightarrow(0,0)
$$

The transformed problem has Nash solution (1,1), by Axiom 1:

Axiomatic Justification

Let u^{*} be the Nash solution for a given problem. Then it satisfies the axioms with respect to d. Select a transformation that sends

$$
\left(u_{1}, u_{2}\right) \rightarrow(1,1), \quad\left(d_{1}, d_{2}\right) \rightarrow(0,0)
$$

The transformed problem has Nash solution (1,1), by Axiom 1:

By Axioms 2 \& 3, $(1,1)$ is the only bargaining solution in the triangle:

Axiomatic Justification

Let u^{*} be the Nash solution for a given problem. Then it satisfies the axioms with respect to d. Select a transformation that sends

$$
\left(u_{1}, u_{2}\right) \rightarrow(1,1), \quad\left(d_{1}, d_{2}\right) \rightarrow(0,0)
$$

The transformed problem has Nash solution (1,1), by Axiom 1:

By Axioms 2 \& 3, $(1,1)$ is the only bargaining solution in the triangle:

So by Axiom 4, $(1,1)$ is the only bargaining solution in blue set.

Axiomatic Justification

Let u^{*} be the Nash solution for a given problem. Then it satisfies the axioms with respect to d. Select a transformation that sends

$$
\left(u_{1}, u_{2}\right) \rightarrow(1,1), \quad\left(d_{1}, d_{2}\right) \rightarrow(0,0)
$$

The transformed problem has Nash solution (1,1), by Axiom 1:

So by Axiom 4, $(1,1)$ is the only bargaining solution in blue set.

By Axiom 1, u^{*} is the only bargaining solution in the original problem.

Axiomatic Justification

- Problems with axiomatic justification.
- Axiom 1 (invariance under transformation) is very strong.
- Axiom 1 denies interpersonal comparability.
- So how can it reflect moral concerns?

Axiomatic Justification

- Problems with axiomatic justification.
- Axiom 1 (invariance under transformation) is very strong.
- Axiom 1 denies interpersonal comparability.
- So how can it reflect moral concerns?
- Most attention has been focused on Axiom 4 (independence of irrelevant alternatives).
- Will address this later.

Bargaining Justification

Players 1 and 2 make offers s, t.

Bargaining Justification

Players 1 and 2 make offers s, t.
Let $p=P$ (player 2 will reject s), as estimated by player 1 .

Bargaining Justification

Players 1 and 2 make offers s, t.
Let $p=P$ (player 2 will reject s), as estimated by player 1 .
Then player 1 will stick with s, rather than make a counteroffer, if

Bargaining Justification

Players 1 and 2 make offers s, t.
Let $p=P$ (player 2 will reject s), as estimated by player 1 .
Then player 1 will stick with s, rather than make a counteroffer, if

$$
(1-p) s_{1}+p d_{1} \geq t_{1}
$$

So player 1 will stick with s if

$$
p \leq \frac{s_{1}-t_{1}}{s_{1}-d_{1}}=r_{1}
$$

Bargaining Justification

It is rational for player 1 to make a counteroffer s^{\prime}, rather than player 2, if

$$
r_{1}=\frac{s_{1}-t_{1}}{s_{1}-d_{1}} \leq \frac{t_{2}-s_{2}}{t_{2}-d_{2}}=r_{2}
$$

So player 1 will stick with s if

$$
p \leq \frac{s_{1}-t_{1}}{s_{1}-d_{1}}=r_{1}
$$

Bargaining Justification

It is rational for player 1 to make a counteroffer s^{\prime}, rather than player 2, if

$$
r_{1}=\frac{s_{1}-t_{1}}{s_{1}-d_{1}} \leq \frac{t_{2}-s_{2}}{t_{2}-d_{2}}=r_{2}
$$

It is rational for player 2 to make the next
 counteroffer if

$$
r_{1}^{\prime}=\frac{s_{1}^{\prime}-t_{1}}{s_{1}^{\prime}-d_{1}} \geq \frac{t_{2}-s_{2}^{\prime}}{t_{2}-d_{2}}=r_{2}^{\prime}
$$

u_{1}

Bargaining Justification

It is rational for player 1 to make a counteroffer s^{\prime}, rather than player 2, if

$$
r_{1}=\frac{s_{1}-t_{1}}{s_{1}-d_{1}} \leq \frac{t_{2}-s_{2}}{t_{2}-d_{2}}=r_{2}
$$

It is rational for player 2 to make the next counteroffer if

$$
r_{1}^{\prime}=\frac{s_{1}^{\prime}-t_{1}}{s_{1}^{\prime}-d_{1}} \geq \frac{t_{2}-s_{2}^{\prime}}{t_{2}-d_{2}}=r_{2}^{\prime}
$$

But

$$
\frac{s_{1}-t_{1}}{s_{1}-d_{1}} \leq \frac{t_{2}-s_{2}}{t_{2}-d_{2}}
$$

Bargaining Justification

It is rational for player 1 to make a counteroffer s^{\prime}, rather than player 2, if

$$
r_{1}=\frac{s_{1}-t_{1}}{s_{1}-d_{1}} \leq \frac{t_{2}-s_{2}}{t_{2}-d_{2}}=r_{2}
$$

It is rational for player 2 to make the next counteroffer if

$$
r_{1}^{\prime}=\frac{s_{1}^{\prime}-t_{1}}{s_{1}^{\prime}-d_{1}} \geq \frac{t_{2}-s_{2}^{\prime}}{t_{2}-d_{2}}=r_{2}^{\prime}
$$

But

$$
\begin{aligned}
& \text { But } \begin{array}{l}
\frac{s_{1}-t_{1}}{s_{1}-d_{1}} \leq \frac{t_{2}-s_{2}}{t_{2}-d_{2}} \\
\Longleftrightarrow \\
\frac{t_{1}-d_{1}}{s_{1}-d_{1}} \geq \frac{s_{2}-d_{2}}{t_{2}-d_{2}}
\end{array},=\text {. }
\end{aligned}
$$

