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1 Introduction

Benders decomposition, introduced in 1962 by Jacques Benders [2], is a
popular and highly successful optimization tool. While it has seen count-
less applications, it contains a problem-solving idea that, when recognized
and exploited, opens the door to even broader application. Specifically,
its derivation of Benders cuts from the dual of the linear programming
(LP) subproblem can be interpreted as a special case of logical inference.
This insight allows extension of the classical method to logic-based Benders
decomposition (LBBD), in which the subproblem can in principle be any
optimization problem, thus resulting in a substantial generalization [12, 15].
This extension has enabled hundreds of new applications, ranging from supply
chain logistics to organ transplantation to search-and-rescue operations [14].
The method is “logic-based” in the sense that logical inference plays a key
role in its conception, and not because there is any need for a problem to
involve formal logic.
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2 The Basic Idea

Benders decomposition partitions the problem variables into master problem
variables and subproblem variables. The master problem variables are chosen
so that when they are fixed to some set of values, the original problem
reduces to a substantially simpler subproblem. The subproblem and its dual
are then solved. The dual solution is interpreted as a proof that demonstrates
optimality by providing a bound on the optimal value of the subproblem, and
therefore on the optimal value of the original problem. The key insight of
Benders decomposition is that this same proof yields a bound on the optimal
value that results from other values of the master problem variables. This
allows one to formulate an inequality constraint, known as a Benders cut,
that imposes this bound. A new set of trial values for the master problem
variables is then obtained by solving the master problem, which consists of
Benders cuts generated so far. The process repeats until the optimal value of
the master problem is equal to the best previous subproblem value, in which
case the original problem has been solved, or until the master problem is
infeasible, in which case the original problem is shown to be infeasible.

In the classical method, the subproblem is a linear programming problem.
Dual multipliers obtained from solving the subproblem prove optimality (or
infeasibility) and yield a Benders cut by specifying a linear combination of
the subproblem constraints. LBBD generalizes this strategy by deriving a cut
from the inference dual of the subproblem. The inference dual is the problem
of finding the tightest bound on the optimal value that can be logically
deduced from the constraints. The dual solution is a proof of this bound.
The LP dual is a special case of inference duality in which the inference
method is nonnegative linear combination, and the proof is encoded by dual
multipliers.

One advantage of LBBD is that the subproblem can be solved by combi-
natorial optimization methods, such as constraint programming algorithms,
branch-and-cut procedures, or such problem-specific methods as traveling
salesman algorithms. On the other hand, it is often necessary to formulate
problem-specific Benders cuts, since one cannot routinely obtain cuts from the
LP dual as in the classical method. This exercise may require some ingenuity,
but it also allows one to exploit the special structure of a given problem class.

3 An Example

LBBD can be illustrated by a simple machine assignment and scheduling
problem [14]. Four jobs are to be scheduled on two machines. The jobs have
release times (r1, . . . , r4) = (3, 3, 0, 3) and deadlines (d1, . . . , d4) = (6, 5, 5, 5).
They have processing times (p11, . . . , p14) = (3, 1, 3, 1) on machine 1 and
(p21, . . . , p24) = (2, 1, 2, 1) on machine 2. The problem is to assign jobs to
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machines, and schedule the jobs on each machine, so as to minimize makespan
(the latest finish time). There is a natural decomposition: the master problem
assigns jobs to machines, whereupon the scheduling subproblem decouples
into a separate problem for each machine.

Let binary variable xij = 1 when job j is assigned to machine i, and
suppose we initially set x11 = x12 = x23 = x24 = 1. The two scheduling
problems that result cannot be solved as LP problems, but an edge finding
algorithm [7] proves that the assignment of jobs 1 and 2 to machine 1 has
no feasible schedule (i.e., the optimal makespan is infinite). This proof is the
solution of the inference dual for machine 1. As a Benders cut we get the
rather uninteresting nogood cut x11 + x12 ≤ 1, which forbids this particular
assignment. However, the edge finding algorithm provides a lower bound of 4
on machine 2’s makespan, and this proof relies only on the premise that job 4
is assigned to the machine. The same proof therefore establishes the bound
when (x23, x24) is either (0, 1) or (1, 1). We therefore get the more interesting
Benders cut z ≥ 4x24, where z denotes makespan. Further analysis of the
subproblem yields an analytical Benders cut z ≥ 2x23 + 3x24 − 1.

