
Benders Decomposition

John Hooker
Carnegie Mellon University

CP Summer School

Cork, Ireland, June 2016

2

• Essence of Benders decomposition

– Simple example

• Logic-based Benders

• Inference dual

• Classical LP dual

• Classical Benders

• Examples…

Outline

3

• Examples

– Logic circuit verification

– Planning and disjunctive scheduling

– Planning and cumulative scheduling

– Min cost

– Min makespan

– Min number of late tasks

– Min total tardilness

– Single-resource scheduling

– Home hospice care

• Branch and check

– Inference as projection

Outline

4

• The clever idea behind classical Benders works in a

much more general setting.

– For problems that simplify when certain variables are

fixed.

– Use classical Benders if the resulting subproblem is a

linear programming (LP) problem.*

– Same idea can be extended to any subproblem by

generalizing LP duality to inference duality.

* Generalized Benders allows a nonlinear programming subproblem

Essence of Benders Decomposition

Solve for search

variables x

Contains Benders cuts

so far generated.

Simplified problem

contains remaining

variables y

Solve inference dual

to obtain Benders cut

that excludes solutions

no better than current

one.

Fix search

variables x

Add

Benders cut

Master

problem
Subproblem

Essence of Benders Decomposition

6

• The key to generalizing Benders is

generalizing the dual.

– A solution of the inference dual is a proof of optimality

(or infeasibility).

– It proves a bound on the optimal value…

– Given the values of search variables as premises.

– It is an explanation of why the solution is optimal.

– The same proof may yield a bound for other values of the

search values.

– This is key to obtaining Benders cuts.

Essence of Benders Decomposition

7

Find cheapest

route to a

remote village

$100

$200

$200

$100

High Pass

City 1

City 2

City 3

City 4

Village

Home

By air

By bus

Simple Example

Let x = flight destination

y = bus route

Find cheapest route (x,y)

Simple Example

Solve for cheapest

flight x

…subject to Benders

cuts generated so far

Find cheapest bus route

from airport to village.

Use proof of optimality

to bound cost of other

flights x.

Fix flight x

Add

Benders cut

Master

problem
Subproblem

Let x = flight destination

y = bus route

Find cheapest route (x,y)

Begin with x = City 1 and pose the subproblem:

Find the cheapest route given that x = City 1.

Optimal cost is $100 + 80 + 150 = $330.

Let x = flight destination

y = bus route

Find cheapest route (x,y)

11

The dual problem of finding the optimal route is to prove optimality.

The proof is that the route from City 1 to the village must go through

High Pass. So

cost  airfare + bus from city to High Pass + $150

But this same argument applies to City 1, 2 or 3. This gives us the

above Benders cut.

12

Specifically the Benders cut is

























4City if100$

2,3City if150200$

1City if15080100$

)(cost 1City

x

x

x

xB

13

Now solve the master problem:

Pick the city x to minimize cost subject to

























4City if100$

2,3City if150200$

1City if15080100$

)(cost 1City

x

x

x

xB

Clearly the solution is x = City 4, with cost $100.

14

Now let x = City 4 and pose the subproblem:

Find the cheapest route given that x = City 4.

Optimal cost is $100 + 250 = $350.

$250

15

Again solve the master problem:

Pick the city x to minimize cost subject to

























4City if100$

2,3City if150200$

1City if15080100$

)(cost 1City

x

x

x

xB

The solution is x = City 1, with cost $330.

Because this is equal to the value of a previous subproblem,

we are done.







 


otherwise0$

1City if350$
)(cost 4City

x
xB

Logic-Based Benders

• Solve problem of the form

  

min

(), 1 ix

z

z B x i k


min (,)

(,)

k

k

f x y

x y S

Minimize cost z subject to

Benders cuts

Solve inference dual to

obtain proof of optimality

Use same proof to deduce

cost bounds for other

assignments, yielding

Benders cut.

Trial value xk

that solves

master

Benders cut

Master problem Subproblem

16



min (,)

(,)

f x y

x y S

Iteration k :

 ()kx
z B x

Logic-Based Benders

• In any iteration,

master value  optimal value  smallest subproblem value so far

• Continue until equality is obtained.

17

  

min

(), 1 ix

z

z B x i k


min (,)

(,)

k

k

f x y

x y S

Minimize cost z subject to

Benders cuts

Solve inference dual to

obtain proof of optimality

Use same proof to deduce

cost bounds for other

assignments, yielding

Benders cut.

Trial value xk

that solves

master

Benders cut
 ()kx

z B x

Master problem Subproblem

Logic-Based Benders

• Benders cuts describe projection of feasible set onto x

• …if all cuts are generated.

18

  

min

(), 1 ix

z

z B x i k


min (,)

(,)

k

k

f x y

x y S

Minimize cost z subject to

Benders cuts

Solve inference dual to

obtain proof of optimality

Use same proof to deduce

cost bounds for other

assignments, yielding

Benders cut.

Trial value xk

that solves

master

Benders cut
 ()kx

z B x

Master problem Subproblem

• Substantial speedup for many applications.

− Several orders of magnitude relative to state of the art.

Logic-Based Benders

19

• Substantial speedup for many applications.

− Several orders of magnitude relative to state of the art.

• Some applications:

– Circuit verification

– Chemical batch processing (BASF, etc.)

– Steel production scheduling

– Auto assembly line management (Peugeot-Citroën)

– Automated guided vehicles in flexible manufacturing

– Allocation and scheduling of multicore processors

(IBM, Toshiba, Sony)

– Resource location-allocation

– Stochastic resource location and fleet management

– Capacity and distance-constrained plant location

Logic-Based Benders

20

• Some applications…

– Transportation network design

– Traffic diversion around blocked routes

– Worker assignment in a queuing environment

– Single- and multiple-machine allocation and scheduling

– Permutation flow shop scheduling with time lags

– Resource-constrained scheduling

– Wireless local area network design

– Service restoration in a network

– Optimal control of dynamical systems

– Sports scheduling

Logic-Based Benders

21

• An optimization problem minimizes an objective

function subject to constraints.

– It is solved by searching over values of the variables.

• The inference dual finds the tightest lower bound on

the objective function that is implied by the constraints.

– It is solved by searching over proofs.

Inference Dual

Inference Dual

min ()f x

x S

max

()
P

v

x S f x v

P

  

PFind best

feasible solution

by searching

over values

of x.

Find a proof of optimal

value v* by searching

over proofs P.

Primal

problem:

optimization

Dual problem:

Inference

23

• Weak duality always holds:

Min value of primal

problem

 Max value of dual

problem

Difference = duality gap

Inference Dual

24

• Strong duality sometimes holds:

Min value of primal

problem =
Max value of dual

problem

is a complete

proof family  Strong duality
P

Inference Dual

“Complete” means that the family contains a proof for

anything that is implied by the constraint set.

25

Classical LP Dual

26





min

0

cx

Ax b

x

Primal

problem
Inference dual

 
  

 



max

0

P

v

Ax b
cx v

x

P P

Classical LP Dual

27

 
  

 0

PAx b
cx v

x
when uAx ub dominates cx v

for some u  0

Proof family : P





min

0

cx

Ax b

x

Primal

problem
Inference dual

 
  

 



max

0

P

v

Ax b
cx v

x

P P

Assuming Ax  b, x  0 is feasible.

Classical LP Dual

28

 
  

 0

PAx b
cx v

x
when uAx ub dominates cx v

for some u  0





uA c

ub v

Proof family : P





min

0

cx

Ax b

x

Primal

problem
Inference dual

 
  

 



max

0

P

v

Ax b
cx v

x

P P

Assuming Ax  b, x  0 is feasible.

Classical LP Dual

29

 
  

 0

PAx b
cx v

x
when uAx ub dominates cx v

for some u  0





uA c

ub v

Proof family : P





min

0

cx

Ax b

x

Primal

problem
Inference dual

 
  

 



max

0

P

v

Ax b
cx v

x

P P

This is a complete inference method

(due to Farkas Lemma)

Assuming Ax  b, x  0 is feasible.

Classical LP Dual





min

0

cx

Ax b

x







max

0

v

uA c

ub v

u

Primal

problem

30

 
  

 0

PAx b
cx v

x
when uAx ub dominates cx v

for some u  0





uA c

ub v

Proof family : P

 
  

 



max

0

P

v

Ax b
cx v

x

P P



This is a complete inference method

(due to Farkas Lemma)

Inference dual

Assuming Ax  b, x  0 is feasible.

Classical LP Dual





min

0

cx

Ax b

x







max

0

v

uA c

ub v

u

Primal

problem

31

 
  

 0

PAx b
cx v

x
when uAx ub dominates cx v

for some u  0





uA c

ub v

Proof family : P






max

0

ub

uA c

u

Inference dual

This is a complete inference method

(due to Farkas Lemma)

Assuming Ax  b, x  0 is feasible.