Bargaining Justification

So we have

$$
\left(s_{1}-d_{1}\right)\left(s_{2}-d_{2}\right) \leq\left(t_{1}-d_{1}\right)\left(t_{2}-d_{2}\right)
$$

It is rational for player 2 to make the next

Bargaining Justification

So we have

$$
\left(s_{1}-d_{1}\right)\left(s_{2}-d_{2}\right) \leq\left(t_{1}-d_{1}\right)\left(t_{2}-d_{2}\right)
$$

It is rational for player 2 to make the next counteroffer if

$$
r_{1}^{\prime}=\frac{s_{1}^{\prime}-t_{1}}{s_{1}^{\prime}-d_{1}} \geq \frac{t_{2}-s_{2}^{\prime}}{t_{2}-d_{2}}=r_{2}^{\prime}
$$

Similarly $\frac{s_{1}^{\prime}-t_{1}}{s_{1}^{\prime}-d_{1}^{\prime}} \geq \frac{t_{2}-s_{2}^{\prime}}{t_{2}-d_{2}}$

Bargaining Justification

So we have

$$
\left(s_{1}-d_{1}\right)\left(s_{2}-d_{2}\right) \leq\left(t_{1}-d_{1}\right)\left(t_{2}-d_{2}\right)
$$

It is rational for player 2 to make the next counteroffer if

$$
r_{1}^{\prime}=\frac{s_{1}^{\prime}-t_{1}}{s_{1}^{\prime}-d_{1}} \geq \frac{t_{2}-s_{2}^{\prime}}{t_{2}-d_{2}}=r_{2}^{\prime}
$$

Similarly

$$
\begin{aligned}
& \text { nilarly } \frac{s_{1}^{\prime}-t_{1}}{s_{1}^{\prime}-d_{1}} \geq \frac{t_{2}-s_{2}^{\prime}}{t_{2}-d_{2}} \\
& \Longleftrightarrow \frac{t_{1}-d_{1}}{s_{1}^{\prime}-d_{1}} \leq \frac{s_{2}^{\prime}-d_{2}}{t_{2}-d_{2}}
\end{aligned}
$$

Bargaining Justification

So we have

$$
\left(s_{1}-d_{1}\right)\left(s_{2}-d_{2}\right) \leq\left(t_{1}-d_{1}\right)\left(t_{2}-d_{2}\right)
$$

and we have

$$
\left(t_{1}-d_{1}\right)\left(t_{2}-d_{2}\right) \leq\left(s_{1}^{\prime}-d_{1}\right)\left(s_{2}^{\prime}-d_{2}\right)
$$

Similarly

$$
\begin{aligned}
\text { nilarly } & \frac{s_{1}^{\prime}-t_{1}}{s_{1}^{\prime}-d_{1}} \geq \frac{t_{2}-s_{2}^{\prime}}{t_{2}-d_{2}} \\
\Longleftrightarrow & \frac{t_{1}-d_{1}}{s_{1}^{\prime}-d_{1}} \leq \frac{s_{2}^{\prime}-d_{2}}{t_{2}-d_{2}}
\end{aligned}
$$

Bargaining Justification

So we have $\quad\left(s_{1}-d_{1}\right)\left(s_{2}-d_{2}\right) \leq\left(t_{1}-d_{1}\right)\left(t_{2}-d_{2}\right)$
and we have $\left(t_{1}-d_{1}\right)\left(t_{2}-d_{2}\right) \leq\left(s_{1}^{\prime}-d_{1}\right)\left(s_{2}^{\prime}-d_{2}\right)$

This implies an improvement in the Nash social welfare function

Bargaining Justification

So we have $\quad\left(s_{1}-d_{1}\right)\left(s_{2}-d_{2}\right) \leq\left(t_{1}-d_{1}\right)\left(t_{2}-d_{2}\right)$ and we have

$$
\left(t_{1}-d_{1}\right)\left(t_{2}-d_{2}\right) \leq\left(s_{1}^{\prime}-d_{1}\right)\left(s_{2}^{\prime}-d_{2}\right)
$$

This implies an improvement in the Nash social welfare function.

Given a minimum distance between offers, continued bargaining converges to Nash solution.

Bargaining Justification

Problem with bargaining justifications.

Why should a bargaining procedure that is rational from an individual viewpoint result in a just distribution?

Why should "procedural justice" = justice?
For example, is the outcome of bargaining in a free market necessarily just?
A deep question in political theory.

Also applies to political districting analysis, currently a hot topic in USA.

Raiffa-Kalai-Smorodinsky Bargaining Solution

- This approach begins with a critique of the Nash bargaining solution.

Raiffa-Kalai-Smorodinsky Bargaining Solution

- This approach begins with a critique of the Nash bargaining solution.
- The new Nash solution is worse for player 2 even though the feasible set is larger.

Raiffa-Kalai-Smorodinsky Bargaining Solution

- Proposal: Bargaining solution is pareto optimal point on line from d to ideal solution.

Raiffa-Kalai-Smorodinsky Bargaining Solution

- Proposal: Bargaining solution is pareto optimal point on line from d to ideal solution.
- The players receive an equal fraction of their possible utility gains.

Raiffa-Kalai-Smorodinsky Bargaining Solution

- Proposal: Bargaining solution is pareto optimal point on line from d to ideal solution.
- Replace Axiom 4 with Axiom 4' (Monotonicity): A larger feasible set with same ideal solution results in a bargaining solution that is better (or no worse) for all players.

Raiffa-Kalai-Smorodinsky Bargaining Solution

- Optimization model.
- Not an optimization problem over original feasible set (we gave up Axiom 4).
- But it is an optimization problem (pareto optimality) over the line segment from d to ideal solution.

$$
\begin{aligned}
& \max \sum_{i} u_{i} \\
& \left(g_{1}-d_{1}\right)\left(u_{i}-d_{i}\right)=\left(g_{i}-d_{i}\right)\left(u_{1}-d_{1}\right), \text { all } i \\
& u \in S \\
& \frac{u_{1}^{*}-d_{1}}{u_{2}^{*}-d_{2}}=\frac{g_{1}-d_{1}}{g_{2}-d_{2}}
\end{aligned}
$$

Raiffa-Kalai-Smorodinsky Bargaining Solution

- Optimization model.
- Not an optimization problem over original feasible set (we gave up Axiom 4).
- But it is an optimization problem (pareto optimality) over the line segment from d to ideal solution.