The next trial assignment is obtained by solving a master problem that
minimizes z subject to these three cuts. The process continues until the
optimal value of the master problem equals the best subproblem value
obtained so far, at which point a makespan of 5 is obtained by assigning
jobs 2 and 4 to machine 1 and the others to machine 2.

4 The LBBD Algorithm

Logic-based Benders decomposition is applied to a problem of the form

min
x,y

{
f(x,y)

∣∣ C(x,y), C′(x), x ∈ Dx, y ∈ Dy

}
(1)

where variables x = (x1, . . . , xn) have been selected as master problem
variables and y = (y1, . . . , ym) as subproblem variables. Dx and Dy are
the variable domains (e.g., tuples of reals, integers, etc.). C(x,y) is a set of
constraints that contain variables in x and y, while the constraints in C′(x)
contain variables in x. Fixing x to a given value x̄ yields the subproblem

min
y

{
f(x̄,y)

∣∣ C(x̄,y), y ∈ Dy

}
(2)

which we denote SP(x̄). The inference dual of SP(x̄) is

max
v,P

{
v
∣∣∣ C(x̄,y)

P

`
(
f(x̄,y) ≥ v

)
, v ∈ R, P ∈ P

}
(3)
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The notation A
P

` B means that B can be deduced from A using proof P .
The dual seeks the tightest lower bound v on f(x̄,y) that can be deduced
from the constraints C(x̄,y).

The dual is therefore defined with respect to an inference method indicated
by the family P of possible proofs. For purposes of LBBD, the inference
method is assumed to be complete in the sense it can deduce any valid
bound. This results in a strong dual, meaning that (2) and (3) necessarily
have the same optimal value (possibly ∞ or −∞ in the case of an infeasible
or unbounded subproblem). Any exact method for solving the subproblem
defines a strong inference dual, and the optimality proof supplied by the
method serves as a dual solution. For example, a branch-and-bound search
tree can be regarded as a dual solution. The edge finding procedure mentioned
earlier is not complete but can be augmented by branching to obtain a strong
inference dual, as occurs in constraint programming solvers.

An LBBD algorithm now proceeds as follows. Let v∗(x̄) be the optimal
value of SP(x̄), and suppose that proof P ∗ solves the inference dual by
deducing the lower bound v = v∗(x̄) on f(x̄,y) for any feasible solution
y of SP(x̄). The essence of LBBD is that this same proof P ∗ may deduce for
any x a useful lower bound on f(x,y) that is valid for any feasible solution y
of SP(x), and therefore for any feasible solution (x,y) of the original problem
(1). The bound is captured in a Benders cut of the form z ≥ Bx̄(x), where z
represents the value of f(x,y) in the master problem.

The Benders cut is added to the master problem, which contains all
previously generated Benders cuts as constraints. The master problem in
iteration k is

zk = min
z,x

{
z
∣∣ C′(x); z ≥ Bx`(x), ` = 1, . . . , k − 1; x ∈ Dx

}
(4)

where x1, . . . ,xk−1 are the solutions of the master problem in previous
iterations. It is common in practice to add multiple Benders cuts in each
iteration.

The next step is to solve the master problem and use its optimal solution
xk to define the next subproblem SP(xk). At this point, the process repeats,
and it continues until the master problem has the same value as the best
optimal subproblem value obtained so far; that is, until

zk = min
{
v∗(x`)

∣∣ ` = 1, . . . , k − 1
}

If the master problem becomes infeasible at any point, the procedure ter-
minates with the conclusion that (1) is infeasible. Otherwise, the procedure
yields an optimal solution (x,y) = (x`,y`) of (1), where ` is an iteration in
which the best subproblem value was obtained, and y` is the optimal solution
of SP(x`).

If z ≥ Bx̄(x) is to qualify as a valid Benders cut, the bound Bx̄(x) must
satisfy two properties:
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(B1) Bx̄(x) ≤ f(x,y) for any (x,y) feasible in (1).
(B2) Bx̄(x̄) = v∗(x̄).

