Projection, Consistency, and George Boole

John Hooker Carnegie Mellon University

CP 2015, Cork, Ireland

Projection as a Unifying Concept

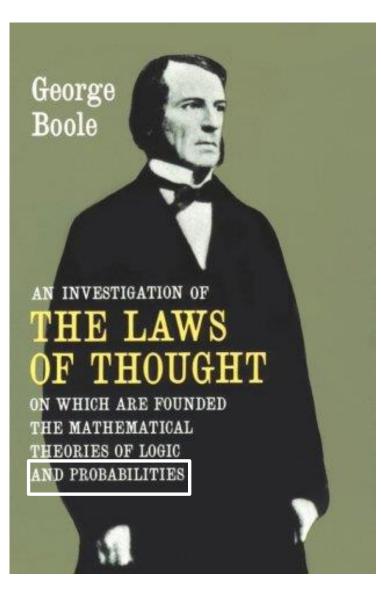
- Projection underlies both optimization and logical inference.
 - **Optimization** is **projection** onto a cost variable.
 - Logical inference is projection onto a subset of variables.
 - These 3 concepts are linked in **George Boole**'s work on probability logic.

Projection as a Unifying Concept

- Projection underlies both optimization and logical inference.
 - **Optimization** is **projection** onto a cost variable.
 - Logical inference is projection onto a subset of variables.
 - These 3 concepts are linked in **George Boole**'s work on probability logic.
- Consistency maintenance can likewise be seen as projection.
 - Leads to a simple type of consistency based explicitly on projection.

Probability Logic

- George Boole is best known for propositional logic and Boolean algebra.
 - But he proposed a highly original approach to probability logic.



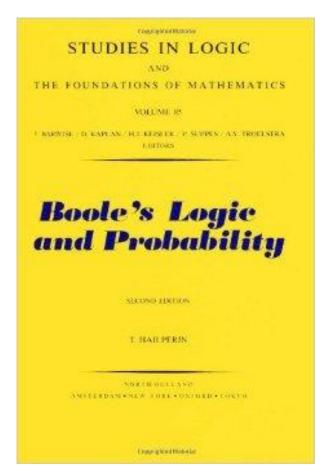
Logical Inference

- The problem:
 - Given a set S of propositions
 - Each with a given probability.
 - And a proposition P that can be deduced from S…
 - What probability can be assigned to *P*?

- In 1970s, Theodore Hailperin offered an interpretation of Boole's probability logic
 - ...based on modern concept of linear programming.

Hailperin (1976)

 LP first clearly formulated in 1930s by Kantorovich.



Example

Clause Probability x_1 0.9 if x_1 then x_2 0.8 if x_2 then x_3 0.4 Deduce probability range for x_3

Example

- Clause Probability
- 0.9 X_1
- if x_1 then x_2 0.8
- Interpret if-then statements as material conditionals if x_2 then x_3 0.4

Deduce probability range for x_3

Example

Clause Probability $\begin{array}{ccc} x_1 & 0.9 \\ \overline{x}_1 \lor x_2 & 0.8 \\ \overline{x}_2 \lor x_3 & 0.4 \end{array}$ Interpret if-then statements as material conditionals

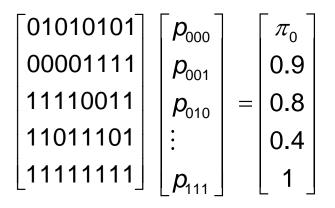
Deduce probability range for x_3

Example

Clause	Probability
<i>X</i> ₁	0.9
$\overline{X}_1 \lor X_2$	0.8
$\overline{X}_2 \lor X_3$	0.4
Deduce pro	•

Linear programming model

min/max π_0



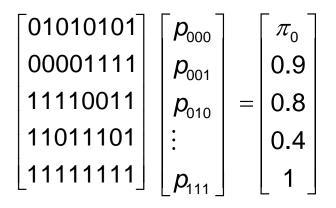
 p_{000} = probability that $(x_1, x_2, x_3) = (0, 0, 0)$

Example

Clause	Probability	
X ₁	0.9	
$\overline{X}_1 \lor X_2$	0.8	
$\overline{X}_2 \lor X_3$	0.4	
Deduce probability range for x_3		

Linear programming model

min/max π_0

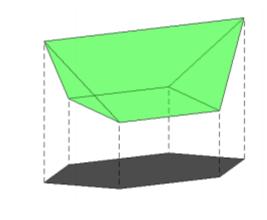


 p_{000} = probability that $(x_1, x_2, x_3) = (0, 0, 0)$

Solution: $\pi_0 \in [0.1, 0.4]$

- This LP model was re-invented in AI community.
 Nilsson (1986)
- Column generation methods are now available.
 - To deal with exponential number of variables.

- An LP can be solved by Fourier elimination
 - The only known method in Boole's day
 - This is a **projection** method.



Fourier (1827)

- Eliminate variables we want to project out.
 - To solve min/max $\{y_0 \mid y_0 = ay, Ay \ge b\}$

project out all variables y_i except y_0 .

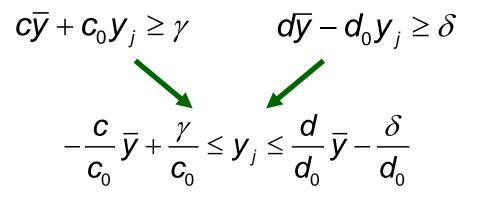
- Eliminate variables we want to project out.
 - To solve min/max $\{y_0 \mid y_0 = ay, Ay \ge b\}$

project out all variables y_j except y_0 .

$$c\overline{y} + c_0 y_j \ge \gamma$$
 $d\overline{y} - d_0 y_j \ge \delta$
where $c_0, d_0 \ge 0$

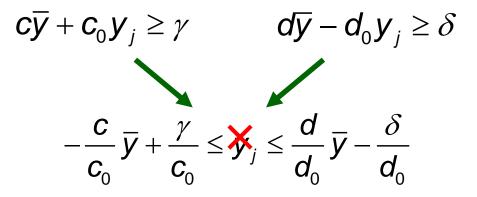
- Eliminate variables we want to project out.
 - To solve min/max $\{y_0 \mid y_0 = ay, Ay \ge b\}$

project out all variables y_j except y_0 .



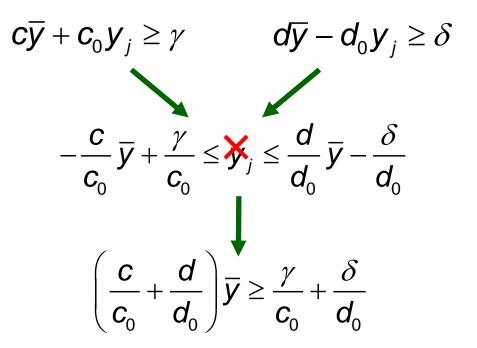
- Eliminate variables we want to project out.
 - To solve min/max $\{y_0 \mid y_0 = ay, Ay \ge b\}$

project out all variables y_j except y_0 .



- Eliminate variables we want to project out.
 - To solve min/max $\{y_0 \mid y_0 = ay, Ay \ge b\}$

project out all variables y_j except y_0 .



- Projection as a common theme:
 - **Optimization:** Project onto objective function variable
 - Logical inference: Project onto propositional variables of interest
 - Consistency maintenance: ???
- Look at logical inference next...