Classical LP Dual





min

0

cx

Ax b

x

Primal

problem

32

 
  

 0

PAx b
cx v

x
when uAx ub dominates cx v

for some u  0





uA c

ub v

Proof family : P





max

0

ub

uA c

u

Classical

LP dual

 A strong dual

due to Farkas Lemma

…assuming Ax  b, x  0

is feasible

This is a complete inference method

(due to Farkas Lemma)

Assuming Ax  b, x  0 is feasible.

Inference Duals

33

Problem Inference Method Inference dual

Linear programming Linear combination

+ domination

Classical LP dual

(strong)

Inequality constrained

optimization

Linear combination

+ implication

Surrogate dual

Inequality constrained

optimization

Linear combination

+ domination

Lagrangean dual

Integer programming Chvátal-Gomory

cuts

Subadditive dual

(strong)

Classical Benders

Master problem Subproblem

34



 



min

, 0

cx dy

Ax By b

x y
Iteration k :

  

min

(), 1 ix

z

z B x i k



 



min

0

k

k

cx dy

By b Ax

y

Trial value xk

Benders cut
 ()kx

z B x

• Solve problem of the form

Classical Benders

• Solve problem of the form

  

min

(), 1 ix

z

z B x i k



 



min

0

k

k

cx dy

By b Ax

y

Dual solution uk proves optimality:

Trial value xk

Benders cut

Master problem Subproblem

35



 



min

, 0

cx dy

Ax By b

x y
Iteration k :

 ()kx
z B x

 ()k k ku By u b Ax dominates  *dy v

Classical Benders

• Solve problem of the form

  

min

(), 1 ix

z

z B x i k



 



min

0

k

k

cx dy

By b Ax

y

Dual solution uk proves optimality:

Trial value xk

Benders cut

Master problem Subproblem

36



 



min

, 0

cx dy

Ax By b

x y
Iteration k :

 ()kx
z B x

 () *k ku b Ax v

 ()k k ku By u b Ax dominates  *dy v

So ku B d and

Classical Benders

• Solve problem of the form

  

min

(), 1 ix

z

z B x i k



 



min

0

k

k

cx dy

By b Ax

y

Dual solution uk proves optimality:

Trial value xk

Benders cut

Master problem Subproblem

37



 



min

, 0

cx dy

Ax By b

x y
Iteration k :

 ()kx
z B x

 () *k ku b Ax v

 ()k k ku By u b Ax dominates  *dy v

But uk remains dual feasible for any x, so by weak duality

So ku B d and

 ()ku b Ax v

Classical Benders

• Solve problem of the form

  

min

(), 1 ix

z

z B x i k



 



min

0

k

k

cx dy

By b Ax

y

Dual solution uk proves optimality:

Trial value xk

Benders cut

Master problem Subproblem

38



 



min

, 0

cx dy

Ax By b

x y
Iteration k :

 ()kx
z B x

 () *k ku b Ax v

 ()k k ku By u b Ax dominates  *dy v

But uk remains dual feasible for any x, so by weak duality

So ku B d and

    ()kcx u b Ax cx v z

 ()ku b Ax v

This implies

Classical Benders

• Solve problem of the form

    

min

(), 1 k

z

z cx u b Ax i k



 



min

0

k

k

cx dy

By b Ax

y

Dual solution uk proves optimality:

Trial value xk

Benders cut

Master problem Subproblem

39



 



min

, 0

cx dy

Ax By b

x y
Iteration k :

  ()kz cx u b Ax

 () *k ku b Ax v

 ()k k ku By u b Ax dominates  *dy v

But uk remains dual feasible for any x, so by weak duality

So ku B d and

    ()kcx u b Ax cx v z

 ()ku b Ax v

This implies

• Benders is often referred to as row generation.

– as opposed to column generation.

• Row generation is much more general.

– Applies to any optimization problem with constraints = rows

– Column generation requires columns.

• The constraint set must be linear (Ax  b, etc.)

Classical Benders

• Benders is often referred to as row generation.

– as opposed to column generation.

• Row generation is much more general.

– Applies to any optimization problem with constraints = rows

– Column generation requires columns.

• The constraint set must be linear (Ax  b, etc.)

• Benders is said to be dual to Dantzig-Wolfe

decomposition (a form of column generation)

– True for classical Benders.

– Not true for logic-based Benders.

– Logic-based Benders is much more general than D-W or

column generation

• D-W applies only to linear programming.

Classical Benders

42

Logic circuits A and B are equivalent when the following circuit is a

tautology:

A

B

x1

x2

x3





and
inputs

The circuit is a tautology if the minimum output over all 0-1 inputs is 1.

Example: Logic circuit verification

43

x1

x2

x3

inputs

and

or

and

not

not

or

or

not

not

and

y1

y3

y2

y4

y5

y6

For instance, check whether this circuit is a tautology:

The subproblem is to minimize the output when the input x is fixed

to a given value.

Minimum output is only feasible output, proved by unit

propagation.

44

Formally, the problem is 6

6 4 5

5 2 3

4 1 2

3 1 2 3

2 2 3

1 1 2

min

s.t. ()

()

()

()

()

()

y

y y y

y y y

y y y

y x x x

y x x

y x x

 

 

 

  

 

 

x1

x2

x3

and

or

and

not

not

or

or

not

not

and

y1

y3

y2

y4

y5

y6

45

min

s.t. (), 1ix

z

z B x i k  

Only one feasible solution,

trivial to compute by unit

propagation

Master problem Subproblem

Trial input xk

Benders cut
 ()kx

z B x

1 2 3

2 3

1 2

6

6 4 5

5 2 3

4 1 2

3

2

1

min

s.t. ()

()

()

()

()

()

k k k

k k

k k

y

y y y

y y y

y y y

y x x x

y x x

y x x

 

 

 

  

 

 

46

For example, let the inputs be x = (1,0,1).

To construct a Benders cut, identify some inputs xi that are

sufficient to derive an output of 1 by the same unit propagation.

This can be done by reasoning backward.

x1

x2

x3

and

or

and

not

not

or

or

not

not

and

y1

y3

y2

y4

y5

y6

1

1

1

1

1

0

0

0

1

47

x1

x2

x3

and

or

and

not

not

or

or

not

not

and

y1

y3

y2

y4

y5

y6

1

1

1

1

1

0

0

0

1

For this, it suffices that

y4 = 1 and y5 = 1.

48

x1

x2

x3

and

or

and

not

not

or

or

not

not

and

y1

y3

y2

y4

y5

y6

1

1

1

1

1

0

0

0

1

For this, it suffices that

y4 = 1 and y5 = 1.

For this, it suffices

that y2 = 0.

49

x1

x2

x3

and

or

and

not

not

or

or

not

not

and

y1

y3

y2

y4

y5

y6

1

1

1

1

1

0

0

0

1

For this, it suffices that

y4 = 1 and y5 = 1.

For this, it suffices

that y2 = 0.

For this, it suffices

that y2 = 0.

50

x1

x2

x3

and

or

and

not

not

or

or

not

not

and

y1

y3

y2

y4

y5

y6

1

1

1

1

1

0

0

0

1

For this, it suffices that

y4 = 1 and y5 = 1.

For this, it suffices

that y2 = 0.

For this, it suffices

that y2 = 0.

For this, it suffices that

x2 = 0 and x3 = 1.

So, Benders cut is 2 3z x x 

51

Now solve the master problem

2 3

min

s.t.

z

z x x 

One solution is
1 2 3(, ,) (1,0,0), 0x x x z 

This produces output 0 in the next subproblem, at which point

master and subproblem values converge.

Since minimum output is 0, circuit is not a tautology.

52

Note: This can also be solved by classical Benders. The

subproblem can be written as an LP (a Horn-SAT problem).

Now solve the master problem

2 3

min

s.t.

z

z x x 

One solution is
1 2 3(, ,) (1,0,0), 0x x x z 

This produces output 0 in the next subproblem, at which point

master and subproblem values converge.

Since minimum output is 0, circuit is not a tautology.

• Assign tasks to resources.

• Schedule tasks assign to each resource

– Subject to time windows

– No overlap (disjunctive scheduling)

• Appropriate objective

– Min assignment cost

– Min makespan

– Min number of late tasks

– Min total tardiness

53

Example: Planning & Scheduling

• Assign tasks in master, schedule in subproblem.

– Can combine mixed integer programming and constraint

programming

Assign tasks to

resources

to minimize cost.

Solve by mixed

integer programming.

Schedule tasks on each

resource, subject to time

windows.

Advantage: decouples

by resource.