Raiffa-Kalai-Smorodinsky Bargaining Solution

- Optimization model.
- Not an optimization problem over original feasible set (we gave up Axiom 4).
- But it is an optimization problem (pareto optimality) over the line segment from d to ideal solution.

Linear constraint

Raiffa-Kalai-Smorodinsky Bargaining Solution

From Zero

Raiffa-Kalai-Smorodinsky Bargaining Solution

From Equality

Raiffa-Kalai-Smorodinsky Bargaining Solution

From Strong Pareto Set

Axiomatic Justification

- Axiom 1. Invariance under transformation.
- Axiom 2. Pareto optimality.
- Axiom 3. Symmetry.
- Axiom 4'. Monotonicity.

Axiomatic Justification

Theorem. Exactly one solution satisfies Axioms 1-4', namely the RKS bargaining solution.

Proof (2 dimensions).

Easy to show that RKS solution satisfies the axioms.

Now show that only the RKS solution satisfies the axioms.

Axiomatic Justification

Let u^{*} be the RKS solution for a given problem. Then it satisfies the axioms with respect to d. Select a transformation that sends

$$
\left(g_{1}, g_{2}\right) \rightarrow(1,1), \quad\left(d_{1}, d_{2}\right) \rightarrow(0,0)
$$

The transformed problem has RKS solution u^{\prime}, by Axiom 1:

Axiomatic Justification

Let u^{*} be the RKS solution for a given problem. Then it satisfies the axioms with respect to d. Select a transformation that sends

$$
\left(g_{1}, g_{2}\right) \rightarrow(1,1), \quad\left(d_{1}, d_{2}\right) \rightarrow(0,0)
$$

The transformed problem has RKS solution u^{\prime}, by Axiom 1:

By Axioms 2 \& 3, u^{\prime} is the only bargaining solution in the red polygon:

Axiomatic Justification

Let u^{*} be the RKS solution for a given problem. Then it satisfies the axioms with respect to d. Select a transformation that sends

$$
\left(g_{1}, g_{2}\right) \rightarrow(1,1), \quad\left(d_{1}, d_{2}\right) \rightarrow(0,0)
$$

The transformed problem has RKS solution u^{\prime}, by Axiom 1 :

By Axioms 2 \& 3, u^{\prime} is the only bargaining solution in the red polygon:

The red polygon lies inside blue set.
$(1,1) \quad$ So by Axiom 4', its bargaining solution is no better than bargaining solution on blue set.
So u^{\prime} is the only bargaining solution on blue set.

Axiomatic Justification

Let u^{*} be the RKS solution for a given problem. Then it satisfies the axioms with respect to d. Select a transformation that sends

$$
\left(g_{1}, g_{2}\right) \rightarrow(1,1), \quad\left(d_{1}, d_{2}\right) \rightarrow(0,0)
$$

The transformed problem has RKS solution u^{\prime}, by Axiom 1:

By Axiom 1, u^{*} is the only bargaining solution in the original problem.

Axiomatic Justification

- Problems with axiomatic justification.
- Axiom 1 is still in effect.
- It denies interpersonal comparability.
- Dropping Axiom 4 sacrifices optimization of a social welfare function.
- This may not be necessary if Axiom 1 is rejected.
- Needs modification for > 2 players (more on this shortly).

Bargaining Justification

Resistance to an agreement s depends on sacrifice relative to sacrifice under no agreement. Here, player 2 is making a larger relative sacrifice:

$$
\frac{g_{1}-s_{1}}{g_{1}-d_{1}} \leq \frac{g_{2}-s_{2}}{g_{2}-d_{2}}
$$

Minimizing resistance to agreement requires minimizing

$$
\max _{i}\left\{\frac{g_{i}-s_{i}}{g_{i}-d_{i}}\right\}
$$

Bargaining Justification

Resistance to an agreement s depends on sacrifice relative to sacrifice under no agreement. Here, player 2 is making a larger relative sacrifice:

$$
\frac{g_{1}-s_{1}}{g_{1}-d_{1}} \leq \frac{g_{2}-s_{2}}{g_{2}-d_{2}}
$$

Minimizing resistance to agreement requires minimizing

$$
\max _{i}\left\{\frac{g_{i}-s_{i}}{g_{i}-d_{i}}\right\}
$$

or equivalently, maximizing

$$
\min _{i}\left\{\frac{s_{i}-d_{i}}{g_{i}-d_{i}}\right\}
$$

Bargaining Justification

Resistance to an agreement s depends on sacrifice relative to sacrifice under no agreement. Here, player 2 is making a larger relative sacrifice:

$$
\frac{g_{1}-s_{1}}{g_{1}-d_{1}} \leq \frac{g_{2}-s_{2}}{g_{2}-d_{2}}
$$

Minimizing resistance to agreement requires minimizing

$$
\max _{i}\left\{\frac{g_{i}-s_{i}}{g_{i}-d_{i}}\right\}
$$

or equivalently, maximizing

$$
\min _{i}\left\{\frac{s_{i}-d_{i}}{g_{i}-d_{i}}\right\}
$$

which is achieved by RKS point.

Bargaining Justification

This is the Rawlsian social contract argument applied to gains relative to the ideal.

Minimizing resistance to agreement requires minimizing

$$
\max _{i}\left\{\frac{g_{i}-s_{i}}{g_{i}-d_{i}}\right\}
$$

or equivalently, maximizing

$$
\min _{i}\left\{\frac{s_{i}-d_{i}}{g_{i}-d_{i}}\right\}
$$

which is achieved by RKS point.

Problem with RKS Solutioon

- However, the RKS solution is Rawlsian only for 2 players.
- In fact, RKS leads to counterintuitive results for 3 players.

Red triangle is feasible set.

RKS point is $d!$

Problem with RKS Solutioon

- However, the RKS solution is Rawlsian only for 2 players.
- In fact, KLS leads to counterintuitive results for 3 players.

