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• Essence of Benders decomposition

– Simple example

• Logic-based Benders

• Inference dual

• Classical LP dual

• Classical Benders

• Examples…

Outline
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• Examples

– Logic circuit verification

– Planning and disjunctive scheduling

– Planning and cumulative scheduling

– Min cost

– Min makespan

– Min number of late tasks

– Min total tardilness

– Single-resource scheduling

– Home hospice care

• Branch and check

– Inference as projection

Outline



4

• The clever idea behind classical Benders works in a 

much more general setting.

– For problems that simplify when certain variables are 

fixed.

– Use classical Benders if the resulting subproblem is a 

linear programming (LP) problem.*

– Same idea can be extended to any subproblem by 

generalizing LP duality to inference duality.

* Generalized Benders allows a nonlinear programming subproblem

Essence of Benders Decomposition



Solve for search 

variables x

Contains Benders cuts 

so far generated.

Simplified problem 

contains remaining 

variables y

Solve inference dual 

to obtain Benders cut

that excludes solutions 

no better than current 

one.

Fix search 

variables x

Add

Benders cut

Master 

problem
Subproblem

Essence of Benders Decomposition
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• The key to generalizing Benders is 

generalizing the dual.

– A solution of the inference dual is a proof of optimality 

(or infeasibility).

– It proves a bound on the optimal value…

– Given the values of search variables as premises.

– It is an explanation of why the solution is optimal.

– The same proof may yield a bound for other values of the 

search values.

– This is key to obtaining Benders cuts.

Essence of Benders Decomposition
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Find cheapest 

route to a 

remote village

$100

$200

$200

$100

High Pass

City 1

City 2

City 3

City 4

Village

Home

By air

By bus

Simple Example



Let   x = flight destination

y = bus route

Find cheapest route (x,y)

Simple Example



Solve for cheapest 

flight x

…subject to Benders 

cuts generated so far

Find cheapest bus route 

from airport to village.

Use proof of optimality 

to bound cost of other 

flights x.

Fix flight x

Add

Benders cut

Master 

problem
Subproblem

Let   x = flight destination

y = bus route

Find cheapest route (x,y)



Begin with  x  = City 1  and pose the subproblem:

Find the cheapest route given that x = City 1.

Optimal cost is $100 + 80 + 150 = $330.

Let   x = flight destination

y = bus route

Find cheapest route (x,y)
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The dual problem of finding the optimal route is to prove optimality.  

The proof is that the route from City 1 to the village must go through 

High Pass.  So

cost   airfare + bus from city to High Pass + $150

But this same argument applies to City 1, 2 or 3.  This gives us the 

above Benders cut. 
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Specifically the Benders cut is











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




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4City   if100$

2,3City   if150200$
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x
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Now solve the master problem:

Pick the city x to minimize cost subject to

























4City   if100$

2,3City   if150200$

1City   if15080100$

)(cost 1City 

x

x

x

xB

Clearly the solution is x = City 4, with cost $100.
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Now let  x  = City 4  and pose the subproblem:

Find the cheapest route given that x = City 4.

Optimal cost is $100 + 250 = $350.

$250
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Again solve the master problem:

Pick the city x to minimize cost subject to

























4City   if100$

2,3City   if150200$

1City   if15080100$

)(cost 1City 

x

x

x

xB

The solution is x = City 1, with cost $330.  

Because this is equal to the value of a previous subproblem, 

we are done.







 


otherwise0$

1City   if350$
)(cost 4City 

x
xB



Logic-Based Benders

• Solve problem of the form

  

min

( ), 1 ix

z

z B x i k


min ( , )

( , )

k

k

f x y

x y S

Minimize cost z subject to 

Benders cuts

Solve inference dual to 

obtain proof of optimality 

Use same proof to deduce 

cost bounds for other 

assignments, yielding 

Benders cut.

