
Convex Programming Methods for Global

Optimization

J. N. Hooker

GSIA, Carnegie Mellon University, Pittsburgh, USA,
jh38@andrew.cmu.edu

November 2003

Abstract. We investigate some approaches to solving nonconvex global
optimization problems by convex nonlinear programming methods. We
assume that the problem becomes convex when selected variables are
fixed. The selected variables must be discrete, or else discretized if they
are continuous. We provide a survey of disjunctive programming with
convex relaxations, logic-based outer approximation, and logic-based Ben-
ders decomposition. We then introduce a branch-and-bound method with
convex quasi-relaxations (BBCQ) that can be effective when the discrete
variables take a large number of real values. The BBCQ method gener-
alizes work of Bollapragada, Ghattas and Hooker on structural design
problems. It applies when the constraint functions are concave in the
discrete variables and have a weak homogeneity property in the contin-
uous variables.

We address global optimization problems that become convex when selected
variables are fixed. If these variables are discrete, the constraints can be refor-
mulated as logical disjunctions of convex constraints. If some of the selected
variables are not discrete, we discretize them in order to obtain an approximate
global solution.

The motivation for this approach is to take advantage of highly developed
nonlinear programming methods for convex problems, as well as branch-and-
bound methods for discrete problems. A branch-and-bound method chooses the
appropriate disjunct in each constraint. Nonlinear programming is applied to
the convex subproblem that results when the disjuncts are chosen.

We present four variations of this general approach. Two of them are most
practical when the discrete variables do not take a large number of possible val-
ues: (a) disjunctive programming with convex relaxations, and (b) logic-based
outer approximation. The disjunctive programming model can also be solved
as a mixed integer/nonlinear programming (MINLP) problem. When there are
a large number of discrete values, as when some discrete variables represent
discretized continuous variables, one can turn to methods that do not require
explicit representation of the disjunctions: (c) logic-based Benders decomposi-
tion, and (d) branch and bound with convex quasi-relaxations (BBCQ). The



convergence rate of the Benders method depends heavily on the problem struc-
ture, however. BBCQ is intended for problems in which the discrete variables are
real-valued. It does not rely on decomposition but requires that the constraint
functions satisfy certain properties.

This paper begins with a summary of the first three methods, which are
developed elsewhere. It then introduces the BBCQ method as a formalization
and generalization of a technique applied by Bollapragada, Ghattas and Hooker
to structural design problems [1]. This application is presented at the end of the
paper as an illustration of disjunctive programming and BBCQ.

1 General Form of the Problem

We solve problems of the form

min x0

subject to gj(x, yj) ≤ 0, j ∈ J

L(y)

x ∈ IRn, yj ∈ Yj , j ∈ J

(1)

where gj(x, yj) is a vector of functions and L(y) is a logical constraint on possible
values of the discrete variables yj . If some of the yj are continuous, we discretize
them by converting Yj to a finite set. We assume that when each yj is fixed to
some ȳj ∈ Yj we obtain the convex subproblem:

min x0

subject to gj(x, ȳj) ≤ 0, j ∈ J

x ∈ IRn

(2)

It is convex in the sense that each gj(x, ȳj) is a vector of convex functions of x.
We assume without loss of generality that the objective function is a single

variable x0, since x0 can be defined in the constraints. We also suppose that
each constraint contains only one discrete variable yj . Many problems naturally
occur in this form. Problems that do not can in principle be put into this form
by a change of variables. Thus a constraint gj(x, y1, . . . , ym) ≤ 0 can be written
gj(x, yj) ≤ 0, where yj = (yj

1
, . . . , yj

m) is regarded as a single variable. The
variables yj can now be related by the logical constraints yj = y1 for all j ∈ J .
For instance, the constraints x+y1 +y2 ≥ b and x+y2 +y3 ≥ b can be rewritten
x + y1

1 + y1
2 ≥ b and x + y2

2 + y2
3 ≥ b by adding the constraint y1

2 = y2
2 .

2 Structural Design Example

We use a simple structural design problem to illustrate all four solution methods.
The two pillars of Fig. 1 support the two horizontal platforms shown. Pillar 1
bears a weight of 10 and pillar 2 a weight of 20. The weight on pillar 1 causes
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Fig. 1. A simple structural design problem.

it to compress an amount x1 given by Hooke’s law, x1y1 = 10, where y1 is the
thickness (cross-sectional area) of pillar 1, and similarly for pillar 2. Thus the
top platform is displaced downward a distance x1 +x2, and the bottom platform
a distance x2. The cost of steel in pillar j is 300yj, and we impose a penalty
(x1 + x2)

2 + x2
2 for displacement. The objective is to choose thicknesses for the

two pillars so as to minimize the sum of the cost and the penalty:

minimize 300y1 + 300y2 + (x1 + x2)
2 + x2

2

subject to x1y2 = 10, x2y2 = 20

xj ≥ 0, yj ∈ {1, 2} for j = 1, 2

(3)

To simplify the example we consider two discrete thicknesses (1 and 2). Near
the end of the paper we also consider the case in which y1 and y2 are continuous
variables.

The model (3) is chosen for the sole purpose of illustrating the algorithms
described below. It is not intended to be a realistic or proper engineering model
for a structural design problem. In particular, the nonlinear penalty terms are
inserted to show how they are treated in the algorithms, not because they nec-
essarily represent the best way to limit displacement. A more realistic structural
design model is presented in Section 8.



