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Projection as a Unifying Concept

• Projection underlies both optimization and 

logical inference.

• Optimization is projection onto a cost variable.

• Logical inference is projection onto a subset 

of variables.

• These 3 concepts are linked in George Boole’s work 

on probability logic.
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Projection as a Unifying Concept

• Projection underlies both optimization and 

logical inference.

• Optimization is projection onto a cost variable.

• Logical inference is projection onto a subset 

of variables.

• These 3 concepts are linked in George Boole’s work 

on probability logic.

• Consistency maintenance can likewise be seen 

as projection.

• Leads to a simple type of consistency based explicitly 

on projection. 
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Probability Logic

• George Boole is best 

known for propositional 

logic and Boolean 

algebra.

• But he proposed a highly 

original approach to 

probability logic.
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Logical Inference

• The problem:

– Given a set S of propositions

– Each with a given probability.

– And a proposition P that can be

deduced from S…

– What probability can be assigned

to P?
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• In 1970s, Theodore 

Hailperin offered an

interpretation of 

Boole’s probability logic

– …based on modern 

concept of linear 

programming.

– LP first clearly formulated

in 1930s by Kantorovich.
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Boole’s Probability Logic

Hailperin (1976)
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Boole’s Probability Logic

• This LP model was re-invented in AI community.

• Column generation methods are now available.

• To deal with exponential number of variables.

Nilsson (1986)
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Projection

• An LP can be solved by Fourier elimination

– The only known method in Boole’s day

– This is a projection method.

Fourier (1827)
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Projection

• Eliminate variables we want to project out.

– To solve

project out all variables yj except y0.

  0 0min/ max | ,y y ay Ay b
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Projection

• Eliminate variables we want to project out.

– To solve

project out all variables yj except y0.

– To project out yj , eliminate it from pairs of inequalities:

  0 0min/ max | ,y y ay Ay b

 0 jcy c y  0 jdy d y

 
    

0 0 0 0

j

c d
y y y

c c d d

  
   

 0 0 0 0

c d
y

c d c d





19

Projection

• Projection as a common theme:

– Optimization: Project onto objective function variable

– Logical inference:  Project onto propositional variables 

of interest

– Consistency maintenance:  ???

• Look at logical inference next…
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Inference as Projection

• Project onto propositional variables of interest

– Suppose we wish to infer from these clauses 

everything we can about propositions x1, x2, x3
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Inference as Projection

• Project onto propositional variables of interest

– Suppose we wish to infer from these clauses 

everything we can about propositions x1, x2, x3

We can deduce  
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Inference as Projection

• Resolution as a projection method

– Similar to Fourier elimination

– Actually, identical to Fourier elimination + rounding

– To project out xj, eliminate it from pairs of clauses:

 jC x  jD x

C D Quine (1952,1955)

JH (1992,2012)
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Inference as Projection

• Resolution as a projection method

– Similar to Fourier elimination

– Actually, identical to Fourier elimination + rounding

– To project out xj, eliminate it from pairs of clauses:

– This is too slow.

– Another approach is logic-based Benders decomposition…

 jC x  jD x

C D
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Inference as Projection

• Benders decomposition computes a projection

– Benders cuts describe projection onto master problem 

variables.

1 2x x

Current 

Master problem

Benders cut 

from previous 

iteration
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Inference as Projection

• Benders decomposition computes a projection

– Benders cuts describe projection onto master problem 

variables.

1 2x x solution of master

(x1,x2,x3) = (0,1,0) 

Current 

Master problem
Resulting

subproblem
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Inference as Projection

• Benders decomposition computes a projection

– Benders cuts describe projection onto master problem 

variables.

1 2x x solution of master

(x1,x2,x3) = (0,1,0) 

Current 

Master problem
Resulting

subproblem

Subproblem is 

infeasible.

(x1,x3)=(0,0) 

creates infeasibility 
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Inference as Projection

• Benders decomposition computes a projection
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Inference as Projection

• Benders decomposition computes a projection

– Benders cuts describe projection onto master problem 

variables.

