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Relaxation is important in optimization because it provides bounds on the
optimal value of a problem. One of the more popular forms of relaxation is
Lagrangian relaxation, which is used in integer programming and elsewhere.

A problem is relaxed by making its constraints weaker, so that the feasi-
ble set is larger, or by approximating the objective function. In the case of
a minimization problem, the optimal value of the relaxation is a lower bound
on the optimal value of the original problem. For a maximization problem it
is an upper bound. The art of relaxation is to design a relaxed problem that
is easy to solve and yet provides a good bound.
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Purpose of Relaxation

Relaxation bounds are useful for two reasons. First, they can indicate whether
a suboptimal solution is close to the optimum. If a minimization problem, for
example, is hard to solve, one might settle for a suboptimal solution whose
value is close to a known lower bound. An optimal solution would not be
much better.

Second, relaxation bounds are useful in accelerating a search for an optimal
solution. In a solution of an integer programming problem, for example, one
normally solves a relaxation of the problem at each node of the branch and
bound tree. Suppose again that the objective is to minimize. If the value of
the relaxation at some node is greater than or equal to the value of a feasible
solution found earlier in the search, then there is no point in branching further
at that node. Any optimal solution found by branching further will have
a value no better than that of the relaxation and therefore no better than
that of the solution already found. Lagrangian relaxation is often used in
this context, because it may provide better bounds than the standard linear
programming (LP) relaxation.

Lagrangian Relaxation

Lagrangian relaxation is named for the French mathematician J.L. Lagrange,
presumably due to the occurrence of what we now call Lagrange multipliers
in his calculus of variations [2]. Because this form of relaxation changes the
objective function as well as enlarging the feasible set, it is necessary to
broaden the concept of relaxation somewhat.

Consider the problem of minimizing a function f(x) subject to x ∈ S,
where x is a vector of variables and S the set of feasible solutions. The
epigraph of the problem is the set of all points (z, x) for which x ∈ S and
z ≥ f(x). This is illustrated in Fig. 1. The problem of minimizing f ′(x)
subject to x ∈ S′ is a relaxation of the original problem if its epigraph
contains the epigraph of the original problem. That is, (a) S ⊂ S′ and (b)
f(x) ≤ f ′(x) for all x ∈ S. Relaxation is therefore conceived as enlarging
the epigraph; enlarging the feasible set is a special case. It is clear that the
optimal value of a relaxation still provides a lower bound on the optimal value
of the original problem.

Lagrangian relaxation is available for problems in which some of the con-
straints are inequalities or equations. Such problems may be written as

minimize f(x) (1)
subject to g(x) ≤ 0 (2)
x ∈ S. (3)
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Figure 1 Epigraph of an optimization problem min {f (x): x ∈ S } (darker shaded area)
and of a relaxation min { f ′(x): x ∈ S ′ } (darker and lighter shaded areas)

Here, g(x) is a vector of functions (g1(x), . . . , gm(x)), and (2) is a family of
m constraints gi(x) ≤ 0. There is no loss of generality in omitting equality
constraints hi(x) = 0 from this formulation, because they can be written as
two inequality constraints, hi(x) ≤ 0 and −hi(x) ≤ 0. The constraints (3)
may take any form, inequality or otherwise.

The Lagrangian relaxation is formed by ‘dualizing’ the constraints (2):®
min f(x) + λg(x)

x ∈ S.
(4)

Here, λ = (λ1, . . . , λm) is a vector of nonnegative Lagrange multipliers that
correspond to the inequality constraints. The aim of dualization is to remove
the hardest constraints from the constraint set, so that the relaxed problem
is relatively easy to solve.
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The Lagrangian relaxation is in fact a relaxation because its epigraph
contains the epigraph of the original problem (1)-(3). This can be verified by
checking conditions a) and b):

(a) The feasible set of the original problem is a subset of the feasible set of the
relaxation, because the relaxation omits some of the original constraints.

(b) If x is feasible in the original problem, then f(x) ≥ f(x) + λg(x). This is
because λ ≥ 0 and, due to the feasibility of x, g(x) ≤ 0.