Trial

assignment

Benders cut

Master

problem
Subproblem

x

54

Example: Planning & Scheduling

 ()kx
z B x

• Objective function

– Suppose cost is based on task assignment only.

– So cost appears only in the master problem.

– Scheduling subproblem is a feasibility problem.

55

cost , 1 if task assigned to resource ij ij ij

ij

c x x j i 

Example: Planning & Scheduling

• Objective function

– Suppose cost is based on task assignment only.

– So cost appears only in the master problem.

– Scheduling subproblem is a feasibility problem.

• Benders cuts

– They have the form

– where Ji is a set of tasks that create infeasibility when

assigned to resource i.
56

cost , 1 if task assigned to resource ij ij ij

ij

c x x j i 

(1) 1, all
i

ij

j J

x i


 

Example: Planning & Scheduling

• Time window relaxation

– For well-chosen time intervals [a,b],

– pij = processing time of task j on resource i

– J(a,b) = { tasks with time windows in [a,b] }

57



 
(,)

, all
ij ij

j J a b

p x b a i

Example: Planning & Scheduling

• Resulting Benders decomposition:

Schedule jobs on each

resource.

For each infeasible

resource i, find subset Ji

of tasks that create

infeasibility.

Trial

assignment

Benders cuts

Master

problem

Subproblem

x

58



min

Benders cuts

Relaxation

ij ij

ij

z

z c x

(1) 1,
i

ij

j J

x


 

Terminate when subproblem is feasible.

Example: Planning & Scheduling

• Problem: We typically don’t have access to

infeasibility proof in subproblem solver.

– So begin with simple nogood cut

where Ji contains all tasks assigned resource i.

– Then strengthen cut by heuristically removing tasks

from Ji until schedule on resource i becomes feasible.

59

(1) 1, all
i

ij

j J

x i


 

Example: Planning & Scheduling

Problem Instances

• “c” instances

– Hard for LBBD.

– Some resources much faster than others.

– Computational bottleneck on fastest resource.

• “e” instances

– Perhaps more realistic.

– Resources differ by factor of 2 in processing speed.

60

Experimental Design

• Solve with LBBD

– “Strong” Benders cuts only

– Strengthened nogood cuts.

– “Weak” cuts with subproblem relaxation in master.

– Simple nogood cuts.

– Strong” cuts with relaxation.

61

0

20

40

60

80

100

120

140

160

180

0.01 0.1 1 10 100 1000 10000

N
u

m
b

e
r

o
f

in
s

ta
n

c
e

s
 s

o
lv

e
d

Computation time (sec)

Relax + strong cuts

Relax + weak cuts

Strong cuts only

MILP (CPLEX)

Performance

profile

All 180 “c” instances

62

0

20

40

60

80

100

120

0.01 0.1 1 10 100 1000 10000

N
u

m
b

e
r

o
f

in
s
ta

n
c
e
s
 s

o
lv

e
d

Computation time (sec)

Relax + strong cuts

Relax + weak cuts

Strong cuts only

MIP (CPLEX)

Performance

profile

120 “c” instances

with 3 or 4 resources

63

0

5

10

15

20

25

30

35

40

45

50

0.01 0.1 1 10 100 1000 10000

N
u

m
b

e
r

o
f

n
s

ta
n

c
e

s
 s

o
lv

e
d

Computation time (sec)

Relax + strong cuts

Relax + weak cuts

MIP (CPLEX)

Performance

profile

50 “e” instances

64

“c” instances, 2 resources

65

Severe imbalance of

master and subproblem

time, resulting in poorer

performance for LBBD.

“c” instances, 2 resources

66

Subproblem blows up

when more than

10 tasks per resource

on average

“c” instances, 3 resources

67

Subproblem blows up

when more than

10 tasks per resource

on average

“e” instances

68

Balance between

master and subproblem

results in superior

performance

“e” instances

69

Mild imbalance results

in somewhat worse

performance

Suggested Solution Strategies

• Tighter subproblem relaxations

– Design tighter subproblem relaxations for the master

– …using subproblem variables, whose values are

discarded after master is solved

• Subproblem decomposition

– Solve subproblem with LBBD when it grows too large.

• More dual information

– Use subproblem solver that reveals proof of optimality,

perhaps resulting in stronger Benders cuts.

70

71

Cumulative Scheduling Problems

pij = processing time of task j on resource i

cij = resource consumption of task j on resource i

Ci = resources available on resource i

C1

task 1

task 2

task 3

task 4

task 5

p11

c11

Total resource consumption  Ci at all times.

C2

p22

c22

Resource 1 Resource 2

72

(,)

min

subject to 1, all

(), all , various [,]

Benders cuts

ij

i

ij ij ij i

j J b a

z

x j

p c x C b a i a b




 





Relaxation of subproblem:

“Energy” of tasks must be at

most energy available.

C1

task

1
task 4 task 5

Master Problem: Assign tasks to resources
Formulate as MILP problem

cost

Min Cost Cumulative Scheduling

a b

73

(,)

min

subject to 1, all

(), all , various [,]

Benders cuts

ij

i

ij ij ij i

j J b a

z

x j

p c x C b a i a b




 





Relaxation of subproblem:

“Energy” of tasks must be at

most energy available.

C1

task

1
task 4 task5

Benders cuts same as for disjunctive scheduling

cost

Min Cost Cumulative Scheduling

a b

74

cuts Benders

 all,
1

 all,1subject to

min

ixcp
C

M

jx

M

j

ijijij

i

i

ij









Min Makespan Cumulative Scheduling

Relaxation of subproblem:

“Energy” of tasks provides

lower bound on makespan.

Master Problem: Assign tasks to resources
Formulate as MILP problem

makespan

C1

task

1
task 4 task5

75

Assuming all deadlines di are the same, we get the Benders cut

Benders cuts are based on:

Lemma. If we remove tasks 1, … s from a resource, the

minimum makespan on that resource is reduced by at most

   





s

j

j
sj

j
sj

ij ddp
1

minmax





hiJj

ijijhi pxMM)1(*

Min makespan on

resource i in last

iteration

Min Makespan Cumulative Scheduling

76

Why does this work? Assume all deadlines are the same. Add

tasks 1,…,s sequentially at end of optimal schedule for other

tasks…

Case I: resulting schedule meets deadline

task 1 task s

Feasible

makespan for all

tasks

…

M̂ 



s

j

ijpM
1

ˆ

tasks s+1, …, m

Deadline for

all tasks

*M

Optimal

makespan for all

tasks





s

j

ij

s

j

ij pMMpMM
1

*

1

* ˆˆ d

Optimal

makespan for

tasks s+1,…,m

77

Case II: resulting schedule exceeds deadline

task 1 task s

Makespan no

longer feasible

…

M̂ 



s

j

ijpM
1

ˆ

tasks s+1, …,

m

Deadline for

all tasks

*M

Optimal

makespan for all

tasks





s

j

ij

s

j

ij pMMdpMdM
1

*

1

* ˆˆ and

d

Optimal

makespan for

tasks s+1,…,m

78

min

subject to 1, all

Benders cuts

relaxation of subproblem

{0,1}

ij

i

ij

L

x j

x







= 1 if task j is assigned to resource i

Master problem: Assign tasks to resources

Min Number of Late Tasks

79

iL

ixLLL

ixLLL

LL

hi

Jj

ijhihihi

Jj

ijhihihi

i

hi

hi

hi

 all ,0ˆ

 all),1(1ˆ

 all),1(ˆ

ˆ

1

0

**

**



















Min # late tasks on resource i

(solution of subproblem)

Lower bound on # late

tasks on resource i

Benders cuts

Min Number of Late Tasks

80

iL

ixLLL

ixLLL

LL

hi

Jj

ijhihihi

Jj

ijhihihi

i

hi

hi

hi

 all ,0ˆ

 all),1(1ˆ

 all),1(ˆ

ˆ

1

0

**

**



















Min # late tasks on resource i

(solution of subproblem)

Lower bound on # late

tasks on resource i

subset of Jhi for which min

late tasks is still Lhi*

(found by heuristic that

repeatedly solves

subproblem on resource i)

Benders cuts

Min Number of Late Tasks

81

iL

ixLLL

ixLLL

LL

hi

Jj

ijhihihi

Jj

ijhihihi

i

hi

hi

hi

 all ,0ˆ

 all),1(1ˆ

 all),1(ˆ

ˆ

1

0

**

**



















Min # late tasks on resource i

(solution of subproblem)

To reduce # late tasks,

must remove one of the

tasks in from

resource i.