To verify that the model (3) has the general form (1), note that it can be
written

minimize z0

subject to z1 + z2 + (x1 + x2)
2 + x2

2 − x0 ≤ 0
[

300y1 − z1

10− x1y1

]

≤

[

0
0

]

[

300y2 − z2

20− x2y2

]

≤

[

0
0

]

xj ≥ 0, yj ∈ {0, 1} for j = 1, 2

(4)

The model is clearly convex when the yjs are fixed.

3 Disjunctive Formulation

A straightforward but generally impractical way to solve (1) is by a branch-
and-bound method that branches on the yj and solves a continuous relaxation
of the problem at each node of the branching tree. The difficulty is that these
continuous problems are in general nonconvex.

To obtain convex relaxations, we write (1) as a disjunctive programming
problem by creating a disjunct for each possible value of yj .

min x0

subject to
∨

v∈Yj

[

yj = v
gj(x, v) ≤ 0

]

, j ∈ J

L(y)

x ∈ IRn

(5)

The functions gj(x, v) are convex because the second argument is fixed. They
may also simplify in form. In some cases singularities disappear, as for example
when

gj(x, yj) =

[

x1 − 1/y1

x1 − x20

]

≤

[

0
0

]

can be written simply x1 − x2 ≤ 0 for yj = 0.



Example. The disjunctive formulation for the structural design example of
the previous section is

minimize x0

subject to z1 + z2 + (x1 + x2)
2 + x2

2 − x0 ≤ 0




y1 = 1
300 − z1 ≤ 0
10 − x1 ≤ 0



 ∨





y1 = 2
600− z1 ≤ 0
10− 2x1 ≤ 0









y2 = 1
300 − z2 ≤ 0
20 − x2 ≤ 0



 ∨





y2 = 2
600− z2 ≤ 0
20− 2x2 ≤ 0





x1, x2 ≥ 0

(6)

Note that the first disjunction contains only one disjunct, since no yj appears
in the corresponding constraint. (For convenience we regard the first constraint
function as g0(x, y0), where y0 does not actually appear.) All of the disjuncts
are convex, and in fact all but the first are linear. The subproblem (2) becomes

minimize x0

subject to z1 + z2 + (x1 + x2)
2 + x2

2 − x0 ≤ 0

300ȳ1 − z1 ≤ 0

10 − x1ȳ1 ≤ 0

300ȳ2 − z2 ≤ 0

20 − x2ȳ2 ≤ 0

x1, x2 ≥ 0

(7)

4 Disjunctive Programming with Convex Relaxations

A branch-and-bound method can be practical for the disjunctive programming
problem (5) when it is possible to devise a convex relaxation at each node of the
search tree. Two such relaxations, based on big-M and convex hull formulations,
are presented here.

Branch and bound proceeds by branching on the alternatives in the disjunc-
tions of (5). At each node of the search tree, some disjuncts have been selected
by prior branching, and these are imposed as constraints. The disjunctions on
which the algorithm has not yet branched are relaxed. A lower bound is obtained
by solving a convex problem that minimizes x0 subject to the imposed disjuncts
and the relaxed disjunctions. The lower bound is used to prune the search as is
normally done in branch-and-bound search (see [8, 10] for details).

A closely related approach is to apply an MINLP method to a 0-1 model of
the disjunctive model (5), which results from imposing an integrality condition
on either the big-M or the convex hull relaxation of (5).

The big-M relaxation introduces a variable βjv for each v ∈ Yj, where βjv = 1
is interpreted as indicating yj = v. It is assumed that there are bounds xL ≤



x ≤ xU on x. Let L(β) be an inequality encoding of the logical constraints L(y)
[2]. The big-M relaxation of (5) is:

min x0

subject to gj(x, v) ≤ M jv(1 − βjv), all v ∈ Yj, j ∈ J
∑

v∈Yj

βjv = 1, βjv ≥ 0, all v ∈ Yj , j ∈ J

L(β), xL ≤ x ≤ xU

0 ≤ βjv ≤ 1, all v ∈ Yj, j ∈ J

(8)

where M jv is a vector of valid upper bounds on the component functions of
gj(x, v), given that xL ≤ x ≤ xU . This relaxation is clearly convex.

One can solve (5) by using relaxation (8) at each node, where J in (8) corre-
sponds to the set of disjunctions on which the algorithm has not yet branched.
Alternatively, one can apply an MINLP algorithm to the 0-1 model obtained
by replacing βjv ∈ [0, 1] in (8) with βjv ∈ {0, 1}, where J corresponds to the
original set of disjunctions.

The bounds M jv should be the tightest that can be practicably obtained.
One valid bound is

M jv
i = max

xL≤x≤xU

{

gj
i (x, v)

}

(9)

but the tightest bound is

M jv
i = max

v′∈Yj\{v}

{

max
xL≤x≤xU

{

gj
i (x, v) | gj(x, v′) ≤ 0

}

}

Example. Consider the disjunction

[

yj = 1
x2

1 + x2
2 − 1 ≤ 0

]

∨

[

yj = 2
(x1 − 2)2 + x2

2 − 1 ≤ 0

]

(10)

with x1 ∈ [−1, 3] and x2 ∈ [−1, 1]. The feasible set for (10) is the union of the
discs in Fig. 2. Setting M j1 = M j2 = 9 as given by (9), we get the big-M
relaxation

x2
1 + x2

2 − 1 ≤ 9(1 − β)

(x1 − 2)2 + x2
2 ≤ 9β

β ∈ [0, 1]

The elliptical area in Fig. 2 depicts the projection of the relaxation onto the
x-space. The projection is described by x2

1 + (x1 − 2)2 + 2x2
2 ≤ 11.