The Lagrangian Dual

A relaxation can be constructed simply by eliminating the constraints (2)
rather than dualizing them. One might ask what is the advantage of dualiza-
tion. One rationale is that when the Lagrange multipliers are properly chosen,
the penalties λigi(x) in the objective function hedge against infeasibility. To
the extent that constraints gi(x) ≤ 0 are violated and the bound thereby
weakened, the objective function will be penalized, restoring the quality of
the bound.

Fortunately, one can search for a proper choice of multipliers. The La-
grangian relaxation is actually a ‘family’ of relaxations, parameterized by
the vector λ of multipliers. This provides the possibility of searching over
values of λ to find a relaxation that gives a good lower bound on the optimal
value.

The problem of finding the best possible relaxation bound is the La-
grangian dual problem. If θ(λ) is the optimal value of the relaxation (4),
the Lagrangian dual of (1)–(3) is the problem of maximizing θ(λ) subject to
λ ≥ 0.

Under certain conditions, the best relaxation bound is equal to the optimal
value of the original problem (1)–(3) [1]. Generally, however, it falls short.
The amount by which it falls short is the duality gap.

The Lagrangian dual problem has three attractive features:

• It need not be solved to optimality. Any feasible solution provides a valid
lower bound.

• Its objective function θ(λ) is always a concave function of λ. One need only
find a local maximum, which is necessarily a global maximum as well.

• Its solutions have a complementary slackness property. If certain λi’s are
positive in an optimal solution of the dual problem, then the corresponding
constraints gi(x) ≤ 0 are satisfied as equations in some optimal solution
of the primal problem (1)–(3).

A serious drawback of the Lagrangian dual is that simply evaluating the
objective function θ(λ) for a given λ normally requires solution of an opti-
mization problem. The relaxation must be carefully chosen so that this is
practical. Moreover the function θ is typically nondifferentiable.
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Why is the Lagrangian dual a ‘dual’? One explanation is that it generalizes
the LP dual, which is the Lagrangian dual of an LP problem. To see this,
consider the LP problem min{cx : Ax ≥ a, x ≥ 0}. Its Lagrangian dual
maximizes

θ(λ) = min
x≥0
{cx+ λ(a−Ax)}

= min
x≥0
{(c− λA)x+ λa}

over λ ≥ 0. So θ(λ) is −∞ if some component of c − λA is negative and is
λa otherwise. This means that maximizing θ(λ) over λ ≥ 0 is equivalent to
maximizing λa subject to λA ≤ c and λ ≥ 0, which is precisely the LP dual.

Integer Programming

The application of Lagrangian ideas to integer programming dates back at
least to H. Everett [6]. In this arena the optimization problem (1)-(3) be-
comes, 

min cx

s.t. Ax ≤ a
Bx ≤ b
xj integer for all j.

(5)

The ‘hard’ constraints Ax ≤ a are dualized in the Lagrangian relaxation,
min cx+ λ(Ax− a)

s.t. Bx ≤ b
xj integer for all j,

(6)

and θ(λ) is the minimum value of this problem for a given λ. The optimal
value zLD of the Lagrangian dual is a lower bound on the optimal value zIP
of (5). It will be seen shortly that the bound zLD is at least as good as the
bound zLP obtained by solving the LP relaxation of (5). (The LP relaxation
is the result of dropping the integrality constraints.)

In the context of integer programming, the Lagrangian function θ(λ) is
not only concave but piecewise linear. This is because θ(λ) is the maximum
of a set of linear functions cx + λ(Ax − a) over all integral values of x that
satisfy Bx ≤ b.

A fundamental property of the Lagrangian dual is that zLD is equal to the
optimal value zC of
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min cx

s.t. Ax ≤ a
x ∈ conv(S),

(7)

where S is the set of integer points satisfying Bx ≤ b, and conv(S) is the
convex hull of S [8]. The Lagrangian dual can therefore be written as an LP
problem, if a linear description of conv(S) is available.

The reasoning behind this fact goes as follows. Because the feasible set
of (7) is that of an LP problem, the optimal value of its Lagrangian dual is
equal to zC. To see that it is also equal to zLD, thereby proving zC = zLD,
it suffices to show that the Lagrangian relaxation of (7) always has the same
optimal value as the Lagrangian relaxation of (5). But this is true because
the former is the same problem as the latter, except that the constraints in
former are x ∈ conv(S) and in the latter are x ∈ S. This substitution has no
effect on the optimal value because the objective function is linear.

