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We take a regression-based approach to the problem of induction, which is the 
problem of inferring general rules from specific instances. Whereas traditional regression 
analysis fits a numerical formula to data, we fit a logical formula to boolean data. We 
can, for instance, construct an expert system for fitting rules to an expert's observed 
behavior. A regression-based approach has the advantage of providing tests of statistical 
significance as well as other tools of regression analysis. Our approach can be extended 
to nonboolean discrete data, and we argue that it is better suited to rule construction 
than logit and other types of categorical data analysis. We find maximum likelihood and 
bayesian estimates of a best-fitting boolean function or formula and show that bayesian 
estimates are more appropriate. We also derive confidence and significance levels. We 
show that finding the best-fitting logical formula is a pseudo-boolean optimization 
problem, and finding the best-fitting monotone function is a network flow problem. 

I. Introduction 

A n u m b e r  o f  p rac t ica l  s i tua t ions  requi re  that  we  ident i fy  a b o o l e a n  func t ion  

that  cap tu res  a re la t ionsh ip  impl ic i t  in a set  o f  obse rva t ions .  We  o b s e r v e  the  va lue  

o f  an  u n k n o w n  func t ion  for  cer ta in  va lues  o f  its a rguments ,  and w e  wish  to infer, as  

bes t  we  can,  wha t  the func t ion  is. A boolean func t ion  is app ropr i a t e  w h e n  the 

func t ion  and  its a rgumen t s  take  on ly  two  values.  We begin  with s o m e  examples .  
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1.1. SOME EXAMPLES 

One class of examples arises from efforts to build a rule base for an expert 
system. Suppose we have records of a bank officer's past decisions when he was 
presented with loan applications. We would like to use these as a basis for formulating 
a rule that indicates when loans should be granted. Each application is characterized 
by the presence or absence of a fixed set of attributes (e.g. whether the applicant is 
employed, whether he has a good credit record, etc.) and by the loan officer's 
decision. We allow for some noise in the data, since the officer may not always 
decide the same way when presented with applications having the same profile. The 
data are also incomplete in the sense that we do not have an application representing 
every possible set of characteristics. The rule we want to derive takes the form of 
a boolean function whose arguments indicate, by 0 or 1, whether each attribute is 
present, and whose value indicates whether the loan should be granted. 

A similar approach can be taken to deciding whether to audit an income tax 
form, whether to admit a patient into the hospital, whether to replace an electronic 
component, whether to grant someone government benefits, and so on. 

A related class of applications involve the prediction of a boolean outcome on 
the basis of boolean data. We may, for instance, wish to predict whether a substance 
is carcinogenic on the basis of  some tests we perform on it [3]. Each test has a 
boolean outcome: "positive" or "negative". The data set consists of test results for 
a number of substances that were also investigated clinically for carcinogenicity 
(again a boolean outcome). Noisy data are possible, since the clinical trials could be 
misleading. The object is to discover the boolean function that predicts, on the basis 
of the test results, whether a substance is carcinogenic. 

In a third class of applications, we want to explain an effect. A physician, for 
instance, may want to determine which combinations of foods cause his patient's 
suspected food allergy [5]. He asks the patient to record, each day, whether he eats 
certain foods, and whether an allergic reaction develops. The object is to find the 
boolean function that relates the occurrence of a reaction to which foods were eaten. 

1,2.  ADVANTAGES OF BOOLEAN REGRESSION 

We propose a regression-based approach to discerning a boolean relationship. 
That is, we propose to fit a boolean function to the data in much the same way that 
classical regression analysis fits a numerical function to data. Our basic motivation 
is that a regression approach permits us to analyze statistical significance, so that 
genuine relationships (those likely to appear in any sample of observations) can be 
distinguished from spurious ones (those that are artifacts of  the sample). The 
computational problems posed by the boolean regression problem are quite different 
from those of classical regression, however, and we will show how to attack them 
with the methods of combinatorial optimization. 
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The problem we address can be viewed as a classification problem because a 
boolean function f (x)  in effect divides values of x into two classes: those for which 
f(x) = 1 and those for whichf(x) = 0. The literature of pattern recognition and machine 
learning offers a wide variety of classification techniques based on clustering, 
classification trees, discriminant functions, and so on [4, 10, 12, 13]. However, the 
regression approach we propose has the distinct advantage that it, like classical 
regression analysis, can test the statistical significance of the relationship discovered 
and the degree of confidence one can have that it is correct. It can also provide a 
logical formula for predicting an outcome, together with an analysis of the statistical 
significance of terms in the formula. Finally, it makes available stepwise regression 
and other regression-based techniques for discovering significant relationships. 

It is true that logit analysis, a well-known type of regression analysis designed for 
boolean data, also provides confidence and significance levels. (Logit analysis is a 
special case of categorical data analysis in which the data are boolean and there is only 
one dependent variable [1,2,7].) However, a logit model is in fact quite different from 
our boolean regression model. A logit model predicts the probability that f (x )= 1, 
whereas our model predicts whether f(x)  = 1. It also assumes that the probability that 
f(x) = 1 is given by a log-linear function of x, whereas we make no such assumption. 

A logit model is appropriate when we are genuinely interested in the probability 
that f (x)  = 1, along with the level of  confidence we can have in the probability 
estimate. Logit models are commonly used, for instance, to predict consumer demands. 
Here, f (x)  = 1 means that a consumer having profile x will buy product A. We can 
predict how many consumers having profile x will buy product A by multiplying the 
market population by the predicted probability that f (x)  = 1. 

However, in many applications we want to know whetherf(x)  is 1 or 0, along 
with the level of  confidence we can have in the prediction. We may wish to know 
whether a loan should or should not be granted, or whether a substance is or is not 
carcinogenic. Furthermore, if we determine that a loan should be granted, we may 
wish to know what confidence we can have in this determination, rather than a 
confidence interval for some estimate of the probability that it should be granted. We 
may also want a logical formula that instructs us when to grant a loan, rather than 
a log-linear or any other numerical formula. 

The approach we describe can in principle be extended to nonboolean discrete 
functions. The loan applicant's credit rating, for instance, may be "poor", "acceptable", 
or "excellent", and the bank officer's decision may be "reject", "accept", or "get more 
information". In such cases, one can encode many-valued attributes using two or more 
boolean variables, and one can develop a different boolean function for each possible 
outcome. The resulting predictions, however, are not necessarily the same that result 
from using a single nonboolean function. In [3], we take a first step toward solving the 
nonboolean case: we show how to fred an error-minimizing fit with a monotone nonboolean 
function by solving an easy network flow problem, provided the possible values of the 
function have an interval order. However, nonboolean functions need further investigation. 
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1.3. OUTLINE OF THE PAPER 

In section 2, we begin with the basic concepts of boolean regression. We 
introduce the regression problem with an example to which we refer throughout the 
paper. We note that practical application generally requires that the regression function 
have a certain form or certain properties; i.e. that it belongs to a specified class of 
boolean functions. 

In section 3, we show how to find the best fitting function f that belongs to 
any specified class F of boolean functions. We first derive maximum likelihood 
estimates (MLEs) o f f  and show that such an estimate has the curious property that 
it either minimizes or maximizes the number of errors. We note that an error-maximizing 
estimate may be suitable for some applications but not others. We therefore develop 
a more general bayesian approach that allows one to obtain an MLE if desired but 
can deal with situations in which error-maximizing MLE is inappropriate. The bayesian 
approach also provides a natural way to derive confidence intervals and significance 
levels. In particular, we show how to derive bayesian estimates, as well as confidence 
and significance levels, under two practical models of the prior distribution of error 
probabilities. We do so in such a way that only an error-minimizing f and an error- 
maximizing f need be computed, since these computations are relatively easy to 
perform. Again, these results are valid for any specific class F within which the fitted 
function is required to lie. 