A second convex relaxation for (5), based on convex hull descriptions of the
disjunctions, was developed by Stubbs and Mehrotra [13] and Grossmann and
Lee [6]. It is generally tighter than the big-M relaxation but requires that we
introduce for each disjunction j a new continuous variable xjv for each v ∈ Yj .
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2x

Fig. 2. A big-M relaxation of a union of two discs.

The convex hull relaxation for a disjunction

∨

v∈Yj

gj(x, v) ≤ 0 (11)

can be derived as follows. We assume that x and gj are bounded; that is, x ∈
[xL, xU ], and gj(x) ∈ [−L, L] for x ∈ [xL, xU ]. We wish to characterize all points
x that can be written as a convex combination of points x̂jv that respectively
satisfy the disjuncts of (11). Thus we have

x =
∑

v∈Yj

βjvx̂jv

gj(x̂j, v) ≤ 0, all v ∈ Yj

xL ≤ x̂j ≤ xU

∑

v∈Yj

βjv = 1, βjv ≥ 0, all v ∈ Yj

Using the change of variable xjv = βjvx̂jv, we obtain the relaxation

x =
∑

v∈Yj

xjv

gj

(

xjv

βjv

, v

)

≤ 0, all v ∈ Yj

βjvxL ≤ xjv ≤ βjvx
U , all v ∈ Yj

∑

v∈Yj

βjv = 1, βjv ≥ 0, all v ∈ Yj

(12)



The function gj(xjv/βjv, v) is in general nonconvex, but a classical result of
convex analysis (e.g. [7]) implies that one can restore convexity by multiplying
the second constraint of (12) by βjv.

Theorem 1. Consider the set S consisting of all (x, β) with β ∈ [0, 1] and
x ∈ [βxL, βxU ]. If g(x) is convex and bounded for x ∈ [βxL, βxU ], then

h(x, β) =

{

βh(x/β) if β > 0

0 if β = 0

is convex and bounded on S.

Proof. To show convexity of h(x, β) we arbitrarily choose (x1, β1), (x
2, β2) ∈

S. Supposing first that β1, β2 > 0, we have convexity since

h
(

αx1 + (1 − α)x2, αβ1 + (1 − α)β2

)

= (αβ1 + (1 − α)β2) g

(

αx1 + (1 − α)x2

αβ1 + (1 − α)β2

)

= (αβ1 + (1 − α)β2) g

(

αβ1

αβ1 + (1 − α)β2

x1

β1

+
(1 − α)β1

αβ1 + (1 − α)β2

x2

β2

)

≤ (αβ1 + (1 − α)β2)

[

αβ1

αβ1 + (1 − α)β2

g

(

x1

β1

)

+
(1 − α)β1

αβ1 + (1 − α)β2)
g

(

x2

β2

)]

= αh
(

x1, β1

)

+ (1 − α)h
(

x2, β2

)

for any α ∈ [0, 1], where the inequality is due to the convexity of g(x). If β1 =
β2 = 0, then

h
(

αx1 + (1 − α)x2, αβ1 + (1 − α)β2

)

= h(0, 0) = αh
(

x1, β1

)

+(1−α)h
(

x2, β2

)

since −βjL ≤ xj ≤ βjL implies xj = 0. If β1 = 0 and β2 > 0, we have

h
(

αx1 + (1 − α)x2, αβ1 + (1 − α)β2

)

= h
(

(1 − α)x2, (1 − α)β2

)

= (1 − α)g

(

x2

β2

)

= αh(0, 0) + (1 − α)h
(

x2, β2

)

Finally, h(x, β) = βg(x/β) is bounded because β ∈ [0, 1], x/β ∈ [xL, xU ], and
g(x) is bounded for x ∈ [xL, xU ].



We now obtain the following convex relaxation for (5):

min x0

subject to x =
∑

v∈Yj

xjv, all j ∈ J

βjvgj

(

xjv

βjv

, v

)

≤ 0, all v ∈ Yj , j ∈ J

βjvxL ≤ xjv ≤ βjvxU , all v ∈ Yj, j ∈ J
∑

v∈Yj

βjv = 1, βjv ≥ 0, all v ∈ Yj , j ∈ J

L(β), x, xjv ∈ IRn, all v ∈ Yj , j ∈ J

(13)

This is not a convex hull relaxation for (5) as a whole, but it provides a convex
hull relaxation of each disjunction of (5).

Since βjv can vanish, it is common in practice to use the constraint

(βjv + ǫ)gj

(

xjv

βjv + ǫ
, v

)

≤ 0, all v ∈ Yj , j ∈ J

The introduction of ǫ preserves convexity. Grossmann and Lee [6] suggest using
ǫ = 10−4.