- Project onto propositional variables of interest
 - Suppose we wish to infer from these clauses everything we can about propositions x_1 , x_2 , x_3

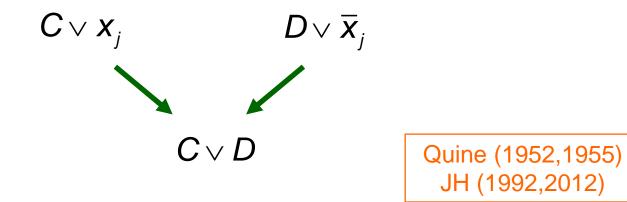
- Project onto propositional variables of interest
 - Suppose we wish to infer from these clauses everything we can about propositions x_1 , x_2 , x_3

We can deduce $X_1 \lor X_2$ $X_1 \lor X_3$

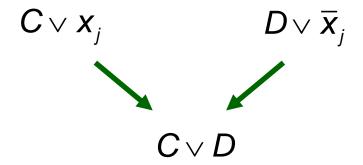
This is a projection onto x_1 , x_2 , x_3

<u> </u>			$\left(\alpha \right) \left(\alpha \right)$
x_1			$\lor x_4 \lor x_5$
x_1			$\lor x_4 \lor \bar{x}_5$
x_1			$\lor x_5 \lor x_6$
x_1			$\lor x_5 \lor \bar{x}_6$
	x_2		$\vee \bar{x}_5 \vee x_6$
	x_2		$\vee \bar{x}_5 \vee \bar{x}_6$
		x_3	$\lor \bar{x}_4 \lor x_5$
		x_3	$\vee \bar{x}_4 \vee \bar{x}_5$

- Resolution as a projection method
 - Similar to Fourier elimination
 - Actually, identical to Fourier elimination + rounding
 - To project out x_i , eliminate it from pairs of clauses:

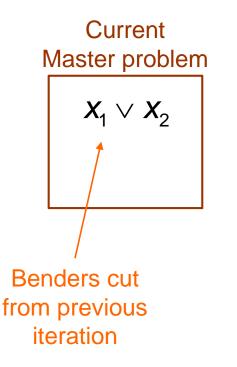


- Resolution as a projection method
 - Similar to Fourier elimination
 - Actually, identical to Fourier elimination + rounding
 - To project out x_i , eliminate it from pairs of clauses:

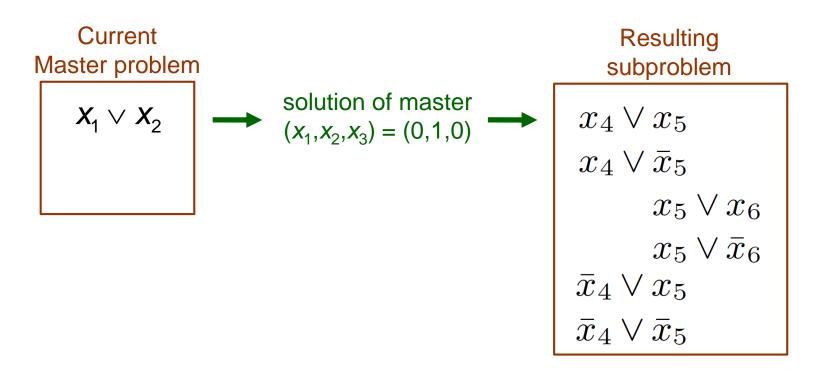


- This is **too slow**.
- Another approach is logic-based Benders decomposition...

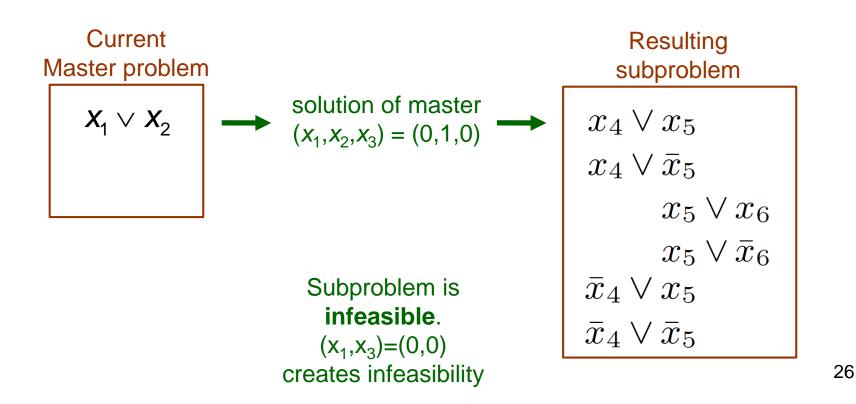
- Benders decomposition computes a projection
 - Benders cuts describe projection onto master problem variables.



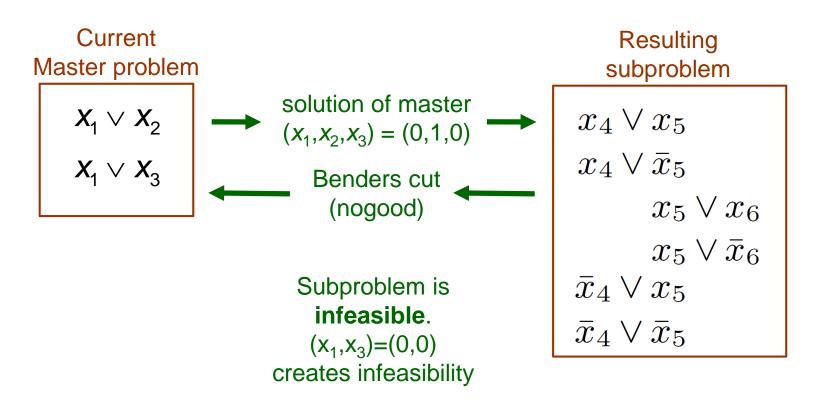
- Benders decomposition computes a projection
 - Benders cuts describe projection onto master problem variables.



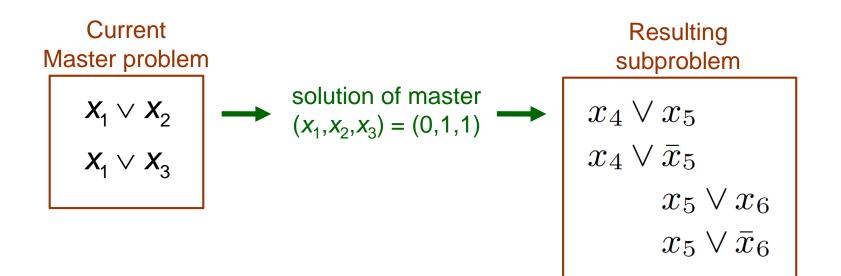
- Benders decomposition computes a projection
 - Benders cuts describe projection onto master problem variables.



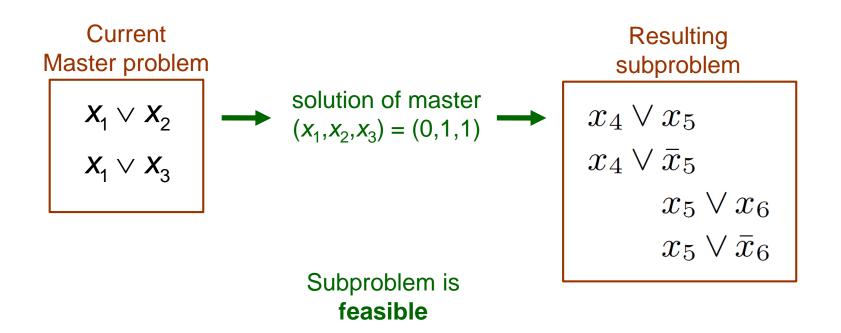
- Benders decomposition computes a projection
 - Benders cuts describe projection onto master problem variables.



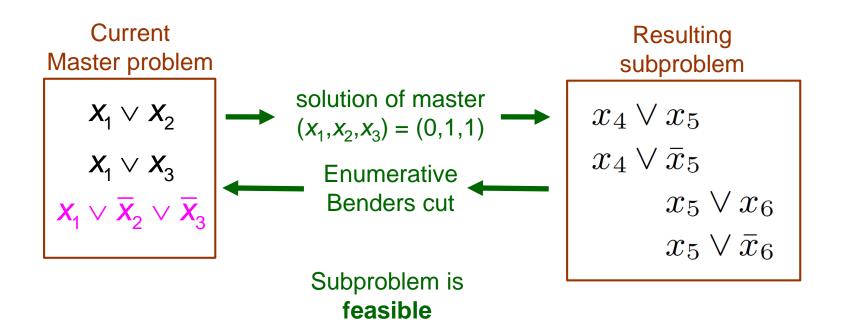
- Benders decomposition computes a projection
 - Benders cuts describe projection onto master problem variables.