0

hiJ

Benders cuts

Min Number of Late Tasks

82

iL

ixLLL

ixLLL

LL

hi

Jj

ijhihihi

Jj

ijhihihi

i

hi

hi

hi

 all ,0ˆ

 all),1(1ˆ

 all),1(ˆ

ˆ

1

0

**

**



















Min # late tasks on resource i

(solution of subproblem)

subset of Jhi for which min

late tasks is still Lhi*

(found by heuristic that

repeatedly solves

subproblem on resource i

)

Smaller subset of Jhi for which

min # late tasks is Lhi*  1

(found while running same

heuristic)

Benders cuts

Min Number of Late Tasks

83

iL

ixLLL

ixLLL

LL

hi

Jj

ijhihihi

Jj

ijhihihi

i

hi

hi

hi

 all ,0ˆ

 all),1(1ˆ

 all),1(ˆ

ˆ

1

0

**

**



















Min # late tasks on resource i

(solution of subproblem)

To reduce # late tasks by

more than 1, must remove

one of the tasks in

from resource i.

1

hiJ

Benders cuts

Min Number of Late Tasks

84

iL

ixLLL

ixLLL

LL

hi

Jj

ijhihihi

Jj

ijhihihi

i

hi

hi

hi

 all ,0ˆ

 all),1(1ˆ

 all),1(ˆ

ˆ

1

0

**

**



















These Benders cuts are added to the master problem

in each iteration h.

Benders cuts

Min Number of Late Tasks

85

j
p

dxpc
C

L

LL

ik
dJk

dJk

jikikik

i

i

i

i

j

j
 all ,

}{max

1

)(

)(















Lower bound on # late

tasks on resource i

Relaxation of subproblem

Min Number of Late Tasks

86

j
p

dxpc
C

L

LL

ik
dJk

dJk

jikikik

i

i

i

i

j

j
 all ,

}{max

1

)(

)(















Lower bound on # late

tasks on resource i

Ci

task

1
task 2 task 3

jd

Set of tasks assigned to resource i with

deadline at or before dj

Relaxation of subproblem

Min Number of Late Tasks

87

j
p

dxpc
C

L

LL

ik
dJk

dJk

jikikik

i

i

i

i

j

j
 all ,

}{max

1

)(

)(















Lower bound on # late

tasks on resource i

Ci

task

1
task 2 task 3

jd

Set of tasks assigned to resource i with

deadline at or before dj

Energy = pi1ci1

Relaxation of subproblem

Min Number of Late Tasks

88

j
p

dxpc
C

L

LL

ik
dJk

dJk

jikikik

i

i

i

i

j

j
 all ,

}{max

1

)(

)(















Lower bound on # late

tasks on resource i

Ci

task

1
task 2 task 3

jd
Energy = pi1ci1

Area of tasks assigned to resource i with

deadline at or before dj

Relaxation of subproblem

Min Number of Late Tasks

89

j
p

dxpc
C

L

LL

ik
dJk

dJk

jikikik

i

i

i

i

j

j
 all ,

}{max

1

)(

)(















Ci

task

1
task 2 task 3

jd

Lower bound on (makespan  latest deadline)

Relaxation of subproblem

Min Number of Late Tasks

90

j
p

dxpc
C

L

LL

ik
dJk

dJk

jikikik

i

i

i

i

j

j
 all ,

}{max

1

)(

)(














Ci

task

1
task 2 task 3

jd

Lower bound on (makespan  latest deadline)

Max processing time

Relaxation of subproblem

Min Number of Late Tasks

91

j
p

dxpc
C

L

LL

ik
dJk

dJk

jikikik

i

i

i

i

j

j
 all ,

}{max

1

)(

)(















Min # of late jobs on resource i

Relaxation of subproblem

Min Number of Late Tasks

92

j
p

dxpc
C

L

LL

ik
dJk

dJk

jikikik

i

i

i

i

j

j
 all ,

}{max

1

)(

)(















Min # of late jobs on resource i

Relaxation of subproblem

Min Number of Late Tasks

This relaxation is added to the master problem at the outset.

93

min

subject to 1, all

Benders cuts

relaxation I of subproblem

relaxation II of subproblem

{0,1}

ij

i

ij

L

x j

x







= 1 if task j is assigned to resource i

Master problem: assign tasks to resources

Min Tardiness Cumulative Scheduling

94

iT

ixTTT

ixTTT

TT

hi

ZJj

ijhihihi

Jj

ijhihihi

i

hi

hihi

hi

 all ,0ˆ

 all),1(ˆ

 all),1(ˆ

ˆ

\

00

**



















Min tardiness on resource i

(solution of subproblem)

Lower bound on tardiness for resource i

Benders cuts

Min Tardiness Cumulative Scheduling

95

iT

ixTTT

ixTTT

TT

hi

ZJj

ijhihihi

Jj

ijhihihi

i

hi

hihi

hi

 all ,0ˆ

 all),1(ˆ

 all),1(ˆ

ˆ

\

00

**



















Min tardiness on resource i

(solution of subproblem)

Lower bound on tardiness for resource i

To reduce tardiness on

resource i, must remove

one of the tasks

assigned to it.

Benders cuts

Min Tardiness Cumulative Scheduling

96

iT

ixTTT

ixTTT

TT

hi

ZJj

ijhihihi

Jj

ijhihihi

i

hi

hihi

hi

 all ,0ˆ

 all),1(ˆ

 all),1(ˆ

ˆ

\

00

**



















Min tardiness on resource i

(solution of subproblem)

Set of tasks that can be removed,

one at a time from resource i

without reducing min tardiness.

Benders cuts

Min Tardiness Cumulative Scheduling

97

iT

ixTTT

ixTTT

TT

hi

ZJj

ijhihihi

Jj

ijhihihi

i

hi

hihi

hi

 all ,0ˆ

 all),1(ˆ

 all),1(ˆ

ˆ

\

00

**



















Min tardiness on resource i when all tasks in Zhi

are removed simultaneously.

Set of tasks that can be removed,

one at a time from resource i

without reducing min tardiness.

Benders cuts

Min Tardiness Cumulative Scheduling

98

iT

ixTTT

ixTTT

TT

hi

ZJj

ijhihihi

Jj

ijhihihi

i

hi

hihi

hi

 all ,0ˆ

 all),1(ˆ

 all),1(ˆ

ˆ

\

00

**



















Min tardiness on resource i when all tasks in Zhi

are removed simultaneously.

Set of tasks that can be removed,

one at a time from resource i

without reducing min tardiness.

To reduce tardiness below

on resource i, must remove one of

the tasks in Jhi \ Zhi

0

hiT

Benders cuts

Min Tardiness Cumulative Scheduling

99

iT

ixTTT

ixTTT

TT

hi

ZJj

ijhihihi

Jj

ijhihihi

i

hi

hihi

hi

 all ,0ˆ

 all),1(ˆ

 all),1(ˆ

ˆ

\

00

**



















These Benders cuts are added to the master problem

in each iteration h

Min Tardiness Cumulative Scheduling

100

kdxpc
C

T

TT

kdJj

kijijij

i

i

i

i

 all ,
1

)(











Lower bound on total tardiness for resource i

Subproblem relaxation I

101

kdxpc
C

T

TT

kdJj

kijijij

i

i

i

i

 all ,
1

)(











task

1
task 2 task 3

Set of tasks assigned to resource i with

deadline at or before dk

Lower bound on total tardiness for resource i

kd

Subproblem relaxation I

102

kdxpc
C

T

TT

kdJj

kijijij

i

i

i

i

 all ,
1

)(











task

1
task 2 task 3

Area of tasks assigned to resource i with

deadline at or before dk

Lower bound on total tardiness for resource i

kd

Subproblem relaxation I

103

kdxpc
C

T

TT

kdJj

kijijij

i

i

i

i

 all ,
1

)(











task

1
task 2 task 3

Lower bound on total tardiness

kd

Lower bound on total tardiness for resource i

Subproblem relaxation I

104

Lemma. Consider a min tardiness problem that schedules tasks

1, …, n on resource i, where d1    dn. The min tardiness T* is

bounded below by





n

k

kTT
1

where

















 

k

j

kjiji

i

k dcp
C

T
ii

1

)()(

1


and  is a permutation of 1, …, n such that

)()()1()1(nn iiii
cpcp  

Subproblem relaxation II

105

Example of Lemma

j dj pij cij pijcij

1 3 2 3 6

2 4 4 2 8

3 5 5 1 5

Ci

task 1
task 2

task 3

d1 d2 d3

Min tardiness = 4

3/45)865(
3

1
)(

1

04)65(
3

1
)(

1

03)5(
3

1
)(

1

32211333

211332

1331






































































dcpcpcp
C

T

dcpcp
C

T

dcp
C

T

iiiiii

i

iiii

i

ii

i

    23/4 sson tardine boundLower 321  TTT

106

Idea of proof

Let 0(1), …, 0(n) be order of jobs in any optimal solution, so that

and min tardiness is T*)()1(00 ntt  

Consider bubble sort on 0(1), …, 0(n) to obtain 1,…,n. Let

0,…, S be resulting sequence of permutations, so that s, s+1

differ by a swap and s(j) = j.