Property (B1) says that the cut indeed provides a valid lower bound on
f(x,y). Property (B2) ensures finite convergence when the domain Dx is
finite.

5 Classical Benders Decomposition

The classical Benders method is a special case of the procedure just described.
It is applied to problems of the form

min
x,y

{
f(x) + cy

∣∣ g(x) + Ay ≥ b, y ≥ 0, x ∈ Dx

}
(5)

For a given x̄, the subproblem SP(x̄) is the LP problem

min
y

{
f(x̄) + cy

∣∣ Ay ≥ b− g(x̄), y ≥ 0
}

(6)

We will show that cuts derived from an inference dual of (6) are classical
Benders cuts, where the dual is based on nonnegative linear combination. If
(6) is feasible, we say that cy ≥ v can be inferred from Ay ≥ b−g(x̄), y ≥ 0
when the linear combination uAy ≥ u(b− g(x̄)) dominates cy ≥ v for some
u ≥ 0, where domination means that uA ≤ c and u(b−g(x̄)) ≥ v. Then the
inference dual of (6) becomes

max
v,u

{
v
∣∣ uA ≤ c, u(b− g(x̄)) ≥ v − f(x̄), u ≥ 0

}
But this is equivalent to the classical LP dual of (6) if we note that f(x̄) is
simply a constant added to the objective function:

max
u

{
f(x̄) + u(b− g(x̄))

∣∣ uA ≤ c, u ≥ 0
}

(7)

Thus if we let Bx̄(x) = f(x) + ū(b − g(x)), where ū is the solution of (7),
Bx̄(x) satisfies condition (B2) because the LP dual is a strong dual. The key
observation for classical Benders decomposition is that ū remains feasible in
the dual for any x, since x occurs only in the objective function of (7). Thus
by weak LP duality, ū(b− g(x)) ≤ cy for any x and any feasible y, and we
can write

f(x) + ū
(
b− g(x)

)
≤ f(x) + cy (8)

for any (x,y) feasible in (5). That is, the same proof that establishes
optimality of the subproblem SP(x̄), namely the linear combination based on
multipliers ū, proves a valid bound for other values of x. Due to (8), Bx̄(x)
satisfies (B1) as well as (B2), which means z ≥ Bx̄(x) is a valid logic-based
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Benders cut. But this cut is identical to the classical cut

z ≥ f(x) + ū
(
b− g(x)

)
The classical cut ū(b− g(x)) ≤ 0 for infeasible (6) is similarly derived.

6 Deriving Logic-Based Cuts

Three broad categories of logic-based Benders cuts appear in the literature:
strengthened nogood cuts, analytical cuts, and explanation-based cuts. Cuts
can also be classified as optimality cuts z ≥ Bx̄(x), which place a bound on the
optimal value, and feasibility cuts, which arise from an infeasible subproblem.
We focus on optimality cuts, since feasibility cuts can be viewed as optimality
cuts for which Bx̄(x̄) = ∞, although more straightforward cuts are used in
practice. For instance, x11 + x12 ≤ 1 is a feasibility cut in the scheduling
example presented earlier.

To simplify exposition, we assume the common situation in which x is
binary and the cuts are linear inequalities. We also suppose that v∗(x) is a
monotone nondecreasing function of x. This occurs, for instance, when the
master problem assigns tasks to a processing facility, as in the scheduling
example.

Strenthened nogood cuts are obtained by strengthening a simple nogood
cut of the form

z ≥ v∗(x̄)−
(
v∗(x̄)− v

)∑
j∈J

(1− xj) (9)

where x̄ is the solution of the current master problem and J = {j | x̄j = 1}.
The cut (9) states that if all the tasks in J are assigned to a facility (possibly
among other tasks), then the resulting subproblem cost will be at least v∗(x̄).
If not all tasks in J are assigned, the cut imposes a known lower bound v on
cost. The cut is strengthened by assigning various subsets J ′ of the tasks in
J to the facility, and checking whether the optimal value changes. If not, J ′
can replace J in (9) while preserving validity. It is often practical to solve the
subproblem repeatedly in this manner due to the speed of solution. The cut
is stronger when J ′ is small, and it is irreducible if no task can be removed
from J ′ without destroying validity.