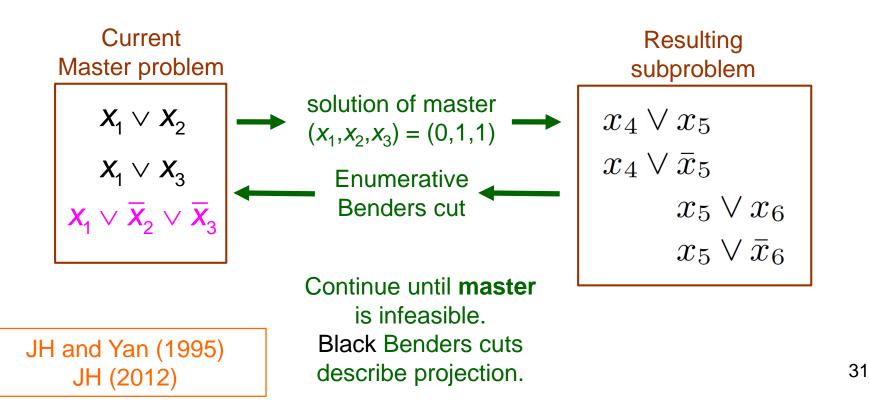
- Benders decomposition computes a projection
 - Benders cuts describe projection onto master problem variables.



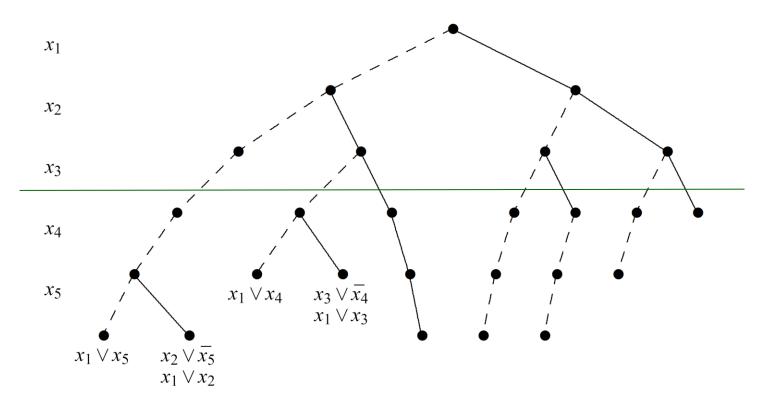
- Benders decomposition computes a projection
 - Benders cuts describe projection onto master problem variables.



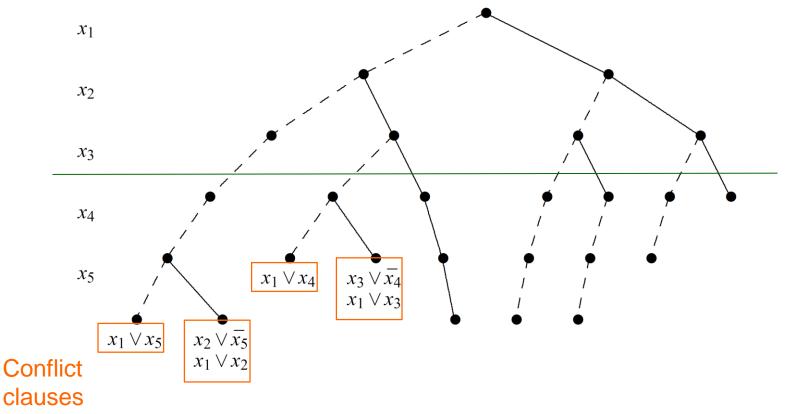
- Benders decomposition computes a projection
 - Logic-based Benders cuts describe projection onto master problem variables.



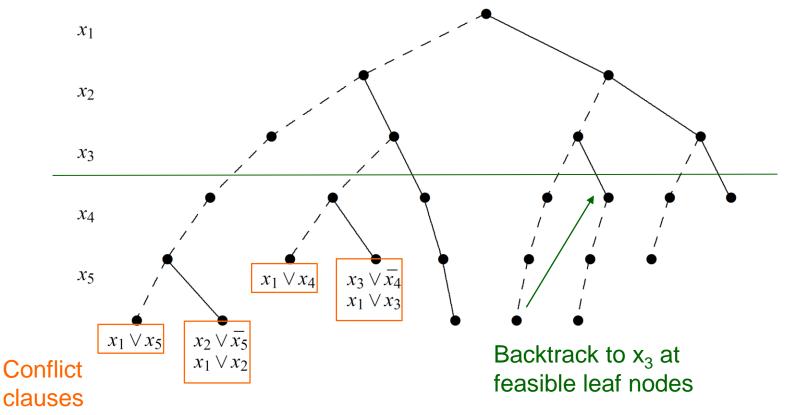
- Benders cuts = conflict clauses in a SAT algorithm
 - Branch on x_1 , x_2 first.



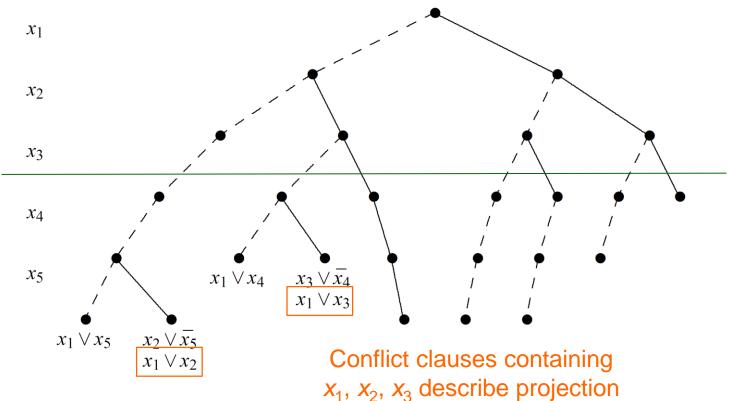
- Benders cuts = conflict clauses in a SAT algorithm
 - Branch on x_1 , x_2 first.



- Benders cuts = conflict clauses in a SAT algorithm
 - Branch on x_1 , x_2 first.



- Benders cuts = conflict clauses in a SAT algorithm
 - Branch on x_1 , x_2 first.



• Projection methods similar to Fourier elimination

- For 0-1 linear inequalities

JH (1992)

- For general integer linear inequalities

- Domain consistency
 - Project onto each individual variable x_i .

- Domain consistency
 - Project onto each individual variable x_i .

Example:

Constraint set

alldiff
$$(x_1, x_2, x_3)$$

 $x_1 \in \{a, b\}$
 $x_2 \in \{a, b\}$
 $x_3 \in \{b, c\}$

- Domain consistency
 - Project onto each individual variable x_i .

Constraint set	Solutions
alldiff (x_1, x_2, x_3)	$(\boldsymbol{x}_1, \boldsymbol{x}_2, \boldsymbol{x}_3)$
$X_1 \in \left\{ a, b \right\}$	(<i>a</i> , <i>b</i> , <i>c</i>)
$X_2 \in \left\{ a, b \right\}$	(<i>b</i> , <i>a</i> , <i>c</i>)
$m{x}_3 \in ig\{m{b},m{c}ig\}$	

- Domain consistency
 - Project onto each individual variable x_i .

Example:

Constraint set	Solutions	Projection onto x_1
alldiff (x_1, x_2, x_3)	$(\boldsymbol{x}_1, \boldsymbol{x}_2, \boldsymbol{x}_3)$	$m{x}_1 \in ig\{m{a},m{b}ig\}$
$egin{aligned} & X_1 \in ig\{ a, b ig\} \ & X_2 \in ig\{ a, b ig\} \ & X_3 \in ig\{ b, c ig\} \end{aligned}$	(<i>a,b,c</i>) (<i>b,a,c</i>)	Projection onto x_2 $x_2 \in \{a, b\}$

Projection onto x_3

$$X_3 \in \left\{ C \right\}$$

- Domain consistency
 - Project onto each individual variable x_i .

Example:

Constraint set	Solutions	Projection onto x_1
alldiff (x_1, x_2, x_3)	$(\boldsymbol{x}_1, \boldsymbol{x}_2, \boldsymbol{x}_3)$	$m{x}_1 \in ig\{m{a},m{b}ig\}$
$m{x}_1 \in ig\{m{a}, m{b}ig\}$ $m{x}_2 \in ig\{m{a}, m{b}ig\}$	(<i>a,b,c</i>) (<i>b,a,c</i>)	Projection onto x_2 $x_2 \in \{a, b\}$
$m{x}_3 \in ig\{m{b},m{c}ig\}$		

This achieves domain consistency.

Projection onto x_3

$$X_3 \in \left\{ C \right\}$$

- Domain consistency
 - Project onto each individual variable x_i .