The next three sections show how to do the computations more efficiently for 
three particular types of function classes F. Section 4 treats the case in which F contains 
all boolean functions; that is, the fitted function f may be any boolean function. 

In section 5, F is assumed to contain all monotone boolean functions. The loan 
officer's function, for instance, is likely to be monotone, since if the presence of certain 
positive attributes indicates that the loan should be granted, then the presence of these 
and still other positive attributes certainly indicates that the loan should be granted. We 
show that the error-minimizing monotone fit can be quickly obtained with a minimum 
cut computation in a network flow problem. This result is generalized in [3]. 

In section 6, F is assumed to contain all boolean functions defined by logical 
formulas having a specified form. This is perhaps the case most reminiscent of 
classical numerical regression, since it supposes that the true relationship can be 
expressed as a formula of propositional logic having a certain form, just as in 
classical regression one might suppose that the relationship is linear. However, rather 
than estimate the value of numerical coefficients, we use regression techniques to 
find which terms of the formula should be included and which omitted. We also 
indicate how to check whether the inclusion of a particular term or set of  terms 
results in a statistically significant improvement in the fit. We show that the problem 
of computing the best fit can be formulated as a pseudo-boolean optimization problem, 
which is well studied in the operations research literature. We also provide means of 
approximating confidence and significance levels. 
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2. B a s i c  c o n c e p t s  

2.1. THE BOOLEAN REGRESSION MODEL 

Let y be a boolean variable that is dependent on a vector x = (xl  . . . . .  xn)  of 
boolean variables. For instance, if the loan officer mentioned earlier wishes to decide 
whether to make a loan, the variables xl  . . . . .  xn would describe the circumstances and 
y the officer's decision. Perhaps xl = 1 indicates that the applicant is now paying off 
a mortgage loan, x2 = 1 indicates that he or she has a good credit record, and so on. 
If y = I, the officer decides to lend the money, and y = 0 otherwise. 

We would like to capture the loan officer's past decisions in a boolean function 
f t h a t  indicates the correct decision f ( x )  for any vector x. Suppose we have observed 
a series of pairs (x, y), such as those displayed in table 1. Note that each observed 
set of circumstances arose several times, and the loan officer's decisions were not 
consistent. For instance, in the set of circumstances denoted by x = (0, 1, 0, 1, 1), the 
officer granted the loan in fifteen cases and refused it in the other seven. Also, only 
six of the 25 = 32 possible sets of circumstances were observed. 

Table I 

A sample data set. 

Circumstances 
XI X2 x3 X4 X5 

No. of observations 
with 

y=0  y = l  

0 I 0 1 1 7 15 
1 1 0 0 1 9 3 
1 0 0 1 1 8 2 
1 0 0 0 1 3 7 
1 1 0 1 0 5 17 
0 0 ! 1 1 9 2 

To derive a regression model, we will assume that s o m e  boolean function of 
variables xl .. . . .  x 5 is a true description of the loan officer's judgment. Since no 
boolean function exactly fits the observations, due to the officer's inconsistency, we 
must attribute that inconsistency to "random error" of some sort. 

This raises the question as to what sort of random variable best models 
observational error. An ordinary numerical regression is written as 

y = g ( x )  + ~, (1) 

where g is a numerical function of a vector x of independent variables that take 
numerical values. The error term e is classically assumed to have a normal distribution 
with mean zero. When this assumption is unwarranted, various nonparametric methods 
are used. 
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In the boolean case, the situation is actually much simpler, since there are only 
two possible errors: the outcome is 1 when it should be 0, and vice versa. We 
therefore write the regression as follows: 

y = f (x )  ~) ~ (2) 

Here, ~ is a binary sum, so that a (~ b = (a + b) mod 2. We let the boolean error term 
e be a simple Bernoulli variable: it takes the value 1 with probability p and the 
value 0 with probability 1 - p .  Our distributional assumptions are therefore quite 
minimal, and it is difficult to see how a "nonparametric" model could assume less. 

It may sometimes be useful, however, to generalize the error model in one 
respect. We may want to use an asymmetric error model in which the probability of 
observing y = 0 when f(x) = 1 differs from the probability of observing y = 1 when 
f(x) = 0. In principle, the ensuing analysis can be carried out for an asymmetric error 
model, but since the results are substantially more complex, we treat it only briefly 
in section 3.4. 

2.2. PARTIALLY AND FULLY DEFINED FUNCTIONS 

Boolean regression predicts the value of a boolean function only for observed 
values of  x. This is because it finds a best-fitting partially defined function f, in 
particular one that is defined only for the observed values of x. To predict the value 
of the function for unobserved x, one must extend f to a function f*  that is defined 
on all x. That is, one must find a fully-defined function f*  that agrees with f on 
observed x. 

From here on, we will let f denote the partially defined function sought by 
boolean regression. If the extended function f "  is required to belong to a class F* 
of boolean functions, we let F denote the class of partially defined boolean functions 
with extensions in F*. For instance, if we require the extended function f*  to be 
monotone, then F is the class of monotone functions that are defined only on the 
observed values of  x. 

If no restrictions are placed on f*, then the value of f*(x) is completely 
arbitrary for unobserved x, and boolean regression makes no predictions for these 
values. Thus, much of  the practical value of  regression is lost. Furthermore, the 
solution of  the regression problem is trivial: for each observed x, we can let f(x) be 
the value most often observed for y. There is no point in solving even this trivial 
problem unless y is observed several times for each observed x, a condition often not 
met in practice. 

When f*  is required to belong to a particular class F* of boolean functions, 
however, the predicted values of f(x) for observed x may indirectly determine the 
value of  the extended function f ' (x)  for many unobserved x. This is because all the 
extensions o f f  in F* may all agree at many unobserved values of x. Furthermore, 
when f is so restricted, the boolean regression problem is no longer trivial, and as 
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in classical regression, there is no need to collect multiple observations of y for a 
given x. 

We will therefore analyze the regression problem under the general assumption 
that the fitted funct ionf is  required to belong to some prespecified class F of partially 
defined boolean functions. This is also more in tune with the spirit of classical 
regression analysis, in which the form of the regression function (e.g. linear) is 
chosen to suit the application. It may, for instance, be dictated by a theory of hypothesis 
about the relation the regression is intended to capture. 

We will pay particular attention to the cases in which f is required to be 
monotone or to be defined by a given type of logical formula, because of their 
practical importance and their computational advantages. In the former case, we will 
indicate how to find the fitted f and extend it to a fully defined f*. In the latter case, 
we suppose that the regression function is defined by a logical formula having a 
certain form, and we derive which formula of this form is the best fit. 

One simple example of a functional form is 

f (x )  = flO V fllXl V . . .  V flnxn, (3) 

where " v "  means "or". Here, the flj's might be boolean coefficients that are to be 
estimated, with the understanding that xj appears in the formula if flj = 1 and is absent 
if flj = 0. (Some useful functional forms will be discussed in section 6.) 

Since a logical formula has a well-defined value for any given x, the best- 
fitting formula defines the extended function f*  as well as f. If more than one 
formula fit the data equally well, f*(x) is determined for unobserved x when these 
formulas agree. 

3. The general regression problem 

3.1. MAXIMUM LIKELIHOOD ESTIMATION 

We now address the general question as to how to find a best-fitting boolean 
function f when f must belong to an arbitrary class F of partially defined boolean 
functions. In this section, we derive an MLE estimate and in the next section, develop 
a bayesian approach. In sections 3.5 and 3.6, we use the bayesian model to derive 
statistical tests for boolean regression. 

The most natural estimate of f is the function in F that agrees with observation 
most often. This would be the function that minimizes the number of errors, which 
is the number of observations for which f (x )  and y differ. We will see, however, that 
the error-minimizing function is often but not always an MLE. We will prove the 
somewhat surprising fact that an MLE of f is either error minimizing or error 
maximizing. 