Techniques for reducing J include a greedy procedure that removes one
task at a time, a deletion filter [8], depth-first binary search (DFBS), a
faster heuristic version of DFBS [3], and the QuickXplain procedure [16].
The deletion filter, DFBS, and QuickXplain yield irreducible cuts.

Analytical cuts are obtained by combining the current subproblem solution
with an analysis of the subproblem structure. They are often more effective
than strengthened nogood cuts because they represent a deeper understand-
ing of problem characteristics. An analytical cut z ≥ 2x23+3x24−1 was given
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in the above scheduling example. In general, this cut for machine i consists
of two inequalities

z ≥ v∗(x̄)−
∑
j∈J

(1− xj)
(
pij + max{0, rj − rmin − pmin}

)
− (dmax − dmin)

z ≥ v∗(x̄)−
∑
j∈J

(1− xj)
(
pij + max{0, rj − rmin − pmin}+ (dmax − dmin)

)
that happen to be identical in this case. Here rmin = min{rj | j ∈ J}, and
similarly for dmax and dmin, while pmin = min{pij | j ∈ J}. Analytical cuts
have been developed for a wide variety of applications [14].

Explanation-based cuts require an explanation from the subproblem solver
as to how optimality or infeasibility was proved. That is, they require
information about the solution of the inference dual, as opposed to inferring
such information indirectly as in the case of nogood and analytical cuts.
Solvers are beginning to supply this kind of information, particularly con-
straint programming and satisfiability solvers. Explanations typically identify
constraints that are essential premises of the optimality or infeasibility proof
[4, 6, 5]. This also enables automatic generation of logic-based cuts, which
have been implemented for the traveling salesman problem with time windows
[17], as part of a constraint modeling language [10], and in a general LBBD
solver [18] that implements branch and check (a variation of LBBD described
in the next section).

7 Variations and Special Cases of LBBD

Branch and check [12, 20] is a variation of LBBD that solves the master
problem only once, by means of a branching search. Logic-based Benders cuts
are generated at search tree nodes when a feasible master problem solution is
identified, at which point the branching search continues with the new cuts
included in the constraint set. Branch and check is distinct from a traditional
branch-and-cut method, because (a) the Benders cuts are derived from an
external constraint set (the subproblem), and (b) the cuts contain variables
that have already been fixed in the branching process rather than variables
that have not been fixed. Branch and check is often an attractive alternative
to standard LBBD when the master problem is too hard to solve repeatedly.

Combinatorial Benders cuts [9] are strengthened nogood feasibility cuts
used in the context of a specialized branch-and-check procedure designed
for mixed integer/linear programming (MILP). Although the subproblem is
an LP problem in this case, logic-based cuts rather than classical Benders
cuts are generated. The method was designed to accelerate solution of MILP
models that contain big-M constraints and has found many applications.
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The conflict clauses [1] that are key to the success of most propositional
satisfiability (SAT) solvers are strengthened nogood feasibility cuts that take
the form of logical clauses. Cuts are obtained from a conflict graph that
represents a solution of the inference dual of the subproblem, where the
inference method is unit propagation. Thus most SAT algorithms can be
viewed as variations of LBBD in which the variable partition is dynamic: the
master problem variables in a given iteration are those that are currently
fixed in the search process. Methods for solving SAT modulo theories can
also frequently be viewed as implementations of LBBD.

8 Conclusion

Decomposition into smaller problems is frequently the only practical ap-
proach to solving difficult optimization problems. Benders decomposition
is especially attractive because its mechanism of Benders cuts preserves
optimality by enabling efficient communication between the master problem
and subproblem. In addition, the subproblem can be selected so as to be much
easier to solve than the original problem, perhaps by decoupling into still
smaller problems. The classical Benders method, however, is defined only for
a linear programming subproblem, or a continuous nonlinear subproblem in
its 1972 extension by Geoffrion [11]. By removing this restriction, logic-based
Benders decomposition permits extension of this problem-solving strategy to
a much broader range of practical applications.

An excellent survey of developments in Benders decomposition methods,
including LBBD, can be found in [19]. A brief survey of the LBBD literature
is [13]. A recent book [14] contains an exposition of LBBD and its variations,
as well as concise descriptions of 226 published applications.

See also

Benders decomposition
Generalized Benders decomposition
Integer programming duality
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