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• Do AI-based decisions treat groups equally 
in a morally relevant sense?
• Groups may be based on race, ethnic background,

gender, economic status, etc.

• How should we measure group parity for
purposes of ethics?
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The ethical problem
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• An application may be rejected, despite sound 
finances, because…
• The applicant belongs to a minority group.

• The default rate is higher for the minority group.

Example: Mortgage decisions
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• An application may be rejected, despite sound 
finances, because…
• The applicant belongs to a minority group.

• The default rate is higher for the minority group.

• Remove race/ethnic group from data?
• That may not work.

• There may be latent bias 
even in sanitized data.

Example: Mortgage decisions
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• Why latent bias?
• The applicant may be rejected due to having an 

address in a low-income neighborhood, where 
people have a higher default rate.

• Members of minority group are more likely 
to live in a  low-income neighborhood due to 
historical discrimination.

• Their address nonetheless
correlates a higher default
rate.

Example: Mortgage decisions
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• Parole (minimize recidivism risk)

• Interviewing and hiring

• College admissions

Other examples
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• Option 1: Get rid of AI.
• Even though this reduces prediction accuracy.

• Fails utilitarian principle, unless using AI is
not generalizable.
• There is arguably an implicit agreement with applicant 

to use only financial criteria.  

• Violating this agreement is 
not generalizable.

What to do about it?
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• Option 2: Improve AI to satisfy the implicit 
agreement.
• Apply statistical bias metrics.

• Adjust AI predictions to get rid of bias.  This requires 
explicitly considering minority status in the decision.

• A popular approach, incentivized by equal opportunity 
laws.
• Scheduled classes (India)

• Bumiputera quotas (Malaysia) 

• Fair Housing Act (US), e.g.

What to do about it?
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• Bias metrics are ways of measuring whether two 
groups are treated equally.
• For short, we refer to these groups as the majority 

and minority (= protected group).

• Most popular metrics:
• Demographic parity

• Equalized odds
• We focus on equality of opportunity

• Predictive rate parity

Bias metrics
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• Bias metrics are ways of measuring whether two 
groups are treated equally.
• For short, we refer to these groups as the majority 

and minority (= protected group).

• Most popular metrics:
• Demographic parity

• Equalized odds
• We focus on equality of opportunity

• Predictive rate parity

• These are usually incompatible.
• Must choose one or none!

Bias metrics
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• “Fair” treatment of groups seems an intuitively 
compelling idea.

• But there are problems
• “Group parity” has dozens of mathematical definitions.

• Fairness is itself a notoriously vague concept.
• What seems fair to one person seems unfair to another.

Assessing bias metrics
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• “Fair” treatment of groups seems an intuitively 
compelling idea.

• But there are problems
• “Group parity” has dozens of mathematical definitions.

• Fairness is itself a notoriously vague concept.
• What seems fair to one person seems unfair to another.

• We assess parity metrics directly with ethical 
principles.
• Rather than trying to guess which one measures

“fairness.”

Assessing bias metrics
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• Demographic parity.
• Definition:

• Probability of accepting a given person (e.g., for loan) 
is the same for the two groups.

• Characteristics:
• Compensates for historical discrimination that makes

a minority person less likely to be qualified.

• But rules out selecting a greater fraction of minority 
persons when they are more qualified than average
(as in Malaysia).

Assessing bias metrics

% of majority
group accepted

% of minority 
group accepted

=
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• Demographic parity.
• Definition:

• Probability of accepting a given person (e.g., for loan) 
is the same for the two groups.

• Ethical assessment:
• May violate generalizability by overriding evident 

qualifications.

• May maximize long-term utility by providing equal 
opportunity to marginalized groups.

• May reduce long-term utility if there is backlash from
the majority.

Assessing bias metrics

% of majority
group accepted

% of minority 
group accepted

=
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• Equalized odds.
• Definition:

• Probability of accepting a qualified person (e.g., for loan) 
is the same for the two groups.

• Characteristics:
• Can allow few minority persons to be accepted if 

relatively few are qualified due to social and historical 
factors.