Red triangle is feasible set.

RKS point is d !

Rawlsian point is u.

Summary

Summary

Summary

Combining Equity and Efficiency

- Utilitarian and Rawlsian distributions seem too extreme in practice.
- How to combine them?

Combining Equity and Efficiency

- Utilitarian and Rawlsian distributions seem too extreme in practice.
- How to combine them?
- Health care example 1:
- An large investment can extend the lives of a few terminal cancer victims a week (Rawlsian solution)
- Or prevent millions from contracting malaria (utilitarian solution).

Combining Equity and Efficiency

- Utilitarian and Rawlsian distributions seem too extreme in practice.
- How to combine them?
- Health care example 1:
- An large investment can extend the lives of a few terminal cancer victims a week (Rawlsian solution) Extreme!
- Or prevent millions from contracting malaria (utilitarian solution).

Combining Equity and Efficiency

- Utilitarian and Rawlsian distributions seem too extreme in practice.
- How to combine them?
- Health care example 2:
- A large investment can cure ALS, a horrible disease that afflicts 0.002% of population (Rawlsian solution)
- Or cure dandruff, which afflicts about 3 billion people, or half the population (utilitarian solution).

Combining Equity and Efficiency

- Utilitarian and Rawlsian distributions seem too extreme in practice.
- How to combine them?
- Health care example 2:
- A large investment can cure ALS, a horrible disease that afflicts 0.002% of population (Rawlsian solution)
- Or cure dandruff, which afflicts about 3 billion people, or half the population (utilitarian solution). Extreme!

Combining Equity and Efficiency

- Utilitarian and Rawlsian distributions seem too extreme in practice.
- How to combine them?
- One proposal:
- Maximize welfare of worst off (Rawlsian)...
- ...until this requires undue sacrifice from others
- That is, until marginal utility cost of helping the worst off becomes extreme.

Combining Equity and Efficiency

- In particular:
- Design a social welfare function (SWF) to be maximized
- Switch from Rawlsian to utilitarian when inequality exceeds Δ.

Combining Equity and Efficiency

- In particular:
- Design a social welfare function (SWF) to be maximized
- Switch from Rawlsian to utilitarian when inequality exceeds Δ.
- Build mixed integer programming model.
- Let $u_{i}=$ utility allocated to person i
- For 2 persons:
- Maximize $\min _{i}\left\{u_{1}, u_{2}\right\} \quad$ (Rawlsian) when $\left|u_{1}-u_{2}\right| \leq \Delta$
- Maximize $u_{1}+u_{2}$ (utilitarian) when $\left|u_{1}-u_{2}\right|>\Delta$

Two-person Model

Contours of social welfare function for 2 persons.

Two-person Model

Contours of social welfare function for 2 persons.

Rawlsian region $\min \left\{u_{1}, u_{2}\right\}$

Two-person Model

Contours of social welfare function for 2 persons.

Utilitarian region $u_{1}+u_{2}$

Rawlsian region
$\min \left\{u_{1}, u_{2}\right\}$

Person 1 is harder to treat.

But maximizing person 1's health requires too much sacrifice from person 2.

Feasible set

Advantages

- Only one parameter Δ
- Focus for debate.
- Δ has intuitive meaning (unlike weights)
- Examine consequences of different settings for Δ
- Find least objectionable setting
- Results in a consistent policy

Social Welfare Function

We want continuous contours...

Social Welfare Function

We want continuous contours...

So we use affine transform of Rawlsian criterion

Social Welfare Function

The social welfare problem becomes

$$
\max f\left(u_{1}, u_{2}\right)
$$

$$
f\left(u_{1}, u_{2}\right)=\left\{\begin{array}{ll}
2 \min \left\{u_{1}, u_{2}\right\}+\Delta, & \text { if }\left|u_{1}-u_{2}\right| \leq \Delta \\
u_{1}+u_{2}, & \text { otherwise }
\end{array}\right\}
$$

constraints on feasible set

MILP Model

Hypograph (epigraph when minimizing) is union of 2 polyhedra.

MILP Model

Epigraph is union of 2 polyhedra. Because they have different recession cones, there is no MILP model.

Recession
$(0,1,0)$
directions
$\left(u_{1}, u_{2}, z\right)$

$(0,1,1)$

MILP Model

Impose constraints $\left|u_{1}-u_{2}\right| \leq M$

MILP Model

This equalizes recession cones.

Recession directions
$\left(u_{1}, u_{2}, z\right)$

MILP Model

We have the model...

$$
\begin{aligned}
& \max z \\
& z \leq 2 u_{i}+\Delta+(M-\Delta) \delta, \quad i=1,2 \\
& z \leq u_{1}+u_{2}+\Delta(1-\delta) \\
& u_{1}-u_{2} \leq M, \quad u_{2}-u_{1} \leq M \\
& u_{1}, u_{2} \geq 0 \\
& \delta \in\{0,1\} \\
& \text { constraints on feasible set }
\end{aligned}
$$

MILP Model

We have the model...

$$
\begin{aligned}
& \max z \\
& z \leq 2 u_{i}+\Delta+(M-\Delta) \delta, \quad i=1,2 \\
& z \leq u_{1}+u_{2}+\Delta(1-\delta) \\
& u_{1}-u_{2} \leq M, \quad u_{2}-u_{1} \leq M \\
& u_{1}, u_{2} \geq 0 \\
& \delta \in\{0,1\}
\end{aligned}
$$

This is a convex hull formulation.

n-person Model

Rewrite the 2-person social welfare function as...

$$
\begin{gathered}
f\left(u_{1}, u_{2}\right)=\Delta+2 u_{\text {min }}+\left(u_{1}-u_{\text {min }}-\Delta\right)^{+}+\left(u_{2}-u_{\text {min }}-\Delta\right)^{+} \\
\min \left\{u_{1}, u_{2}\right\} \\
\alpha^{+}=\max \{0, \alpha\}
\end{gathered}
$$

n-person Model

Rewrite the 2-person social welfare function as...