A maximum likelihood estimate (MLE) of a function value (or parameter) is 
one that maximizes the probability of making the observations y that were in fact 
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made. In the classical regression model (1), the MLE is obtained by the well-known 
least-squares calculation, provided the errors are independently and normally distributed. 

We can illustrate maximum likelihood estimation using the example of table 1. 
Let X = {x I ..... x 6} be the set of observed values of x. We wish to find the values 
f (x  1) . . . . .  f (x  6) that maximize the likelihood of making the observations in table 1. 
Since the likelihood of making these observations depends on the probability p of 
error, we must estimate p and thef(xi)'s simultaneously. (In classical regression, one 
simultaneously estimates the functional parameters and the variance of the error 
distribution.) 

If ( f (x  l) ..... f(x6)) = (0, 0, 0, 0, 0, 0), the likelihood of making the observations 
in table 1 is the likelihood of making seven correct and fifteen erroneous observations 
off(0 ,  1, 0, 1, 1), nine correct and three erroneous observations o f f ( l ,  1, 0, 0, 1), and 
so on, for a total of forty-one correct and forty-six erroneous observations. This 
likelihood is (1 _ p ) 4 1 p 4 6 .  Thus, we wish to compute 

max{max{(1 - p)41 p46 ,  (1 - p)34 p53 . . . . .  (1 - p)46  p41} }, (4) 
P 

where the first term corresponds to ( f (x  l) ..... f(x6)) = (0, 0, 0, 0, 0, 0), the second to 
(0, 0, 0, 0, 0, 1), and so on to (1, 1, 1, 1, 1, 1), for a total of 2 s = 32 terms. 

More generally, if Y represents the set of observations actually made, we want 
to compute 

max Pr(YI f ,  p), (5) 
O<p<l,f~F 

where Pr(YI f, p) is the likelihood function, given by 

Pr(Yl f ,  p) = (I - p)N-e(s) pe(f). (6) 

Here, N is the total number of observations and e ( f )  is the number of erroneous 
observations for f, so that in table 1, e ( f )  = 46 when (f(x l) ..... f(x6)) = (0, 0, 0, 0, 0, 0). 

We first observe that (6) is maximized with respect to p when p = e(f)/N. We 
can therefore replace every p in (6) with e(f)/N and maximize the resulting expression, 
namely 

[1 e(f)]N-e(f)Ie(~fN---~)]e(f)'N (7) 

over all f in F. Furthermore, due to the convexity of (7) in e(f) ,  it is clear that (7) 
is largest when e ( f )  takes its largest or smallest possible value. These correspond, 
respectively, to an error-minimizing estimate j21 and an error-maximizing estimate J~2 
of f. Also, since (7) takes the same value when e ( ~  is replaced by N - e( f ) ,  setting 
f = fl makes (7) larger than setting f = j22 when e( fl ) < N - e( j22). We therefore have 
the following. 
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THEOREM 1 

Let )71 and )72, respectively, be error-minimizing and error-maximizing estimates 
of a boolean function fdef ined  on X, subject to the condition that f belong to a given 
set F of boolean functions defined on X. Then either )71 or )72 (possibly both) is an 
MLE )7 o f ~  and e()7)/N is the corresponding^MLE of the error ~obabil i ty p. In 
particular, fl is an MLE o f f  if and only if e( f l ) <  N-e()72) ,  and f2 is an MLE if 
and only if e()71) - >N-e (}2 ) .  

If no restrictions are placed on f, the error-minimizing function )71 is obviously 
the one that minimizes the number of errors for each observed x, and analogously 
for the error-maximizing function )72. Clearly, e( )71) = N - e( )72), so that both are 
MLEs. 

COROLLARY l 

If no restrictions are placed on f, then the error-minimizing estimate )71 given 
by 

)71 (x) { 0 if y = 0 was observed more often than y = 1, 
= (8) 

1 otherwise, 

is a maximum likelihood estimate off, and /31 = e()71 ) /N is the corresponding estimate 
of the error probability. The error-maximizing function )72 = 1 - fl is also an MLE, 
with an error probability estimate of 1 -/31 . 

If we suppose that the above example places no restrictions of f, the error- 
minimizing fit is given^by ()71(x 1) ..... )71(x6)) = (1, 0, 0, 1, 1, 0). For this model, the 
number of errors is e ( f l )  = 22, and the estimated probability~ of error is /31 = 22/87 
= 0.253. The error-maximizing estimate is the complement of fl ,  with a corresponding 
estimated probability 65/87 of error. 

It is important to note that /3 = e()7)/N is a biased estimator of p. To see this, 
let N x be the number of observations of f(x), and let bp(N, k) be the binomial 
probability 

bp(N,k)  = ( N ) p k ( 1 -  p) N-k . (9) 

Then if p is the true probability of error, the expected value of its estimate is 

E(/3) = 

[Nxl2] 
kbx,(Ux,k) + 

k=0 
(Nx - k)Op(Nx, k) 

k=[Nx/2]+l 

1 Nx 
= p -  

x~X k=[Nx/2]+l 
(lO) 
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Here, [Nx/2] is the largest integer less than or equal to Nx/2. In the example, if 
p = 0.253 were the true error probability, E(/3) would be 0.250, so the bias is minimal 
in this case. When there are fewer observations of  each f(x),  however, bias can be 
significant. 

3.2. WHEN ERROR MAXIMIZATION IS APPROPRIATE 

In boolean regression, an MLE can maximize error. For the sample data set 
of  table 1, for example, both the error-minimizing and error-maximizing functions 
are MLEs. In such a case, we are strongly tempted to discard the error-maximizing 
function as a spurious solution. Presumably, this is because we consider a larger error 
probability to be less likely, in some sense, than a smaller one. 

It is not so clear what we should do, however, when the error-maximizing 
solution results in a strictly greater likelihood than the error-minimizing solution. 
(This can happen when f is restricted.) There are some situations in which the error- 
maximizing solution seems appropriate, whereas others seem to call for an error- 
minimizing solution. 

Consider an example in which we have synthesized m very similar drugs and 
would like to put the purest one on the market. We checked whether each drug 
contains a certain impurity, using a test of questionable reliability, and the test failed 
to detect an impurity in any of  the drugs. The chemistry of  the production process, 
however, indicates that either the second half of  the varieties are impure, or else all 
the varieties but the first are impure, and we would like to know which is the case. 
(Assume for convenience that m is even.) 

Let the boolean vectors x l ..... x m describe the drugs, and let f be the unknown 
function of  x that takes the value 1 when x describes an impure drug. We made one 
observation, namely y = 0, for each x i. We know that the set F of possible functions 
contains two functions: the function fl  that makes half the drugs impure, given by 
fl (xi) = 0 for i = 1 ..... m/2 and f l (x  i) = 1 for i = (m/2)+ 1 ..... m, and the function f2 
that makes all but one drug impure, given by f 2 ( x  l)  = 0 and f2(x i) = 1 for i = 2 ..... m. 
The estimated error probabilities for the two functions, respectively, are /31 = 1/2 and 
/32 = ( m -  1)/m, and the corresponding likelihoods are Pr(YI fl,/31) = (1/2) m and 
Pr(YI f2,/32 ) = (1/m)[(m - 1)/m] m-1. For instance, if there are ten drugs (m = 10), 
the estimated error probabilities are 0.5 and 0.9, whereas the likelihoods are 0.00098 
and 0.03874. So, concluding that half the drugs are impure results in about half as 
many errors as concluding that all but one are impure, but it makes the observation 
set forty times less likely. It may therefore be more reasonable to say that the test 
was almost always wrong than to say it was wrong half the time. 