1 2x x solution of master

(x1,x2,x3) = (0,1,1) 

Current 

Master problem
Resulting

subproblem

1 3x x
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Inference as Projection

• Benders decomposition computes a projection

– Benders cuts describe projection onto master problem 

variables.

1 2x x solution of master

(x1,x2,x3) = (0,1,1) 

Current 

Master problem
Resulting

subproblem

1 3x x

Subproblem is

feasible
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Inference as Projection

• Benders decomposition computes a projection

– Benders cuts describe projection onto master problem 

variables.

1 2x x solution of master

(x1,x2,x3) = (0,1,1) 

Current 

Master problem
Resulting

subproblem

Enumerative

Benders cut

1 3x x

Subproblem is

feasible

 1 2 3x x x
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Inference as Projection

• Benders decomposition computes a projection

– Logic-based Benders cuts describe projection onto master 

problem variables.

1 2x x solution of master

(x1,x2,x3) = (0,1,1) 

Current 

Master problem
Resulting

subproblem

Enumerative

Benders cut

1 3x x

Continue until master 

is infeasible.

Black Benders cuts 

describe projection.

 1 2 3x x x

JH and Yan (1995)

JH (2012)
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Inference as Projection

• Benders cuts = conflict clauses in a SAT algorithm

– Branch on x1, x2 first.
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Inference as Projection

• Benders cuts = conflict clauses in a SAT algorithm

– Branch on x1, x2 first.

Conflict 

clauses
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Inference as Projection

• Benders cuts = conflict clauses in a SAT algorithm

– Branch on x1, x2 first.

Conflict 

clauses

Backtrack to x3 at 

feasible leaf nodes
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Inference as Projection

• Benders cuts = conflict clauses in a SAT algorithm

– Branch on x1, x2 first.

Conflict clauses containing 

x1, x2, x3 describe projection
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Inference as Projection

• Projection methods similar to Fourier elimination

– For logical clauses

– For cardinality clauses        

– For 0-1 linear inequalities

– For general integer linear inequalities

Quine (1952,1955)

JH (1992)

JH (1988)

Williams & JH (2015)
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Consistency as Projection

• Domain consistency

– Project onto each individual variable xj.
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Consistency as Projection

• Domain consistency

– Project onto each individual variable xj.
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Consistency as Projection

• Domain consistency

– Project onto each individual variable xj.
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Consistency as Projection

• Domain consistency

– Project onto each individual variable xj.
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Consistency as Projection

• Domain consistency

– Project onto each individual variable xj.
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Consistency as Projection

• Domain consistency

– Project onto each individual variable xj.
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We will regard a projection as a 

constraint set.
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Consistency as Projection

• k-consistency

– Can be defined:

– A constraint set S is k-consistent if:

• for every J  {1, …, n} with |J| = k  1, 

• every assignment xJ = vJ  Dj for which (xJ,xj) does not 

violate S, 

• and every variable xj  xJ, 

there is an assignment xj = vj  Dj for which (xJ,xj) = (vJ,vj) 

does not violate S.

xJ = (xj | j  J)
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Consistency as Projection

• k-consistency

– Can be defined:

– A constraint set S is k-consistent if:

• for every J  {1, …, n} with |J| = k  1, 

• every assignment xJ = vJ  Dj for which (xJ,xj) does not 

violate S, 

• and every variable xj  xJ, 

there is an assignment xj = vj  Dj for which (xJ,xj) = (vJ,vj) 

does not violate S.

– To achieve k-consistency:

– Project the constraints containing each set of k variables 

onto subsets of k  1 variables.

xJ = (xj | j  J)
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Consistency as Projection

• Consistency and backtracking:

– Strong k-consistency for entire constraint set avoids 

backtracking…

– if the primal graph has width < k with respect to branching 

order.

– No point in achieving strong k-consistency for individual 

constraints if we propagate through domain store.

