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Abstract

We describe a heuristic algorithm for scheduling the movement of
multiple factory cranes mounted on a common track. The cranes must
complete a sequence of tasks at locations along the track without cross-
ing paths, while adhering as closely as possible to a factory production
schedule. The algorithm creates a decision tree of possible states of
the crane system, which evolves over time as tasks are assigned and
sequenced. By identifying and removing inferior states from the tree,
the algorithm efficiently generates provably optimal or near-optimal
crane schedules, depending on the complexity of the problem instance.

1 Introduction

Factories often employ track-mounted cranes to move materials and equip-
ment from one location to another. Such cranes typically hang from crossbars
on which they move laterally while the crossbars themselves move longitu-
dinally along a common track (Fig. 1). This combination allows full three-
dimensional movement of the cranes across the factory floor.
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Figure 1: Factory cranes.

Planning the movement of a crane to follow a manufacturing schedule can
be a difficult combinatorial problem. For a single-crane factory, the problem
consists of sequencing the tasks on the crane in the order that minimizes
some function of their completion times. For a multiple-crane factory, there
exist the additional problems of choosing a crane for each task and assigning
movement priority when the cranes interfere.

Constraints may be imposed on the tasks a crane may perform. Some
tasks must be carried out consecutively in a specific order by a single crane.
A particular crane may be preassigned to execute a given task. A task may
also have a time window in which it must be completed.

Since crane paths must be planned on a scale of seconds for factory sched-
ules on a scale of days, the crane scheduling problem is too complex for
general solution methods. This paper presents an efficient specialized al-
gorithm for the problem. Although the number of feasible solutions grows
exponentially with the length of the work schedule, our algorithm confines
its search for optimal trajectories to a limited solution space using proven
dominance rules. In cases where the work schedule is relatively constrained,
the algorithm usually returns a provably optimal solution. In cases where the
schedule has much more freedom, the solution space of trajectories may be
too large for implicit enumeration, and the algorithm returns a near-optimal
solution.

Following a review of previous work, we begin with a description of the
crane scheduling problem. We then show how to simplify the problem in
two stages. We first project out the space-time trajectories of cranes so that
the decision variables consist only of the starting times of tasks and their
assignment to cranes. We then replace the start times with a task sequence,
from which start times can be inferred. At this point we describe a search
algorithm and prove that it finds an optimal solution. We show how to reduce
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the search space substantially, without sacrificing optimality, by deleting
dominated states. Finally, we indicate how to delete additional states when
the reduced search space becomes too large, resulting in a solution that may
not be optimal. The paper ends with experimental results and conclusions.

2 Previous Research

Crane scheduling has received a great deal of study, but relatively little at-
tention has been given to the factory crane scheduling problem addressed
here. The literature focuses primarily on two types of problems: movement
of materials from one tank to another in an electroplating or similar process
(normally referred to as hoist scheduling problems), and loading and unload-
ing of container ships in a port. Both differ significantly from the factory
crane problem.

A classification scheme for hoist scheduling problems appears in [14].
These problems typically require a cyclic schedule involving one or more
types of parts, where parts of each type must visit specified tanks in a fixed
sequence. The most common objective is to minimize cycle time. Even the
single-hoist cyclic scheduling problem [1, 13, 18] is NP-complete [7]. Sev-
eral papers address cyclic two-hoist and multi-hoist problems with exact and
heuristic algorithms [8, 24, 3, 6, 9, 10, 11, 15, 19, 20, 21, 22].

Our problem differs from the typical hoist scheduling problem in several
respects. The schedule is not cyclic. The problem is given as a set of jobs,
each to be performed by one crane, rather than a set of parts to be moved
from one tank to another, perhaps by several cranes. A job may consist of
several tasks to be performed consecutively in a specified order and perhaps
at widely separated locations in the factory. The jobs may all be different.
Lastly, we permit lateral crane movements, so that tasks can be distributed
over a larger area.

Port cranes are generally classified as quay cranes and yard cranes. Quay
cranes may be mounted on a single track, as are factory cranes, but the
scheduling problem differs significantly. The cranes load (or unload) con-
tainers into ships rather than transferring items from one location on the
track to another. A given crane can reach several ships, or several holds in a
single ship, either by rotating its arm or perhaps by moving laterally along
the track. The problem is to assign cranes to loading (unloading) tasks,
and schedule the tasks, so that the cranes do not interfere with each other

3



[4, 5, 16].
Yard cranes are typically mounted on wheels and can follow certain paths

in the dockyard to move containers from one location to another [17, 23]. Port
and yard cranes clearly present a different type of scheduling problem than
factory cranes.

An early study of factory crane scheduling [12] presents heuristic algo-
rithms that obtain noninterfering solutions only under certain conditions. A
worst-case bound is derived for makespan in the two-crane case. However,
the method is insufficiently general to address the problem considered here.
There is no attempt to apply it to realistic problems, and no computational
results are reported.

A dynamic programming algorithm for factory crane scheduling described
in [2] evolved from the same project as the present work. It computes optimal
movements for two cranes in problems of medium size (e.g., 100-200 tasks)
in a minute or so. It assumes that the assignment of jobs to cranes is given
in advance. By contrast, the heuristic method presented here is designed to
solve the assignment and control problem simultaneously, as well as to solve
larger instances with multiple cranes, while possibly sacrificing optimality or
proof of optimality.