In another situation, however, the same data could lead to an opposite conclusion. 
Suppose that instead of drugs we have m applicants for a loan, and the loan officer 
rejected every one. Perhaps there are two schools of lending, one of  which would 
recommend accepting only half the applications (function fl) ,  and one of which 
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would recommend accepting all but one application (function f2). It would be very 
odd to conclude that the loan officer belongs to the more lenient school but almost 
always makes mistakes, rather than concluding that he is strict and makes mistakes 
only half the time, even though the former hypothesis makes the observation set 
much more likely. 

The difference between the two scenarios might be explained as a difference 
in the assumed prior probability distribution for the error probability p. In the drug 
test, the distribution may be close to uniform over the unit interval, since we have 
limited information on the reliability of the test. A loan officer, however, is much 
more likely to make a few mistakes than many mistakes. This suggests that if the 
MLE maximizes error, it may be appropriate to use a bayesian approach that begins 
with a reasonable prior distribution of error probabilities [15]. A prior distribution 
that favors smaller values of P may result in an error-minimizing estimate. 

3.3. BAYESIAN ESTIMATION 

In the bayesian approach, we suppose that the error probability p has a prior 
probability distribution with a known density function ~, and that each f E  F has 
some known prior probability Pr(f).  We will assume that the prior distributions of 
fand  p are independent. Let Y represent the observation set that was actually gathered. 
We wish to know the posterior probability (density) of any given pair (f, p), given 
that observations Y were made. If we let h(f, pl Y) represent this density function, 
then Bayes' rule says 

h ( f  , p I Y) = Pr(YI f ,  p)Pr(f)rc(p) , (1 I) 
Pr(Y) 

where Pr(Ylf ,  p) is given by (6). The denominator of the fraction is the marginal 
probability of Y, given by 

I 

Pr(Y) = ~ ~ Pr(Yt f ' ,  p')Pr(f ')rc(p')dp'.  (12) 
f '~F "o 

Our bayesian estimates )7, ~ will be those that maximize posterior probability, 
i.e. a pair (f, p) that solves 

max Pr(YI f , p)er(f)zr(p).  (13) 
O<p<l,f~F 

It is clear from (13) that if the prior probabilities of f and p are uniformly distributed 
(so that Pr(f)  and if(p) are constant), this bayesian estimate is identical to the MLE. 

Thus, if no MLE is error minimizing (or, as we will see, one wishes to obtain 
confidence and significance levels), then it is necessary to think about the prior 
distribution of p. We will consider two probability models that may be useful in 
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practice. Both assume that all f ~ F  have equal prior probability, so that Pr(f) 
= I / IF[ .  We will describe how to use the models in such a way that one need only 
compute error-minimizing and error-maximizing functions. 

It will be convenient to define the following estimates f i ,  where ]I and ]2 are 
the error-minimizing and error-maximizing estimates defined earlier. /3i is the 
corresponding estimate of error e( f/)/N. 

= a function f that minimizes e ( f ) ;  

J~2 = a function f that maximizes e ( f ) ;  

]3 = a function f that maximizes e(f) subject to /3 3 </9. 

M O D E L  1 

The prior distribution of p is uniform on the interval [0, p]. 

This would be appropriate when essentially nothing is known about the distribution 
o f p  except that it would be absurd to suppose p > p. (If nothing at all is known, p = 1, 
and we use the MLE.) For example, it may be unreasonable to explain an expert 's 
behavior with a model on which he deviates from his own guidelines most of the 
time; in this case, p = 1/2. The distribution function becomes zr(p) = l/p for 0 < p < p, 
and zr(p) = 0 elsewhere. The bayesian estimate (j~, ~) is obtained simply by solving 

max Pr(YI f ,  p). (14) 
O<_p<p, f e F  

Theorem 1 and the convexity of (7) immediately imply the following. 

COROLLARY 2 

Let f be an MLE and /3 the correspondinfl error probability. Assume^/31 < p .  
Then the bayesian estimate j~ under Model 1 is fl if f is error minimizing ( f = fi ). 
If f is not error maximizing, then f is either fl or L"  In either case, the estimate 
or error probability is ~ = e(f)/N. 

Because f3 may be hard to compute, it may not be practical to use Model 1 
when the MLE is error maximizing. 

MODEL 2 

The probability density of p belongs to a family of functions given by 
~(p)  = (1 + to)(1 _p ) r .  

Thus, if to= 0 the distribution is uniform, and if to= 1 the probability of p 
decreases linearly as p increases. Since Pr(Ylf, p) in (13) is given by (6), the 
bayesian estimate is obtained by solving 
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max (1 + to)(1 - p)N+r-e(f)pe(f). 
O<_p<l,f~F 

(15) 

This has the same solution as the maximum likelihood problem (5), except that N 
is replaced by N + to. Thus, theorem 1 implies the following. 

COROLLARY 3 

Let f be the MLE and /3 the corresponding error probability. Then the bayesian 
estimate f under Model 2 is given by 

f ^ 
fl 

¢= L 
if e(3~l ) _< N + I¢ - e(j~2 ), 

if e()72 ) _< N + t¢ - e(371 ). 

The corresponding estimate of error probability is ~ = e(fC)/(N + ~¢). 

One can always choose at¢ large enough (i.e. a tcthat makes large p 's  unlikely 
enough) so that the bayesian f i t f i s  error minimizing. However, as we noted earlier, 
there are situations in which an error-maximizing fit may be appropriate. In the 
example involving the impure drugs and the loan officer, Model 2 picks the error- 
minimizing solution when 

e(~f l)  = m /2  < m + t¢ - (m - l) = N + ~ - e(j~2), 

or when I¢> (m/2) - 1 = 4 (using m = 10). Thus, it is more reasonable to conclude 
that the loan officer is wrong only half the time (rather than almost all of  the time) 
when tc > 4. This corresponds to a prior distribution in which there is at least a 97% 
chance that the officer's probability of error is less than 1/2; i.e. we are 97% confident 
that the officer is right at least half the time. Conversely, we should conclude that 
all but one of the drugs is impure when to< 4. This occurs when there is at least a 
3% chance that the test's reliability is less than 1/2; i.e. we admit a 3% possibility 
that the test is wrong at least half the time. These results do not seem unreasonable. 

3.4. AN ASYMMETRIC ERROR MODEL 

Let us suppose for the moment that we have asymmetric error probabilities. 
That is, the probability P0 of observing y = 0 when f ( x )  = 1 is possibly different from 
the probability Pl of observing y = 1 when f ( x )  = 0. In the preceding discussion, 
P0 = Pl = P. To obtain the likelihood function Pr(Y[ f ,  Po, Pl), let e0(f) be the number 
of erroneous observations in those cases in which f ( x ) =  0, and e l ( f )  the number of 
errors when f ( x )  = 1, so that eo ( f )  + e l ( f )  = e(f) .  Let N0(f) be the total number of  
observations made when f ( x )  = 0, and N l ( f )  the number when f ( x )  = 1. Then we 
have 
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P r ( Y l f ,  Po,Pl)  = (1 - po)N°(f)-e°(f)p~°(f)(1 -- pl)N~(f)-e'(f)p~ '(f) (16) 

For a fixed f, this likelihood is maximized by setting P0 = eo(f)/No(f) and pj 
= el( f ) /Nl( f ) .  An MLE is therefore obtained by maximizing 

[1 e°(f) lN°(f)-e°(f)I eO(f) le°(f)I1 el ( f ) ]Nl(f ) -e l ( f ) I  el(f)1 el(f) 

N o ( f )  [_ N ' ~ J  [. U l ( / )  [_Nl(f)] (17) 

over all f E  F. 
When f is unrestricted, it is not difficult to see that an MLE can be obtained 

as before, using corollary 1. Both the error-minimizing and error-maximizing solutions 
are MLEs. However, when f is restricted, an MLE may be neither error minimizing 
nor error maximizing. The same is true a fortiori of bayesian estimates. Since this 
makes computation more difficult, we will assume hereafter that errors are symmetric. 