– Domain consistency has same effect.

Freuder (1982)
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J-Consistency

• A type of consistency more directly related to 

projection.

– Constraint set S is J-consistent if it contains the 

projection of S onto xJ.

– S is domain consistent if it is { j }-consistent for each j.

– Resolution and logic-based Benders achieve J-consistency 

for SAT.

xJ = (xj | j  J)
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J-Consistency

• J-consistency and backtracking:

– If we branch on variables x1, x2, …, a natural strategy is 

to project out xn, xn1, … 

– until computational burden is excessive.
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J-Consistency

• J-consistency and backtracking:

– If we branch on variables x1, x2, …, a natural strategy is 

to project out xn, xn1, … 

– until computational burden is excessive.

– No point in achieving J-consistency for individual 

constraints if we propagate through a domain store.

– However, J-consistency can be useful if we propagate 

through a richer data structure

– …such as decision diagrams

– …which can be more effective as a propagation medium.

Andersen, Hadžić JH, Tiedemann (2007)

Bergman, Ciré, van Hoeve, JH (2014)
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Propagating J-Consistency
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Propagating J-Consistency

Suppose we propagate through a 

relaxed decision diagram of width 2 

for these constraints
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Propagating J-Consistency

Suppose we propagate through a 

relaxed decision diagram of width 2 

for these constraints
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Propagating J-Consistency

Let’s propagate the 2nd atmost constraint in the projected alldiff

through the relaxed decision diagram.

a,b,d

a,b,c,d

c

d

a,b

c,d

Let the length of a 

path be number of 

arcs with labels in 

{c,d}.

For each arc, 

indicate length of 

shortest path from 

top to that arc. 
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1 2

1 2

alldiff ,

atmost ( , ),{ , },1

atmost ( , ),{c,d},1

x x

x x a b

x x

Projection of alldiff

onto x1, x2 is
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Propagating J-Consistency

Let’s propagate the 2nd atmost constraint in the projected alldiff

through the relaxed decision diagram.

a,b,d

a,b,c,d

c

d

a,b

c,d

Let the length of a 

path be number of 

arcs with labels in 

{c,d}.

For each arc, 

indicate length of 

shortest path from 

top to that arc. 
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x x

x x a b

x x
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0,0,1,1
2

1
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Propagating J-Consistency

Let’s propagate the 2nd atmost constraint in the projected alldiff

through the relaxed decision diagram.

a,b,d

a,b,c,d

c

d

a,b

c,d

Let the length of a 

path be number of 

arcs with labels in 
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For each arc, 

indicate length of 
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Propagating J-Consistency

Let’s propagate the 2nd atmost constraint in the projected alldiff
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Propagating J-Consistency

Let’s propagate the 2nd atmost constraint in the projected alldiff

through the relaxed decision diagram.
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Propagating J-Consistency

Let’s propagate the 2nd atmost constraint in the projected alldiff
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Propagating J-Consistency

Let’s propagate the 2nd atmost constraint in the projected alldiff

through the relaxed decision diagram.

a,b,d

a,b,c,d

a,b

c,d

We need only branch 

on a,b,d rather than

a,b,c,d
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Achieving J-consistency

Constraint How hard to project?

among Easy and fast.

sequence More complicated but fast.

regular Easy and basically same labor as 

domain consistency.

alldiff Quite complicated but practical for 

small domains.
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J-consistency for Among

Projection of   onto x1,…,xn1 is

where  
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J-consistency for Among

Projection of   onto x1,…,xn1 is

where  
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J-consistency for Among

Projection of   onto x1,…,xn1 is
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J-consistency for Among

Projection of   onto x1,…,xn1 is

where  
 

 





   
  

       
 

   

( 1) , 1 if 

( , ) ,min{ , 1} if 

( 1) ,min{ , 1} otherwise

n

n

t u D V

t u t u n D V

t u n

 1among ( , , ), , ,nx x V t u

 
 