3 The Crane Scheduling Problem

The crane scheduling problem consists of a list of tasks τ , each of which
requires a crane to perform an operation requiring Lτ seconds at a specified
location (Xτ , Yτ ), while remaining stationary at that location. For example,
the crane might pick up a piece of equipment or empty the contents of a ladle
it is carrying. The task must be performed during a specified time window
[Rτ , Dτ ] that is derived from the production schedule of the factory. The task
ideally starts at the release time Rτ , but the logistics of crane movements
may delay the start. Each task has a nonnegative priority weight to represent
its urgency, and the objective is to minimize the weighted sum of delays.

Figure 2 illustrates how one crane may yield to another. In (a), cranes 1
and 2 are assigned tasks 1 and 2, respectively, and there is no interference.
The assignment is reversed in (b) and (c), and there is potential interference.
In (b), interference is avoided by letting crane 2 yield to crane 1. In (c),
crane 1 yields to crane 2.

There are three types of decision variables. One set of variables assigns
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Figure 2: Avoiding interference. (a) No yielding necessary. (b) Crane 2 yields
to crane 1. (c) Crane 1 yields to crane 2.

each task to exactly one crane. A second assigns each operation a start time.
A third describes space-time trajectories for the cranes. The trajectories
must be consistent with the crane assignments, start times, and problem
constraints, and they must not allow cranes to interfere with each other.
Two types of task precedence constraints may be imposed:

τ ≺ τ ′ indicates that the start of task τ ′ must (eventually) follow
the completion of task τ (on any crane)

τ → τ ′ indicates that task τ ′ must immediately follow task τ on
the same crane

Production schedules often include short sequences of tasks we call jobs.
For example, a four-task job might require a crane to pick up a ladle at one
location, fill it at a second location, empty it at a third location, and return
it to the first location. We use the constraints τ1 → τ2 → τ3 → τ4 to require
that these tasks be executed consecutively by the same crane.

We formulate the crane scheduling problem using the notation in Table 1.
Let s be the tuple of start time variables sτ . The formulation minimizes

f(s) =
∑
τ∈T

Pτ (sτ −Rτ ) (1)
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subject to

Time window and domain constraints:

Rτ ≤ sτ ≤ Dτ − Lτ , all τ ∈ T

aτ ∈ Cτ and sτ ∈ R, all τ ∈ T

Precedence constraints:

sτ + Lτ ≤ sτ ′ , all τ, τ ′ ∈ T with τ ≺ τ ′

aτ = aτ ′ and sτ + Lτ ≤ sτ ′ , all τ, τ ′ ∈ T with τ → τ ′

sτ ′′ < sτ or sτ ′′ > sτ ′ ,
all τ, τ ′, τ ′′ ∈ T with τ → τ ′, aτ ′′ = aτ , τ

′′ 6= τ, τ ′

(2)

as well as trajectory constraints

Continuity: xc(t), yc(t) ∈ R and continuous, all c ∈ C, all t

Position: (xaτ (t), yaτ (t)) = (Xτ , Yτ ), t ∈ [sτ , sτ + Lτ ], all τ ∈ T

Velocity:

{
xc(t)− Vx∆t ≤ xc(t+∆t) ≤ xc(t) + Vx∆t

yc(t)− Vy∆t ≤ yc(t+∆t) ≤ yc(t) + Vy∆t

}
, all t,∆t ≥ 0

Spacing: xc′(t)− xc(t) ≥ (c′ − c)∆X, all c, c′ ∈ C with c < c′

(3)
The objective function is the priority-weighted sum of task delays past

the desired release times. The time window and domain constraints require
observance of release times and deadlines. They also enforce any restrictions
on which crane may perform which task. The precedence constraints are of
the two types described above. The trajectory constraints require the crane
space-time trajectories to satisfy four conditions: they must be continouous,
each crane must be at the assigned location of a task while executing the
associated operation; each crane must observe speed limits; and cranes must
observe the minimum spacing. Initial and/or final positions of a crane may
be specified by adding crane-specific zero-length tasks at the desired positions
to the beginning and end of the schedule.

4 Projection of Trajectories

Our algorithm operates on a simplified but equivalent form of the crane
scheduling problem (1)–(3). Let a be the tuple of variables aτ . The simpli-
fication consists of two steps: projection of the feasible set onto variables a
and s, and replacement of s by a tuple σ of sequence variables.
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Table 1: Notation.

Parameters: C =index set of cranes1

Cτ =index set of cranes that can perform task τ
T =index set of tasks
Pτ = priority of task τ
Rτ = release time of task τ
Dτ = deadline of task τ
Lτ = duration of task τ
Xτ = x-position of task τ
Yτ = y-position of task τ
Vx = crane velocity along x-axis
Vy = crane velocity along y-axis
∆X = minimum x-axis gap between adjacent cranes

Variables: aτ = assigned crane index for task τ (integer)
sτ = start time of task τ (real)
xc(t) = x-position of crane c at time t (real)2

yc(t) = y-position of crane c at time t (real)2

1cranes are indexed by integers, increasing from left to right

2these must be continuous functions of the continuous variable t

We first project the problem onto a, s by eliminating the trajectory vari-
ables xτ (t), yτ (t). Once the problem is solved in the projected space, the
solution can be lifted to a solution in the full space by specifying appropriate
trajectories.