$$
\begin{gathered}
f\left(u_{1}, u_{2}\right)=\Delta+2 u_{\text {min }}+\left(u_{1}-u_{\text {min }}-\Delta\right)^{+}+\left(u_{2}-u_{\text {min }}-\Delta\right)^{+} \\
\min \left\{u_{1}, u_{2}\right\} \\
\alpha^{+}=\max \{0, \alpha\}
\end{gathered}
$$

This can be generalized to n persons:

$$
f(u)=(n-1) \Delta+n u_{\min }+\sum_{j=1}^{n}\left(u_{1}-u_{\min }-\Delta\right)^{+}
$$

n-person Model

Rewrite the 2-person social welfare function as...

$$
\begin{gathered}
f\left(u_{1}, u_{2}\right)=\Delta+2 u_{\text {min }}+\left(u_{1}-u_{\text {min }}-\Delta\right)^{+}+\left(u_{2}-u_{\text {min }}-\Delta\right)^{+} \\
\min \left\{u_{1}, u_{2}\right\} \\
\alpha^{+}=\max \{0, \alpha\}
\end{gathered}
$$

This can be generalized to n persons:

$$
f(u)=(n-1) \Delta+n u_{\min }+\sum_{j=1}^{n}\left(u_{1}-u_{\min }-\Delta\right)^{+}
$$

Epigraph is a union of $n!$ polyhedra with same recession direction $(u, z)=(1, \ldots, 1, n)$ if we require $\left|u_{i}-u_{j}\right| \leq M$

So there is an MILP model...

n-person MILP Model

To avoid $n!0-1$ variables, add auxiliary variables $w_{i j}$

$$
\begin{aligned}
& \max z \\
& z \leq u_{i}+\sum_{j \neq i} w_{i j}, \text { all } i \\
& w_{i j} \leq \Delta+u_{i}+\delta_{i j}(M-\Delta), \text { all } i, j \text { with } i \neq j \\
& w_{i j} \leq u_{j}+\left(1-\delta_{i j}\right) \Delta, \text { all } i, j \text { with } i \neq j \\
& u_{i}-u_{j} \leq M, \text { all } i, j \\
& u_{i} \geq 0, \text { all } i \\
& \delta_{i j} \in\{0,1\}, \text { all } i, j \text { with } i \neq j
\end{aligned}
$$

n-person MILP Model

To avoid $n!0-1$ variables, add auxiliary variables $w_{i j}$

$$
\begin{aligned}
& \max z \\
& z \leq u_{i}+\sum_{j \neq i} w_{i j}, \text { all } i \\
& w_{i j} \leq \Delta+u_{i}+\delta_{i j}(M-\Delta), \text { all } i, j \text { with } i \neq j \\
& w_{i j} \leq u_{j}+\left(1-\delta_{i j}\right) \Delta, \text { all } i, j \text { with } i \neq j \\
& u_{i}-u_{j} \leq M, \text { all } i, j \\
& u_{i} \geq 0, \text { all } i \\
& \delta_{i j} \in\{0,1\}, \text { all } i, j \text { with } i \neq j
\end{aligned}
$$

Theorem. The model is correct (not easy to prove).

n-person MILP Model

To avoid $n!0-1$ variables, add auxiliary variables $w_{i j}$

$$
\begin{aligned}
& \max z \\
& z \leq u_{i}+\sum_{j \neq i} w_{i j}, \text { all } i \\
& w_{i j} \leq \Delta+u_{i}+\delta_{i j}(M-\Delta), \text { all } i, j \text { with } i \neq j \\
& w_{i j} \leq u_{j}+\left(1-\delta_{i j}\right) \Delta, \text { all } i, j \text { with } i \neq j \\
& u_{i}-u_{j} \leq M, \text { all } i, j \\
& u_{i} \geq 0, \text { all } i \\
& \delta_{i j} \in\{0,1\}, \text { all } i, j \text { with } i \neq j
\end{aligned}
$$

Theorem. The model is correct (not easy to prove).
Theorem. This is a convex hull formulation (not easy to prove).

Pigou-Dalton Condition

The SWF satisfies Pigou-Dalton for $n=2$ but not for $n \geq 3$.

But it satisfies a slightly weaker Cheateauneuf-Moyes condition.

Assume $u_{1}=0$

Pigou-Dalton Condition

The SWF satisfies Pigou-Dalton for $n=2$ but not for $n \geq 3$.

But it satisfies a slightly weaker Cheateauneuf-Moyes condition.

It examines transfers from people at the top (all sacrificing equally) to people at the bottom (all benefiting

Assume $u_{1}=0$ equally)

n-group Model

In practice, funds may be allocated to groups of different sizes
For example, disease/treatment categories.
Let $\bar{u}_{i}=$ average utility gained by a person in group i

$$
n_{i}=\text { size of group } i
$$

n-group Model

2-person case with $n_{1}<n_{2}$. Contours have slope $=n_{1} / n_{2}$

n-group MILP Model

Again add auxiliary variables $w_{i j}$

$$
\begin{aligned}
& \max z \\
& z \leq\left(n_{i}-1\right) \Delta+n_{i} \bar{u}_{i}+\sum_{j \neq i} w_{i j}, \text { all } i \\
& w_{i j} \leq n_{j}\left(\bar{u}_{i}+\Delta\right)+\delta_{i j} n_{j}(M-\Delta), \text { all } i, j \text { with } i \neq j \\
& w_{i j} \leq \bar{u}_{j}+\left(1-\delta_{i j}\right) n_{j} \Delta, \text { all } i, j \text { with } i \neq j \\
& \bar{u}_{i}-\bar{u}_{j} \leq M, \text { all } i, j \\
& \bar{u}_{i} \geq 0, \text { all } i \\
& \delta_{i j} \in\{0,1\}, \text { all } i, j \text { with } i \neq j
\end{aligned}
$$

Theorem. The model is correct.
Theorem. This is a convex hull formulation.