 
 
 











1

2

3

4

5

,

, ,

,d

,

D a b

D a b c

D a

D c d

D d

Example

 
 

1 1among ( , , ), , ,nx x V t u

 1 2 3 4 5among ( , , , , ),{ , }, ,x x x x x c d t u

  1 2 3 4among ( , , , ),{ , },( 1) , 1x x x x c d t u

  1 2 3among ( , , ),{ , },( 2) , 2x x x c d t u

  1 2among ( , ),{ , },( 3) ,min{ 2,2}x x c d t u



65

J-consistency for Among

Projection of   onto x1,…,xn1 is

where  
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  1 2 3among ( , , ),{ , },( 2) , 2x x x c d t u

  1 2among ( , ),{ , },( 3) ,min{ 2,2}x x c d t u

  1among ( ),{ , },( 4) ,min{ 2,1}x c d t u
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J-consistency for Among

Projection of   onto x1,…,xn1 is

where  
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J-consistency for Among

Projection of   onto x1,…,xn1 is

where  
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1 1among ( , , ), , ,nx x V t u

 1 2 3 4 5among ( , , , , ),{ , }, ,x x x x x c d t u

  1 2 3 4among ( , , , ),{ , },( 1) , 1x x x x c d t u

  1 2 3among ( , , ),{ , },( 2) , 2x x x c d t u

  1 2among ( , ),{ , },( 3) ,min{ 2,2}x x c d t u

  1among ( ),{ , },( 4) ,min{ 2,1}x c d t u

  among (),{ , },( 4) ,min{ 2,0}c d t u

Feasible if and only if     ( 4) min 2,0t u
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J-Consistency for Sequence

• Projection is based on an integrality property.

– The coefficient matrix of the inequality formulation has 

consecutive ones property.

– So projection of the convex hull of the feasible set is an 

integral polyhedron.

– Polyhedral projection therefore suffices.

– Straightforward (but tedious) application of Fourier 

elimination yields the projection.
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J-Consistency for Sequence

• Projection is based on an integrality property.

– The coefficient matrix of the inequality formulation has 

consecutive ones property.

– So projection of the convex hull of the feasible set is an 

integral polyhedron.

– Polyhedral projection therefore suffices.

– Straightforward (but tedious) application of Fourier 

elimination yields the projection.

• Projection onto any subset of variables is a 

generalized sequence constraint.

– Complexity of projecting out xk is O(kq), where 

q = length of the overlapping sequences.
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J-Consistency for Sequence

Example  
3among ( , , ),{1},2,2 , 4,5,6t tx x t

To project out x6, add constraint

 3 4 5among ( , , ),{1},1,1x x x

    1 3 4 6 2 5, , , 0,1 , , 1x x x x x x
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J-Consistency for Sequence

Example  
3among ( , , ),{1},2,2 , 4,5,6t tx x t

To project out x6, add constraint

 3 4 5among ( , , ),{1},1,1x x x

To project out x5, add constraints

   2 3 4 3 4among ( , , ),{1},1,1 among ( , ),{1},0,0x x x x x

    1 3 4 6 2 5, , , 0,1 , , 1x x x x x x
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J-Consistency for Sequence

Example  
3among ( , , ),{1},2,2 , 4,5,6t tx x t

To project out x6, add constraint

 3 4 5among ( , , ),{1},1,1x x x

To project out x5, add constraints

   2 3 4 3 4among ( , , ),{1},1,1 among ( , ),{1},0,0x x x x x

To project out x4, add constraints

   
   

1 1 2 3

2 3 3

among ( ),{1},1,1 among (x , , ),{1},1,2

among ( ,x ),{1},0,1 among ( ),{1},0,0

x x x

x x

    1 3 4 6 2 5, , , 0,1 , , 1x x x x x x



74

J-Consistency for Sequence

Example  
3among ( , , ),{1},2,2 , 4,5,6t tx x t

To project out x6, add constraint

 3 4 5among ( , , ),{1},1,1x x x

To project out x5, add constraints

   2 3 4 3 4among ( , , ),{1},1,1 among ( , ),{1},0,0x x x x x

To project out x4, add constraints

   
   