For a permutation  of 1,…,n let 



n

k

kTT
1

)()(

where

















 

k

j

kjiji

i

k dcp
C

T
ii

1

)()()(

1
)(

107

Now we have

TTTTTT Sss  )()()()(* 10  

since  )(
11

0

1 1

)()()(

1 1

)()()(

1

)()()(

*

0000000
 Tdcp

C
dcp

C
dptT

n

j

k

j

jjiji

i

n

j

k

j

jjiji

i

n

j

jjij ii
































 



 





  



























n

kj

sjsksk

k

j

sjs

n

kj

sjsksk

k

j

sjs

TTTTT

TTTTT

2

111

1

1

1

2

1

1

1

)()()()()(

)()()()()(





swap k and k+1

So

0)()()()(

)()()()()()(11111








BAbabAAa

TTTTTT skskskskss 

since A  a, B  b

areas def. of 

108

From the lemma, we can write the relaxation





i

n

k

ikik xTT
1

where 



k

j

kjijiji

i

ik dxcp
C

T
iii

1

)()()(

1


To linearize this, we write 



i

n

k

ikTT
1

and
ikik

k

j

kjijiji

i

ik Mxdxcp
C

T
iii

)1(
1

1

)()()( 








k

j
kjiji

i
ik dcp

C
M

ii
1

)()(
1

where

Writing relaxation II

109

Computational Results

• Random problems on 2, 3, 4 resources.

• Facilities run at different speeds.

• All release times = 0.

• Min cost and makespan problems: deadlines

same/different.

• Tardiness problems: random due date parameters set so

that a few tasks tend to be late.

• No precedence or other side constraints.

• Makes problem harder.

• Implement with OPL Studio

•

110

Min makespan, 2 resources
Average of 5 instances shown

+ At least one problem in the 5 exceeded 7200 sec (2 hours)

Jobs MILP CP Benders

10 3.4 0.8 0.24

12 12 4.0 0.31

14 2572+ 299 5.0

16 5974+ 3737 36

18 7200+ 233

20 1268

111

Min makespan, 3 resources
Average of 5 instances shown

+ At least one problem in the 5 exceeded 7200 sec (2 hours)

Jobs MILP CP Benders

10 3.9 0.9 0.23

12 12 7.5 0.38

14 524 981 1.4

16 1716+ 4414 7.6

18 4619+ 7200+ 30

20 8.7

22 2012+

112

Min makespan, 4 resources

Average of 5 instances shown

+ At least one problem in the 5 exceeded 7200 sec (2 hours)

Jobs MILP CP Benders

10 1.0 0.07 0.19

12 5.0 1.9 0.43

14 24 524 0.82

16 35 3898 1.0

18 3931+ 7200+ 6.4

20 4.4

22 28

24 945

113

Min makespan, 3 resources

Different deadlines

Average of 5 instances shown

+ At least one problem in the 5 exceeded 7200 sec (2 hours)

Jobs MILP CP Benders

14 223 7.1 4.4

16 853 1620+ 5.1

18 350 1928+ 2.9

20 7200+ 7200+ 1449+

22 7200+ 388

24 7200+ 132

1

Min # late

tasks

3 resources

Smaller problems

Tasks Time (sec)

CP MILP Benders

Min # late

tasks

14 1092 5.8 0.5 1

382 8.0 0.7 1

265 3.2 0.7 2

85 2.6 1.3 2

5228 1315 665 3

16 304 2.7 0.5 0

? 31 0.2 1

310 22 0.4 1

4925 29 2.7 2

19 5.7 24 4

18 >7200 2.0 0.1 0

? 8.0 0.2 1

>7200 867 8.5 1

>7200 6.3 1.4 2

>7200 577 3.4 2

2

Tasks Time (sec)

MILP Benders

Best solution

MILP Benders

20 97 0.4 0 0

>7200 2.3 (1) 1

219 5.0 1 1

>7200 11 (2) 2

843 166 3 3

22 16 1.3 0 0

>7200 3.7 (1) 1

>7200 49 (3) 2

>7200 3453 (5) 2

>7200 >7200 (6) (6)

24 25 0.8 0 0

>7200 18 (1) 0

>7200 62 (2) 0

>7200 124 (3) 1

>7200 234 (2) 1

Min # late

tasks

3 resources

Larger problems

() =

optimality

not

proved

3

Tasks Time (sec)

with relax without relax

16 0.5 2.6

0.4 1.5

0.2 1.3

2.7 4.2

24 18

18 0.1 1.1

0.2 0.7

3.4 3.3

1.4 15

8.5 11

20 0.4 88

2.3 9.7

5.0 63

11 19

166 226

Effect of

subproblem

relaxation

3 resources

Min # late tasks

4

Min total

tardiness

3 resources

Smaller problems

Tasks Time (sec)

CP MILP Benders

Min

tardiness

14 838 7.0 6.1 1

7159 34 3.7 2

1783 45 19 15

>7200 73 40 19

>7200 >7200 3269 26

16 >7200 2 0.1 0

>7200 8 0.2 3

>7200 867 8.5 5

>7200 6 1.4 11

>7200 577 3.4 31

18 187 2.8 0

15 5.3 3

46 49 5

256 47 11

>7200 1203 14

5

Tasks Time (sec)

MILP Benders

Best solution

MILP Benders

20 105 18 0 0

4141 23 1 1

39 29 4 4

1442 332 8 8

>7200 >7200 (75) (37)

22 6 19 0 0

584 37 2 2

>7200 >7200 (120) (40)

>7200 >7200 (162) (46)

>7200 >7200 (375) (141)

24 10 324 0 0

>7200 94 (20) 0

>7200 110 (57) 0

>7200 >7200 (20) (5)

>7200 >7200 (25) (7)

Min total

tardiness

3 resources

Larger problems

() =

optimality

not

proved

6

Tasks Time (sec)

with relax without relax

16 1.4 4.4

2.1 6.5

4.2 30

156 199

765 763

18 2.8 10

5.3 17

47 120

49 354

1203 5102

20 18 151

23 1898

29 55

332 764

>7200 >7200

Effect of

subproblem

relaxation

3 resources

Min total

tardiness

Single-Resource Scheduling

• Apply logic-based Benders to single-resource

scheduling with long time horizons and many jobs.

• Decompose the problem by assigning jobs to segments

of time horizon.

– Segmented problem – Jobs cannot cross segment

boundaries (e.g., weekends).

– Unsegmented problem – Jobs can cross segment

boundaries.

Segmented problem

• Benders approach is very similar to that for the planning

and scheduling problem.

• Assign jobs to time segments rather than processors.

• Benders cuts are the same.

segment
Jobs do not overlap

segment boundaries

122

Segmented problem

Feasibility – Wide time windows (individual instances)

123

Segmented problem

Feasibility – Tight time windows (individual instances)

124

Segmented problem

Min makespan – Wide time windows (individual instances)

125

Segmented problem

Min makespan – Tight time windows (individual instances)

126

Segmented problem

Min tardiness – Wide time windows (individual instances)

127

Segmented problem

Min tardiness – Tight time windows (individual instances)

Unsegmented problem

• Master problem is more complicated.

• Jobs can overlap two or more segments.

• Master problem variables must keep track of this.

• Benders cuts more sophisticated.

segment
Jobs can overlap

segment boundaries

Unsegmented problem

• Master problem:

yijk variables keep

track of whether job

j starts, finishes, or

runs entirely in

segment i.

xijk variables keep

track of how long a

partial job j runs in

segment i.

Unsegmented problem

Feasibility -- individual instances

Unsegmented problem

Min makespan – individual instances

• Segmented problems:

• Benders is much faster for min cost and min makespan

problems.

• Benders is somewhat faster for min tardiness problem.

Single-resource scheduling

• Segmented problems:

• Benders is much faster for min cost and min makespan

problems.

• Benders is somewhat faster for min tardiness problem.

• Unsegmented problems:

• Benders and CP can work together.

• Let CP run for 1 second.

• If it fails to solve the problem, it will probably blow up. Switch

to Benders for reasonably fast solution.

Single-resource scheduling

• Assign aides to patients.

– Schedule and route patient visits for each aide

• Subject to time windows for aides and visits

• Subject to aide qualification requirements

– Weekly schedule

• Number of visits per week specified for each patient

• Must be same aide and time for each visit

Home Hospice Care

• Solve with Benders

decomposition.

– Assign aides to patients

in master problem.

• Maximize number of

patients served by a

given set of aides.

Home Hospice Care

Master Problem

Solve with MIP

Subproblem

Solve with CP

Benders

cut

Patient, day

assignments

• Solve with Benders

decomposition.