Health Example

Measure utility in QALYs (quality-adjusted life years).
QALY and cost data based on Briggs \& Gray, (2000) etc.
Each group is a disease/treatment pair.
Treatments are discrete, so group funding is all-or-nothing.
Divide groups into relatively homogeneous subgroups.
u_{1}

Health Example

Add constraints to define feasible set...
$\max z$

$$
z \leq\left(n_{i}-1\right) \Delta+n_{i} \bar{u}_{i}+\sum_{j \neq i} w_{i j}, \text { all } i
$$

$$
w_{i j} \leq n_{j}\left(\bar{u}_{i}+\Delta\right)+\delta_{i j} n_{j}(M-\Delta), \text { all } i, j \text { with } i \neq j
$$

$$
w_{i j} \leq \bar{u}_{j}+\left(1-\delta_{i j}\right) n_{j} \Delta, \text { all } i, j \text { with } i \neq j
$$

$$
\bar{u}_{i}-\bar{u}_{j} \leq M, \text { all } i, j
$$

$$
\bar{u}_{i} \geq 0, \text { all } i
$$

$$
\delta_{i j} \in\{0,1\}, \text { all } i, j \text { with } i \neq j
$$

$$
\bar{u}_{i}=q_{i} y_{i}+\alpha_{i}
$$

$\sum_{i} n_{i} c_{i} y_{i} \leq$ budget
$y_{i} \in\{0,1\}$, all i
y_{i} indicates
whether
subgroup i is funded

Intervention	Cost per person c_{i}	QALYs gained	Cost per	QALYs without QALY intervention	Subgroup size
	$(£)$		$(£)$	α_{i}	

	Intervention	Cost per person c_{i} (£)	QALYs gained q_{i}	$\begin{gathered} \text { Cost } \\ \text { per } \\ \text { QALY } \\ (£) \\ \hline \end{gathered}$	QALYs without intervention α_{i}	Subgroup size n_{i}
		22,500	4.5	5000	1.1	2
Kidney transplant						
QALY	Subgroup A	15,000	4	3750	1	8
	Subgroup B	15,000	6	2500	1	8
	Kidney dialysis					
$\begin{aligned} & \& ~ c o s t ~ \\ & \text { data } \end{aligned}$	Less than 1 year survival					
	Subgroup A	5000	0.1	50,000	0.3	8
	1-2 years survival Subgroup B	12,000	0.4	30,000	0.6	6
Part 2	2-5 years survival					
	Subgroup C Subgroup D	20,000 28,000	1.2	16,667 16,471	0.5	4
	Subgroup E	36,000	2.3	15,652	0.8	4
	5-10 years survival					
	Subgroup F	46,000	3.3	13,939	0.6	3
	Subgroup G	56,000	3.9	14,359	0.8	2
	Subgroup H	66,000	4.7	14,043	0.9	2
	Subgroup I	77,000	5.4	14,259	1.1	2
	At least 10 years survival					
	Subgroup J	88,000	6.5	13,538	0.9	
	Subgroup K	100,000	7.4	13,514	1.0	1
	Subgroup L	111,000	8.2	13,537	1.2	1

Results

Total budget £3 million

Δ	Pace-	Hip	Aortic	CABG				Heart Kidney				Kidney dialysis			
range	maker	repl.	valve	L	3	2	trans.	trans.	<1	$1-2$	$2-5$	$5-10$	>10		
$0-3.3$	111	111	111	111	111	111	1	11	0	0	000	0000	000		
$3.4-4.0$	111	111	111	111	111	111	0	11	1	0	000	0000	000		
$4.0-4.4$	111	111	111	111	111	111	0	01	1	0	000	0000	001		
$4.5-5.01$	111	011	111	111	111	111	1	01	1	0	000	0000	011		
$5.02-5.55$	111	011	011	111	111	111	0	01	1	0	000	0001	011		
$5.56-5.58$	111	011	011	111	111	011	0	01	1	0	000	0001	111		
5.59	111	011	011	110	111	111	0	01	1	0	000	0001	111		
$5.60-13.1$	111	111	111	101	000	000	1	11	1	0	111	1111	111		
$13.2-14.2$	111	011	111	011	000	000	1	11	1	1	111	1111	111		
$14.3-15.4$	111	111	111	011	000	000	1	11	1	1	101	1111	111		
$15.5-$ up	111	011	111	011	001	000	1	11	1	0	011	1111	111		

Results

Utilitarian solution

$0-3.3$	111	111	111	111	111	111	1	11	0	0	000	0000	000
$3.4-4.0$	111	111	111	111	111	111	0	11	1	0	000	0000	000
$4.0-4.4$	111	111	111	111	111	111	0	01	1	0	000	0000	001
$4.5-5.01$	111	011	111	111	111	111	1	01	1	0	000	0000	011
$5.02-5.55$	111	011	011	111	111	111	0	01	1	0	000	0001	011
$5.56-5.58$	111	011	011	111	111	011	0	01	1	0	000	0001	111
5.59	111	011	011	110	111	111	0	01	1	0	000	0001	111
$5.60-13.1$	111	111	111	101	000	000	1	11	1	0	111	1111	111
$13.2-14.2$	111	011	111	011	000	000	1	11	1	1	111	1111	111
$14.3-15.4$	111	111	111	011	000	000	1	11	1	1	101	1111	111
$15.5-$ up	111	011	111	011	001	000	1	11	1	0	011	1111	111

Results

Rawlsian solution

Δ range	Pacemaker	Hip repl.	Aortic valve	CABG			Heart Kidney			Kidney dialysis			
				L	3	2	trans.	trans.	< 1		2-5	5-10	>10
0-3.3	111	111	111	111	111	111	1	11	0	0	000	0000	000
3.4-4.0	111	111	111	111	111	111	0	11	1	0	000	0000	000
4.0-4.4	111	111	111	111	111	111	0	01	1	0	000	0000	001
4.5-5.01	111	011	111	111	111	111	1	01	1	0	000	0000	011
5.02-5.55	111	011	011	111	111	111	0	01	1	0	000	0001	011
5.56-5.58	111	011	011	111	111	011	0	01	1	0	000	0001	111
5.59	111	011	011	110	111	111	0	01	1	0	000	0001	111
5.60-13.1	111	111	111	101	000	000	1	11	1	0	111	1111	111
13.2-14.2	111	011	111	011	000	000	1	11	1	1	111	1111	111
14.3-15.4 \downarrow	111	111	111	011	000	000	1	11	1	1	101	1111	111
15.5-up	111	011	111	011	001	000	1	11	1	0	011	1111	111