1 1 2 3

2 3 3

among ( ),{1},1,1 among (x , , ),{1},1,2

among ( ,x ),{1},0,1 among ( ),{1},0,0

x x x

x x

To project out x3, fix  (x1,x2) = (1,1)

    1 3 4 6 2 5, , , 0,1 , , 1x x x x x x
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J-Consistency for Regular Constraint

• Projection can be read from state transition graph.

– Complexity of projecting onto x1, …, xk for all k is O(nm2), 

where n = number of variables, m = max number of 

states per stage.
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J-Consistency for Regular Constraint

• Projection can be read from state transition graph.

– Complexity of projecting onto x1, …, xk for all k is O(nm2), 

where n = number of variables, m = max number of 

states per stage.

• Shift scheduling example

– Assign each worker to shift xi  {a,b,c} on each day 

i = 1,…,7.

– Must work any given shift 2 or 3 days in a row.

– No direct transition between shifts a and c.

– Variable domains: D1 = D5 = {a,c},  D2 = {a,b,c}, 

D3 = D6 = D7 = {a,b},  D4 = {b,c}
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Deterministic 

finite automaton 

for this problem 

instance:

= absorbing

state

Regular language expression:

(((aa|aaa)(bb|bbb))*|((cc|ccc)(bb|bbb))*)*(c|(aa|aaa)|(cc|ccc))

J-Consistency for Regular Constraint
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J-Consistency for Regular Constraint

State transition graph for 7 stages

Dashed lines lead to unreachable states.
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J-Consistency for Regular Constraint

State transition graph for 7 stages

Dashed lines lead to unreachable states.

Filtered domains
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J-Consistency for Regular Constraint

To project onto x1, x2, x3,  truncate the graph at stage 4.
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J-Consistency for Regular Constraint

To project onto x1, x2, x3,  truncate the graph at stage 4.
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J-Consistency for Regular Constraint

To project onto x1, x2, x3,  truncate the graph at stage 4.

Resulting graph can be 

viewed as a constraint that 

describes the projection.

Constraint is easily 

propagated through a 

relaxed decision diagram.
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J-Consistency for Alldiff Constraint

• Projection is inherently complicated.

– But it can simplify for small domains.

• The result is a disjunction of constraint sets,

– …each of which contains an alldiff constraint and some 

atmost constraints.
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J-Consistency for Alldiff Constraint

Example  1 2 3 4 5alldiff , , , ,x x x x x

             1 2 3 4 5, , , , , , , , , , , , , ,D a b c D c d e D d e f D e f g D a f g



J-Consistency for Alldiff Constraint

Example  1 2 3 4 5alldiff , , , ,x x x x x

Projecting out x5, we get

   1 2 3 4 1 2 3 4alldiff , , , , atmost ( , , , ),{ , , },2x x x x x x x x a f g

because x5 must take one of the values in {a,f,g}, …
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             1 2 3 4 5, , , , , , , , , , , , , ,D a b c D c d e D d e f D e f g D a f g



J-Consistency for Alldiff Constraint

Example  1 2 3 4 5alldiff , , , ,x x x x x

Projecting out x5, we get

   1 2 3 4 1 2 3 4alldiff , , , , atmost ( , , , ),{ , , },2x x x x x x x x a f g

because x5 must take one of the values in {a,f,g}, leaving 2 for other xi s.
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             1 2 3 4 5, , , , , , , , , , , , , ,D a b c D c d e D d e f D e f g D a f g
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J-Consistency for Alldiff Constraint

Example  1 2 3 4 5alldiff , , , ,x x x x x

Projecting out x5, we get

   1 2 3 4 1 2 3 4alldiff , , , , atmost ( , , , ),{ , , },2x x x x x x x x a f g

because x5 must take one of the values in {a,f,g}, leaving 2 for other xi s.