Example:

Constraint set	Solutions	Projection onto x_1
alldiff (x_1, x_2, x_3)	$(\boldsymbol{x}_1, \boldsymbol{x}_2, \boldsymbol{x}_3)$	$m{x}_1 \in ig\{m{a},m{b}ig\}$
$m{x}_1 \in ig\{m{a}, m{b}ig\}$ $m{x}_2 \in ig\{m{a}, m{b}ig\}$	(<i>a,b,c</i>) (<i>b,a,c</i>)	Projection onto x_2 $x_2 \in \{a, b\}$
$m{x}_3 \in ig\{m{b},m{c}ig\}$		$\lambda_2 \in \langle a, b \rangle$

This achieves domain consistency.

We will regard a projection as a **constraint set**.

Projection onto x_3

$$X_3 \in \left\{ C \right\}$$

• *k*-consistency

$$\boldsymbol{x}_{J} = (\boldsymbol{x}_{j} \mid j \in J)$$

- Can be defined:
 - A constraint set S is k-consistent if:
 - for every $J \subseteq \{1, \dots, n\}$ with |J| = k 1,
 - every assignment x_J = v_J ∈ D_j for which (x_J,x_j) does not violate S,
 - and every variable $x_j \notin x_j$,

there is an assignment $x_j = v_j \in D_j$ for which $(x_J, x_j) = (v_J, v_j)$ does not violate *S*.

• *k*-consistency

$$\boldsymbol{X}_{J} = (\boldsymbol{X}_{j} \mid j \in J)$$

- Can be defined:
 - A constraint set S is k-consistent if:
 - for every $J \subseteq \{1, ..., n\}$ with |J| = k 1,
 - every assignment x_J = v_J ∈ D_j for which (x_J,x_j) does not violate S,
 - and every variable $x_j \notin x_j$,

there is an assignment $x_j = v_j \in D_j$ for which $(x_J, x_j) = (v_J, v_j)$ does not violate *S*.

- To achieve k-consistency:
 - Project the constraints containing each set of k variables onto subsets of k-1 variables.

- Consistency and backtracking:
 - Strong k-consistency for entire constraint set avoids backtracking...
 - if the primal graph has width < k with respect to branching order.

Freuder (1982)

- No point in achieving strong *k*-consistency for individual constraints if we propagate through domain store.
 - Domain consistency has same effect.

J-Consistency

- A type of consistency more directly related to projection.
 - Constraint set S is *J*-consistent if it contains the projection of S onto x_J.
 - S is domain consistent if it is { *j* }-consistent for each *j*.
 - Resolution and logic-based Benders achieve *J*-consistency for SAT.

$$\boldsymbol{x}_{J} = (\boldsymbol{x}_{j} \mid j \in J)$$

J-Consistency

- *J*-consistency and backtracking:
 - If we branch on variables $x_1, x_2, ..., a$ natural strategy is to project out $x_n, x_{n-1}, ...$
 - until computational burden is excessive.

J-Consistency

- *J*-consistency and backtracking:
 - If we branch on variables $x_1, x_2, ..., a$ natural strategy is to project out $x_n, x_{n-1}, ...$
 - until computational burden is excessive.
 - No point in achieving *J*-consistency for individual constraints if we propagate through a domain store.
 - However, J-consistency can be useful if we propagate through a richer data structure
 - ...such as decision diagrams
 - ...which can be more effective as a propagation medium.

Andersen, Hadžić JH, Tiedemann (2007) Bergman, Ciré, van Hoeve, JH (2014)

Example:

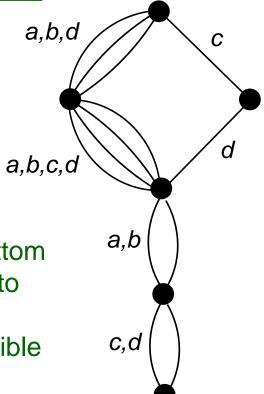
$$\operatorname{among}((x_1, x_2), \{c, d\}, 1, 2)$$
$$(x_1 = c) \Longrightarrow (x_2 = d)$$
$$\operatorname{alldiff}(x_1, x_2, x_3, x_4)$$
$$x_1, x_2 \in \{a, b, c, d\}$$
$$x_3 \in \{a, b\}$$
$$x_4 \in \{c, d\}$$

Already domain consistent for individual constraints.

If we branch on x_1 first, must consider all 4 branches $x_1 = a, b, c, d$

Example:

among $((x_1, x_2), \{c, d\}, 1, 2)$ $(x_1 = c) \Rightarrow (x_2 = d)$ alldiff (x_1, x_2, x_3, x_4) $x_1, x_2 \in \{a, b, c, d\}$ $x_3 \in \{a, b\}$ $x_4 \in \{c, d\}$ a.b Suppose we propagate through a relaxed decision diagram of width 2 for these constraints



52 paths from top to bottom represent assignments to x_1, x_2, x_3, x_4 36 of these are the feasible assignments.

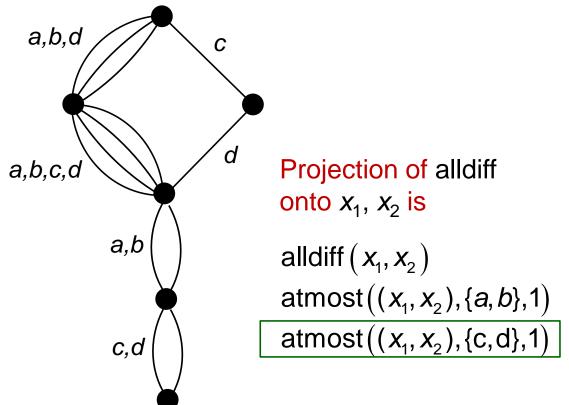
Example:

Suppose we propagate through a relaxed decision diagram of width 2 among $((x_1, x_2), \{c, d\}, 1, 2)$ for these constraints $(x_1 = c) \Longrightarrow (x_2 = d)$ alldiff (x_1, x_2, x_3, x_4) a,b,d С $X_1, X_2 \in \left\{a, b, c, d\right\}$ $X_3 \in \{a, b\}$ $X_4 \in \{c, d\}$ d a,b,c,d **Projection of alldiff** onto x_1, x_2 is a,b alldiff (x_1, x_2) 52 paths from top to bottom represent assignments to $atmost((x_1, x_2), \{a, b\}, 1)$ X_1, X_2, X_3, X_4 $atmost((x_1, x_2), \{c, d\}, 1)$ c,d 36 of these are the feasible assignments.

Let's propagate the 2nd atmost constraint in the projected alldiff through the relaxed decision diagram.

Let the length of a path be number of arcs with labels in $\{c, d\}$.

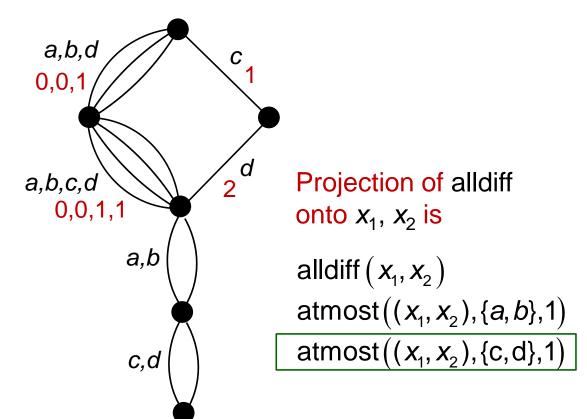
For each arc, indicate length of shortest path from top to that arc.



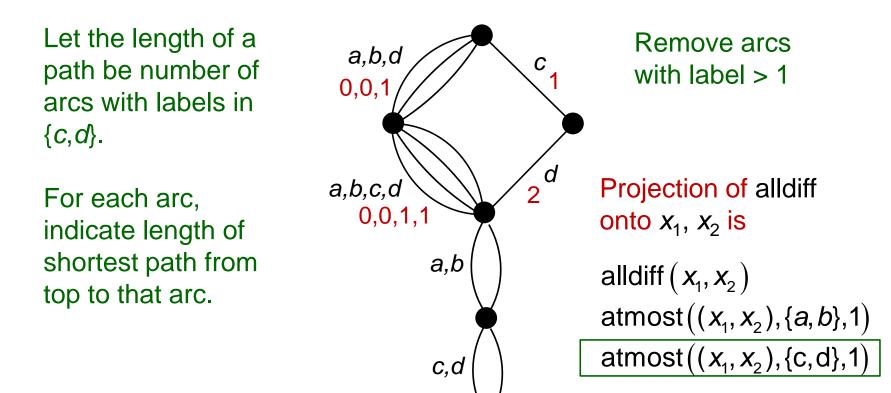
Let's propagate the 2nd atmost constraint in the projected alldiff through the relaxed decision diagram.