We will show that the projection of the feasible set of (2)–(3) onto (a, s)
is described by (2) plus time gap constraints and interference constraints.
The time gap constraints are

sτ + Lτ +max

{
|Xτ −Xτ ′|

Vx

,
|Yτ − Yτ ′|

Vy

}
≤ sτ ′

or

sτ ′ + Lτ ′ +max

{
|Xτ −Xτ ′|

Vx

,
|Yτ − Yτ ′|

Vy

}
≤ sτ

 ,
all τ, τ ′ ∈ T
with aτ = aτ ′
and τ 6= τ ′

(4)
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and the interference constraints are

Xτ + (aτ ′ − aτ )∆X ≤ Xτ ′

or

sτ + Lτ +
|Xτ + (aτ ′ − aτ )∆X −Xτ ′ |

Vx

≤ sτ ′

or

sτ ′ + Lτ ′ +
|Xτ ′ − (aτ ′ − aτ )∆X −Xτ |

Vx

≤ sτ


,

all τ, τ ′ ∈ T
with aτ < aτ ′

(5)

The time gap constraints ensure that a crane has sufficient time to move
between tasks that are assigned to it. The constraint allows time for both x-
and y-axis movement. The interference constraints ensure that if two cranes
are assigned to two tasks that cannot be performed simultaneously, then one
crane must wait for the other to finish before it can travel past the first task
and perform the second task.

We suppose that each crane c begins with a dummy task τc of zero dura-
tion that takes place at time zero and at the starting position of the crane.

Lemma 1 The projection of the feasible set of (2)–(3) onto the variables a, s
is described by (2), (4) and (5).

Proof. It suffices to show that, given any solution a, s that satisfies (2), (4)
and (5), there are crane trajectories xc(t), yc(t) that satisfy the trajectory con-
straints (3). Index the non-dummy tasks τ = 1, . . . , n so that s1 ≤ · · · ≤ sn.
We will construct trajectories in stages that correspond to tasks 1, . . . , n. In
each stage τ we will extend the trajectory of crane aτ = c̄ enough to per-
form task τ . That is, we will extend the trajectory from (Xτ̄ , Yτ̄ , sτ̄ + Lτ̄ )
to (Xτ , Yτ , sτ + Lτ ), where τ̄ is the task that crane c̄ performs immediately
before τ . We will show that if the existing partial trajectories observe con-
straints (2)–(3), then this extension of crane c̄’s trajectory likewise observes
the constraints.

As a starting point for trajectory construction, we define a point trajec-
tory (xc(0), yc(0)) = (Xτc , Yτc) for each dummy task τc. The point trajectories
trivially satisfy the position and velocity constraints of (3). Because aτc , sτc
satisfy (5) and sτc = 0 for each c, they must satisfy the first disjunct of (5).
This implies that the point trajectories satisfy the spacing constraints of (3).

We now suppose that the partial trajectories created in stages 1, . . . , τ−1
satisfy (3), and we extend the trajectory of crane aτ = c̄ as follows. We first
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Figure 3: Reachability cone (gray area) for task τ .

define the reachability cone C to be the set of points from which crane c̄ can
reach position Xτ at time sτ (Fig. 3). Thus

C = {(x, y, t) | (sτ − t)Vx ≥ |x−Xτ |, (sτ − t)Vy ≥ |y − Yτ |}

We next define a non-interference space-time corridor through which we will
route crane c̄ (Fig. 4). We define the corridor so that all points in it maintain
sufficient separation from the other cranes. Thus let CL(t) be the set of cranes
c < c̄ (i.e., cranes to the left of c̄) for which partial trajectories are defined at
time t, and define CR(t) similarly for cranes to the right. Let XL(t) be the
leftmost position crane c̄ can occupy without interfering with a crane to the
left, and similarly for XR(t). Thus

XL(t) = max
c∈CL(t)

{xc(t) + (c̄− c)∆X}

XR(t) = min
c∈CR(t)

{xc(t)− (c− c̄)∆X}

At each time t, the non-interference corridor spans the interval [XL(t), XR(t)].
This interval is nonempty because the existing partial trajectories observe the
spacing constraints in (3).

We now extend the trajectory of crane c̄ as follows. At time t = sτ̄ we
have xc̄(t) = Xτ̄ . At each subsequent time t, the crane moves toward Xτ at
velocity Vx, unless it is already at position Xτ , or unless it is constrained by
the boundaries of the non-interference corridor. The crane also moves toward
Yτ at velocity Vy until it reaches Yτ . Thus, for small ∆t:

xc̄(t+∆t) = xc̄(t) + max {XL(t), min {XR(t), xc̄(t) + Vx(t)∆t}}
yc̄(t+∆t) = yc̄(t) + Vy(t)∆t
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where

Vx(t) =


Vx if xc̄(t) < Xτ

−Vx if xc̄(t) > Xτ

0 if xc̄(t) = Xτ

Vy(t) =


Vy if yc̄(t) < Yτ

−Vy if yc̄(t) > Yτ

0 if yc̄(t) = Yτ

If this trajectory lies inside the reachability cone C, it necessarily reaches
location Xτ at time sτ and therefore satisfies the position constraint of (3).
Its construction ensures that it satisfies the velocity constraints of (3). The
fact that it belongs to the non-interference corridor implies that it satisfies the
spacing constraints of (3). Finally, we complete the trajectory by performing
task τ ; that is, by setting xc̄(t) = Xτ for t ∈ [sτ , sτ +Lτ ]. This final extension
clearly satisfies (3).

It therefore suffices to show that the partial trajectory just described lies
inside the reachability cone; that is, (xc̄(t), yc̄(t), t) ∈ C for t ∈ [sτ̄ + Lτ̄ , sτ ].
The trajectory lies in C at t = sτ̄+Lτ̄ because (xc̄(sτ̄ ), yτ̄ (sτ̄ )) = (Xτ̄ , Yτ̄ ), and
because (Xτ̄ , Yτ̄ ) and (Xτ , Xτ ) must satisfy (4). Subsequently, the trajectory
occupies or is moving toward the position (Xτ , Yτ ) except when prevented
by a boundary of the non-interference corridor. We therefore need only show
that (XL(t), yc̄(t), t) ∈ C when XL(t) > Xτ and (XR(t), yc̄(t), t) ∈ C when
XR(t) < Xτ . We show the former, as the argument is analogous for the
latter.