– Assign aides to patients

in master problem.

• Maximize number of

patients served by a

given set of aides.

– Schedule home visits in

subproblem.

• Cyclic weekly schedule.

• No visits on weekends.

Master Problem

Solve with MIP

Subproblem

Solve with CP

Benders

cut

Home Hospice Care

Patient, day

assignments

• Solve with Benders

decomposition.

– Assign aides to patients

in master problem.

• Maximize number of

patients served by a

given set of aides.

– Schedule home visits in

subproblem.

• Cyclic weekly schedule.

• No visits on weekends.

– Subproblem decouples

into a scheduling problem

for each aide and each day of the week.

Master Problem

Solve with MIP

Subproblem

Solve with CP

Benders

cut

Home Hospice Care

Patient, day

assignments

= 1 if patient j scheduled
= 1 if patient j

assigned to aide i

= 1 if patient j

assigned to aide i

on day k

Required number

of visits per week

Home Hospice Care

Master problem

• For a rolling schedule:

– Schedule new patients, drop departing patients from

schedule.

• Provide continuity for remaining patients as follows:

– Old patients served by same aide on same days.

• Fix yijk = 1 for the relevant aides, patients, and days.

Home Hospice Care

• For a rolling schedule:

– Schedule new patients, drop departing patients from

schedule.

• Provide continuity for remaining patients as follows:

– Old patients served by same aide on same days.

• Fix yijk = 1 for the relevant aides, patients, and days.

– Alternative: Also served at same time.

• Fix time windows to enforce their current schedule.

– Alternative: served only by same aide.

• Fix xij = 1 for the relevant aides, patients.

Home Hospice Care

• Use strengthened nogood cuts

– Find a smaller set of patients that create infeasibility…

• …by re-solving the each infeasible scheduling problem

repeatedly.

Reduced set of patients whose

assignment to aide i on day k

creates infeasibility

Benders cuts

Home Hospice Care

Home Hospice Care

• Auxiliary cuts based on symmetries.

– A cut for valid for aide i, day k is also valid for aide i on

other days.

• This gives rise to a large number of cuts.

– The auxiliary cuts can be summed without sacrificing optimality.

• Original cut ensures convergence to optimum.

• This yields 2 cuts per aide:

• Include relaxation of subproblem in the master problem.

– Necessary for good performance.

– Use time window relaxation for each scheduling problem.

– Simplest relaxation for aide i and day k:

Set of patients whose time window

fits in interval [a, b].

Can use several intervals.

Subproblem relaxation

Home Hospice Care

• This relaxation is very weak.

– Doesn’t take into account travel times.

• Improved relaxation.

– Basic idea: Augment visit duration pj with travel time

to (or from) location j from closest patient or aide home base.

– This is weak unless most assignments are fixed.

• As in rolling schedule.

– We partition day into 2 intervals.

• Morning and afternoon.

• Simplifies handling of aide time windows and home bases.

• All patient time windows are in morning or afternoon.

Home Hospice Care

Time window relaxation for aide i, day k

using intervals [a,b], [b,c]

and where Qik = {patients unassigned or assigned to aide i, day k}

Home Hospice Care

• Instance generation

– Start with (suboptimal) solution for the 60 patients

• Fix this schedule for first n patients.

• Schedule remaining 60  n patients

– Use 8 of the 18 aides to cover new patients

• As well as the old patients they already cover.

• This puts us near the phase transition.

Home Hospice Care

Home Hospice Care

Home Hospice Care

Home Hospice Care

150

Branch and check

• Generate Benders cuts at certain nodes of a

branching tree

– Variables fixed so far are search variables.

– Unfixed variables go into subproblem.

• Not the same as branch and cut.

– In branch and cut, the cuts contain unfixed variables.

– In branch and check, the cuts contain fixed variables.

• When to use?

– When master problem is the bottleneck.

– Master is solved only once, with growing constraint set.

151

Inference as Projection

• Project onto propositional variables of interest

– Suppose we wish to infer from these clauses

everything we can about propositions x1, x2, x3

152

Inference as Projection

• Project onto propositional variables of interest

– Suppose we wish to infer from these clauses

everything we can about propositions x1, x2, x3

We can deduce





1 2

1 3

x x

x x

This is a projection

onto x1, x2, x3

153

Inference as Projection

• Benders decomposition computes a projection

– Benders cuts describe projection onto master problem

variables.

1 2x x

Current

Master problem

Benders cut

from

previous

iteration

154

Inference as Projection

• Benders decomposition computes a projection

– Benders cuts describe projection onto master problem

variables.

1 2x x solution of master

(x1,x2,x3) = (0,1,0)

Current

Master problem
Resulting

subproblem

155

Inference as Projection

• Benders decomposition computes a projection

– Benders cuts describe projection onto master problem

variables.

1 2x x solution of master

(x1,x2,x3) = (0,1,0)

Current

Master problem
Resulting

subproblem

Subproblem is

infeasible.

(x1,x3)=(0,0)

creates infeasibility

156

Inference as Projection

• Benders decomposition computes a projection

– Benders cuts describe projection onto master problem

variables.

1 2x x solution of master

(x1,x2,x3) = (0,1,0)

Current

Master problem

Subproblem is

infeasible.

(x1,x3)=(0,0)

creates infeasibility

Benders cut

(nogood)

1 3x x

Resulting

subproblem

157

Inference as Projection

• Benders decomposition computes a projection

– Benders cuts describe projection onto master problem

variables.

1 2x x solution of master

(x1,x2,x3) = (0,1,1)

Current

Master problem
Resulting

subproblem

1 3x x

158

Inference as Projection

• Benders decomposition computes a projection

– Benders cuts describe projection onto master problem

variables.

1 2x x solution of master

(x1,x2,x3) = (0,1,1)

Current

Master problem
Resulting

subproblem

1 3x x

Subproblem is

feasible

159

Inference as Projection

• Benders decomposition computes a projection

– Benders cuts describe projection onto master problem

variables.

1 2x x solution of master

(x1,x2,x3) = (0,1,1)

Current

Master problem
Resulting

subproblem

Enumerative

Benders cut

1 3x x

Subproblem is

feasible

 1 2 3x x x

160

Inference as Projection

• Benders decomposition computes a projection

– Logic-based Benders cuts describe projection onto master

problem variables.

1 2x x solution of master

(x1,x2,x3) = (0,1,1)

Current

Master problem
Resulting

subproblem

Enumerative

Benders cut

1 3x x

Continue until

master is

infeasible.

Black Benders cuts

describe projection.

 1 2 3x x x

JH and Yan (1995)

JH (2012)

161

Inference as Projection

• Benders cuts = conflict clauses in a SAT algorithm

– Branch on x1, x2, x3 first.

162

Inference as Projection

• Benders cuts = conflict clauses in a SAT algorithm

– Branch on x1, x2, x3 first.

Conflict

clauses

163

Inference as Projection

• Benders cuts = conflict clauses in a SAT algorithm

– Branch on x1, x2, x3 first.

Conflict

clauses

Backtrack to x3 at

feasible leaf nodes

164

Inference as Projection

• Benders cuts = conflict clauses in a SAT algorithm

– Branch on x1, x2, x3 first.

Conflict clauses

containing x1, x2, x3

describe projection

1

Benders decomposition [7] was introduced in 1962 to solve applications that become linear program-
ming (LP) problems when certain search variables are fixed. “Generalized” Benders decomposition, pro-
posed by Geoffrion in 1972 [25], extended the method to nonlinear programming subproblems.

Logic-based Benders decomposition (LBBD) allows the subproblem to be any optimization problem.
LBBD was introduced in [32], formally developed in 2000 [33], and tested computationally in [39]. Branch
and check is introduced in [33] and tested computationally in [69]. Combinatorial Benders cuts for mixed
integer programming are proposed in [18].

One of the first applications [43] was a planning and scheduling problem. Updated experiments [17]
show that LBBD is orders of magnitude faster than state-of-the-art MIP, with the advantage over CP even
greater). Similar results have been obtained for various planning and scheduling problems [15, 21, 30, 34,
35, 37, 71].

Other successful applications of LBBD include steel production scheduling [29], inventory management
[74], concrete delivery [44], shop scheduling [3, 13, 27, 28, 59], hospital scheduling [57], batch scheduling
in chemical plants [49, 70], computer processor scheduling [8, 9, 12, 22, 31, 46, 47, 48, 58, 62], logic
circuit verification [40], shift scheduling [5, 60], lock scheduling [73], facility location [23, 66], space
packing [20, 50], vehicle routing [19, 51, 53, 56, 61, 75], bicycle sharing [45], network design [24, 52, 63,
65], home health care [16], service restoration [26], supply chain management [68], food distribution [64],
queuing design and control [67], optimal control of dynamical systems [11], propositional satisfiability [1],
quadratic programming [2, 41, 42], chordal completion [10], and sports scheduling [14, 54, 55, 72]. LBBD
is compared with branch and check in [6]. It is implemented in the general-purpose solver SIMPL [76].