Let the length of a path be number of arcs with labels in $\{c, d\}$.

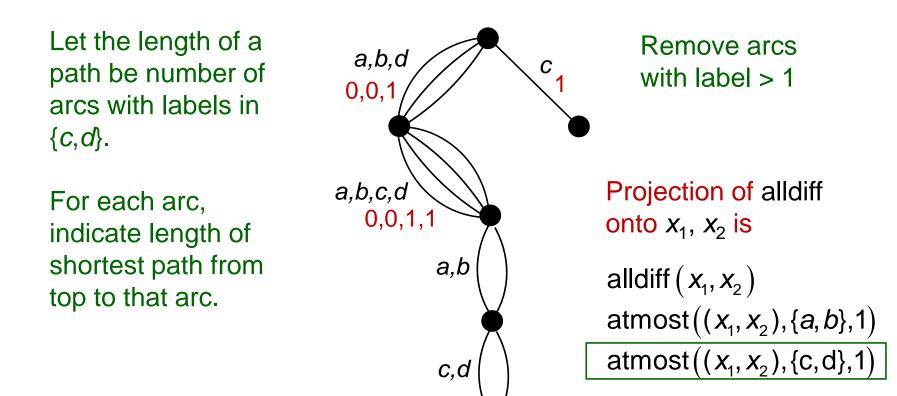
For each arc, indicate length of shortest path from top to that arc.



Let's propagate the 2nd atmost constraint in the projected alldiff through the relaxed decision diagram.



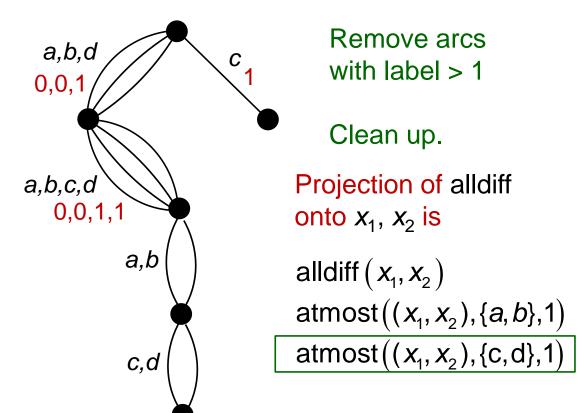
Let's propagate the 2nd atmost constraint in the projected alldiff through the relaxed decision diagram.



Let's propagate the 2nd atmost constraint in the projected alldiff through the relaxed decision diagram.

Let the length of a path be number of arcs with labels in $\{c, d\}$.

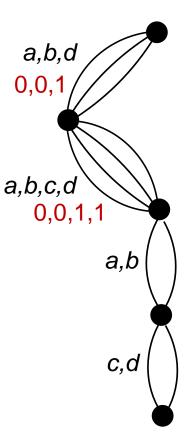
For each arc, indicate length of shortest path from top to that arc.



Let's propagate the 2nd atmost constraint in the projected alldiff through the relaxed decision diagram.

Let the length of a path be number of arcs with labels in $\{c, d\}$.

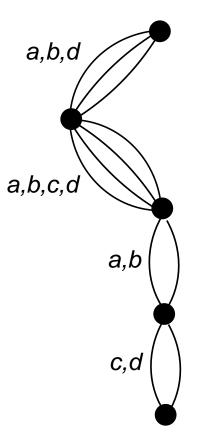
For each arc, indicate length of shortest path from top to that arc.



Remove arcs with label > 1 Clean up. Projection of alldiff onto x_1, x_2 is alldiff (x_1, x_2) atmost $((x_1, x_2), \{a, b\}, 1)$ atmost $((x_1, x_2), \{c, d\}, 1)$

Let's propagate the 2nd atmost constraint in the projected alldiff through the relaxed decision diagram.

We need only branch on *a,b,d* rather than *a,b,c,d*



Remove arcs with label > 1 Clean up. Projection of alldiff onto x_1, x_2 is alldiff (x_1, x_2) atmost $((x_1, x_2), \{a, b\}, 1)$ atmost $((x_1, x_2), \{c, d\}, 1)$

Achieving J-consistency

Constraint	How hard to project?
among	Easy and fast.
sequence	More complicated but fast.
regular	Easy and basically same labor as domain consistency.
alldiff	Quite complicated but practical for small domains.

Projection of among $((x_1,...,x_n),V,t,u)$ onto $x_1,...,x_{n-1}$ is among $((x_1,...,x_{n-1}),V,t',u')$

where

$$(t',u') = \begin{cases} ((t-1)^+, u-1) & \text{if } D_n \subseteq V \\ (t,\min\{u,n-1\}) & \text{if } D_n \cap V = \emptyset \\ ((t-1)^+,\min\{u,n-1\}) & \text{otherwise} \end{cases}$$

Projection of among $((x_1,...,x_n),V,t,u)$ onto $x_1,...,x_{n-1}$ is among $((x_1,...,x_{n-1}),V,t',u')$

where

$$(t',u') = \begin{cases} ((t-1)^+, u-1) & \text{if } D_n \subseteq V \\ (t,\min\{u,n-1\}) & \text{if } D_n \cap V = \emptyset \\ ((t-1)^+,\min\{u,n-1\}) & \text{otherwise} \end{cases}$$

among
$$((x_1, x_2, x_3, x_4, x_5), \{c, d\}, t, u)$$

$$D_{1} = \{a, b\}$$
$$D_{2} = \{a, b, c\}$$
$$D_{3} = \{a, d\}$$
$$D_{4} = \{c, d\}$$
$$D_{5} = \{d\}$$

Projection of among $((x_1,...,x_n),V,t,u)$ onto $x_1,...,x_{n-1}$ is among $((x_1,...,x_{n-1}),V,t',u')$

where

$$(t',u') = \begin{cases} ((t-1)^+, u-1) & \text{if } D_n \subseteq V \\ (t,\min\{u,n-1\}) & \text{if } D_n \cap V = \emptyset \\ ((t-1)^+,\min\{u,n-1\}) & \text{otherwise} \end{cases}$$

among
$$((x_1, x_2, x_3, x_4, x_5), \{c, d\}, t, u)$$

among $((x_1, x_2, x_3, x_4), \{c, d\}, (t-1)^+, u-1)$

$$D_1 = \{a, b\}$$

 $D_2 = \{a, b, c$
 $D_3 = \{a, d\}$
 $D_4 = \{c, d\}$
 $D_5 = \{d\}$

Projection of among $((x_1,...,x_n),V,t,u)$ onto $x_1,...,x_{n-1}$ is among $((x_1,...,x_{n-1}),V,t',u')$

where

$$(t',u') = \begin{cases} ((t-1)^+, u-1) & \text{if } D_n \subseteq V \\ (t,\min\{u,n-1\}) & \text{if } D_n \cap V = \emptyset \\ ((t-1)^+,\min\{u,n-1\}) & \text{otherwise} \end{cases}$$

$$D_{1} = \{a, b\}$$
$$D_{2} = \{a, b, c\}$$
$$D_{3} = \{a, d\}$$
$$D_{4} = \{c, d\}$$
$$D_{5} = \{d\}$$

among
$$((x_1, x_2, x_3, x_4, x_5), \{c, d\}, t, u)$$

among $((x_1, x_2, x_3, x_4), \{c, d\}, (t-1)^+, u-1)$
among $((x_1, x_2, x_3), \{c, d\}, (t-2)^+, u-2)$