Results

Fund for all Δ

Results

More dialysis with larger Δ, beginning with longer life span

$\begin{aligned} & \Delta \\ & \text { range } \end{aligned}$	Pacemaker	$\begin{aligned} & \text { Hip } \\ & \text { repl. } \end{aligned}$	Aortic valve	CABG			Heart Kidney trans. trans.		Kidney dialysis				
				L	3	2			<1		2-5	5-10	>10
0-3.3	111	111	111	111	111	111	1	11	0	0	000	0000	000/
3.4-4.0	111	111	111	111	111	111	0	11	1	0	000	0000	000
4.0-4.4	111	111	111	111	111	111	0	01	1	0	000	0000	001
4.5-5.01	111	011	111	111	111	111	1	01	1	0	00\&	0000	011
5.02-5.55	111	011	011	111	111	111	0	01	1	0	000	0001	011
5.56-5.58	111	011	011	111	111	011	0	01	,	0	000	0001	111
5.59	111	011	011	110	111	111	0	01	,		000	0001	111
5.60-13.1	111	111	111	101	000	000	1	11	1	0	111	1111	111
13.2-14.2	111	011	111	011	000	000	1	11	1	1	111	1111	111
14.3-15.4	111	111	111	011	000	000	1	11	1	1	101	1111	111
15.5-up	111	011	111	011	001	000	1	11	1	0	011	1111	111

Results

Abrupt change at $\Delta=5.60$

Δ range	Pacemaker	Hip repl.	Aortic valve	CABG			Heart Kidney			Kidney dialysis			
				L	3	2	trans.	trans.	< 1	1-2	2-5	5-10	> 10
0-3.3	111	111	111	111	111	111	1	11	0	0	000	0000	000
3.4-4.0	111	111	111	111	111	111	0	11	1	0	000	0000	000
4.0-4.4	111	111	111	111	111	111	0	01	1	0	000	0000	001
4.5-5.01	111	011	111	111	111	111	1	01	1	0	000	0000	011
5.02-5.55	111	011	011	111	111	111	0	01	1	0	000	0001	011
5.56-5.58 \downarrow	111	011	011	111	111	011	0	01	1	0	000	0001	111
5.59	111	011	011	110	111	111	0	01	1	0	000	0001	111
5.60-13.1	111	111	111	101	000	000	1	11	1	0	111	1111	111
13.2-14.2	111	011	111	011	000	000	1	11	1	1	111	1111	111
14.3-15.4	111	111	111	011	000	000	1	11	1	1	101	1111	111
15.5-up	111	011	111	011	001	000	1	11	1	0	011	1111	111

Results

Come and go together

Δ range	Pacemaker	Hip repl.	Aortic valve	$\begin{gathered} \mathrm{CABG} \\ 3 \end{gathered}$		Heart Kidney			Kidney dialysis				
							ans.	trans.	< 1		2-5	5-10	>10
0-3.3	111	111	111	111	111	111	1	11	0	0	000	0000	000
3.4-4.0	111	111	111	111	111	111	0	11	1	0	000	0000	000
4.0-4.4	111	111	111	111	111	111	0	01	1	0	000	0000	001
4.5-5.01	111	011	111	111	111	111	1	01	1	0	000	0000	011
5.02-5.55	111	011	011	111	111	111	0	01	1	0	000	0001	011
5.56-5.58	111	011	011	111	111	011	0	01	1	0	000	0001	111
5.59	111	011	011	110	111	111	0	01	1	0	000	0001	111
5.60-13.1	111	111	111	101	000	000	1	11	1	0	111	1111	111
13.2-14.2	111	011	111	011	000	000	1	11	1	1	111	1111	111
14.3-15.4	111	111	111	011	000	000	1	11	1	1	101	1111	111
15.5-up	111	011	111	011	001	000	1	11	1	0	011	1111	111

Results

In-out-in													
Δ range	Pacemaker	Hip repl.	Aortic valve	L	CABG 3	2	Heart trans.	Kidney trans.	< 1		$\begin{gathered} \text { idney } \\ 2-5 \end{gathered}$	$\begin{aligned} & \text { dialys } \\ & 5-10 \end{aligned}$	$\begin{aligned} & \text { sis } \\ & >10 \end{aligned}$
0-3.3	111	111	111	111	111	111	1	11	0	0	000	0000	000
3.4-4.0	111	111	111	111	111	111	0	11	1	0	000	0000	000
4.0-4.4	111	111	111	111	111	111	0	01	1	0	000	0000	001
4.5-5.01	111	011	111	111	111	111	1	01	1	0	000	0000	011
5.02-5.55	111	011	011	111	111	111	0	01	1	0	000	0001	011
5.56-5.58	111	011	011	111	111	011	0	01	1	0	000	0001	111
5.59	111	011	011	110	111	111	0	01	1	0	000	0001	111
5.60-13.1	111	111	111	101	000	000	1	11	1	0	111	1111	111
13.2-14.2	111	011	111	011	000	000	1	11	1	1	111	1111	111
14.3-15.4	111	111	111	011	000	000	1	11	1	1	101	1111	111
15.5-up	111	011	111	011	001	000	1	11	1	0	011	1111	111

Results

Most rapid change. Possible range for politically acceptable compromise

Δ range	Pacemaker	Hip repl.	Aortic valve	CABG			Heart Kidney trans. trans.		Kidney dialysis				
				L	3	2			< 1	1-2	2-5	5-10	> 10
0-3.3	111	111	111	111	111	111	1	11	0	0	000	0000	000
3.4-4.0	111	111	111	111	111	111	0	11	1	0	000	0000	000
4.0-4.4	111	111	111	111	111	111	0	01	1	0	000	0000	001
4.5-5.01 ${ }^{\downarrow}$	111	011	111	111	111	111	1	01	1	0	000	0000	011
5.02-5.55	111	011	011	111	111	111	0	01	1	0	000	0001	011
5.56-5.58	111	011	011	111	111	011	0	01	1	0	000	0001	111
5.59	111	011	011	110	111	111	0	01	1	0	000	0001	111
5.60-13.1	111	111	111	101	000	000	1	11	1	0	111	1111	111
13.2-14.2	111	011	111	011	000	000	1	11	1	1	111	1111	111
14.3-15.4	111	111	111	011	000	000	1	11	1	1	101	1111	111
15.5-up	111	011	111	011	001	000	1	11	1	0	011	1111	111

Puzzle

Curious fact: Rawlsian solution ($\Delta=\infty$) achieves greater utility than some smaller values of Δ. Why?