Example. The convex hull relaxation for the disjunction (10) is

[

x1

x2

]

=

[

x11

x21

]

+

[

x12

x22

]

x2
11 + x2

21

β + ǫ
≤ β + ǫ

x2
12 + x2

22

1 − β + ǫ
− 4x12 + 3(1 − β + ǫ) ≤ 0

β

[

−1
−1

]

≤

[

x11

x21

]

≤ β

[

3
1

]

(1 − β)

[

−1
−1

]

≤

[

x12

x22

]

≤ (1 − β)

[

3
1

]

0 ≤ β ≤ 1

The bounds on xjv are redundant in this case and can be dropped. Figure 3 shows
the projection of the feasible set of this relaxation onto the original x-space.
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Fig. 3. The convex hull relaxation of a union of two discs.

Example. A big-M relaxation for the structural design problem is

minimize x0

subject to z1 + z2 + (x1 + x2)
2 + x2

2 − x0 ≤ 0

300− z1 ≤ 0 600− z1 ≤ 300β1

10− x1 ≤ 5(1 − β1) 10− 2x1 ≤ 0

300− z2 ≤ 0 600− z2 ≤ 300β2

20− x2 ≤ 10(1− β2) 20− 2x2 ≤ 0

5 ≤ x1 ≤ 10 10 ≤ x2 ≤ 20

β1, β2 ∈ [0, 1]

(14)

The convex hull relaxation is

minimize x0

subject to

[

x1

x2

]

=

[

x11 + x12

x21 + x22

] [

z1

z2

]

=

[

z11 + z12

z21 + z22

]

z1 + z2 + (x1 + x2)
2 + x2

2 − x0 ≤ 0

z11 ≥ 300β1 z12 ≥ 600(1− β1)

x11 ≥ 10β1 x12 ≥ 10(1 − β1)

z21 ≥ 300β2 z22 ≥ 600(1− β2)

x21 ≥ 20β2 x22 ≥ 20(1 − β2)

β1 , β2 ∈ [0, 1]

(15)

The disjunctive programming problems (14) and (15) can be solved directly by
branch and bound, or by MINLP with βj ∈ {0, 1} replacing βj ∈ [0, 1]. The
optimal solution is (y1, y2) = (1, 2), meaning that the upper bar has size 1 and
the lower bar size 2.



5 Logic-based Outer Approximation

One can use linear rather than convex nonlinear relaxations by modifying the
outer approximation method for MINLP [3] to solve disjunctive programming
problems, as shown by Türkay and Grossmann [14]. The drawback is that the
linear relaxations must be updated and solved repeatedly.

Logic-based outer approximation solves a master problem containing first-
order approximations of the disjuncts of (5) to obtain a value ȳ for y. It then
solves the nonlinear but convex subproblem (2) to obtain a corresponding value
for x. The first-order approximations are computed about the values of x ob-
tained in previous iterations. The process continues until optimal value of the
master problem approximates the largest optimal subproblem value found so far.

Let (xk, yk) for k = 1, . . . , K be the solutions obtained by solving the master
problem and subproblem in previous iterations. The master problem in iteration
K + 1 can be written

min x0

subject to
∨

v∈Yj





yj = v

gj(xk, v) + ∇gj(xk, v)(x − xk) ≤ 0,
all k ∈ {1, . . . , K} with yk

j = v



 , all j ∈ J

L(y), x ∈ IRn

(16)

Since the disjuncts in (16) are linear, the relaxations (8) and (13) are likewise
linear. One can therefore solve (16) by applying a mixed integer programming
method to a 0-1 formulation of (16). Again, either (8) or (13) can serve as a 0-1
formulation if the variables βjv are treated as 0-1 variables. The solution y of
(16) becomes yK+1, and xK+1 is an optimal solution of the subproblem (2) with
ȳ = yK+1 .

In practice it is advantageous to obtain a warm start by solving the subprob-
lem for several values of ȳ before solving the first master problem.

Example. The master problem for the structural design problem in iteration
K + 1 is

minimize x0

subject to z1 + z2 + (xk
1 + xk

2)
2 + (xk

2)
2 + 2(xk

1 + xk
2)(x1 − xk

1)
+2(xk

1 + 2xk
2)(x2 − xk

2) − x0 ≤ 0, k = 1, . . .K




y1 = 1
300− z1 ≤ 0
10 − x1 ≤ 0



 ∨





y1 = 2
600 − z1 ≤ 0
10 − 2x1 ≤ 0









y2 = 1
300− z2 ≤ 0
20 − x2 ≤ 0



 ∨





y2 = 2
600 − z2 ≤ 0
20 − 2x2 ≤ 0





x1, x2 ≥ 0

(17)



Since the disjuncts other than the first are already linear, no first order approx-
imation is needed for them. We solve (17) by solving its big-M formulation as
an MILP:

minimize x0

subject to z1 + z2 + (xk
1 + xk

2)2 + (xk
2)

2 + 2(xk
1 + xk

2)(x1 − xk
1)

+2(xk
1 + 2xk

2)(x2 − xk
2) − x0 ≤ 0, k = 1, . . .K

300 − z1 ≤ 0 600− z1 ≤ 300β1

10 − x1 ≤ 5(1 − β1) 10 − 2x1 ≤ 0

300 − z2 ≤ 0 600− z2 ≤ 300β2

20 − x2 ≤ 10(1 − β2) 20 − 2x2 ≤ 0

5 ≤ x1 ≤ 10 10 ≤ x2 ≤ 20

β1, β2 ∈ {0, 1}

(18)