Trial value xk

that solves 

master

Benders cut

Master problem Subproblem

16



min ( , )

( , )

f x y

x y S

Iteration k :

 ( )kx
z B x



Logic-Based Benders

• In any iteration, 

master value  optimal value  smallest subproblem value so far

• Continue until equality is obtained.
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  

min

( ), 1 ix

z

z B x i k


min ( , )

( , )

k

k

f x y

x y S

Minimize cost z subject to 

Benders cuts

Solve inference dual to 

obtain proof of optimality 

Use same proof to deduce 

cost bounds for other 

assignments, yielding 

Benders cut.

Trial value xk

that solves 

master

Benders cut
 ( )kx

z B x

Master problem Subproblem



Logic-Based Benders

• Benders cuts describe projection of feasible set onto x

• …if all cuts are generated.
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  

min

( ), 1 ix

z

z B x i k


min ( , )

( , )

k

k

f x y

x y S

Minimize cost z subject to 

Benders cuts

Solve inference dual to 

obtain proof of optimality 

Use same proof to deduce 

cost bounds for other 

assignments, yielding 

Benders cut.

Trial value xk

that solves 

master

Benders cut
 ( )kx

z B x

Master problem Subproblem



• Substantial speedup for many applications.

− Several orders of magnitude relative to state of the art.

Logic-Based Benders

19



• Substantial speedup for many applications.

− Several orders of magnitude relative to state of the art.

• Some applications:

– Circuit verification

– Chemical batch processing (BASF, etc.)

– Steel production scheduling 

– Auto assembly line management (Peugeot-Citroën)

– Automated guided vehicles in flexible manufacturing

– Allocation and scheduling of multicore processors 

(IBM, Toshiba, Sony)

– Resource location-allocation

– Stochastic resource location and fleet management

– Capacity and distance-constrained plant location

Logic-Based Benders
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• Some applications…

– Transportation network design

– Traffic diversion around blocked routes

– Worker assignment in a queuing environment

– Single- and multiple-machine allocation and scheduling

– Permutation flow shop scheduling with time lags

– Resource-constrained scheduling

– Wireless local area network design

– Service restoration in a network

– Optimal control of dynamical systems

– Sports scheduling

Logic-Based Benders
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• An optimization problem minimizes an objective 

function subject to constraints.

– It is solved by searching over values of the variables.

• The inference dual finds the tightest lower bound on 

the objective function that is implied by the constraints.

– It is solved by searching over proofs.

Inference Dual



Inference Dual

min ( )f x

x S

max

( )
P

v

x S f x v

P

  

PFind best 

feasible solution 

by searching 

over values 

of x.

Find a proof of optimal 

value v* by searching 

over proofs P.

Primal 

problem:

optimization

Dual problem:

Inference
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• Weak duality always holds:

Min value of primal 

problem

 Max value of dual 

problem

Difference = duality gap

Inference Dual
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• Strong duality sometimes holds:

Min value of primal 

problem =
Max value of dual 

problem

is a complete 

proof family  Strong duality
P

Inference Dual

“Complete” means that the family contains a proof for 

anything that is implied by the constraint set.
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Classical LP Dual

26





min

0

cx

Ax b

x

Primal 

problem
Inference dual

 
  

 



max

0

P

v

Ax b
cx v

x

P P



Classical LP Dual
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 
  

 0

PAx b
cx v

x
when uAx ub dominates cx v

for some u  0 

Proof family    : P





min

0

cx

Ax b

x

Primal 

problem
Inference dual

 
  

 



max

0

P

v

Ax b
cx v

x

P P

Assuming Ax  b, x  0 is feasible.



Classical LP Dual
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 
  

 0

PAx b
cx v

x
when uAx ub dominates cx v

for some u  0 





uA c

ub v

Proof family    : P





min

0

cx

Ax b

x

Primal 

problem
Inference dual

 
  

 



max

0

P

v

Ax b
cx v

x

P P

Assuming Ax  b, x  0 is feasible.