Given any t ∈ [sτ̄ , sτ ] for which XL(t) > Xτ , let c′ be the crane that
determines XL(t); that is

XL(t) = xc′(t) + (c̄− c′)∆X (6)

Let τ ′ be the next task performed by crane c′. Then the interference con-
straints (5) imply

(sτ − sτ ′ − Lτ ′)Vx ≥ |Xτ − (aτ − aτ ′)∆X −Xτ ′|

which by (6) implies

(sτ − sτ ′ − Lτ ′)Vx ≥ |Xτ −XL(t)|

This and the fact that t ≤ sτ ′ + Lτ ′ imply

(sτ − t)Vx ≥ |Xτ −XL(t)| (7)
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Figure 4: Non-interference corridor for crane c̄ (gray area). The crane’s
extended trajectory from task τ̄ to task τ is shown.

We also have
(sτ − sτ̄ )Vy ≥ |Yτ − Yτ̄ | (8)

from the time gap constraints (4). Also

(t− sτ̄ )Vy ≤ |yc̄(t)− Yτ | (9)

due to the speed limit Vy. Now

(sτ − t)Vy = (sτ − sτ̄ − (t− sτ̄ ))Vy

≥ |Yτ − Yτ̄ | − |yc̄(t)− Yτ | ≥ |Yτ − yc̄(t)|
(10)

where the first inequality is due to (8)–(9) and the second to the fact that
Yτ − Yτ̄ and yc̄(t)− Yτ have the same sign. Finally, inequalities (7) and (10)
imply that (XL(t), yc̄(t), t) belongs to the reachability cone. �

5 Task Sequencing

The second problem reduction replaces the start time vector s with a task
sequence vector σ. The motivation for this change is that once the global task
sequence is fixed, optimal task start times for that sequence can be found by
a greedy choice of the earliest start time for each task in the sequence order.
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We therefore associate a greedy solution (a, s) with each pair (a,σ). We
first set sσ1 = Rσ1 . Then for k = 2, . . . , n, we set sσk

to the smallest feasible
value that is greater than or equal to sσk−1

.
To make this more precise, reformulate the constraints (2) and (4)–(5)

as follows. For a fixed a, a solution s satisfies these constraints if each sτ
satisfies sτ ∈ [Rτ , Dτ ] and

sτ ≥ Bτ (τ
′, sτ ′), all τ ′ 6= τ with sτ ′ ≤ sτ (11)

Here Bτ (τ
′, sτ ′) = max{B1

τ (τ
′, sτ ′), B

2
τ (τ

′sτ ′)}, where

B1
τ (τ

′, sτ ′) =

{
sτ ′ + Lτ ′ if τ ′ ≺ τ
−∞ otherwise

B2
τ (τ

′, sτ ′) =



sτ ′ + Lτ ′ +max

{
|Xτ ′ −Xτ |

Vx

,
|Yτ ′ − Yτ |

Vy

}
if aτ ′ = aτ

sτ ′ + Lτ ′ +
|Xτ ′ + (aτ ′ − aτ )∆X −Xτ |

Vx

if aτ < aτ ′
and τ �/ τ ′

sτ ′ + Lτ ′ +
|Xτ ′ + (aτ − aτ ′)∆X −Xτ |

Vx

if aτ ′ < aτ
and τ ′ �/ τ

−∞ otherwise

and where τ � τ ′ means that τ and τ ′ satisfy the crane spacing constraint
Xτ + (aτ ′ − aτ )∆X ≤ Xτ ′ . The greedy solution sets sσ1 = Rσ1 and

sσk
= max

{
sσk−1

,max
i<k

{Bσk
(σi, sσi

)}
}
, k = 2, . . . , n

The greedy solution is clearly feasible.

Lemma 2 If the projected crane scheduling problem has an optimal solution,
then a greedy solution corresponding to some pair (a,σ) is optimal.

Proof. Consider any optimal solution (ā, s̄) of the projected problem.
Without loss of generality, index the tasks so that s̄1 ≤ · · · ≤ s̄n, and let
σ = (1, . . . , n). We claim that the greedy solution (ā,g) corresponding to
(ā,σ) is optimal. It suffices to show that g ≤ s̄, because (ā, s̄) is optimal and
each objective function coefficient Pτ ≥ 0. We show this by induction. First,
g1 ≤ s̄1 because g1 = R1. Now suppose that gi ≤ s̄i for i = 1, . . . k − 1, and
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Figure 5: Illustration of canonical and non-canonical sequences.

show that gk ≤ s̄k. By definition of the greedy solution, gk is the smallest
value that satisfies gk ≥ gk−1 and gk ≥ Bk(i, gi) for i = 1, . . . , k − 1. Note
that Bτ (τ

′, sτ ′) is a monotone nondecreasing function of sτ ′ . This and the
fact that each gi ≤ s̄i imply that no value of s̄k smaller than gk can satisfy
both s̄k ≥ gk−1(= s̄k−1) and

s̄k ≥ Bk(i, s̄i), i = 1, . . . , k − 1 (12)

But s̄k ≥ s̄k−1 is given, and s̄k must satisfy (12) because s̄ is feasible. Thus
gk ≤ s̄k, and the lemma follows. �

The greedy schedule for a sequence σ need not result in start times s that
have the ordering σ. Consider, for example, a 3-task problem in which crane
A is assigned to task 2 and crane B is assigned to tasks 1 and 3; that is,
a = (B,A,B). The six possible sequences σ result in four solutions as shown
in Fig. 5, assuming that time windows do not restrict the solutions. Note in
part (d) of the figure that the sequence σ = (2, 3, 1) results in start times
that follow a different order. This is because the relative order of two tasks
makes no difference in the resulting vector s when the cranes assigned to
them do not spatially interfere. Reversing the order of tasks 2 and 3 makes
no difference in the resulting schedule, as illustrated in parts (a) and (d) of
the figure.