Projection of among $((x_1,...,x_n),V,t,u)$ onto $x_1,...,x_{n-1}$ is among $((x_1,...,x_{n-1}),V,t',u')$

where

$$(t',u') = \begin{cases} ((t-1)^+, u-1) & \text{if } D_n \subseteq V \\ (t,\min\{u,n-1\}) & \text{if } D_n \cap V = \emptyset \\ ((t-1)^+,\min\{u,n-1\}) & \text{otherwise} \end{cases}$$

$$D_{1} = \{a, b\}$$
$$D_{2} = \{a, b, c\}$$
$$D_{3} = \{a, d\}$$
$$D_{4} = \{c, d\}$$
$$D_{5} = \{d\}$$

among
$$((x_1, x_2, x_3, x_4, x_5), \{c, d\}, t, u)$$

among $((x_1, x_2, x_3, x_4), \{c, d\}, (t-1)^+, u-1)$
among $((x_1, x_2, x_3), \{c, d\}, (t-2)^+, u-2)$
among $((x_1, x_2), \{c, d\}, (t-3)^+, \min\{u-2, 2\})$

Projection of among $((x_1,...,x_n),V,t,u)$ onto $x_1,...,x_{n-1}$ is among $((x_1,...,x_{n-1}),V,t',u')$

where

$$(t',u') = \begin{cases} ((t-1)^+, u-1) & \text{if } D_n \subseteq V \\ (t,\min\{u,n-1\}) & \text{if } D_n \cap V = \emptyset \\ ((t-1)^+,\min\{u,n-1\}) & \text{otherwise} \end{cases}$$

$$D_{1} = \{a, b\}$$
$$D_{2} = \{a, b, c\}$$
$$D_{3} = \{a, d\}$$
$$D_{4} = \{c, d\}$$
$$D_{5} = \{d\}$$

among
$$((x_1, x_2, x_3, x_4, x_5), \{c, d\}, t, u)$$

among $((x_1, x_2, x_3, x_4), \{c, d\}, (t-1)^+, u-1)$
among $((x_1, x_2, x_3), \{c, d\}, (t-2)^+, u-2)$
among $((x_1, x_2), \{c, d\}, (t-3)^+, \min\{u-2, 2\})$
among $((x_1), \{c, d\}, (t-4)^+, \min\{u-2, 1\})$

Projection of among $((x_1,...,x_n),V,t,u)$ onto $x_1,...,x_{n-1}$ is among $((x_1,...,x_{n-1}),V,t',u')$

where

$$(t',u') = \begin{cases} ((t-1)^+, u-1) & \text{if } D_n \subseteq V \\ (t,\min\{u,n-1\}) & \text{if } D_n \cap V = \emptyset \\ ((t-1)^+,\min\{u,n-1\}) & \text{otherwise} \end{cases}$$

$$D_{1} = \{a, b\}$$
$$D_{2} = \{a, b, c\}$$
$$D_{3} = \{a, d\}$$
$$D_{4} = \{c, d\}$$
$$D_{5} = \{d\}$$

among
$$((x_1, x_2, x_3, x_4, x_5), \{c, d\}, t, u)$$

among $((x_1, x_2, x_3, x_4), \{c, d\}, (t-1)^+, u-1)$
among $((x_1, x_2, x_3), \{c, d\}, (t-2)^+, u-2)$
among $((x_1, x_2), \{c, d\}, (t-3)^+, \min\{u-2, 2\})$
among $((x_1), \{c, d\}, (t-4)^+, \min\{u-2, 1\})$
among $((), \{c, d\}, (t-4)^+, \min\{u-2, 0\})$

Projection of among $((x_1,...,x_n),V,t,u)$ onto $x_1,...,x_{n-1}$ is among $((x_1,...,x_{n-1}),V,t',u')$

where

$$(t',u') = \begin{cases} ((t-1)^+, u-1) & \text{if } D_n \subseteq V \\ (t,\min\{u,n-1\}) & \text{if } D_n \cap V = \emptyset \\ ((t-1)^+,\min\{u,n-1\}) & \text{otherwise} \end{cases}$$

Example

$$D_{1} = \{a, b\}$$
$$D_{2} = \{a, b, c\}$$
$$D_{3} = \{a, d\}$$
$$D_{4} = \{c, d\}$$
$$D_{5} = \{d\}$$

among
$$((x_1, x_2, x_3, x_4, x_5), \{c, d\}, t, u)$$

among $((x_1, x_2, x_3, x_4), \{c, d\}, (t-1)^+, u-1)$
among $((x_1, x_2, x_3), \{c, d\}, (t-2)^+, u-2)$
among $((x_1, x_2), \{c, d\}, (t-3)^+, \min\{u-2, 2\})$
among $((x_1), \{c, d\}, (t-4)^+, \min\{u-2, 1\})$
among $((), \{c, d\}, (t-4)^+, \min\{u-2, 0\})$

Feasible if and only if $(t-4)^+ \le \min\{u-2,0\}$

J-Consistency for Sequence

- Projection is based on an integrality property.
 - The coefficient matrix of the inequality formulation has consecutive ones property.
 - So projection of the convex hull of the feasible set is an integral polyhedron.
 - Polyhedral projection therefore suffices.
 - Straightforward (but tedious) application of Fourier elimination yields the projection.

J-Consistency for Sequence

- Projection is based on an integrality property.
 - The coefficient matrix of the inequality formulation has consecutive ones property.
 - So projection of the convex hull of the feasible set is an integral polyhedron.
 - Polyhedral projection therefore suffices.
 - Straightforward (but tedious) application of Fourier elimination yields the projection.
- Projection onto any subset of variables is a generalized sequence constraint.
 - Complexity of projecting out x_k is O(kq), where q = length of the overlapping sequences.

Following standard convention, we assume without loss of generality that the **sequence** constraint applies to 0-1 variables x_1, \ldots, x_n [23, 46]. It enforces overlapping constraints of the form

$$\operatorname{among}((x_{\ell-q+1},\ldots,x_{\ell}),\{1\},L_{\ell},U_{\ell})$$
 (5)

Theorem 4. Given any $k \in \{0, ..., n\}$, the projection of the sequence constraint defined by (5) onto $(x_1, ..., x_k)$ is described by a generalized sequence constraint that enforces constraints of the form

$$among((x_i, \dots, x_\ell), \{1\}, L^{\ell}_{\ell-i+1}, U^{\ell}_{\ell-i+1})$$
 (6)

where $i = \ell - q + 1, \ldots, \ell$ for $\ell = q, \ldots, k$ and $i = 1, \ldots, \ell$ for $\ell = 1, \ldots, q - 1$. The projection of the sequence constraint onto (x_1, \ldots, x_{k-1}) is given by (6) with $L^{\ell}_{\ell-i+1}$ replaced by $\hat{L}^{\ell}_{\ell-i+1}$ and $U^{\ell}_{\ell-i+1}$ by $\hat{U}^{\ell}_{\ell-i+1}$, where

$$\hat{L}_{i}^{\ell} = \begin{cases} \max\{L_{i}^{\ell}, L_{i+k-\ell}^{k} - U_{k-\ell}^{k}\}, \text{ for } i = 1, \dots, q - k + \ell, \\ L_{i}^{\ell}, \text{ for } i = q - k + \ell + 1, \dots, q \end{cases}$$

$$\hat{U}_{i}^{\ell} = \begin{cases} \min\{U_{i}^{\ell}, U_{i+k-\ell}^{k} - L_{k-\ell}^{k}\}, \text{ for } i = 1, \dots, q - k + \ell, \\ U_{i}^{\ell}, \text{ for } i = q - k + \ell + 1, \dots, q \end{cases}$$
(7)

J-Consistency for Sequence

Example among
$$((x_{t-3}, ..., x_t), \{1\}, 2, 2), \quad t = 4, 5, 6$$

 $x_1, x_3, x_4, x_6 \in \{0, 1\}, \quad x_2, x_5 \in \{1\}$

To project out x_6 , add constraint among $((x_3, x_4, x_5), \{1\}, 1, 1)$

J-Consistency for Sequence

Example among
$$((x_{t-3}, ..., x_t), \{1\}, 2, 2), \quad t = 4, 5, 6$$

 $x_1, x_3, x_4, x_6 \in \{0, 1\}, \quad x_2, x_5 \in \{1\}$

To project out x_6 , add constraint among $((x_3, x_4, x_5), \{1\}, 1, 1)$

To project out x_5 , add constraints among($(x_2, x_3, x_4), \{1\}, 1, 1$) among($(x_3, x_4), \{1\}, 0, 0$)