References

[1] F. Bacchus, S. Dalmao, and T. Pitassi. Relaxation search: A simple way of managing optional clauses.
In AAAI Conference on Artificial Intelligence. 2014.

[2] L. Bai, J. E. Mitchell, and J.-S. Pang. On convex quadratic programs with linear complementarity
constraints. Computational Optimization and Applications, 54:517–554, 2012.

[3] M. A. Bajestani and J. C. Beck. Scheduling a dynamic aircraft repair shop with limited repair resources.
Journal of Artificial Intelligence Research, 47:35–70, 2013.

[4] P. Baptiste, C. Le Pape, and W. Nuijten. Constraint-Based Scheduling: Applying Constraint Program-
ming to Scheduling Problems. Kluwer, Dordrecht, 2001.

[5] A. Y. Barlatt, A. M. Cohn, and O. Gusikhin. A hybridization of mathematical programming and
dominance-driven enumeration for solving shift-selection and task-sequencing problems. Computers
and Operations Research, 37:1298–1307, 2010.

[6] J. C. Beck. Checking up on branch-and-check. In D. Cohen, editor, Principle and Practice of Con-
straint Programming (CP), volume 6308 of Lecture Notes in Computer Science, pages 84–98, 2010.

[7] J. F. Benders. Partitioning procedures for solving mixed-variables programming problems. Numerische
Mathematik, 4:238–252, 1962.

[8] L. Benini, D. Bertozzi, A. Guerri, and M. Milano. Allocation and scheduling for MPSoCs via decom-
position and no-good generation. In Principles and Practice of Constraint Programming (CP 2005),
volume 3709 of Lecture Notes in Computer Science, pages 107–121. Springer, 2005.

2

[9] L. Benini, M. Lombardi, M. Mantovani, M. Milano, and M. Ruggiero. Multi-stage Benders decom-
position for optimizing multicore architectures. In L. Perron and M. A. Trick, editors, CPAIOR 2008
Proceedings, volume 5015 of Lecture Notes in Computer Science, pages 36–50. Springer, 2008.

[10] D. Bergman and A. U. Raghunathan. A Benders approach to the minimum chordal completion prob-
lem. In L. Michel, editor, CPAIOR Proceedings, volume 9075 of Lecture Notes in Computer Science,
pages 47–64. Springer, 2015.

[11] A. H. Borzabadi and M. E. Sadjadi. Optimal control of hybrid systems by logic-based Benders decom-
position. In A. Giua, C. Mahulea, M. Silva, and J. Zaytoon, editors, Analysis and Design of Hybrid
Systems, volume 3, pages 104–107, 2009.

[12] H. Cambazard, P.-E. Hladik, A.-M. Déplanche, N. Jussien, and Y. Trinquet. Decomposition and learn-
ing for a hard real time task allocation problem. In M. Wallace, editor, Principles and Practice of
Constraint Programming (CP 2004), volume 3258 of Lecture Notes in Computer Science, pages 153–
167. Springer, 2004.

[13] E. Çoban and J. N. Hooker. Single-facility scheduling by logic-based Benders decomposition. Annals
of Operations Research, 210:245–272, 2013.

[14] K. K. H. Cheung. A Benders approach for computing lower bounds for the mirrored traveling tourna-
ment problem. Discrete Optimization, 6:189–196, 2009.

[15] Y. Chu and Q. Xia. A hybrid algorithm for a class of resource-constrained scheduling problems.
In R. Barták and M. Milano, editors, CPAIOR 2005 Proceedings, volume 3524 of Lecture Notes in
Computer Science, pages 110–124. Springer, 2005.

[16] A. Ciré and J. N. Hooker. A heuristic logic-based Benders method for the home health care problem.
Presented at Matheuristics 2012, Angra dos Reis, Brazil, 2012.

[17] A. A. Ciré, E. Çoban, and J. N. Hooker. Mixed integer programming vs logic-based Benders decompo-
sition for planning and scheduling. In C. Gomes and M. Sellmann, editors, CPAIOR 2013 Proceedings,
pages 325–331, 2013.

[18] G. Codato and M. Fischetti. Combinatorial Benders cuts for mixed-integer linear programming. Op-
erations Research, 54:756–766, 2006.

[19] A. I. Corréa, A. Langevin, and L. M. Rousseau. Dispatching and conflict-free routing of automated
guided vehicles: A hybrid approach combining constraint programming and mixed integer program-
ming. In J. C. Régin and M. Rueher, editors, CPAIOR 2004 Proceedings, volume 3011 of Lecture
Notes in Computer Science, pages 370–378. Springer, 2004.

[20] J.-F. Côté, M. Dell’Amico, and M. Iori. Combinatorial Benders cuts for the strip packing problem.
Operations Research, 62:643–661, 2014.

[21] T. O. Davies, A. R. Pearce, P. J. Stuckey, and N. Lipovetzky. Sequencing operator counts. In Interna-
tional Conference on Automated Planning and Scheduling (ICAPS), pages 61–69, 2015.

[22] A. Emeretlis, G. Theodoridis, P. Alefragis, and N. Voros. Mapping DAGs on heterogeneous platforms
using logic-based Benders decompostion. In IEEE Computer Society Annual Symposium on VLSI
(ISVLSI), pages 119–124. IEEE, 2015.

3

[23] M. M. Fazel-Zarandi and J. C. Beck. Solving a location-allocation problem with logic-based Benders
decomposition. In I. P. Gent, editor, Principles and Practice of Constraint Programming (CP 2009),
volume 5732 of Lecture Notes in Computer Science, pages 344–351, New York, 2009. Springer.

[24] B. Gendron, R. G. Garroppo, G. Nencioni, M. G. Scutellà, and L. Tavanti. Benders decomposition
for a location-design problem in green wireless local area networks. Electronic Notes in Discrete
Mathematics, 41:367–374, 2013.

[25] A. M. Geoffrion. Generalized Benders decomposition. Journal of Optimization Theory and Applica-
tions, 10:237–260, 1972.

[26] J. Gong, E. E. Lee, J. E. Mitchell, and W. A. Wallace. Logic-based multiobjective optimization for
restoration planning. In W. Chaovalitwongse, K. C. Furman, and P. M. Pardalos, editors, Optimization
and Logistics Challenges in the Enterprise, pages 305–324. 2009.

[27] O. Guyon, P. Lemaire, E. Pinson, and D. Rivreau. Solving an integrated job-shop problem with human
resource constraints. Annals of Operations Research, 213:147–171, 2014.

[28] I. Hamdi and T. Loukil. Logic-based Benders decomposition to solve the permutation flowshop
scheduling problem with time lags. In International Conference on Modeling, Simulation and Ap-
plied Optimization (ICMSAO), pages 1–7. IEEE, 2013.

[29] I. Harjunkoski and I. E. Grossmann. A decomposition approach for the scheduling of a steel plant
production. Computers and Chemical Engineering, 25:1647–1660, 2001.

[30] I. Harjunkoski and I. E. Grossmann. Decomposition techniques for multistage scheduling problems
using mixed-integer and constraint programming methods. Computers and Chemical Engineering,
26:1533–1552, 2002.

[31] P.-E. Hladik, H. Cambazard, A.-M. Déplanche, and N. Jussien. Solving a real-time allocation problem
with constraint programming. Journal of Systems and Software, 81:132––149, 2008.

[32] J. N. Hooker. Logic-based Benders decomposition. In INFORMS National Meeting (INFORMS 1995),
1995.

[33] J. N. Hooker. Logic-Based Methods for Optimization: Combining Optimization and Constraint Satis-
faction. Wiley, New York, 2000.

[34] J. N. Hooker. A hybrid method for planning and scheduling. Constraints, 10:385–401, 2005.

[35] J. N. Hooker. An integrated method for planning and scheduling to minimize tardiness. Constraints,
11:139–157, 2006.

[36] J. N. Hooker. Integrated Methods for Optimization. Springer, 2007.

[37] J. N. Hooker. Planning and scheduling by logic-based Benders decomposition. Operations Research,
55:588–602, 2007.

[38] J. N. Hooker. Integrated Methods for Optimization, 2nd ed. Springer, 2012.

4

[39] J. N. Hooker and G. Ottosson. Logic-based Benders decomposition. Mathematical Programming,
96:33–60, 2003.

[40] J. N. Hooker and H. Yan. Logic circuit verification by Benders decomposition. In V. Saraswat and
P. Van Hentenryck, editors, Principles and Practice of Constraint Programming: The Newport Papers,
pages 267–288, Cambridge, MA, 1995. MIT Press.