It can now be seen that the bound zLD is always at least as good as zLP.
Let CIP be the problem (7) corresponding to (5), and let CLP be the problem
(7) corresponding to the LP relaxation of (5). CLP’s feasible set contains
that of CIP, and its optimal value is therefore less than or equal to zLD. But
because CLP is identical to (5)’s LP relaxation, zLP ≤ zLD.

When Bx ≤ b happens to describe a polyhedron whose vertices have inte-
gral coordinates, CIP and CLP are the same problem. In this case zLD = zLP.
To sum up,

zLP ≤ zLD = zC ≤ zIP ,

where the first inequality is an equation when Bx ≤ b describes an integral
polyhedron.

As an example consider the integer programming problem (Fig. 2):
min −2x1 − x2
s.t. 4x1 + 5x2 ≤ 10

0 ≤ xj ≤ 3

xj integer, j = 1, 2.

(8)

The optimal solution is x = (2, 0), with value zIP = −4. Dualizing the first
constraint decouples the variables:

θ(λ) = min
0≤xj≤3
xj integer

{−2x1 − x2 + λ(4x1 + 5x2 − 10)}

= min
0≤xj≤3
xj integer

{(4λ− 1)x1 + (5λ+ 1)x2 − 10λ}.

Because of the decoupling, θ(λ) is easily computed:
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Figure 2 Feasible set of an integer programming problem (large dots) and its linear
programming relaxation (area shaded by small dots). The point (2, 0) is the optimal
solution, and (2.5, 0) is the solution of the LP relaxation

θ(λ) =


17λ− 9 if 0 ≤ λ ≤ 1

5 ,

2λ− 6 if 1
5 ≤ λ ≤

1
2 ,

−10λ if λ ≥ 1
2 .

It is evident in Fig. 3 that θ is a concave, piecewise linear function. The opti-
mal value of the Lagrangian dual is zLD = θ( 1

2 ) = −5, resulting in a duality
gap of zIP − zLD = 1. The optimal value of the LP relaxation is likewise −5,
so that in the present case zLP = zLD. This is predictable because Bx ≤ b
consists of the bounds 0 ≤ xj ≤ 3, which define an integral polyhedron.

In practical applications, the Lagrangian relaxation is generally con-
structed so that it can be solved in polynomial time. It might be a problem
in which the variables can be decoupled, as in the above example, or whose
feasible set is an integral polyhedron. Popular relaxations include assignment
or transportation problems, which can be solved quickly.
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Figure 3 The Lagrangian function θ(λ) for an integer programming problem. The optimal
value of the Lagrangian dual problem is θ(1/2) = −5

A notable example is the asymmetric traveling salesman problem on n
cities:

minimize
∑
ij

cijxij (9)

subject to
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j

xij = 1, all i, (10)

∑
i

xij = 1, all j, (11)∑
i/∈V

∑
j∈V

xij ≥ 1, all nonempty V ⊂ {2, . . . , n}, (12)

xij ≥ 0, xij integral, all i, j. (13)

If the assignment constraints (10) are dualized, the Lagrangian relaxation
minimizes ∑

ij

cijxij +
∑
i

λi(
∑
j

xij − 1)

=
∑
ij

(cij + λi)xij −
∑
i

λi

subject to (11)-(13). This is equivalent to finding a minimum-cost spanning
arborescence that is rooted at node 1, which can be done in polynomial time
[5]. This and related methods are discussed in [12, 19]. A Lagrangian approach
to the symmetric traveling salesman problem is presented in [14, 15].

Solving the Dual

Subgradient optimization is a popular method for solving the Lagrangian
dual, because subgradients of θ (and gradients when they exist) can be readily
calculated.

Let X(λ̄) be the set of optimal solutions of the Lagrangian relaxation (4)
when λ = λ̄. If X(λ̄) is a singleton {x̄}, then the gradient of θ at λ̄ is simply
the vector g(x̄). This is because for values of λ in a neighborhood of λ̄, θ(λ)
is the linear function f(x̄) + λg(x̄).