J-Consistency for Sequence

Example among
$$((x_{t-3},...,x_t),\{1\},2,2), t = 4,5,6$$

 $x_1, x_3, x_4, x_6 \in \{0,1\}, x_2, x_5 \in \{1\}$

To project out x_6 , add constraint among $((x_3, x_4, x_5), \{1\}, 1, 1)$

To project out x_5 , add constraints among $((x_2, x_3, x_4), \{1\}, 1, 1)$ among $((x_3, x_4), \{1\}, 0, 0)$

To project out x_4 , add constraints among($(x_1), \{1\}, 1, 1$) among($(x_1, x_2, x_3), \{1\}, 1, 2$) among($(x_2, x_3), \{1\}, 0, 1$) among($(x_3), \{1\}, 0, 0$)

J-Consistency for Sequence

Example among
$$((x_{t-3},...,x_t),\{1\},2,2), t = 4,5,6$$

 $x_1, x_3, x_4, x_6 \in \{0,1\}, x_2, x_5 \in \{1\}$

To project out x_6 , add constraint among $((x_3, x_4, x_5), \{1\}, 1, 1)$

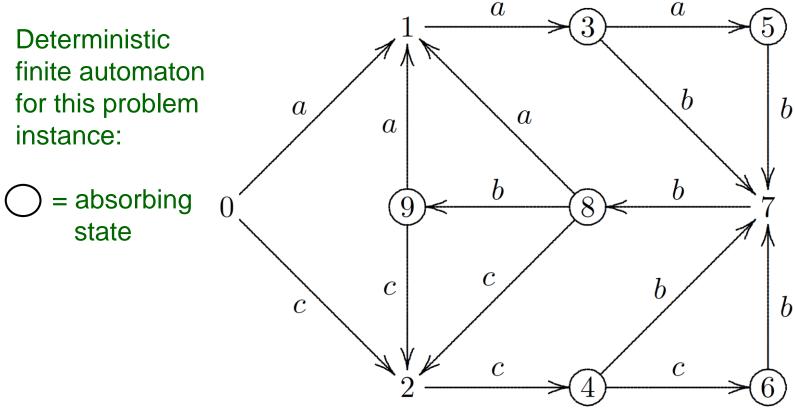
To project out x_5 , add constraints among $((x_2, x_3, x_4), \{1\}, 1, 1)$ among $((x_3, x_4), \{1\}, 0, 0)$

To project out x_4 , add constraints among($(x_1), \{1\}, 1, 1$) among($(x_1, x_2, x_3), \{1\}, 1, 2$) among($(x_2, x_3), \{1\}, 0, 1$) among($(x_3), \{1\}, 0, 0$)

To project out x_3 , fix $(x_1, x_2) = (1, 1)$

- Projection can be read from state transition graph.
 - Complexity of projecting onto $x_1, ..., x_k$ for all k is $O(nm^2)$, where n = number of variables, m = max number of states per stage.

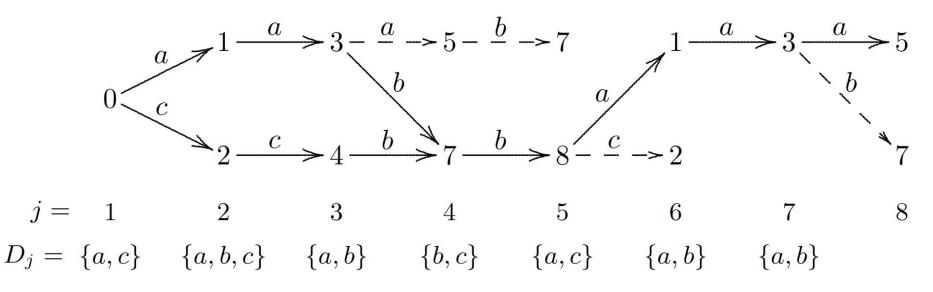
- Projection can be read from state transition graph.
 - Complexity of projecting onto $x_1, ..., x_k$ for all k is $O(nm^2)$, where n = number of variables, m = max number of states per stage.
- Shift scheduling example
 - − Assign each worker to shift $x_i \in \{a, b, c\}$ on each day i = 1,...,7.
 - Must work any given shift 2 or 3 days in a row.
 - No direct transition between shifts *a* and *c*.
 - Variable domains: $D_1 = D_5 = \{a,c\}, D_2 = \{a,b,c\}, D_3 = D_6 = D_7 = \{a,b\}, D_4 = \{b,c\}$



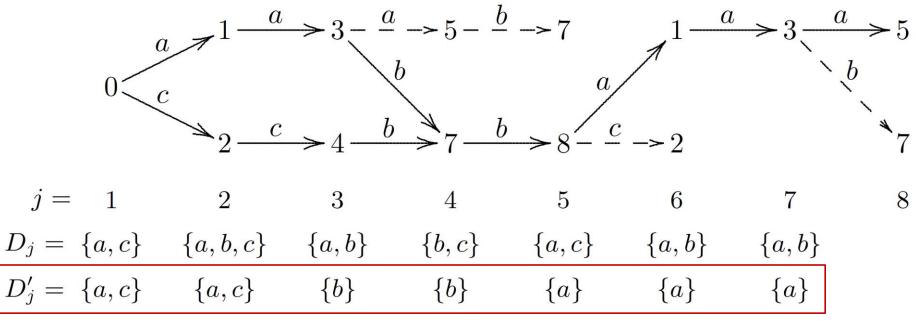
Regular language expression:

(((aa|aaa)(bb|bbb))*|((cc|ccc)(bb|bbb))*)*(c|(aa|aaa)|(cc|ccc))

State transition graph for 7 stages Dashed lines lead to unreachable states.

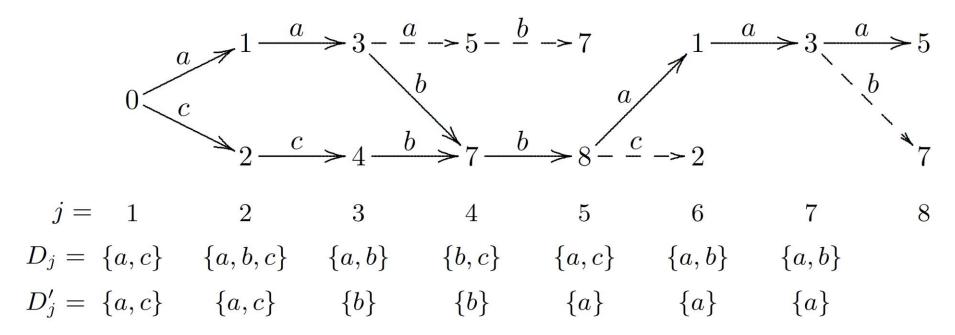


State transition graph for 7 stages Dashed lines lead to unreachable states.

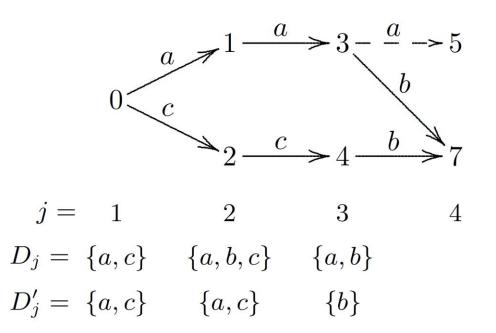


Filtered domains

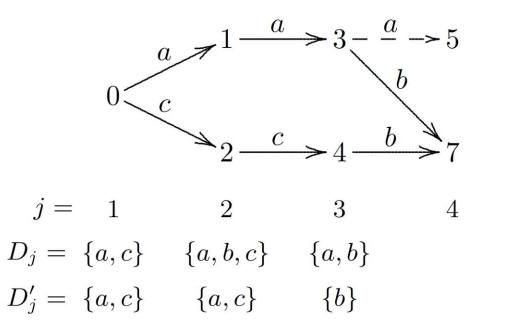
To project onto x_1 , x_2 , x_3 , truncate the graph at stage 4.



To project onto x_1 , x_2 , x_3 , truncate the graph at stage 4.



To project onto x_1 , x_2 , x_3 , truncate the graph at stage 4.



Resulting graph can be viewed as a constraint that describes the projection.

Constraint is easily propagated through a relaxed decision diagram.

- Projection is inherently complicated.
 - But it can simplify for small domains.
- The result is a **disjunction** of constraint sets,
 - ...each of which contains an alldiff constraint and some atmost constraints.