In general, the task sequence σ overspecifies the solution when some
crane assignments do not interfere with each other. For this reason we define
a canonical task sequence σ to be one that reflects the order of the resulting
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Figure 6: Illustration of crane simulation. Each node of the solution tree rep-
resents a state (partial schedule). Dominated states are pruned, as indicated
by crossouts.

greedy start times, with ties broken by the crane assignments. That is, σ is
canonical if sσi

≤ sσi+1
for i = 1, . . . , n− 1, and aσi

< aσi+1
when sσi

= sσi+1
,

where s consists of the greedy start times for σ. Thus (1,3,2) and (2,3,1) are
noncanonical in Fig. 5.

6 Crane Simulation

The solution algorithm consists of two main operations: crane simulation
and state pruning. Crane simulation is a method of building solutions by
assigning values to decision variables in chronological order. It assigns and
sequences tasks on cranes as they become available in time, based on their
time windows and precedence conditions. The simulation branches on each
of these decision variables, generating a tree of partially defined solutions
(Fig. 6). Because the solution tree can grow rapidly, we frequently remove
partial solutions that are dominated by others.

Each partial solution in the solution tree is described by its state. The
state consists of a partial task sequence σ = (σ1, . . . , σk), the assigned cranes
a, the resulting greedy start times s, a nogood list, and a wakeup time. The
nogood list contains crane-task pairs that have already been enumerated for
the current position in the task sequence. The wakeup time is a lower bound
on the time that the next task can start and is determined by the other state
variables. The algorithm maintains a clock, and a state need be examined
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only when the clock time advances to the state’s wakeup time.
The algorithm is initialized with a single state in which all state variables

are empty and the clock is set to zero. At each iteration, it selects a state
S that is currently awake. It determines which crane-task pairs (c, τ) can be
appended to the task sequence in S. A new state is created for each such pair
(c, τ), representing a new branch in the solution tree. This is accomplished
by making a copy Sτ of S, adding τ to the sequence σ in Sτ , and setting
aτ = c in Sτ . The clock is then advanced to the maximum of the current clock
time and the earliest wakeup time of current states, and the next iteration
is performed. The state S is left in the tree indefinitely, because it may be
possible to add other tasks to it at a later clock time.

A state is deleted if it becomes infeasible, which occurs when no task
can be scheduled for the next position in the task sequence. The algorithm
terminates when all remaining states have a wakeup time of ∞, indicating
that all the tasks have been scheduled in each state. A state with the mini-
mum objective function value over all remaining states describes an optimal
solution (a,σ).

Figure 7 describes the processing of each state in more detail. The wakeup
time W (σ, s, t) for a state is the earliest finish time of tasks in process, or
the time at which next task will be released, whichever comes first. That is,

W (σ, s, t) = min

{
min
τ∈T1

{sτ + Lτ},min
τ∈T2

{Rτ}
}

where t is the clock time, T1 contains the tasks τ appearing in σ for which
t ∈ [sτ , sτ + Lτ ], and T2 contains the tasks for which t < Rτ . Thus if all
cranes are idle and all tasks have been released, W (σ, s, t) = ∞.

An illustration of crane simulation appears in Fig. 8. There are three
cranes and two tasks. In state A, task 1 has been assigned to crane 2,
starting at time 30. The state has wakeup time 45 because the next task
is released at time 45, which occurs before the completion time (90) of the
task currently in process. State A is processed when the clock reaches time
45. The state is copied onto state B, in which task 2 is assigned to crane
1; that is, the pair (c, τ) = (1, 2) is added to the schedule. Task 2 can
be performed simultaneously with task 1 and therefore starts at time 45.
Another copy is made onto state C, in which task 2 is assigned to crane 3;
that is, (c, τ) = (3, 2) is added to the schedule. Crane 3 must wait at position
(x, y) = (30, 0) until task 1 is finished at time 90 before it starts the 20-second
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Let t be the current clock time.
For each crane-task pair (c, τ):

Check whether (c, τ) can be assigned to position k + 1 in the task sequence σ
by checking the following conditions:

Crane c is not busy (i.e., all its previously assigned tasks are complete at t).
Time t is within task τ ’s time window [Rτ , Dτ ].
Adding (c, τ) to (a,σ) satisfies the precedence constraints in (2).
The nogood list N does not contain (c, τ).

If (c, τ) satisfies these conditions, then:
Add (c, τ) to the nogood list N .
Update the wakeup time to W (σ, s, t).
Compute the greedy start time sτ for task τ .
If sτ < sσk

, or sτ = sσk
and c < aσk

, then:
Do not add (c, τ) to (a,σ), because the resulting sequence is not canonical.

Else:
Make a copy of state (σ,a, s,wakeup,N ), and modify the copy as follows:
Add (c, τ) to (a,σ) by setting σk+1 = τ and aτ = c.
Remove all nogoods from N .
Change the wakeup time to W (σ, s, t).

Figure 7: Algorithm for processing a state (σ, a, s,N ,wakeup), where σ =
(σ1, . . . , σk).

move to position (x, y) = (10, 0) to perform task 2. Task 2 therefore begins
at time 110.