3.5. CONFIDENCE LEVELS 

Numerical regression analysis typically involves the computation of confidence 
intervals for estimates and tests for the statistical significance of the regression. Both 
have analogs in the boolean case. 

In a numerical regression (1), a confidence interval for an estimate ~(x) of a 
function value g(x) is computed by determining the distribution of ~(x) that would 
result if several samples were drawn from the original population. If the distribution 
is widely dispersed, the confidence interval is wide, and one has less confidence in 
the estimate. For example, if there is a 95% chance that ~(x) deviates no more than 
+A from g(x), then ~(x) + A is a "95% confidence interval". A similar analysis 
applies to parameter estimates. 

A difficulty with this approach is that the distribution of ~(x) depends on the 
unknown variance 0 -2 of the error term e. An estimate of 0 -2 can be computed 
(perhaps as the mean squared error, adjusted for bias), but this estimate is itself a 
random variable whose value depends on the sample. The classical solution to this 
problem is to invent a "pivot", or a statistic that is a function of g(x) and sample 
statistics but whose distribution is independent (or nearly independent) of cr 2. A 95% 
confidence interval for this statistic can then be transformed to a 95% confidence 
interval for ~(x).  The pivot traditionally used has a t distribution whose variance 
depends only on the sample size (or, more precisely, the number of "degrees of 
freedom") and is independent of cr 2. 

In boolean regression, we can replace confidence intervals with confidence 
radii. That is, we can measure our confidence that the true function lies within a 
distance D of the estimated function j~. The distance between functions can be 
defined as the Hamming distance, which in this case is the number of arguments 
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x ~ X  on which the functions differ. A 95% confidence radius D indicates that an 
estimate based on a random sample of size N has at least a 95% chance of lying 
within Hamming distance D of  f .  The confidence level of )~ is the probability that 
a random sample yields 3 ~ exactly. 

Again, we have the difficulty that the distribution of f depends on the probability 
p of observational error, and in this case no "pivot" seems to be available. A further 
difficulty is that an adequate regression sometimes seems to require that we take 
account of  the prior distribution of p, as discussed in the last section. 

A natural solution to these difficulties is to use a bayes i~  approach to confidence 
testing. In this approach, the confidence level of an estimate f is simply the posterior 
probability that f is the true function. We have a 95% confidence radius D when the 
posterior probabilities of all functions f within Hamming distance D of 3~ sum to at 
least 0.95. 

The posterior probability of a function f is computed by integrating (11) with 
respect to p. 1 

Pr(fIY) = Pr(Y[f)Pr(f)/Pr(Y) = er ( f )~  Pr(Ylf ,  p)z~(p)dp/Pr(Y). (18) 

0 

Thus, the confidence level of an estimate )~ is Pr(f l  Y), and D is a 95% confidence 
radius if 

Pr(f I Y) > 0.95, 
f ~Fo 

where Fo is the set of all functions in F that lie within a Hamming distance D of 
3 ~. We will compute this confidence level for the two types of prior distributions of 
p discussed in the last section. 

Model 1 

p is uniformly distributed on [0, p]. Integrating by parts, Pr(Ylf)  in (18) 
becomes 

P 

1 fPr(Ylf, p)dp Pr(YI f )  = -~ 
0 

_ pe ( f )  N -e ( f )  
~_~ Ci(1 _ p ) N - e ( f ) - i ,  

(N + 1) i=1 
where 

(19) 

(20) 

(When p = 1, we take the last term of the summation in (20) to be CN-e(f).) From (12) 
and (18), we have that the confidence level for an estimate f is 
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P r ( f l  Y) = Pr(YIf)/ ~ Pr(Ylf'), 
f'~F 

(21) 

where P r ( Y l f )  is given by (20). The confidence level for the estimated value o f f  
at a particular x is given by 

Pr(f(x)lY)= ~., Pr(YIf')/ ~.. Pr(YIf'), 
f ' z  & f'~ F 

(22) 

where F x = { f '  e Fi f ' ( x ) = f ( x ) } .  
In the example of table 1, the confidence levels for a?(= 3 ~) under Model 1 are 

48.2%, 83.5%, 96.5% and 98.4%, respectively, when p = 1, 0.7, 0.5 and 0.3. The 
corresponding confidence levels for a?(0, 1, 0, 1, 1) = 1 are higher because it is easier 
to get one value right than six: 50%, 86.6%, 99.9% and 99.99%. A 50% confidence 
level for p = 1 may seem counter-intuitive when f(0,  1, 0, 1, 1) = 1 in fifteen out of 
twenty-two observations, but recall that when nothing is known about the distribution 
of p, a~(0, 1, 0, 1, 1)= 0 with ~ = 15/22 is an equally good explanation of the data. 

Model 2 

The probability density function o f p  is 7r(p)= (1 + to)(1 _p) r .  When ~; is an 
integer, P r ( Y I f )  in (21) becomes 

1 ( ~V_ )-I e(f) + 1 (23) 
Pr(YI f )  - (n + 1) e ( f  ~c e ( f )  - ~¢ + 1" 

The confidence level for an estimate f is again given by (21), and for a particular 
value f ( x )  by (22), where P r ( Y I f )  is given by (23). 

Under Model 2, the confidence levels in table 1 for j~ are 48.2%, 87.2%, 
96.7% and 98.4% for to= 0, 1, 2, 3, and the corresponding levels for j~(0, 1, 0, 1, 1) 
are 50%, 89.5%, 98.6% and 99.8%. 

3.6. SIGNIFICANCE OF REGRESSION 

In traditional statistics, a regression is significant if the apparent relationship 
between the dependent and independent variables cannot be explained by chance. A 
maximum likelihood ratio test is used to check for significance, and the test is usually 
based on the fact that the ratio of two normalized sum-of-squares statistics has an 
F distribution. For the boolean case, we will again use a bayesian approach. 

Suppose we wish to check whether the bayesian estimate 3 ~ of f captures a 
significant relationship between y and x in table I. We can formulate two hypotheses: 

H0: f ( x )  is the same for all x E X  (i.e. x has no bearing on y); 

Hi: f ( x )  is not the same for all x E X. 
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The question is whether we can reject the null hypothesis Ho in favor of H I. To 
answer it, we use an approach analogous to that of maximum likelihood ratio testing: 
we find the function f0 having the highest posterior probability Pr( J~01 Y, H0) under 
H0, and the function j~ having the highest posterior probability Pr( f l  Y, Hi) under H l . 
The function 3~0 is the bayesian estimate of f when F contains only the two constant 
functions given by f (x )  = 0 for all x E X and f (x)  = 1 for all x E X. The function j~ 
is of course the bayesian estimate of f using the original set F, which has already 
been computed.  The significance level of the regression is the probability that .fo is 
the true function, given that either fo or )v is the true function: 

Pr(3~0[ Y, 3~0 or j~) = Pr(f°[  Y) (24) 
er()70[ Y) + Pr(]¢[ y) " 

(Here we assume that J~0 ~ J~-) The probabilities on the right are given by (21). 
Let us analyze the regression for table 1 using Model 1 's prior distribution for 

p, with p = 1/2. The MLE f0 under Ho is clearly the constant function having the 
value 1, since it h a s  forty-one errors, and the other constant function has forty-six. 
Since 41/87 < I/2, f0 = f0. The posterior probability of J~0 is Pr(j~01 Y) = 0.0000128. 
Since we found earlier that the confidence level for 3 ~ is Pr( f lY)=0.9647 ,  the 
significance level of the regression is 0.0000128/(0.0000128 + 0.9647) = 0.0000132. 
There is only a 0.00132% chance that the regression is not significant. 