Example all diff $(x_1, x_2, x_3, x_4, x_5)$

 $D_1 = \{a, b, c\}, D_2 = \{c, d, e\}, D_3 = \{d, e, f\}, D_4 = \{e, f, g\}, D_5 = \{a, f, g\}$

Example $alldiff(x_1, x_2, x_3, x_4, x_5)$ $D_1 = \{a, b, c\}, D_2 = \{c, d, e\}, D_3 = \{d, e, f\}, D_4 = \{e, f, g\}, D_5 = \{a, f, g\}$

Projecting out x_5 , we get

alldiff (x_1, x_2, x_3, x_4) , atmost $((x_1, x_2, x_3, x_4), \{a, f, g\}, 2)$

because x_5 must take one of the values in $\{a, f, g\}, \ldots$

Example all diff $(x_1, x_2, x_3, x_4, x_5)$ $D_1 = \{a, b, c\}, D_2 = \{c, d, e\}, D_3 = \{d, e, f\}, D_4 = \{e, f, g\}, D_5 = \{a, f, g\}$

Projecting out x_5 , we get

alldiff (x_1, x_2, x_3, x_4) , atmost $((x_1, x_2, x_3, x_4), \{a, f, g\}, 2)$

because x_5 must take one of the values in $\{a, f, g\}$, leaving 2 for other x_i s.

Example all diff $(x_1, x_2, x_3, x_4, x_5)$

 $D_1 = \{a, b, c\}, D_2 = \{c, d, e\}, D_3 = \{d, e, f\}, D_4 = \{e, f, g\}, D_5 = \{a, f, g\}$

Projecting out x_5 , we get

alldiff (x_1, x_2, x_3, x_4) , atmost $((x_1, x_2, x_3, x_4), \{a, f, g\}, 2)$

because x_5 must take one of the values in $\{a, f, g\}$, leaving 2 for other x_i s.

Projecting out x_4 , we note that $x_4 \in \{a, f, g\}$ or $x_4 \notin \{a, f, g\}$.

Example all diff $(x_1, x_2, x_3, x_4, x_5)$

 $D_1 = \{a, b, c\}, D_2 = \{c, d, e\}, D_3 = \{d, e, f\}, D_4 = \{e, f, g\}, D_5 = \{a, f, g\}$

Projecting out x_5 , we get

alldiff (x_1, x_2, x_3, x_4) , atmost $((x_1, x_2, x_3, x_4), \{a, f, g\}, 2)$

because x_5 must take one of the values in $\{a, f, g\}$, leaving 2 for other x_i s.

Projecting out x_4 , we note that $x_4 \in \{a, f, g\}$ or $x_4 \notin \{a, f, g\}$. If $x_4 \in \{a, f, g\}$, we get alldiff (x_1, x_2, x_3) , atmost $((x_1, x_2, x_3), \{a, f, g\}, 1)$

Example all diff $(x_1, x_2, x_3, x_4, x_5)$

$$D_1 = \{a, b, c\}, D_2 = \{c, d, e\}, D_3 = \{d, e, f\}, D_4 = \{e, f, g\}, D_5 = \{a, f, g\}$$

Projecting out x_5 , we get

alldiff (x_1, x_2, x_3, x_4) , atmost $((x_1, x_2, x_3, x_4), \{a, f, g\}, 2)$

because x_5 must take one of the values in $\{a, f, g\}$, leaving 2 for other x_i s.

Projecting out x_4 , we note that $x_4 \in \{a, f, g\}$ or $x_4 \notin \{a, f, g\}$. If $x_4 \in \{a, f, g\}$, we get alldiff (x_1, x_2, x_3) , atmost $((x_1, x_2, x_3), \{a, f, g\}, 1)$ If $x_4 \notin \{a, f, g\}$, we get $x_4 = e$, and we remove *e* from other domains.

Example alldiff $(x_1, x_2, x_3, x_4, x_5)$

 $D_1 = \{a, b, c\}, D_2 = \{c, d, e\}, D_3 = \{d, e, f\}, D_4 = \{e, f, g\}, D_5 = \{a, f, g\}$

Projecting out x_5 , we get

alldiff (x_1, x_2, x_3, x_4) , atmost $((x_1, x_2, x_3, x_4), \{a, f, g\}, 2)$

because x_5 must take one of the values in $\{a, f, g\}$, leaving 2 for other x_i s.

Projecting out x_4 , we note that $x_4 \in \{a, f, g\}$ or $x_4 \notin \{a, f, g\}$. If $x_4 \in \{a, f, g\}$, we get alldiff (x_1, x_2, x_3) , atmost $((x_1, x_2, x_3), \{a, f, g\}, 1)$ If $x_4 \notin \{a, f, g\}$, we get $x_4 = e$, and we remove e from other domains. So the projection is $\begin{bmatrix} alldiff (x_1, x_2, x_3) \\ atmost ((x_1, x_2, x_3), \{a, f, g\}, 1) \end{bmatrix} \lor \begin{bmatrix} D_1 = \{a, b, c\} \\ D_2 = \{c, d\} \\ D_3 = \{d, f\} \end{bmatrix} 90$

Example all diff $(x_1, x_2, x_3, x_4, x_5)$

 $D_1 = \{a, b, c\}, D_2 = \{c, d, e\}, D_3 = \{d, e, f\}, D_4 = \{e, f, g\}, D_5 = \{a, f, g\}$

Projecting out x_3 , we get simply

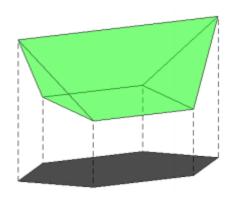
alldiff (x_1, x_2)

Projecting out x_2 , we get the original domain for x_1 $D_1 = \{a, b, c\}$ **Algorithm 2** Given a projection of $\texttt{alldiff}(x^n)$ onto x^k , this algorithm computes a projection onto x^{k-1} . The projection onto x^k is assumed to be a disjunction of constraint sets, each of which has the form (10). The above algorithm is applied to each disjunct, after which the disjunction of all created constraint sets forms the projection onto x^{k-1} .

```
For all i \in I: if \mathtt{atmost}(x^k, V_i, b_i) is redundant then remove i from I.
For all i \in I:
     If D_k \cap V_i \neq \emptyset then
           If b_i > 1 then
                 Create a constraint set consisting of \texttt{alldiff}(x^{k-1}),
                 atmost(x^{k-1}, V_{i'}, b_{i'}) for i' \in I \setminus \{i\}, and atmost(x^{k-1}, V_i, b_i - 1).
Let R = D_k \setminus \bigcup_{i \in I} V_i.
If |R| > 1 then
     Create a constraint set consisting of \texttt{alldiff}(x^{k-1}),
     atmost(x^{k-1}, V_{i'}, b_{i'}) for i' \in I, and atmost(x^{k-1}, R, |R| - 1).
Else if |R| = 1 then
     Let R = \{v\} and remove v from D_j for j = 1, ..., k - 1 and from V_i for i \in I.
     If D_j is nonempty for j = 1, \ldots, k - 1 then
           For all i' \in I: if \mathtt{atmost}(x^{k-1}, V_{i'}, b_{i'}) is redundant then remove i' from i.
           Create a constraint set consisting of \texttt{alldiff}(x^{k-1}) and
           \operatorname{atmost}(x^{k-1}, V_{i'}, b_{i'}) for i' \in I.
```

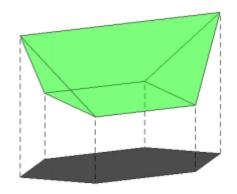
Bounds Consistency as Projection

- Bounds consistency
 - Most naturally defined when domains can be embedded in the real numbers.
 - Then we achieve bounds consistency by **projecting** the convex hull of the feasible set onto each x_{i} .
 - Continuous J-consistency is achieved by projecting the convex hull onto x_J .



Bounds Consistency as Projection

- Cutting planes
 - Projection onto x_J is defined by cutting planes that contain variables in x_J .
 - Close relationship to integer programming..



Bounds Consistency as Projection

- Usefulness of cutting planes
 - They can be propagated through LP relaxation.
 - This can help bound the objective function as well as achieve consistency.
 - They can reduce backtracking
 - Even when LP relaxation is not used.
 - This has never been studied in integer programming!