[41] J. Hu, J. E. Mitchell, and J.-S. Pang. An LPCC approach to nonconvex quadratic programs. Mathe-
matical Programming, 133:243–277, 2012.

[42] J. Hu, J. E. Mitchell, J.-S. Pang, K. P. Bennett, and G. Kunapuli. On the global solution of linear
programs with linear complementarity constraints. SIAM Journal on Optimization, 19:445–471, 2008.

[43] V. Jain and I. E. Grossmann. Algorithms for hybrid MILP/CP models for a class of optimization
problems. INFORMS Journal on Computing, 13:258–276, 2001.

[44] J. Kinable and M. Trick. A logic-based Benders approach to the concrete delivery problem. In H. Simo-
nis, editor, CPAIOR Proceedings, volume 8451 of Lecture Notes in Computer Science, pages 176–192.
Springer, 2014.

[45] C. Kloimüllner, P. Papazek, B. Hu, and G. R. Raidl. A cluster-first route-second approach for bal-
ancing bicycle sharing systems. In International Conference on Computer Aided Systems Theory
(EUROCAST), volume 9520 of Lecture Notes in Computer Science, pages 439–446. Springer, 2015.

[46] W. Liu, Z. Gu, J. Xu, X. Wu, and Y. Ye. Satisfiability modulo graph theory for task mapping
and scheduling on multiprocessor systems. IEEE Transactions on Parallel and Distributed Systems,
22:1382–1389, 2011.

[47] W. Liu, M. Yuan, X. He, Z. Gu, and X. Liu. Efficient SAT-based mapping and scheduling of homo-
geneous synchronous dataflow graphs for throughput optimization. In Real-Time Systems Symposium,
pages 492–504. IEEE, 2008.

[48] M. Lombardi, M. Milano, M. Ruggiero, and L. Benini. Stochastic allocation and scheduling for con-
ditional task graphs in multi-processor systems-on-chip. Journal of Scheduling, 13:315–345, 2010.

[49] C. T. Maravelias and I. E. Grossmann. Using MILP and CP for the scheduling of batch chemical
processes. In J. C. Régin and M. Rueher, editors, CPAIOR 2004 Proceedings, volume 3011 of Lecture
Notes in Computer Science, pages 1–20. Springer, 2004.

[50] J. Maschler and G. Raidl. Logic-based Benders decomposition for the 3-staged strip packing problem.
In International Conference on Operations Research (German OR Society), 2015.

[51] T. Nishi, Y. Hiranaka, and I. E. Grossmann. A bilevel decomposition algorithm for simultaneous pro-
duction scheduling and conflict-free routing for automated guided vehicles. Computers and Operations
Research, 38:876–888, 2011.

[52] B. Peterson and M. Trick. A Benders’ approach to a transportation network design problem. In W.-J.
van Hoeve and J. N. Hooker, editors, CPAIOR 2009 Proceedings, volume 5547 of Lecture Notes in
Computer Science, pages 326–327, New York, 2009. Springer.

5

[53] G. R. Raidl, T. Baumhauer, and B. Hu. Speeding up logic-based Benders decomposition by a meta-
heuristic for a bi-level capacitated vehicle routing problem. In International Workshop on Hybrid
Metaheuristics, volume 8457 of Lecture Notes in Computer Science, pages 183–197. Springer, 2014.

[54] R. V. Rasmussen. Scheduling a triple round robin tournament for the best Danish soccer league.
European Journal of Operational Research, 20:795–810, 2008.

[55] R. V. Rasmussen and M. A. Trick. A Benders approach to the constrained minimum break problem.
European Journal of Operational Research, 177:198–213, 2007.

[56] S. Riazi, C. Seatzu, O. Wigstrom, and B. Lennartson. Benders/gossip methods for heterogeneous
multi-vehicle routing problems. In IEEE Conference on Emerging Technologies Factory Automation
(ETFA), pages 1–6, 2013.

[57] V. Roshanaei, D. M. Aleman, and D. Urbach. Logic-based Benders decomposition approaches with
application to operating room scheduling. In INFORMS National Meeting, 2015.

[58] M. Ruggiero, A. Guerri, D. Bertozzi, F. Poletti, and M. Milano. Communication-aware allocation
and scheduling framework for stream-oriented multi-processor systems-on-chip. In Proceedings of the
Conference on Design, Automation and Test in Europe, pages 3–8. European Design and Automation
Association, 2006.

[59] R. Sadykov. A hybrid branch-and-cut algorithm for the one-machine scheduling problem. In J. C.
Régin and M. Rueher, editors, CPAIOR Proceedings, volume 3011 of Lecture Notes in Computer
Science, pages 409–415. Springer, 2004.

[60] D. Salvagnin and T. Walsh. A hybrid MIP/CP approach for multi-activity shift scheduling. In M. Mi-
lano, editor, Principles and Practice of Constraint Programming, volume 7514 of Lecture Notes in
Computer Science, pages 633–646. Springer, 2012.

[61] R. Sarmad, O. Wigström, and S. Carla. Benders/gossip methods for heterogeneous multi-vehicle rout-
ing problems. In IEEE International Conference on Emerging Technologies and Factory Automation
(ETFA), pages 1–6. IEEE, 2013.

[62] N. Satish, K. Ravindran, and K. Keutzer. A decomposition-based constraint optimization approach for
statically scheduling task graphs with communication delays to multiprocessors. In Proceedings of the
Conference on Design, Automation and Test in Europe, pages 57–62. EDA Consortium, 2007.

[63] S. Shen and J. C. Smith. A decomposition approach for solving a broadcast domination network design
problem. Annals of Operations Research, 210:333–360, 2011.

[64] S. Solak, C. Scherrer, and A. Ghoniem. The stop-and-drop problem in nonprofit food distribution
networks. Annals of Operations Research, 221:407–426, 2014.

[65] Z. C. Taşkın, J. C. Smith, S. Ahmed, and A. J. Schaefer. Cutting plane algorithms for solving a
stochastic edge-partition problem. Discrete Optimization, 6:420–435, 2009.

[66] S. Tarim, S. Armagan, and I. Miguel. A hybrid Benders decomposition method for solving stochastic
constraint programs with linear recourse. In B. Hnich, M. Carlsson, F. Fages, and F. Rossi, editors,
International Workshop on Constraint Solving and Constraint Logic Programming (CSCLP), pages
133–148. Springer, 2006.

6

[67] D. Terekhov, J. C. Beck, and K. N. Brown. Solving a stochastic queueing design and control problem
with constraint programming. In Proceedings of the 22nd National Conference on Artificial Intelli-
gence (AAAI 2007), volume 1, pages 261–266. AAAI Press, 2007.

[68] D. Terekhov, M. K. Doğru, U. Özen, and J. C. Beck. Solving two-machine assembly scheduling
problems with inventory constraints. Computers and Industrial Engineering, 63:120–134, 2012.

[69] E. Thorsteinsson. Branch and check: A hybrid framework integrating mixed integer programming and
constraint logic programming. In T. Walsh, editor, Principles and Practice of Constraint Programming
(CP 2001), volume 2239 of Lecture Notes in Computer Science, pages 16–30. Springer, 2001.

[70] C. Timpe. Solving planning and scheduling problems with combined integer and constraint program-
ming. OR Spectrum, 24:431–448, 2002.

[71] T. T. Tran and J. C. Beck. Logic-based Benders decomposition for alternative resource scheduling with
sequence dependent setups. In European Conference on Artificial Intelligence (ECAI), volume 242 of
Frontiers in Artificial Intelligence and Applications, pages 774–779. IOS Press, 2012.

[72] M. Trick and H. Yildiz. Benders cuts guided large neighborhood search for the traveling umpire
problem. In P. Van Hentenryck and L. Wolsey, editors, CPAIOR Proceedings, volume 4510 of Lecture
Notes in Computer Science, pages 332–345. Springer, 2007.

[73] J. Verstichel, J. Kinable, P. De Causmaecker, and G. Vanden Berghe. A combinatorial Benders decom-
position for the lock scheduling problem. Computers and Operations Research, 54:117–128, 2015.

[74] D. Wheatley, F. Gzara, and E. Jewkes. Logic-based Benders decomposition for an inventory-location
problem with service constraints. Omega, 55:10–23, 2015.

[75] Q. Xia, A. Eremin, and M. Wallace. Problem decomposition for traffic diversions. In J. C. Régin and
M. Rueher, editors, CPAIOR 2004 Proceedings, volume 3011 of Lecture Notes in Computer Science,
pages 348–363. Springer, 2004.

[76] T. H. Yunes, I. Aron, and J. N. Hooker. An integrated solver for optimization problems. Operations
Research, 58:342–356, 2010.