State A is now modified as follows. The pairs (c, τ) = (1, 2), (3, 2) are
added to the nogood list. The wakeup time is updated to 90, because the
completion time of the current scheduled task (90) is less than the earliest
release time (∞) of tasks not yet released (all tasks have been released). In
state B, the wakeup time is 85, because task 2 finishes first at time 85. In
state C, the wakeup time is 90, because task 1 finishes first.

Because every incomplete state remains in the solution tree indefinitely
(or until it becomes infeasible), there is an opportunity to try all possible
assignments a and task sequences σ as the clock advances. The algorithm
creates a greedy schedule s for each feasible pair (a,σ) with a canonical
sequence σ. Due to Lemmas 1 and 2, this suffices to find an optimal solution,
and we have the following.
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Parameters:

Task Release Duration X Y ∆� = 10	�

1 30 s 60 s 20 m 0 m �	 = 1	�/�

2 45 s 40 s 10 m 0 m �� = 1	�/�

State A wakeup = 90

 = 1,

� = 2,

� = 30,

Nogoods: 		 2,2 , (3,2)

State B wakeup = 85

 = 1,  2,

� = 2,  1,

� = 30,45,

Nogoods:

State C wakeup = 90

 = 1,   2,

� = 2,   3,

� = 30,110,

Nogoods:

State A wakeup = 45

 = 1, 

� = 2, 

� = 30,

Nogoods: COPY

COPY

Figure 8: Example of crane simulation. Two copies of state A are created
when the clock reaches the state’s wakeup time of 45 s.

Theorem 3 Crane simulation finds an optimal solution of the crane schedul-
ing problem (1)–(3) if one exists.

7 State Pruning

Periodically during the crane simulation, the solution tree is examined to
identify noncompletable, suboptimal or redundant states that can be deleted.

Noncompletable states are identified by flagging a state whenever its
wakeup time passes the latest start time Dτ −Lτ of a task τ . If the task has
not been scheduled in the state, the schedule cannot be completed, and the
state is deleted.

We also delete states that are dominated by others. Suppose state S
contains the partial solution (a, s), and state S ′ contains the partial solution
(a′, s′). Then S is dominated by S ′ if the following conditions are satisfied:

(a) Every task scheduled in S is also scheduled in S ′.

17



(b) Any task τ that can be subsequently sequenced in S by assigning it
crane aτ = c and start time sτ either (a) is part of a job whose first
task already appears in S ′ or (b) can be added to S ′ by assigning it the
same crane a′τ = c and a start time s′τ ≤ sτ .

(c) The accumulated objective value for the tasks that are assigned in S ′

is no greater in S ′ than in S. Let T be the set of tasks scheduled in
S, and T ′ the set of tasks scheduled in S ′. The accumulated objective
value in S ′ is

f ′ =
∑
τ∈T ′

Pτ (s
′
τ −Rτ )

and the accumulated objective value in S is

f =
∑
τ∈T ′

Pτ (tτ −Rτ )

where tτ = sτ if τ ∈ T , and otherwise tτ is the wakeup time for S. We
require that f ′ ≤ f .

Theorem 4 Crane simulation obtains an optimal solution, if one exists,
when dominated states are deleted.

Proof. It suffices to show that whenever a state S is deleted because it
is dominated by another state S ′, some completion of S ′ is at least as good
as an optimal completion of S. Suppose, then, that S and S ′ correspond
to partial solutions (a, s) and (a′, s′) as defined above. Let (ā, s̄) be an
optimal completion of (a, s). That is, (ā, s̄) is an optimal solution of the
projected crane scheduling problem subject to āσi

= aσi
and s̄σi

= sσi
for

i = 1, . . . , k. It suffices to exhibit a feasible completion (ā′, s̄′) of (a′, s′) whose
cost is no higher than that of (ā, s̄). We do this by keeping the schedule for
tasks already scheduled in S ′, and scheduling other tasks as in the optimal
completion of S. That is, we define ā′τ = a′τ and s̄′τ = s′τ when τ is scheduled
in S ′, and ā′τ = āτ and s̄′τ = s̄τ otherwise.

We first show by induction that (ā′, s̄′) is feasible. Let τ be the task
unscheduled in S ′ that starts earliest in (ā, s̄). Due to dominance condition
(a), τ is not already scheduled in S. Thus τ can be scheduled next on crane
āτ with start time s̄τ in S. Dominance condition (b) implies that τ can be
feasibly scheduled in S ′ with the same crane assignment and start time. Now
let S+ and S ′

+ be the states that result when τ is scheduled in this fashion in
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states S and S ′, respectively. We claim that dominance conditions (a) and
(b) hold for S+ and S ′

+. Condition (a) obviously holds. Condition (b) holds
because task τ is scheduled at the same time and on the same crane in S+ and
S ′
+. Any task that can be scheduled next in S+ can be identically scheduled

in S ′
+ without violating feasibility with respect to τ , and therefore without

violating feasibility with respect to any task in S ′
+. Now that conditions (a)

and (b) hold for S+ and S ′
+, we can repeat the argument for a second task

that is unscheduled in S ′. It follows by induction that (ā′, s̄′) is feasible.
We now show that the cost of (ā′, s̄′) is no higher than that of (ā, s̄). The

cost of (ā′, s̄′) is

C ′ =
∑
τ∈T ′

Pτ (s
′
τ −Rτ ) +

∑
τ 6∈T ′

Pτ (s̄τ −Rτ ) = f ′ +
∑
τ 6∈T ′

Pτ (s̄τ −Rτ ) (13)

The cost of (ā, s̄) is

C =
∑
τ∈T

Pτ (sτ −Rτ ) +
∑

τ∈T ′\T

Pτ (s̄τ −Rτ ) +
∑
τ 6∈T ′

Pτ (s̄τ −Rτ )