To obtain a warm start, we solve the subproblem (7) with (ȳ1, ȳ2) set to y1 =
(1, 1) and y2 = (2, 2),which yield x1 = (20, 20) and x2 = (5, 10). This results in
the master problem

minimize x0

subject to z1 + z2 + 2000 + 80(x1 − 20) + 120(x2 − 20) − x0 ≤ 0

z1 + z2 + 325 + 30(x1 − 5) + 50(x2 − 10) − x0 ≤ 0

300 − z1 ≤ 0 600 − z1 ≤ 300β1

10 − x1 ≤ 5(1 − β1) 10 − 2x1 ≤ 0

300 − z2 ≤ 0 600 − z2 ≤ 300β2

20 − x2 ≤ 10(1 − β2) 20 − 2x2 ≤ 0

5 ≤ x1 ≤ 10 10 ≤ x2 ≤ 20

β1, β2 ∈ {0, 1}

(19)

The master problem has solution β = (1, 0) and x0 = 1375, which corresponds
to y3 = (1, 2). This yields x3 = (10, 10) and x0 = 1400 in the subproblem. The
first order expansion of the nonlinear constraint about x3 is

z1 + z2 + 500 + 40(x1 − 10) + 60(x2 − 10) − x0 ≤ 0

This is added to the master problem, which now has solution β = (1, 0) corre-
sponding to y4 = (1, 2), and x0 = 1400. Since the master problem and subprob-
lems converge, the algorithm terminates with y = (1, 2).

6 Logic-based Benders Decomposition

When a constraint in the disjunctive programming formulation contains many
disjuncts, the number of variables in the relaxations (8) and (13) can become
quite large. This can be avoided by applying logic-based Benders decomposition



to (5), which in effect uses a discrete relaxation of the problem and does not re-
quire an explicit formulation of the disjunctions [8, 11]. However, the convergence
rate is unpredictable.

In logic-based Benders, the master problem consists of Benders cuts that
contain only the discrete variables yj . At any point in the algorithm, the Benders
cuts partially describe the projection of the original problem’s feasible set onto
the y-space.

In iteration K the subproblem is (2) with ȳ set to the solution yK of the
current master problem. Let λKj be the vector of Lagrange multipliers associated
with constraint j in the optimal solution of (2), and let xK

0 be the optimal
value of (2). Since constraints with vanishing Lagrange multipliers are inactive
in the subproblem, we can state the following: whenever ȳj is set to yK

j for all

constraints j with λKj 6= 0, the optimal value of the subproblem is still xK
0 . We

generate a Benders cut that states this fact, and add it to the master problem
for iteration K + 1:

min z

subject to
∧

j

λkj 6= 0

(yj = yk
j ) =⇒ (z ≥ xk

0), k = 1, . . . , K

L(y)

(20)

where =⇒ means “implies.” For each k the implication in (20) is the Benders cut
generated in iteration k. The master problem is solved for yK+1 , and the process
continues until the optimal value of (20) approximates the best subproblem value
found so far.

The master problem can be solved by finite-domain constraint programming
techniques or by converting it to an integer programming problem for an MILP
solver.

In general, logic-based Benders cuts are obtained by solving the inference
dual of the subproblem. This approach has been successfully applied to plan-
ning and scheduling problems in which the master problem is solved by integer
programming and the subproblem by constraint programming [8, 9, 12]. There
is little experience to date with continuous nonlinear subproblems, but decom-
position is clearly more effective when most of the Lagrange multipliers vanish,
since this results in stronger Benders cuts. When none of the multipliers vanish,
the method reduces to exhaustive enumeration.

It is useful in practice to enhance the master problem with any known infor-
mation about the yjs, both valid constraints and “don’t be stupid” constraints
that exclude feasible but no optimal solutions. Such constraints can often be
deduced from a practical understanding of the problem domain.

Example. The initial master problem for the structural design problem is

minimize z

subject to y1 ≤ y2

y1, y2 ∈ {1, 2}

(21)



Note the don’t-be-stupid constraint y1 ≤ y2, which is based on the physical
intuition that the top pillar will be no larger than the bottom pillar in any
optimal solution. One optimal solution of (21) is y1 = (1, 1), with z = −∞.
Solving the subproblem (7) with ȳ = (1, 1), we obtain Lagrange multipliers
λ1 = (1, 60) and λ2 = (1, 100), with x1

0 = 1900. Since both multipliers are
nonzero, the master problem becomes

minimize z

subject to y1 ≤ y2

y = (1, 1) =⇒ (z ≥ 1900)

y1, y2 ∈ {1, 2}

(22)

The next two iterations produce the additional Benders cuts

y = (1, 2) =⇒ (z ≥ 1400)

y = (2, 2) =⇒ (z ≥ 1525)

When these are added to the master problem (22), we get y4 = (1, 2) with z =
1400. The algorithm therefore terminates with y = (1, 2). In this small example
the Benders approach is inefficient, since none of the Lagrange multiplers vanish,
and each Benders cut excludes only one solution.

7 Branch and Bound with Convex Quasi-Relaxations

In the methods presented so far, the discrete variables need have no particular
domain. However, in many applications the discrete variables are real-valued, as
for example when they are discretized continuous variables. In such cases it may
be advantageous to have a relaxation in both the x and y variables, so that one
can branch on yj ’s by splitting intervals. The solution of the relaxation would
indicate where to split. Thus for example if yj ∈ [yL

j , yU
j ] and the solution value

of yj in the relaxation lies between discrete values v, v′ ∈ Yj , one would split the
interval into [yL

j , v] and [v′, yU
j ]. If the solution value of yj lies at a bound yL

j

or yU
j , no more splitting is necessary. The relaxation may therefore accelerate

the search not only by providing bounds, but by providing split points that lead
more quickly to feasible solutions.