3.7. PRACTICAL CONSIDERATIONS 

In practice, one would first compute the MLE of f by finding the error- 
minimizing and error-maximizing estimates and picking one that results in the higher 
likelihood Pr(Y[ f, p). If the resulting estimate is error minimizing, then it is probably 
adequate it stands. This is because in practically any imaginable application, a large 
error probability is, if anything, less likely than a small one. If the bayesian solutions 
were computed using a prior distribution that gives less weight to large error probabilities, 
the same error-minimizing estimate would ensue. 

If  the MLE is error maximizing,  however,  we must  consider  the prior 
distribution of the error probability p. We may use Model 1 or Model 2, but the latter 
may be more practical if J~3 is difficult to calculate for Model 1. Under Model 2, we 
find the smallest ~ for which the bayesian estimate is the error-minimizing function 
)~l rather than the error-maximizing function J~2; that is, the smallest t¢ for which e(3~l ) 
< N + t ¢ -  e(j72) We can then examine the prior distribution 7r(p) = (1 + to)(1 + p ) ~  
and judge whether large errors are as unlikely a priori as implied by this distribution. 
If so, we should use ~ ,  and otherwise function J~2. 

Confidence levels and significance tests require that one choose a prior distribution 
of the error probability p, regardless of the outcome of the MLE calculation. If the 
MLE is error minimizing, however, one has a choice of either Models 1 or 2, whereas 
if it is error maximizing, Model 2 may be the only computationally practical option. 
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When it is difficult to say what the prior distribition of p is, it is good practice 
to obtain a lower bound on the confidence level by making a conservative assumption 
regarding the distribution. In Model 1, where p < p, a conservative interpretation 
would pick a fairly large value for p, perhaps 1/2. If one could derive a reasonably 
high confidence level on the very conservative assumption that the probability of 
error is less than 1/2, then the confidence level is itself conservatively estimated and 
probably much higher. In Model 2, a conservative interpretation would pick a small 
value for to. If a reasonably high confidence level results from assuming to= 1, for 
instance, than one has confidence in the regression. If an error-maximizing bayesian 
estimate of f is used, the t¢ used in measuring confidence must not be so large as to 
result in an error-minimizing bayesian estimate of f. 

Similar considerations apply to the significance tests. 
As for computing the error-minimizing and error-maximizing functions, this 

can in principle be done simply by enumerating all boolean functions in the given 
class F. But in special cases, such as those described in the remaining sections, there 
are more efficient methods. Computation of exact confidence and significance levels 
is difficult even in the special cases, but we will show how to obtain good estimates 
using a modest amount of computation. 

4. Unrestricted functions 

4.1. BAYESIAN ESTIMATION 

The simplest special case is that in which F contains all boolean functions 
defined on X. That is, no restrictions are placed on the best-fitting boolean function. 
Although this case is of limited applicability, it provides a simple context in which 
to introduce methods for approximating confidence and significance levels. We later 
adapt them to more interesting cases. 

Corollary 1 summarizes the obvious way to find error-maximizing and error- 
minimizing functions in this case. If there is no prior knowledge regarding the 
distribution of p, both are bayesian estimates of f, whereas if larger error probabilities 
p are less likely, the error-minimizing function is a bayesian estimate of f. 

4.2. CONFIDENCE LEVELS AND SIGNIFICANCE OF REGRESSION 

Computing exact confidence levels is difficult, since the marginal probability 
Pr(Y) in (18) is given by a sum in (12) over a l l f E F .  However, it is relatively easy 
to obtain a close approximation to Pr(Y). 

We can obtain a lower bound on Pr(Y) that approximates Pr(Y) simply by 
summing over a subset of F in (12). One reasonable subset to use is the set Fo of 
all functions in F that lie within a given Hamming distance D of the best fit f .  Most 
of the probability Pr(Y) is contributed by functions within a small Hamming distance 
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from j~, since they tend to result in fewer errors than those more distant. Thus, we 
have an approximation P0 of Pr(Y): 

Po = ~ Pr(YI f ' ) .  (25) 
f'~FD 

Using (21), we can estimate the confidence level Pr(f[  Y): 

Pr(f[ Y) ~ Pr(YI f)/Po. (26) 

As an example, we will compute a confidence level for f in the example of 
table 1. We found earlier that, using probability Model 1 with p = 0.5, the exact value 
of the confidence level (to four decimal places) is P( j~ [ Y) = 0.9647. This computation 
required the summation of 26 = 64 terms in (12). If we sum over only the seven terms 
in Fl (i.e. all functions within a Hamming distance D = 1 of j~), we obtain a close 
approximation, P0 = 0.9608. If we sum over the twenty-two terms in F2, P0 = 0.9643. 

Once confidence levels are computed, it is easy to obtain significance levels 
using (24). 

4.3.  EXTENSION TO A FULLY DEFINED FUNCTION 

The regression described above defines f (x)  for observed values of x. If this 
partially defined boolean function is extended to an unrestricted fully defined function 
f*, f*(x) is of  course completely arbitrary for every unobserved x. It may be useful, 
however, to find a relatively simple logical formula that agrees w i t h f o n  all observed 
x's. One may wish the formula to be a disjunction of as few terms as possible, or 
to involve as few xj's as possible. Techniques for obtaining such a formula are 
discussed in detail in [5]. 

5. Positive functions 

5.1. BAYESIAN ESTIMATION 

It is frequently the case that one has to find a good boolean regression in the 
presence of some a priori structural information on the function f, e.g. f must be a 
monotone boolean function, or more general, there is known a partial order -< on the 
set of 0 - 1  vectors x and f must satisfy the condition that f (x)  <f(x ' )  whenever 
x ~ x'. Such boolean functions will be called -<-monotone. (A more general notion 
of monotonicity and the corresponding "best fit" problem have been studied in [3].) 

In this section, we consider the problem of finding the error-minimizing -<- 
monotone boolean function for the given data, which consists of  a set X of  0 - 1  
vectors and integers t°(x) and tl(x) for every x ~ X, denoting the multiplicities of  the 
false and true outcomes when x is observed. The number of  errors is given by 
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e(f) = ~ t°(x) + ~.~ tl(x). (27) 
x~X: f (x)=l  x~X: f(x)=O 

We can formulate the regression problem considered in this section as follows: 

minimize e( f ) 

subject to f :  X ---> {0,1}, 

f ( x )  < f ( x ' )  

and 

for all x, x '  ~ X with x -< x'. 

(28) 

We shall show in the sequel that this problem can be solved in polynomial 
time, in at most O(IX[ 3) steps via a minimum cut computation in an associated 
capacitated network. 

It is relatively easy to transform the above problem into a "maximum closure" 
problem, which then can be solved as a maximum flow problem (see e.g. [14]), and 
which thus provides a polynomial time solution to (28). However, for the sake of 
completeness, we give here another approach which is slightly different from the one 
in [14]. The key to this approach is to show that one can always find a minimum- 
capacity monotone cut in a flow network by modifying the arc capacities and solving 
an ordinary minimum cut problem on the modified network. 

Let G = (N, A) be an acyclic directed graph, and let cij be nonnegative capacities 
associated with the arcs (i, j )  ~ A. Two distinguished vertices of the network, s ~ N 
and t E N, will be called the source and the sink, respectively. An (s, t)-cut is defined 
as the set of  arcs {(i, j)  ~ A l i  ~ S , j  ~ S }  connecting the vertices of  a subset S to the 
vertices not in S, and where we assume that s E S  and t ~S .  Such a cut will be 
denoted by C s, referring to the fact that it is induced by the subset S. The capacity 
c(C) of a cut C is defined as the sum of the capacities of  the arcs in the cut, i.e. 
c(C) = Y~(i,~)~ cCw 

The minimum cut problem is to find the subset S such that s E S, t ~ S and c(S) 
is as small as possible. It is well known that this problem can be solved in O( IN[ 3) 
time, see e.g. [11]. 