≥
∑
τ∈T

Pτ (sτ −Rτ ) +
∑

τ∈T ′\T

Pτ (w −Rτ ) +
∑
τ 6∈T ′

Pτ (s̄τ −Rτ )
(14)

where w is the wakeup time for state S. The inequality follows from the fact
that any task added to S must be scheduled at or after w. From (14) we
have

C ≥ f +
∑
τ 6∈T ′

Pτ (s̄τ −Rτ ) (15)

Dominance condition (c) ensures that f ′ ≤ f . This, along with (13) and
(15), imply that C ′ ≤ C, as desired. �

8 State Chopping

If state pruning procedure is not sufficiently effective, crane simulation may
generate too many states to hold in memory. We therefore apply a state
chopping procedure when the number of states exceeds a certain user-defined
threshold. State chopping deletes less promising states without proving that
they are dominated. Thus when state chopping is turned on, an optimal
solution is no longer guaranteed.
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The chopping heuristic sorts the states according to the number of tasks
completed (high to low), followed by the accumulated objective value (low to
high). It deletes states from the front of the list until it is sufficiently short.
Although this voids the optimality guarantee, the resulting solutions tend to
be very good and even optimal in practice.

9 Experimental Results

We tested the algorithm on two sets of instances, one based on random
generation, one consisting of six realistic 2-crane problems obtained from
industry. The random instances were also designed to resemble industry
problems. We generated instances of 4 different sizes for 1, 2, 3 and 4 cranes,
with 5 instances of each size. The tasks have uniformly distributed processing
times and time window durations, along with priorities. They are grouped
randomly into jobs, and precedence constraints are also generated. We then
constructed a heuristic solution by assigning and sequencing the tasks on
cranes and computing greedy start times. We used the resulting start times
as the given release times for the tasks, so that the optimal value of each
instance is exactly zero.

We imposed gradually increasing bounds on the number of states, to
observe the effect on solution quality. The algorithm checks the number
of states after each pruning, and if the number exceeds the bound, excess
states are chopped as described in Section 8. The peak number of states
between chopping operations may exceed the bound, sometimes by a factor
of two or three. The solver can always prove optimality with a sufficiently
large bound on the state space, although we did not reach this bound for the
larger instances.

Table 2 displays the solution quality for random instances as the state
space bound increases by powers of two. Each number in the table is the
percent (averaged over five instances) by which the solution value exceeds
the optimal or best known value. As expected, the solution improves as the
state space grows, in many cases culminating in a proof of optimality. Table 3
shows the corresponding average computation times in seconds. The boldface
figures correspond to state space sizes for which optimality was proved. Note
that it generally takes much less time to obtain a value that is within, say,
1% of the best known value than to obtain the best known value. Figs. 9–11
display some representative trajectories produced by the algorithm.

20



 

Figure 9: Solution trajectory for 2 cranes and 100 tasks, optimality proved.
The horizontal axis represents time.

When an optimal solution is proved, the algorithm discovers the solution
in a much smaller state space than is required to prove optimality. As the
state space grows, the solution values reach a stable point that is eventually
proved to be optimal, and the values never depart from a plateau after reach-
ing it. For instances in which optimality is not proved, the solution values
likewise reach a plateau, but the state space does not grow large enough
to prove optimality. We might reasonably assume that the stable value is
optimal, based on the behavior of the algorithm when it proves optimality.
In Table 3, the times shown in boxes correspond to state space sizes for which
a stable value was obtained for all 5 instances. This indicates that if these
instances are representative, one can ordinarily reach a stable value within
the time shown, or less.

Results for the instances obtained from industry appear in Tables 4 and 5.
The instances are listed in increasing difficulty. Optimality was proved for
none of the instances, but a stable value was reached for all but the last one.
Aside from this instance, a value within about 1% of the best known value
was reached in times ranging from 10 seconds to 20 minutes.

The primary source of complexity in the algorithm is the manner in which
it assigns multiple cranes to multiple tasks near the same clock time. It
generates a state for each possible combination of crane-task assignments
and sequences for those assignments. Especially in problems with more than
two cranes, the number of such combinations can be quite large, multiplying
the number of states substantially.
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Figure 10: Solution trajectory for 3 cranes and 50 tasks, optimality likely
but not proved.

10 Conclusions

We presented an algorithm that solves the factory crane scheduling problem
by creating a decision tree of possible states and pruning the tree using a
dominance relation between states. It yields optimal or serviceable solutions
for problems of realistic size involving up to 4 cranes and 200 tasks, where
a serviceable solution is one that is within 1% of the apparent optimum, or
within a few percent for the hardest instances. It allows the user to improve
a suboptimal solution to the extent desired by raising the ceiling on the state
space size and investing more computation time.

A key to the success of the algorithm is a dominance check that prunes
inferior partial solutions long before they are extended to complete solutions.
This often prevents what would otherwise become an exponential explosion
of solution states.

There is room for improvement in the algorithm, however, particularly
in the state pruning procedure. When the state space is large, the time
required to compare state pairs can become quite large. We hypothesize
that streamlining the pruning procedure provides the greatest opportunity
for improving the algorithm’s efficiency.
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Figure 11: Solution trajectory for 4 cranes and 200 tasks, optimality not
proved.
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Table 2: Quality of solution for various limits on the number of states, for
random instances. Each figure is the average percent by which the solution
value exceeds the optimal or best known value. Boldface figures indicate that
optimality was proved. Five instances of each size were solved.