This strategy is practical, however, only when a convex relaxation involving
the y variables is available. Such a relaxation normally cannot be obtained by
relaxing yj’s domain Yj to a continuous interval, since the resulting problem is
in general nonconvex.

Even when a convex relaxation is unavailable, however, it may be possi-
ble to construct a convex quasi-relaxation that is equally useful for obtaining
lower bounds. A quasi-relaxation of a problem min{f(x) | x ∈ S} is a problem
min{f ′(x) | x ∈ S′} with the property that for any x ∈ S, there exists an x′ ∈ S′

for which f(x′) ≤ f(x). It is clear that the optimal value of the quasi-relaxation,



if it exists, provides a valid lower bound on the optimal value of the original
problem.

The following theorem provides conditions under which one may construct
a convex quasi-relaxation for problem (1). Let function g(x, yj) be convex in x
when g(x, v) is convex for any v ∈ Yj. Also let g(x, yj) be semihomogeneous in
x if

g(αx, v) ≤ αg(x, v) for all α ∈ [0, 1], x ∈ IRn, v ∈ Yj (a)

g(0, yj) = 0 for all yj ∈ Yj (b)
(23)

Theorem 2. Suppose each gj
i (x, yj) in (1) is convex in x and satisfies at least

one of the following conditions:

1. gj
i (x, yj) is convex.

2. gj
i (x, yj) is semihomogeneous in x and concave in yj .

Let (i, j) belong to J1 when gj
i satisfies condition 1 and J2 otherwise. Suppose

also that xL ≤ x ≤ xU and yL ≤ y ≤ yU . Then the following is a convex
quasi-relaxation of (1):

minimize x0

subject to gj
i

(

x, αjy
L
j + (1 − αj)y

U
j )

)

≤ 0, all (i, j) ∈ J1 (a)

gj
i (x

j1, yL
j ) + gi

j(x
j2, yU

j ) ≤ 0, all (i, j) ∈ J2 (b)

αjx
L ≤ xj1 ≤ αjx

U , all j ∈ J (c)

(1 − αj)x
L ≤ xj2 ≤ (1 − αj)x

U all j ∈ J (d)

x = xj1 + xj2, all j ∈ J (e)

xj1, xj2 ∈ IRn, αj ∈ [0, 1], all j ∈ J

(24)

Furthermore, if each αj is 0 or 1 in the optimal solution of (24), then (24) has
the same optimal value as (1).

Proof. We first observe that (24) is convex. Constraint (a) is convex because
gj

i (x, yj) is convex for (i, j) ∈ J1, and a convex function composed with an affine

function is convex. Constraint (b) is convex because gj
i (x, yj) is convex when yj

is fixed. The remaining constraints are linear.

To show that (24) is a quasi-relaxation, take any feasible solution (x̄, ȳ) of
(1) and construct a feasible solution for (24) as follows. For each j ∈ J choose
αj ∈ [0, 1] so that ȳj = αjy

L
j +(1−αj)y

U
j . Set xj1 = αjx̄j, xj2 = (1−αj)x̄, and

x = xj1 + xj2. To see that this produces a feasible solution of (24), note first
that constraints (a) and (c)-(e) are satisfied by construction. Constraint (b) is
also satisfied, since for (i, j) ∈ J2 we have

gj
i (x

j1, yL
j ) + gj

i (x
j2, yU

j ) = gj
i

(

αjx̄, yL
j

)

+ gj
i

(

(1 − αj)x̄, yU
j

)

≤ αjg
j
i

(

x̄, yL
j

)

+ (1 − αj)g
j
i

(

x̄, yU
j

)

≤ gj
i

(

x̄, αjy
L
j

)

+ gj
i

(

x̄, (1 − αj)y
U
j

)

= gj
i (x̄, ȳj) ≤ 0



where the first inequality is due to the semihomogeneity of gj
i (x, yj) in x, the

second to the concavity of gj
i (x, yj) in yj , and the third to the feasibility of (x̄, ȳj)

in (1). Also the objective function value of (24) is less than or equal to (in fact
equal to) that of (1), since x0 = x̄0. Thus (24) is a convex quasi-relaxation of
(1).

Finally, when αj = 1 we have xj1 = x and xj2 = 0, and similarly if αj = 0.

It easy to verify, using the semihomogeneity of gj
i (x, yj) in x, that (24) reduces

to (1) when each αj ∈ {0, 1} and therefore has the same optimal value. This
completes the proof.

Let g(x, yj) be homogeneous in x when g(αx, yj) = αg(x, yj) for all α ∈
[0, 1], yj ∈ Yj.

Corollary 1. Theorem 2 holds in particular when each gj
i (x, yj) is either (a)

convex or (b) homogeneous in x and concave in yj .

If the global optimization problem (1) satisfies the conditions of Theorem 2,
it can be solved by branch and bound as follows. Each node of the search tree is
processed as in the algorithm below, where zU is the value of the best feasible
solution found so far (initially zU = ∞), and [yL

j , yU
j ] is the interval in which yj

is currently contrained to lie (where yL
j , yU

j ∈ Yj). Initially the only unprocessed
node is the root node, which is processed first.