• But allows selecting a greater fraction of minority 
persons when they are more qualified than average.

% of qualified 
majority accepted

% of qualified 
minority accepted

=

Assessing bias metrics
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• Equalized odds.
• Definition:

• Probability of accepting a qualified person (e.g., for loan) 
is the same for the two groups.

• Ethical assessment:
• Consistent with any implied agreement to consider only

evident qualifications.

• May maximize long-term utility by avoiding backlash.

• May reduce long-term utility by failing to address
chronic discrimination.

Assessing bias metrics

% of qualified 
majority accepted

% of qualified 
minority accepted

=
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• Predictive rate parity.
• Definition:

• Probability that an accepted person is qualified 
(e.g., for loan) is the same for the two groups.

• Characteristics:
• Avoids appearance that acceptance standards are

different for the two groups.

• Can allow few minority persons to be selected if they
are as qualified as accepted majority persons.

% of accepted 
majority persons 
who are qualified

% of accepted 
minority persons
who are qualified

=

Assessing bias metrics
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• Predictive rate parity.
• Definition:

• Probability that an accepted person is qualified 
(e.g., for loan) is the same for the two groups.

• Ethical assessment:
• May violate generalizability by overriding evident 

qualifications.

• May maximize long-term utility by avoiding backlash.

• May reduce long-term utility by failing to address
chronic discrimination.

% of accepted 
majority persons 
who are qualified

% of accepted 
minority persons
who are qualified

=

Assessing bias metrics
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• Highly publicized example: Parole
• COMPAS predictions achieve predictive rate parity.

• Minority parolees have same recidivism rate as majority
parolees.

• But they do not equalize 
odds.
• Apparently qualified 

minority candidates are 
about 40% less likely 
to be paroled than 
qualified majority 
candidates.

From: Pro Publica, 23 May 2016

Assessing bias metrics
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• Highly publicized example: Parole
• COMPAS predictions achieve predictive rate parity.

• Minority parolees have same recidivism rate as majority
parolees.

• But they do not equalize 
odds.
• Apparently qualified 

minority candidates are 
about 40% less likely 
to be paroled than 
qualified majority 
candidates.

• Debate still unresolved. From: Pro Publica, 23 May 2016

Assessing bias metrics
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• Counterfactual fairness.
• Definition:

• Acceptance probability of a given minority person
would have been the same if that person belonged
to the majority.

• Characteristics:
• Sounds great.

• But how to assess this?

% of minority 
persons accepted

in the actual world

% of minority persons
accepted in an alternate 
world where they belong 

to the majority

=

Assessing bias metrics
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• Counterfactual fairness.
• In the case of mortgage loans:

• Relevant factor is financial responsibility, but only 
minority status and address can be observed.  

• Acceptance decision must be the same if it were based 
only on financial responsibility.

• Represent this situation with a causal network:

Assessing bias metrics
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• Counterfactual fairness

Minority
status

(observed)

Financial
responsibility
(unobserved)

Low-income
neighborhood

(observed)
Qualified
for loan

(predicted)

Bias metrics

Causal 
relationships



25

Minority
status

(observed)

Financial
responsibility
(unobserved)

Low-income
neighborhood

(observed)
Qualified
for loan

(predicted)

Causal 
relationships

Inferred 
in AI system

• Counterfactual fairness

Bias metrics
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Minority
status

(observed)

Financial
responsibility
(unobserved)

Low-income
neighborhood

(observed)
Qualified
for loan

(predicted)

• Counterfactual fairness

Bias metrics
Must use Bayesian inference 

to deduce financial 
responsibility

Causal 
relationships

Inferred 
in AI system
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• Counterfactual fairness.
• Problems:

• There may be many confounding factors in the network.

• Bayesian inference requires a rich data set, usually
unavailable.

• The desired Bayesian calculations are possible only
in networks with a certain kind of structure.

• Still a research area.

Bias metrics
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• Counterfactual fairness.
• Ethical problem:

• Even if counterfactual inference is possible, do we want
decisions to rely solely on financial responsibility?  

• Ethical arguments are similar to those surrounding 
demographic parity.

Assessing bias metrics
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