Δ range	Pacemaker	$\begin{aligned} & \text { Hip } \\ & \text { repl. } \end{aligned}$	Aortic valve	CABG			Heart Kidney			Kidney dialysis				$\begin{gathered} \text { Avg. } \\ \text { QALYs } \end{gathered}$
				L	3	2	trans.	trans.	< 1	1-2	2-5	5-10	>10	
0-3.3	111	111	111	111	111	111	1	11	0	0	000	0000	000	7.54
3.4-4.0	111	111	111	111	111	111	0	11	1	0	000	0000	000	7.54
4.0-4.4	111	111	111	111	111	111	0	01	1	0	000	0000	001	7.51
4.5-5.01	111	011	111	111	111	111	1	01	1	0	000	0000	011	7.43
5.02-5.55	111	011	011	111	111	111	0	01	1	0	000	0001	011	7.36
5.56-5.58	111	011	011	111	111	011	0	01	1	0	000	0001	111	7.36
5.59	111	011	011	110	111	111	0	01	1	0	000	0001	111	7.20
5.60-13.1	111	111	111	101	000	000	1	11	1	0	111	1111	111	7.06
13.2-14.2	111	011	111	011	000	000	1	11	1	1	111	1111	111	7.03
14.3-15.4	111	111	111	011	000	000	1	11	1	1	101	1111	111	7.13
15.5-up	111	011	111	011	001	000	1	11	1	0	011	1111	111	7.19

Puzzle

Curious fact: Rawlsian solution ($\Delta=\infty$) achieves greater utility than some smaller values of Δ. Why?

Rawlsian solution cares only about the very worst-off (i.e., most serious category of kidney disease).

The MILP breaks ties by adding $\varepsilon \cdot$ utility to SWF.
Utility is a larger factor when $\Delta=\infty$ than for smaller values of Δ.

Puzzle

Curious fact: Rawlsian solution ($\Delta=\infty$) achieves greater utility than some smaller values of Δ. Why?

Rawlsian solution cares only about the very worst-off (i.e., most serious category of kidney disease).

The MILP breaks ties by adding $\varepsilon \cdot$ utility to SWF.
Utility is a larger factor when $\Delta=\infty$ than for smaller values of Δ.

Remedy 1. View each disease as a single group with concave utility function (decreasing marginal utility)

Remedy 2. Design a SWF that combines leximax (rather than maximin) with utility
$\begin{array}{llll}\Delta= & 2.4 & 4.0 & 5.5\end{array}$

Remedy 1

Problem: This doesn't address fairness within disease categories (more serious vs. less serious cases).

Remedy 2

Design a SWF to combine leximax and utility.

Rather than maximize one function, compute

$$
\operatorname{leximax}\left(F_{1}(u), \ldots, F_{n}(u)\right)
$$

where

$$
F_{k}(u)=\left\{\begin{array}{lr}
\sum_{i=1}^{k} u_{\langle i\rangle}+(t(u)-k)\left(u_{\langle 1\rangle}+\Delta\right)+\sum_{i=t(u)+1}^{n} u_{\langle i\rangle} & \text { for } k<t(u) \\
\sum_{i=1}^{n} u_{\langle i\rangle} & \text { for } k \geq t(u)
\end{array}\right\}
$$

and $u_{\langle i\rangle}$ is i-th smallest of u_{1}, \ldots, u_{n}
and $\quad u_{\langle k\rangle}-u_{\langle 1\rangle} \leq \Delta$ for $k=1, \ldots, t(u)$

Remedy 2

Each $F_{k}(u)$ is continuous and satisfies the Chateauneuf-Moyes condition.

How to model it in an MILP?
Ongoing research...

References

- K. Arrow, A. Sen and K. Suzumura, eds., Handbook of Social Choice and Welfare, Elsevier, 2002.
- R. Binns, Fairness in machine learning: Lessons from political philosophy, Proceedings of Machine Learning Research 81 (2018) 1-11.
- B. Eggleston and D. E. Miller, eds., The Cambridge Companion to Utilitarianism, Cambridge Univ. Press, 2014.
- W. Gaertner, A Primer in Social Choice Theory, Oxford Univ. Press, 2009.
- J. N. Hooker, Moral implications of rational choice theories, in C. Lütge, ed., Handbook of the Philosophical Foundations of Business Ethics, Springer (2013) 1459-1476.
- J. N. Hooker, Optimality conditions for distributive justice, International Transactions on Operational Research 17 (2010) 485-505.
- J. N. Hooker and T. W. Kim, Toward non-intuition-based machine and AI ethics: A deontological approach based on modal logic, AIES Proceedings (2018) 130-136.
- J. N. Hooker and H. P. Williams, Combining equity and utilitarianism in a mathematical programming model, Management Science 58 (2012) 1682-1693.
- O. Karsu and A. Morton, Inequity averse optimization in operational research, European Journal of Operational Research 245 (2015) 343-359 (see this for thorough exposition and comprehensive reference list).
- J. S. Mill, Utilitarianism, 1863.
- W. Ogryczak \& T. Sliwinski, On direct methods for lexicographic min-max optimization, ICCSA 2006, LNCS 3982, pages 802-811.
- J. Rawls, A Theory of Justice, Belknap, 1971.
- M. E. Yaari and M. Bar-Hillel, On dividing justly, Social Choice and Welfare 1 (1984) 1-24.

Questions/Discussion