Classical LP Dual
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 
  

 0

PAx b
cx v

x
when uAx ub dominates cx v

for some u  0 





uA c

ub v

Proof family    : P





min

0

cx

Ax b

x

Primal 

problem
Inference dual

 
  

 



max

0

P

v

Ax b
cx v

x

P P

This is a complete inference method 

(due to Farkas Lemma)

Assuming Ax  b, x  0 is feasible.



Classical LP Dual





min

0

cx

Ax b

x







max

0

v

uA c

ub v

u

Primal 

problem
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 
  

 0

PAx b
cx v

x
when uAx ub dominates cx v

for some u  0 





uA c

ub v

Proof family    : P

 
  

 



max

0

P

v

Ax b
cx v

x

P P



This is a complete inference method 

(due to Farkas Lemma)

Inference dual

Assuming Ax  b, x  0 is feasible.



Classical LP Dual





min

0

cx

Ax b

x







max

0

v

uA c

ub v

u

Primal 

problem
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 
  

 0

PAx b
cx v

x
when uAx ub dominates cx v

for some u  0 





uA c

ub v

Proof family    : P






max

0

ub

uA c

u

Inference dual

This is a complete inference method 

(due to Farkas Lemma)

Assuming Ax  b, x  0 is feasible.



Classical LP Dual





min

0

cx

Ax b

x

Primal 

problem
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 
  

 0

PAx b
cx v

x
when uAx ub dominates cx v

for some u  0 





uA c

ub v

Proof family    : P





max

0

ub

uA c

u

Classical 

LP dual

 A strong dual 

due to Farkas Lemma

…assuming Ax  b, x  0

is feasible

This is a complete inference method 

(due to Farkas Lemma)

Assuming Ax  b, x  0 is feasible.



Inference Duals
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Problem Inference Method Inference dual

Linear programming Linear combination

+ domination

Classical LP dual

(strong)

Inequality constrained

optimization

Linear combination 

+ implication

Surrogate dual

Inequality constrained 

optimization

Linear combination 

+ domination

Lagrangean dual

Integer programming Chvátal-Gomory

cuts

Subadditive dual

(strong)



Classical Benders

Master problem Subproblem
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

 



min

, 0

cx dy

Ax By b

x y
Iteration k :

  

min

( ), 1 ix

z

z B x i k



 



min

0

k

k

cx dy

By b Ax

y

Trial value xk

Benders cut
 ( )kx

z B x

• Solve problem of the form



Classical Benders

• Solve problem of the form

  

min

( ), 1 ix

z

z B x i k



 



min

0

k

k

cx dy

By b Ax

y

Dual solution uk proves optimality:

Trial value xk

Benders cut

Master problem Subproblem
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

 



min

, 0

cx dy

Ax By b

x y
Iteration k :

 ( )kx
z B x

 ( )k k ku By u b Ax dominates  *dy v



Classical Benders

• Solve problem of the form

  

min

( ), 1 ix

z

z B x i k



 



min

0

k

k

cx dy

By b Ax

y

Dual solution uk proves optimality:

Trial value xk

Benders cut

Master problem Subproblem

36



 



min

, 0

cx dy

Ax By b

x y
Iteration k :

 ( )kx
z B x

 ( ) *k ku b Ax v

 ( )k k ku By u b Ax dominates  *dy v

So ku B d and



Classical Benders

• Solve problem of the form

  

min

( ), 1 ix

z

z B x i k



 



min

0

k

k

cx dy

By b Ax

y

Dual solution uk proves optimality:

Trial value xk

Benders cut

Master problem Subproblem
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

 



min

, 0

cx dy

Ax By b

x y
Iteration k :

 ( )kx
z B x

 ( ) *k ku b Ax v

 ( )k k ku By u b Ax dominates  *dy v

But uk remains dual feasible for any x, so by weak duality  

So ku B d and

 ( )ku b Ax v



Classical Benders

• Solve problem of the form

  

min

( ), 1 ix

z

z B x i k



 



min

0

k

k

cx dy

By b Ax

y

Dual solution uk proves optimality:

Trial value xk

Benders cut

Master problem Subproblem
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

 



min

, 0

cx dy

Ax By b

x y
Iteration k :

 ( )kx
z B x

 ( ) *k ku b Ax v

 ( )k k ku By u b Ax dominates  *dy v

But uk remains dual feasible for any x, so by weak duality  

So ku B d and

    ( )kcx u b Ax cx v z

 ( )ku b Ax v

This implies 



Classical Benders

• Solve problem of the form

    

min

( ), 1 k

z

z cx u b Ax i k



 



min

0

k

k

cx dy

By b Ax

y

Dual solution uk proves optimality:

Trial value xk

Benders cut

Master problem Subproblem
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

 



min

, 0

cx dy

Ax By b

x y
Iteration k :

  ( )kz cx u b Ax

 ( ) *k ku b Ax v

 ( )k k ku By u b Ax dominates  *dy v

But uk remains dual feasible for any x, so by weak duality  

So ku B d and

    ( )kcx u b Ax cx v z

 ( )ku b Ax v

This implies 



• Benders is often referred to as row generation.

– as opposed to column generation.

• Row generation is much more general.

– Applies to any optimization problem with constraints = rows

– Column generation requires columns.

• The constraint set must be linear (Ax  b, etc.)

Classical Benders



• Benders is often referred to as row generation.

– as opposed to column generation.

• Row generation is much more general.

– Applies to any optimization problem with constraints = rows

– Column generation requires columns.

• The constraint set must be linear (Ax  b, etc.)

• Benders is said to be dual to Dantzig-Wolfe 

decomposition (a form of column generation)

– True for classical Benders.

– Not true for logic-based Benders.

– Logic-based Benders is much more general than D-W or 

column generation

• D-W applies only to linear programming.

Classical Benders
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Logic circuits A and B are equivalent when the following circuit is a 

tautology:

A

B

x1

x2

x3





and
inputs

The circuit is a tautology if the minimum output over all 0-1 inputs is 1.

Example: Logic circuit verification
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x1

x2

x3

inputs

and

or

and

not

not

or

or

not

not

and

y1

y3

y2

y4

y5

y6

For instance, check whether this circuit is a tautology:

The subproblem is to minimize the output when the input x is fixed 

to a given value.  

Minimum output is only feasible output, proved by unit 

propagation.
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Formally, the problem is 6

6 4 5

5 2 3

4 1 2

3 1 2 3

2 2 3

1 1 2

min

s.t. ( )

( )

( )

( )

( )

( )

y

y y y

y y y

y y y

y x x x

y x x

y x x

 

 

 

  

 

 

x1

x2

x3

and

or

and

not

not

or

or

not

not

and

y1

y3

y2

y4

y5

y6
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min

s.t. ( ),  1ix

z

z B x i k  

Only one feasible solution, 

trivial to compute by unit 

propagation

Master problem Subproblem

Trial input xk

Benders cut
 ( )kx

z B x

1 2 3

2 3

1 2

6

6 4 5

5 2 3

4 1 2

3

2

1

min

s.t. ( )

( )

( )

( )

( )

( )

k k k

k k

k k

y

y y y

y y y

y y y

y x x x

y x x

y x x

 

 

 

  

 

 
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For example, let the inputs be x = (1,0,1).

To construct a Benders cut, identify some inputs xi that are 

sufficient to derive an output of 1 by the same unit propagation.

This can be done by reasoning backward. 

x1

x2

x3

and

or

and

not

not

or

or

not

not

and

y1

y3

y2

y4

y5

y6

1

1

1

1

1

0

0

0

1
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x1

x2

x3

and

or

and

not

not

or

or

not

not

and

y1

y3

y2

y4

y5

y6

1

1

1

1

1

0

0

0

1

For this, it suffices that 

y4 = 1 and y5 = 1.