1. Compute an optimal solution x̄, x̄j1, x̄j2, ᾱj (for j ∈ J) of the convex quasi-
relaxation (24) at the current node. Set ȳj = ᾱjy

L
j + (1 − ᾱj)y

U
j .

2. If x̄0 ≥ zU , go to an unprocessed node and begin with step 1.
3. If some ᾱj 6∈ {0, 1}, let v, v′ be the values in Yj ∩ [yL

j , yU
j ] on either side of ȳj

that are closest to ȳj . (Possibly v or v′ is identical to ȳj .) Branch on yj by
creating an unprocessed node at which yj ∈ [yL

j , v] and a second unprocessed

node at which yj ∈ [v′, yU
j ]. Go to an unprocessed node and begin with step

1.
4. The solution (x̄, ȳ) is feasible in (1). Set zU = min{x̄0, z

U}. Go to an un-
processed node and start with step 1.

The algorithm terminates when no unprocessed nodes remain. To ensure
termination, one should fix αj at 0 or 1 (either yields the same reuslt) whenever
yL

j = yU
j .

Example. We return to the structural design problem (4) and solve it for
continuous yj rather than over the finite set {1, 2}. For illustrative purposes we
discretize yj by setting each Yj = {0, 0.1, 0.2, . . . , 3.0}, although a finer resolution
could be used.

We first check that (4) satisfies the conditions of Theorem 2. All the constraint
functions are convex except g1

2(x, y1) = 10 − x1y1 and g2
2(x, y2) = 20 − x2y2.

These are not semihomogeneous in x, since gj
2(0, yj) 6= 0, for example. However

we can make them semihomogeneous (indeed, homogeneous) in x by replacing
the constant term with sj and adding the bounds s1 ∈ [10, 10] and s2 ∈ [20, 20].



We also use the bounds on xj introduced earlier. To simplify the problem we
substitute zj = 300yj into the objective function. The problem is now

minimize z0

subject to 300y1 + 300y2 + (x1 + x2)
2 + x2

2 − x0 ≤ 0

s1 − x1y1 ≤ 0

s2 − x2y2 ≤ 0

x1 ∈ [5, 10], x2 ∈ [10, 20]

s1 ∈ [10, 10], s2 ∈ [20, 20]

y1, y2 ∈ {0, 0.1, . . . , 3}

(25)

The convex quasi-relaxation (24) is

minimize z0

subject to 300y1 + 300y2 + (x1 + x2)
2 + x2

2 − x0 ≤ 0
(

s11 − x11y
L
1

)

+
(

s12 − x12y
U
1

)

≤ 0
(

s21 − x21y
L
2

)

+
(

s22 − x22y
U
2

)

≤ 0

5α1 ≤ x11 ≤ 10α1, 5(1 − α1) ≤ x12 ≤ 10(1 − α1)

10α2 ≤ x21 ≤ 20α1, 10(1 − α2) ≤ x12 ≤ 20(1 − α2)

10α1 ≤ s11 ≤ 10α1, 10(1 − α1) ≤ s12 ≤ 10(1 − α1)

20α2 ≤ s21 ≤ 20α1, 20(1 − α2) ≤ s12 ≤ 20(1 − α2)
[

x1

x2

]

=

[

x11 + x12

x21 + x22

]

,

[

s1

s2

]

=

[

s11 + s12

s21 + s22

]

yj = αjy
L
j + (1 − αj)y

U
j , αj ∈ [0, 1] j = 1, 2

At this point we can reaggregate sj , which allows it to be eliminated.

minimize z0

subject to 300y1 + 300y2 + (x1 + x2)
2 + x2

2 − x0 ≤ 0

10 − x11y
L
1 − x12y

U
1 ≤ 0

20 − x21y
L
1 − x22y

U
1 ≤ 0

5α1 ≤ x11 ≤ 10α1, 5(1 − α1) ≤ x12 ≤ 10(1− α1)

10α2 ≤ x21 ≤ 20α1, 10(1 − α2) ≤ x12 ≤ 20(1 − α2)
[

x1

x2

]

=

[

x11 + x12

x21 + x22

]

yj = αjy
L
j + (1 − αj)y

U
j , αj ∈ [0, 1] j = 1, 2

Figure 4 shows the first few nodes of the branching tree. A globally optimal
solution y = (1.1, 2.0) with objective value z0 = 1394.5 is found after processing
63 nodes, out of a possible 31 × 31 solutions. A more precise solution is y =
(1.126, 1.972) with z0 = 1394.1.



x 0 =1900 
 = (0,0)   

y  = (1,1)
feasible solution

Root node
x 0 = 1177.8

 = (0.667,0.667)   
y  = (1,1)

x 0 = 1322
 = (0,0.667)   

y  = (1,1)

y 1∈[0,1]
y 1∈[1.1,3]

x 0 = 1283
 = (0.816,0.667)   

y  = (1.45,1)

y 2∈[0,1] y 2∈[1.1,3]

x 0 =1352 
 = (0,0.816)   
y  = (1,1.45)

Fig. 4. Beginning of a BBCQ branch-and-bound tree for the structural design example.

8 Truss Structure Design

We conclude with a more realistic truss structure design problem. The model
presented here is a simplified version of that described in [1].