More generally, for any x̄ ∈ X(λ̄), g(x̄) is a subgradient of θ at λ̄. In fact,
every subgradient of θ at λ̄ is a convex combination of subgradients that
correspond to the solutions in X(λ̄).

In the integer programming case, the subgradients of θ at λ̄ are Ax̄−a for
each x̄ ∈ X(λ̄), and convex combinations thereof. Consider the example (8),
where
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X(λ) =



{(3, 3)} if 0 ≤ λ < 1
5 ,

{(3, 3), (3, 0)} if λ = 1
5 ,

{(3, 0)} if 1
4 < λ < 1

2 ,

{(3, 0), (0, 0)} if λ = 1
2 ,

{(0, 0)} if λ > 1
2 .

Thus at λ = 0, θ has the gradient (slope) of 4(3) + 5(3)− 10 = 17. At λ = 1
5 ,

the subgradients of θ are 17, 2, and their convex combinations; i. e., all slopes
in the interval [2, 17]. This can be seen in Fig. 3.

The subgradient algorithm begins with an initial estimate λ0 of the optimal
λ. Iteration k+ 1 accepts estimate λk from the previous iteration and defines
the next iterate as λk+1 = λk+σkg(xk) where xk is the value of x obtained by
computing θ(λk), and g(xk) is the corresponding subgradient. Any negative
components of λk+1 are projected to zero. The stepsize σk must be carefully
chosen to achieve timely convergence. The simplest alternative is to let σk =
1/(k + 1), but this results in extremely slow convergence. A widely used
approach is Polyak’s method [20], in which

σk =
θ∗ − θ(λk)

‖g(xk)‖2
αk

and in which θ∗ is a known upper bound on maxλ≥0{θ(x)}. Initially α0 = 1,
and αk = αk−1 unless θ(xk) has not improved for several iterations, in which
case one might set αk = 1

2αk−1. The choice of an efficient stepsize is problem
dependent and typically found by trial and error. Other versions of the sub-
gradient algorithm include Nesterov’s smoothing scheme [18] and the Kelly-
Cheney-Goldstein bundle method [17].

Further Reading and Extensions

A lucid geometrical exposition of Lagrangian relaxation may be found in
Chapter 6 of [1]. A classic treatment of its application to integer programming
is [7]. A tutorial can be found in [13], a more recent exposition in Section 8.1
of [4], and a recent literature survey in [3]. There is a vast literature on
applications and enhancements.

The Lagrangian dual can be viewed as a special case of a relaxation dual,
which is any dual defined over a parameterized family of relaxations [16].
The surrogate dual, for example, is a relaxation dual in which relaxations
are obtained by replacing the original inequality constraints with a nonneg-
ative linear combination of those constraints [9, 10, 11]. In this case, the
relaxations are parameterized by the vector of multipliers used to obtain the
linear combination.



Integer Programming: Lagrangian Relaxation 11

See also

Branch and Price: Integer Programming with Column Generation
Decomposition Techniques for MILP: Lagrangian Relaxation
Integer Linear Complementary Problem
Integer Programming
Integer Programming: Algebraic Methods
Integer Programming: Branch and Bound Methods
Integer Programming: Branch and Cut Algorithms
Integer Programming: Cutting Plane Algorithms
Integer Programming Duality
Lagrange, Joseph-Louis
Lagrangian Multipliers Methods for Convex Programming
LCP: Pardalos-Rosen Mixed Integer Formulation
Mixed Integer Classification Problems
Multi-objective Integer Linear Programming
Multi-objective Mixed Integer Programming
Multi-objective Optimization: Lagrange Duality
Multiparametric Mixed Integer Linear Programming
Parametric Mixed Integer Nonlinear Optimization
Set Covering, Packing and Partitioning Problems
Simplicial Pivoting Algorithms for Integer Programming
Stochastic Integer Programming: Continuity, Stability, Rates of Conver-

gence
Stochastic Integer Programs
Time-dependent Traveling Salesman Problem

References

1 Bazaraa MS, Sherali HD, Shetty CM (2006) Nonlinear Programming:
Theory and Algorithms, 3rd edn. Wiley, New York

2 Boyer CB (1985) A history of mathematics. Princeton Univ. Press,
Princeton

3 Bragin MA (2023) Survey in Lagrangian relaxation for MILP: Impor-
tance, challenges, historical review, recent advancements, and opportu-
nities (2023) Ann Oper Res, published online