48

x1

x2

x3

and

or

and

not

not

or

or

not

not

and

y1

y3

y2

y4

y5

y6

1

1

1

1

1

0

0

0

1

For this, it suffices that 

y4 = 1 and y5 = 1.

For this, it suffices 

that y2 = 0.
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x1

x2

x3

and

or

and

not

not

or

or

not

not

and

y1

y3

y2

y4

y5

y6

1

1

1

1

1

0

0

0

1

For this, it suffices that 

y4 = 1 and y5 = 1.

For this, it suffices 

that y2 = 0.

For this, it suffices 

that y2 = 0.
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x1

x2

x3

and

or

and

not

not

or

or

not

not

and

y1

y3

y2

y4

y5

y6

1

1

1

1

1

0

0

0

1

For this, it suffices that 

y4 = 1 and y5 = 1.

For this, it suffices 

that y2 = 0.

For this, it suffices 

that y2 = 0.

For this, it suffices that 

x2 = 0 and x3 = 1.

So, Benders cut is  2 3z x x 
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Now solve the master problem

2 3

min

s.t.

z

z x x 

One solution is 
1 2 3( , , ) (1,0,0), 0x x x z 

This produces output 0 in the next subproblem, at which point 

master and subproblem values converge.

Since minimum output is 0, circuit is not a tautology.
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Note:  This can also be solved by classical Benders.  The 

subproblem can be written as an LP (a Horn-SAT problem).

Now solve the master problem

2 3

min

s.t.

z

z x x 

One solution is 
1 2 3( , , ) (1,0,0), 0x x x z 

This produces output 0 in the next subproblem, at which point 

master and subproblem values converge.

Since minimum output is 0, circuit is not a tautology.



• Assign tasks to resources.

• Schedule tasks assign to each resource

– Subject to time windows

– No overlap (disjunctive scheduling)

• Appropriate objective

– Min assignment cost

– Min makespan

– Min number of late tasks

– Min total tardiness

53

Example: Planning & Scheduling



• Assign tasks in master, schedule in subproblem.

– Can combine mixed integer programming and constraint 

programming

Assign tasks to 

resources 

to minimize cost.

Solve by mixed 

integer programming.

Schedule tasks on each 

resource, subject to time 

windows.

Advantage: decouples 

by resource.

Trial 

assignment

Benders cut

Master 

problem
Subproblem

x

54

Example: Planning & Scheduling

 ( )kx
z B x



• Objective function 

– Suppose cost is based on task assignment only.

– So cost appears only in the master problem.

– Scheduling subproblem is a feasibility problem.

55

cost ,    1  if task  assigned to resource ij ij ij

ij

c x x j i 

Example: Planning & Scheduling



• Objective function 

– Suppose cost is based on task assignment only.

– So cost appears only in the master problem.

– Scheduling subproblem is a feasibility problem.

• Benders cuts

– They have the form

– where Ji is a set of tasks that create infeasibility when 

assigned to resource i.
56

cost ,    1  if task  assigned to resource ij ij ij

ij

c x x j i 

(1 ) 1,  all 
i

ij

j J

x i


 

Example: Planning & Scheduling



• Time window relaxation

– For well-chosen time intervals [a,b],

– pij = processing time of task j on resource i

– J(a,b) = { tasks with time windows in [a,b] }
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

 
( , )

,    all 
ij ij

j J a b

p x b a i

Example: Planning & Scheduling



• Resulting Benders decomposition:

Schedule jobs on each 

resource.

For each infeasible 

resource i, find subset Ji 

of tasks that create 

infeasibility.

Trial 

assignment

Benders cuts

Master 

problem

Subproblem

x
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

min 

 

Benders cuts

Relaxation

ij ij

ij

z

z c x

(1 ) 1,
i

ij

j J

x


 

Terminate when subproblem is feasible.

Example: Planning & Scheduling



• Problem:  We typically don’t have access to 

infeasibility proof in subproblem solver.