The notation is illustrated in Fig. 5. A truss structure consists of a number of
bars j joined at nodes, each bar having length hj and a cost of cj per unit volume.
Each node can move in a specified number of directions. Thus if the problem
is solved in three dimensions, there are at most three degrees of freedom at
each node. Each degree of freedom i is associated with a load ℓi. The decision
variables are the thickness (cross-sectional area) yj of the bars. Other variables
are the elongation sj of bar j, the tension (pulling force) fj on bar j, and the
displacement xi along degree of freedom i. The objective is to minimize the cost
of the bars subject to bounds on elongation and displacement. Stress bounds



Degree of freedom i

i"Load

Bar j

i jθ

jh
Length

js
Elongation

jy

Cross-sectional area
Displacement ix

Fig. 5. Notation for a truss structure design problem.

also exist and are factored into the elongation bounds. The model is

minimize
∑

j

cjhjyj cost of bars

subject to
Ej

hj

yjsj = fj , all j Hooke’s law

∑

j

fj cos θij = ℓi, all i equilibrium equations

∑

i

xi cos θij = sj , all j compatibility equations

sL
j ≤ sj ≤ sU

j , all j elongation bounds

xL
j ≤ xj ≤ xU

j , all j displacement bounds

yj ∈ Yj, all j discrete thicknesses

(26)

where Ej in Hooke’s law is the modulus of elasticity for bar j. Since structural
bars are generally available only in certain thicknesses, the variables yj can be
regarded as discrete.

Since the problem becomes convex (in fact, linear) when variables yj are fixed,
it is amenable to a logic-based method. We will apply disjunctive programming
and BBCQ.



First we develop the disjunctive programming approach, using convex hull
relaxations. A disjunctive representation of (26) is

minimize
∑

j

zj cost of bars

subject to
∨

v∈Yj











yj = v

zj ≥ cjhjv

Ej

hj

vsj = fj











, all j cost, Hooke’s law

∑

j

fj cos θij = ℓi, all i equilibrium equations

∑

i

xi cos θij = sj, all j compatibility equations

sL
j ≤ sj ≤ sU

j , all j elongation bounds

xL
j ≤ xj ≤ xU

j , all j displacement bounds

(27)

Using convex hull relaxations of the disjunctions, we obtain the following convex
relaxation of (27):

minimize
∑

j

zj

subject to zj =
∑

v∈Yj

zjv, sj =
∑

v∈Yj

sjv, fj =
∑

v∈Yj

fjv, all j

zjk ≥ cjhjvβjv , all v ∈ Yj , all j

Ej

hj

vsjv = fjv, all v ∈ Yj, all j

∑

j

fj cos θij = ℓi, all i

∑

i

xi cos θij = sj , all j

βjvsL
j ≤ sjv ≤ βjvsU

j , all j

xL
j ≤ xj ≤ xU

j , all j
∑

v∈Yj

βjv = 1, βjv ≥ 0 all v ∈ Yj , all j

(28)



The relaxation can be simplified, in part by summing each instance of Hooke’s
law over all v ∈ Yj .

minimize
∑

j

∑

v∈Yj

cjhjvβjv

subject to
Ej

hj

∑

v∈Yj

vsjv = fj , all j

∑

j

fj cos θij = ℓi, all i

∑

i

xi cos θij = sj , all j

βjvsL
j ≤ sjv ≤ βjvs

U
j , all j

xL
j ≤ xj ≤ xU

j , all j
∑

v∈Yj

βjv = 1, βjv ≥ 0 all v ∈ Yj , all j

(29)

The disjunctive problem (27) can be solved as an MINLP by solving (29) with
the integrality condition βjv ∈ {0, 1}. This MINLP model was in fact proposed
by Ghattas, Voudouris and Grossmann [4, 5].

We now develop a BBCQ approach to solving (27). Note first that the model
(26) satisfies the conditions of Theorem 2, since all of the constraints are convex
(in fact, linear) except Hooke’s law, which is convex (in fact, linear) when the
yjs are fixed. In addition, the constraint function in Hooke’s law is homogeneous
in the continuous variables sj , fj and concave (in fact, linear) in the discrete
variable yj . The convex quasi-relaxation (24) therefore becomes

minimize
∑

j

cjhjyj

subject to
Ej

hj

(

yL
j sj1 + yU

j sj2

)

= fj , all j

∑

j

fj cos θij = ℓi, all i

∑

i

xi cos θij = sj , all j

αjs
L
j ≤ sj1 ≤ αjs

U
j , all j

(1 − αj)s
L
j ≤ sj2 ≤ (1 − αj)s

U
j , all j

xL
j ≤ xj ≤ xU

j , all j

xj = xj1 + xj2, all j

yj = αjy
L
j + (1 − αj)y

U
j , all j

αj ∈ [0, 1], all j

(30)

Bollapragada et al. [1] applied both the MILP and BBQC methods to the
structural design problems illustrated in Fig. 6. Each structural bar had 11



Fig. 6. A 10-bar cantilever truss, 25-bar electrical treansmission tower, and 72-bar
building.

possible thicknesses. Symmetries in the transmission tower and buildings were
exploited to reduce the number of variables. Computational results are summa-
rized in Table 1. MILP was implemented in CPLEX, and BBCQ in C with calls
to the CPLEX linear programming solver. All problems were solved on a Sun
Sparc Ultra work station.

These results suggest that BBCQ can carry a substantial advantage over
a disjunctive approach when the constraint functions satisfy the conditions of
Theorem 2.
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