A cut Cs is called monotone if there are not arcs directed backwards, i.e. there 
is no arc ( i , j )  E A  such that i~_S and j ~S.  

The minimum monotone cut problem is to find a subset S of the nodes such 
that s ~ S, t ~ S, Cs is monotone and c(Cs) is as small as possible. One way to find 
a minimum monotone cut for any acyclic directed path G is to find a minimum cut 
for a graph G" constructed on the same node set as follows. Let G '  contain all the 
arcs of G with the same capacities. In addition, for every arc ( i , j )  of G, add to G'  
the reverse arc (j ,  i) with the infinite capacity. A minimum cut for G '  will not contain 
any of the infinite-capacity arcs and will therefore be a minimum monotone cut for G. 

We will show, however, how to solve the minimum monotone cut problem in 
a way that is more efficient because it does not increase the size of the network. 
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THEOREM 2 

Let G = (N, A) be an arbitrary acyclic directed graph with nonnegative real 
capacities cij on the arcs (i,j) cA,  and let M be an integer, M > ½1Nl~,(i,j)e A cij .  

Then there are capacities ~ij, (i,j) CA, such that the minimum cut Cs in the network 
(N, A, ~') will be the minimum monotone cut in the original network (N, A, c), and 
such that 

~(Cs) = M I N[ + c(Cs). (29) 

Proof 
For i E N, let d~ (d[) denote the out-degree (in-degree) of vertex i, i.e. the 

number of edges going out from (entering) vertex i. For an arc (i, j )  c A, let Pi-~ denote 
a shortest path in the network f r o m j  to t, and similarly, let Pi~ denote a shortest path 
in the network from s to i. 

Finally, let 
± 1 1 

~/j =c / j  + M  1 + d7 + £ --7" + ~[[ d/- 
(k,l):P~t D(i,j) dk (k,l):P~ D(i,j) 

In other words, the capacity of every arc on the path { (i, j)} U Pi~ is increased by 
M/d~ and the capacity of every arc on the path {(i,j)} U P/] is increased by M/d~, 
consecutively, for all arcs (i, j )  C A. 

Now for a subset S of the vertices with s c S, t ~ S we have that Cs must 
contain at least one arc of the path { (i, j )  } U P/~ for all arcs (i, j )  c A leaving i if i C S, 
and f o r j  ~ S  the cut Cs must contain at least one arc from {(i,j)} U Pi] for all arcs 
(i, j )  c A entering j. Therefore, 

(3O) 

M 
 (Cs) >- c(Cs) + d;- 

ieS j:(i,j)eA 

M 
- - + E  Z d; 

j~S  i:(i,j)~A 
= c ( C s ) + M l N I ,  (31) 

with equality for all monotone cuts. 
If C s is not monotone, i.e. if there is an arc (k, l) E A such that k ff S and l E S, 

then, in addition to the above, Cs must contain at least one arc from the paths 
{(k,/)} U P~ and {(k,/)} U P~t, which implies that 

~(Cs) >- c(Cs) + MINI  + 

This means that 

M M + m  
d? d; 
2M 

>-c(Cs)+ M I N I +  ~ > M I N I +  
I/Vl 

cij . (32) 
(i,j) ~ A 

?(Cs,) > ~(Cs) (33) 

whenever Cs, is non-monotone and Cs is monotone. Since there are monotone cuts 
in the network, the minimum cut must be monotone by (33) and hence proving the 
theorem by (31). 
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It is easy to implement the computations of ~ such that all arc capacities can 
be updated in at most O(INI tAt) steps, thus proving that a minimum monotone cut 
can be computed in at most O([N[ 3) time. [] 

Let us now return to the best-fit problem (28). We shall build a network, 
associated with the data (X, t °, t ~), such that there will be a one-to-one correspondence 
between the monotone cuts Cs and the < -mono tone  mappings f :  X---~ {0, 1 }. 
Moreover, the capacity c(Cs) of the cut and the error e( f )  will be equal. Thus, the 
computation of a minimum monotone cut in that network will give us the optimal 
solution of problem (28). 

Let N = X  U {s, t} be the set of  vertices, and put an arc from s to every 
element of  X, from every element of  X to t, and from x to x '  whenever x < x' .  For 
the sake of  simplicity, we can delete all arcs (i,j) for which there is another vertex 
k such that (i, k) and (k, j)  are both arcs. Let A denote the set of arcs finally left. 

Now, if f :  X ~ {0, 1 } is a monotone mapping, i.e. there is no x -< x '  such that 
f (x)  = 1 and f ( x ' ) =  0, then Sf= {s} U {x ~ X I f ( x ) =  0} induces a monotone cut in 
(N, A). Conversely, if Cs is a monotone cut for a subset S C N such that s E S and 
t ~ S, then fs(x) = 1 iff x ~ S for x ~ X defines a <-monotone mapping. 

For every x E X, let Px + denote a shortest path from x to t, and let Pxdenote 
a shortest path from s to x in the network (N, A). Moreover, let the capacities cij be 
defined by 

Cij = Z t l ( x ) +  ~-~ t°(x)" (34) 
Px+ B ( i , j )  P~ ~ ( i , j )  

Since a monotone cut Cs intersects every path P+ for x ~ S and Px for x ~ S 
in exactly one arc, we have 

c(Cs) = Z t l ( x )  + E t O ( x )  = e(fs). 
x~S x~S 

(35) 

The complexity of building up the network and computing the capacities is of 
O([XI3), and thus the total complexity of  solving problem (28) is also O(IS13). 

5.2. EXTENSION TO A FULLY DEFINED FUNCTION 

A fully defined function f* to which f is extended must satisfy 

max f ( x ' )  < f *  (x) < min j~(x') 
X t"< X X/ >" X 

for all boolean vectors x, f*(x) is determined for an unobserved x when these upper 
and lower bounds are equal. 
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5.3. CONFIDENCE LEVELS AND SIGNIFICANCE OF REGRESSION 

Confidence and significance levels can be computed as in section 4.2, except 
that F o in (25) becomes the set of all m o n o t o n e  (or -<-monotone) boolean functions 
defined on X that are within a Hamming distance D of the best fit f .  For small D, 
these function can be enumerated quickly if one does not change f ( x )  to 1 without 
first changing f for all immediate successors of x for which f is 0, and one does not 
change f (x )  to 0 without first changing f for all immediate predecessors of  x for 
which f is 1. 

6. Functions defined by logical formulas 

6A. BAYESIAN ESTIMATION 

We now consider the problem of estimating a regression formula expressed in 
propositional logic. We will show that the bayesian estimation problem can be solved 
as a pseudo-boolean optimization problem. 

Suppose that we wish to find a regression formula in the form of (3) to fit the 
data in table 1. In this case, (3) becomes 

v Olx  v . . .  v/ 5x5, (36) 

where each fli ~ {0, 1 }. Recall that we can find a bayesian estimate if we can find 
an error-minimizing and an error-maximizing function in F (and perhaps an error- 
maximizing function subject to ,~ </3). In the present case, F contains all fully 
defined functions that are expressed by a formula in the form of (36). 

We will minimize and maximize error e ( f )  = e(fl) by writing e ( f )  as a pseudo- 
boolean (i.e. real-valued) function of the boolean arguments fl0 .... .  fls, and then 
minimizing or maximizing the function. 