4 Conforti M, Cornuéjols G, Zambelli G (2014) Integer Programming.
Springer, Berlin

5 Edmonds J (1967) Optimum branchings. J Res Nat Bureau Standards
(B) 71:233–240

6 Everett III H (1963) Generalized Lagrange multiplier method for solving
problems of optimum allocation of resources. Oper Res 11:399–417

http://dx.doi.org/10.1007/978-0-387-74759-0_58
http://dx.doi.org/10.1007/978-0-387-74759-0_114
http://dx.doi.org/10.1007/978-0-387-74759-0_282
http://dx.doi.org/10.1007/978-0-387-74759-0_284
http://dx.doi.org/10.1007/978-0-387-74759-0_285
http://dx.doi.org/10.1007/978-0-387-74759-0_286
http://dx.doi.org/10.1007/978-0-387-74759-0_287
http://dx.doi.org/10.1007/978-0-387-74759-0_288
http://dx.doi.org/10.1007/978-0-387-74759-0_289
http://dx.doi.org/10.1007/978-0-387-74759-0_318
http://dx.doi.org/10.1007/978-0-387-74759-0_321
http://dx.doi.org/10.1007/978-0-387-74759-0_326
http://dx.doi.org/10.1007/978-0-387-74759-0_389
http://dx.doi.org/10.1007/978-0-387-74759-0_420
http://dx.doi.org/10.1007/978-0-387-74759-0_421
http://dx.doi.org/10.1007/978-0-387-74759-0_425
http://dx.doi.org/10.1007/978-0-387-74759-0_428
http://dx.doi.org/10.1007/978-0-387-74759-0_503
http://dx.doi.org/10.1007/978-0-387-74759-0_599
http://dx.doi.org/10.1007/978-0-387-74759-0_616
http://dx.doi.org/10.1007/978-0-387-74759-0_649
http://dx.doi.org/10.1007/978-0-387-74759-0_649
http://dx.doi.org/10.1007/978-0-387-74759-0_650
http://dx.doi.org/10.1007/978-0-387-74759-0_681


12 J.N. Hooker

7 Fisher ML (1981) The Lagrangean relaxation method for solving integer
programs. Managem Sci 27:1–18

8 Geoffrion AM (1974) Lagrangean relaxation for integer programming.
Math Program Stud 2:82–114

9 Glover F (1968) Surrogate constraints. Oper Res 16:741–749
10 Glover F (1975) Surrogate constraint duality in mathematical program-

ming. Oper Res 23:434–451
11 Greenberg H, Pierskalla WP (1970) Surrogate mathematical program-

ming. Oper Res 18:924–939
12 Grötschel M, Padberg MW (1985) Polyhedral theory. In: Lawler EL et al

(eds) The Traveling Salesman Problem: A Guided Tour of Combinatorial
Optimization. Wiley, New York, pp 251–305

13 Guinard M (1995) Lagrangean relaxation: A short course. JORBEL
35:5–21

14 Held M, Karp RM (1970) The traveling-salesman problem and minimum
spanning trees. Oper Res 18:1138–1162

15 Held M, Karp RM (1971) The traveling-salesman problem and minimum
spanning trees: Part II. Math Prog 1:6–25

16 Hooker JN (2000) Logic-based methods for optimization: Combining op-
timization and constraint satisfaction. Wiley, New York

17 Lemaréchal C (2001) Lagrangian relaxation. In: Jünger M, Naddef D
(eds) Computational Combinatorial Optimization. Springer, Berlin, pp
112–156

18 Nesterov YE (2005) Smooth minimization of non-smooth functions.
Math Prog A 103, 127–152

19 Padberg MW, Grötschel M (1985) Polyhedral computations. In: Lawler
EL et al (eds) The Traveling Salesman Problem: A Guided Tour of Com-
binatorial Optimization. Wiley, New York, pp 307–360

20 Polyak BT (1987) Introduction to Optimization (translated from Rus-
sian). Optimization Software Inc, New York


	Integer Programming: Lagrangian Relaxation
	J. N. Hooker
	References