Cranes Maximum number of states after pruning

Tasks 24 25 26 27 28 29 210 211 212 213 214 215 216 217

1 20 0∗

50 0 0 0∗

100 0 0 0 0∗

200 0 0 0 0 0∗

2 20 7.5 4.6 0.2 0.1 0 0 0∗

50 13 6.2 4.6 0.7 0 0 0 0 0 0 0∗

100 19 8.6 5.3 3.1 2.5 2.0 0.2 0.07 0 0 0 0 0 0∗∗

200 21 14 8.3 7.1 3.9 2.5 1.3 1.1 0.6 0.2 0.2 0 0 0

3 20 24 16 2.1 0.9 0.9 0 0 0 0 0∗∗∗

50 47 31 22 18 18 8.5 7.7 1.1 0.9 0.2 0 0 0 0
100 62 32 38 17 13 7.0 4.2 3.5 3.2 2.4 1.4 0.6 0.3 0
200 57a 40 34 19 21 16 12 6.5 5.3 4.6 3.2 2.5 0.4 0

4 20 111b 32 21 13 5.7 1.3 1.8 0.08 0.08 0.08 0 0 0 0†

50 122 56 36 31 21 21 15 11 7.6 3.7 1.9 1.9 0.9 0
100 75 64 52 43 28 25 18 11 8.7 6.9 5.2 3.3 1.9 1.1††

200 102 66 42 38 30 19 15 10 12 7.8 6.9 3.1 1.1 1.1††

a,bNo feasible solution found for 1 (a) or 2 (b) of the 5 instances.
∗Optimality proved for all 5 instances.
∗∗Optimality proved for 3 of the 5 instances.
∗∗∗Optimality proved for 3 instances using 212 states and 2 instances using 213 states.
†Optimality proved for 2 instances using 215 states, 1 using 216 states, and 2 using 217 states.
††This number is greater than zero because some instances obtained their best solution using

fewer than 217 states and a slightly worse solution using 217 states.
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Table 3: Average computation times (in seconds) for various limits on the
number of states, for random instances. Boldface figures indicate the time
required to prove optimality (specifics are in Table 2). Figures in boxes
correspond to the state space size at which the optimal or best known solution
was obtained for all 5 instances.

Cranes Maximum number of states after pruning

Tasks 24 25 26 27 28 29 210 211 212 213 214 215 216 217

1 20 0.05

50 0.05 0.05 0.05

100 0.06 0.1 0.06 0.05

200 0.06 0.07 0.1 0.07 0.08

2 20 0.05 0.05 0.06 0.06 0.06 0.06 0.06

50 0.06 0.07 0.09 0.1 0.2 0.3 0.6 0.9 1.3 1.6 1.8

100 0.1 0.1 0.2 0.4 0.6 1.0 2.0 3.6 6.3 11 19 32 47 69

200 0.3 0.5 0.8 1.4 2.5 4.6 9.8 20 35 65 114 206 380 1041

3 20 0.06 0.06 0.07 0.09 0.1 0.2 0.4 0.6 0.8 1.2

50 0.1 0.1 0.2 0.2 0.6 1.0 2.6 5.1 9.7 19 36 67 116 485

100 0.2 0.3 0.6 1.0 1.9 3.6 8.9 19 38 75 145 291 565 1717

200 0.9 1.7 3.1 5.5 10 19 45 99 195 398 757 1591 3110 6122

4 20 0.2 0.2 0.2 0.3 0.6 1.1 2.2 3.9 6.9 12 19 30 43 51

50 0.6 0.4 0.8 1.4 2.7 4.3 9.4 20 38 77 151 320 664 1436

100 1.0 1.8 4.2 6.0 11 17 42 86 166 342 680 1458 2993 6828

200 2.7 5.6 11 20 30 61 112 229 427 948 1798 3598 9017 17503
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Table 4: Quality of solution for various limits on the number of states for
6 instances obtained from industry. All instances schedule 30 jobs with 60
tasks on 2 cranes. Each figure is the percent by which the solution value
exceeds the optimal or best known value. An ∞ indicates that no feasible
solution was found.

Maximum number of states after pruning

24 25 26 27 28 29 210 211 212 213 214 215 216 217

∞ ∞ 47 16 1.6 1.6 0.0 0 0 0 0 0 0 0
∞ 49 32 14 16 11 6.4 0 0 0 0 0 0 0
46 40 33 12 6.9 5.5 0.3 0.1 0.1 0.1 0 0 0 0
∞ 49 5.8 17 2.7 1.6 1.0 0.7 0.7 0.2 0 0 0 0
64 ∞ 38 15 5.0 11 2.7 2.6 1.8 1.8 1.6 1.1 0 0
∞ 50 30 31 24 15 9.5 7.9 5.3 4.9 4.9 2.8 0.5 0.0

Table 5: Computation times (in seconds) for various limits on the number
of states for 6 instances obtained from industry. Figures in boxes corre-
spond to the state space size at which the best known solution was obtained.
Optimality was not proved for any instances.

Maximum number of states after pruning

24 25 26 27 28 29 210 211 212 213 214 215 216 217

1.1 1.5 2.4 2.4 2.6 4.8 9.9 17 49 130 377 1730 5762 15299

0.9 1.8 1.5 2.2 3.3 5.2 7.1 19 51 142 401 1261 4847 11977

2.5 2.2 2.5 2.7 3.1 4.9 7.2 15 38 84 202 475 1183 2315

0.8 1.9 1.6 2.7 3.5 6.4 11 31 95 291 992 4288 15303 45865

1.4 0.9 2.1 2.3 3.3 5.4 12 20 58 152 375 1203 4324 12708

1.1 2.1 1.8 2.4 2.9 4.7 8.9 21 53 139 420 1290 4715 13692
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