To see the principle involved, let us first count the errors resulting from the 
first line of table 1. If fl0 = f12 =/34 = f15 = 0, it is clear that f0(0, 1, 0, 1, 1) = 0, resulting 
in seven erroneous observations. Otherwise, f0(0, 1, 0, 1, 1) = 1, and we have fifteen 
errors. So, the number of errors resulting from line 1 is 

7(1 -/~0/~2/~4]~5 ) d- 15/~0]~2]~4~5, 

where fli = 1 - f l i .  Summing similar expressions for all six lines of table 1 and 
collecting terms, we obtain the pseudo-boolean function 

e ( f l )  = 41 + 8 f l o f 1 2 f 1 4 f 1 5  - 6f lOfl l f l2f l5  - 6 f lOf l l f l4 f l5  

+ 4 f l0 f l l f l 5  + 1 2 f l O f l l f l 2 f l 4  - 7f10f13f14fls .  (37) 
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The problem of solving a pseudo-boolean optimization problem such as this one is 
well studied [9,8]. In this case, the minimum error solution is (fl0 ..... fls) 
= (0, 0, 1, 0, 0, 0), with e(fl) = 32 errors. This corresponds to the propositional function 

f(x) = x2. (38) 

The maximum error solutions are fl = (0, 0, 0, 1, 0, 1) and (0, 0, 0, 1,0, 0) and 
(0, 0, 0, 0, 0, 1 ), all with e(fl) = 53 errors, corresponding to the propositional functions 

f(x)  = x 3 V xs, (39) 

f (x)  = x3, (40) 

f (x)  = x5. (41) 

Since 32 < N - 5 3 ( = 8 7 -  53 = 34), theorem 1 implies that (38) is the estimate we 
want. 

Suppose in general that the regression formula is disjunctive: 

m 

V #iti(x), (42) 
i=1 

where each t i (x  ) is a boolean function of x that involves no fli's. For instance, t i (x  ) 
may be a conjunction of literals (terms of the form xj or ~j), in which case (42) is 
in disjunctive normal form. (Any propositional formula is equivalent to some formula 
in this form.) Let t°(x) by the number of observations of f(x) for which y = 0, and 
tl(x) the number for which y = 1. Then the error can be expressed as 

e ( f l ) =  ~ t°(x)+ ~ ( t l (x ) - t ° (x) )  H ilk, (43) 
xEX x~X  k~K(x)  

where K(x)= {kltk(X)= 1}. 
It may be useful to let the regression formula be conjunctive, 

r n  

A ti (x) p' , (44) 
k = l  

where each ti(x) appears if fli = 1 and is absent if fli = 0. If ti(X ) is a disjunction of 
literals, (44) is in conjunctive normal form (into which any propositional formula can 
be put). The error is 

e(fl) = ~_~ tl(x) + ~.~ ( t ° (x ) -  tl(x)) I I  flJ. (45) 
xEX x~X  k~K(x)  

6.2. CONFIDENCE LEVELS 

The confidence level Pr(f~lY) for an estimate f/~ is given by (21), where F 
is the set of  all boolean functions f/~ expressed by formulas having the desired form. 
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In the example of table 1, the confidence level of the regression formula (38) is 
28.2%, assuming the prior distribution of Model 1 with p = 0.5. This suggests that 
a more complex model is needed, perhaps one with negated variables fliY~i . Another 
option is to use "associations" (to borrow a term from categorical data analysis), 
which are quadratic terms flijxixj. Or we may even want to use "interactions", or 
cubic t e rms  ~ijkXiXjXk . 

Confidence radii can be defined in the context of formulas by using the Hamming 
distance between coefficient vectors ft. In theexample, we can have 43.3% confidence 
that the true fl is within a radius of one of ft. This means that there is a probability 
of 0.433 that the true function differs from (38) in at most one coefficient. A radius 
of 2 yields only a 57.2% confidence level. 

6.3. SIGNIFICANCE OF REGRESSION 

To compute significance of regression in the example of table 1, we consider 
the hypotheses 

H0: fli = 0 for i =  1 ..... 5 (i.e. x has no bearing on y); 

H1: f l i ~ : 0 f o r a t l e a s t  one i E { 1  ..... 5}. 

The best fit .fo under H0 is defined by fl0 = 1 (with all other fli = 0), since we saw 
earlier that f (x)  = 1 is the better fitting constant function. The best fit 3 ~ under H1 is 
defined by (38). After using (21) to obtain a confidence level Pr(3~o I Y) -- 0.0104 for 
f0, we have from (24) that the regression is significant at level 0.036. 

Since we can have only 28% confidence in the regression formula (38), we 
should consider adding some additional terms to (36). In numerical regression analysis, 
it is common to use a stepwise procedure whereby one adds new groups of variables 
to the regression formula, one group at a time, and each time checks for significant 
improvement in the fit. An analogous procedure is available in boolean regression. 

For instance, we may want to add some negated variables to (36) to obtain a 
function that need not be positive: 

flo V fllXl V . . .  V flsX 5 v YI~I V . . .  V Y5~5. (46) 

The best fit .f having the form (46) is 

f ( x )  = x 2 V ~'4. (47) 

The corresponding confidence level is only Pr( f l Y) = 11.2%. This time, the competing 
hypotheses are 

H0: fli = 0 for i = 6 ..... 10 (i.e. the negated terms have no bearing on y); 

Hi: fli;~O for at least one i ~ { 6  ..... 10}. 

If we cannot reject H 0, then the fit is not significantly improved. 
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The best fit J?o for H0 is the best fit when only the positive terms are used, 
namely (38). We must recompute its confidence level, however, since the set F now 
contains all functions having the form (46). We obtain Pr( f01 Y) = 0.00878. The best 
fit under H1 is of course (46). Using (24), we compute that we can reject H0 with 
only a 0.073 significance level. Not only do we have little confidence (11%) in the 
new formula, but we cannot state that it is a better fit than (38) with, say, a 5% level 
of significance. 

References 

[1] A. Agresti, Categorical Data Analysis (Wiley, New York, 1990). 
[2] E.B. Andersen, The Statistical Analysis of Categorical Data (Springer, Berlin/New York, 1990). 
[3] E. Boros, P.L. Hammer and J.N. Hooker, Predicting cause-effect relationships from incomplete 

discrete observations, SIAM J. Discr. Math. 7(1994)423-435. 
[4] L. Breiman, Classification and Regression Trees (Wadsworth, Belmont, CA, 1984). 
[5] Y. Crama, P.L. Hammer and T. lbaraki, Cause-effect relationships and partially defined Boolean 

functions, Ann. Oper. Res. 16(1988)299-325. 
[6] D. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning (Addison- 

Wesley, Reading, MA, 1989). 
[7] L.A. Goodman and C.C. Clogg, The Analysis of Cross-classified Data Having Ordered Categories 

(Harvard University Press, Cambridge, MA, 1984). 
[8] P. Hammer and S. Rudeanu, Boolean Methods in Operations Research and Related Areas (Springer, 

Berlin, 1968). 
[9] P. Hansen and B. Jaumard, Algorithms for the maximum satisfiability problem, Computing 

44(1990)279-303. 
[10] J.H. Holland, K.J. Holyoak, R.E. Nisbett and P.R. Thagard, Induction: Process of Inference, 

Learning and Discovery (MIT Press, Cambridge, MA, 1989). 
[11] A.V. Karzanov, Determining the maximal flow in a network by the method of preflows, Sov. 

Math. Doklady 15(1984)434- 437. 
[12] R. Michalski, J. Carbonell and T. Mitchell (eds.), Machine Learning: An Artificial Intelligence 

Approach (Tioga Press, Palo Alto, CA, 1983). 
[13] N.J. Nilsson, The Mathematical Foundations of Learning Machines (Morgan Kaufmann, San 

Mateo, CA, 1990). 
[14] J.-C. Picard, Maximal closure of a graph and applications to combinatorial problems, Manag. 

Sci. 22(1976)1268-1272. 
[15] SA. Press, Bayesian Statistics: Principles, Models and Applications (Wiley, New York, 1989). 