Projecting out x4, we note that x4  {a,f,g} or x4  {a,f,g}.

             1 2 3 4 5, , , , , , , , , , , , , ,D a b c D c d e D d e f D e f g D a f g
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J-Consistency for Alldiff Constraint

Example  1 2 3 4 5alldiff , , , ,x x x x x

Projecting out x5, we get

   1 2 3 4 1 2 3 4alldiff , , , , atmost ( , , , ),{ , , },2x x x x x x x x a f g

because x5 must take one of the values in {a,f,g}, leaving 2 for other xi s.

Projecting out x4, we note that x4  {a,f,g} or x4  {a,f,g}.

If x4  {a,f,g}, we get 

   1 2 3 1 2 3alldiff , , , atmost ( , , ),{ , , },1x x x x x x a f g

             1 2 3 4 5, , , , , , , , , , , , , ,D a b c D c d e D d e f D e f g D a f g



89

J-Consistency for Alldiff Constraint

Example  1 2 3 4 5alldiff , , , ,x x x x x

Projecting out x5, we get

   1 2 3 4 1 2 3 4alldiff , , , , atmost ( , , , ),{ , , },2x x x x x x x x a f g

because x5 must take one of the values in {a,f,g}, leaving 2 for other xi s.

Projecting out x4, we note that x4  {a,f,g} or x4  {a,f,g}.

If x4  {a,f,g}, we get 

   1 2 3 1 2 3alldiff , , , atmost ( , , ),{ , , },1x x x x x x a f g

If x4  {a,f,g}, we get  x4 = e, and we remove e from other domains.  

             1 2 3 4 5, , , , , , , , , , , , , ,D a b c D c d e D d e f D e f g D a f g
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J-Consistency for Alldiff Constraint

Example  1 2 3 4 5alldiff , , , ,x x x x x

Projecting out x5, we get

   1 2 3 4 1 2 3 4alldiff , , , , atmost ( , , , ),{ , , },2x x x x x x x x a f g

because x5 must take one of the values in {a,f,g}, leaving 2 for other xi s.

Projecting out x4, we note that x4  {a,f,g} or x4  {a,f,g}.

If x4  {a,f,g}, we get 

   1 2 3 1 2 3alldiff , , , atmost ( , , ),{ , , },1x x x x x x a f g

If x4  {a,f,g}, we get  x4 = e, and we remove e from other domains.  

So the projection is

 
 

 
 
 

 
   

    
    

1

1 2 3

2

1 2 3

3

, ,
alldiff , ,

,
atmost ( , , ),{ , , },1

,

D a b c
x x x

D c d
x x x a f g

D d f

             1 2 3 4 5, , , , , , , , , , , , , ,D a b c D c d e D d e f D e f g D a f g
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J-Consistency for Alldiff Constraint

Example  1 2 3 4 5alldiff , , , ,x x x x x

Projecting out x3, we get simply

 1 2alldiff ,x x

Projecting out x2, we get the original domain for x1

 1 , ,D a b c

             1 2 3 4 5, , , , , , , , , , , , , ,D a b c D c d e D d e f D e f g D a f g
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Bounds Consistency as Projection

• Bounds consistency

– Most naturally defined when domains can be embedded 

in the real numbers.

– Then we achieve bounds consistency by projecting 

the convex hull of the feasible set onto each xj.

– Continuous J-consistency is achieved by projecting

the convex hull onto xJ.
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Bounds Consistency as Projection

• Cutting planes

– Projection onto xJ is defined by cutting planes that 

contain variables in xJ.

– Close relationship to integer programming..
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Bounds Consistency as Projection

• Usefulness of cutting planes

– They can be propagated through LP relaxation.

– This can help bound the objective function as well as 

achieve consistency.

– They can reduce backtracking

– Even when LP relaxation is not used.

– This has never been studied in integer programming!