– So begin with simple nogood cut

where Ji contains all tasks assigned resource i.

– Then strengthen cut by heuristically removing tasks 

from Ji until schedule on resource i becomes feasible.
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(1 ) 1,  all 
i

ij

j J

x i


 

Example: Planning & Scheduling



Problem Instances

• “c” instances

– Hard for LBBD.

– Some resources much faster than others.

– Computational bottleneck on fastest resource. 

• “e” instances

– Perhaps more realistic.

– Resources differ by factor of 2 in processing speed.

60



Experimental Design

• Solve with LBBD

– “Strong” Benders cuts only

– Strengthened nogood cuts.

– “Weak” cuts with subproblem relaxation in master.

– Simple nogood cuts.

– Strong” cuts with relaxation.
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“c” instances, 2 resources

65

Severe imbalance of 

master and subproblem

time, resulting in poorer 

performance for LBBD.



“c” instances, 2 resources

66

Subproblem blows up 

when more than

10 tasks per resource 

on average



“c” instances, 3 resources
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Subproblem blows up 

when more than

10 tasks per resource 

on average



“e” instances

68

Balance between 

master and subproblem

results in superior 

performance



“e” instances

69

Mild imbalance results 

in somewhat worse 

performance



Suggested Solution Strategies

• Tighter subproblem relaxations

– Design tighter subproblem relaxations for the master

– …using subproblem variables, whose values are 

discarded after master is solved

• Subproblem decomposition

– Solve subproblem with LBBD when it grows too large.

• More dual information

– Use subproblem solver that reveals proof of optimality, 

perhaps resulting in stronger Benders cuts.
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Cumulative Scheduling Problems

pij = processing time of task j on resource i

cij = resource consumption of task j on resource i

Ci = resources available on resource i

C1

task 1

task 2

task 3

task 4

task 5

p11

c11

Total resource consumption  Ci at all times.

C2

p22

c22

Resource 1 Resource 2
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( , )

min

subject to 1, all 

( ),   all ,  various [ , ]

Benders cuts

ij

i

ij ij ij i

j J b a

z

x j

p c x C b a i a b




 





Relaxation of subproblem:

“Energy” of tasks must be at 

most energy available.

C1

task 

1
task 4 task 5

Master Problem: Assign tasks to resources
Formulate as MILP problem

cost

Min Cost Cumulative Scheduling

a b
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( , )

min

subject to 1, all 

( ),   all ,  various [ , ]

Benders cuts

ij

i

ij ij ij i

j J b a

z

x j

p c x C b a i a b




 





Relaxation of subproblem:

“Energy” of tasks must be at 

most energy available.

C1

task 

1
task 4 task5

Benders cuts same as for disjunctive scheduling

cost

Min Cost Cumulative Scheduling

a b
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cuts Benders

 all,
1

 all,1subject to

min

ixcp
C

M

jx

M

j

ijijij

i

i

ij









Min Makespan Cumulative Scheduling

Relaxation of subproblem:

“Energy” of tasks provides 

lower bound on makespan.

Master Problem: Assign tasks to resources
Formulate as MILP problem

makespan

C1

task 

1
task 4 task5
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Assuming all deadlines di are the same, we get the Benders cut

Benders cuts are based on:

Lemma.  If we remove tasks 1, … s from a resource, the 

minimum makespan on that resource is reduced by at most

   





s

j

j
sj

j
sj

ij ddp
1

minmax





hiJj

ijijhi pxMM )1(*

Min makespan on 

resource i in last 

iteration

Min Makespan Cumulative Scheduling
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Why does this work?  Assume all deadlines are the same.  Add 

tasks 1,…,s sequentially at end of optimal schedule for other 

tasks…

Case I: resulting schedule meets deadline

task 1 task s

Feasible 

makespan for all 

tasks

…

M̂ 



s

j

ijpM
1

ˆ

tasks s+1, …, m

Deadline for 

all tasks

*M

Optimal 

makespan for all 

tasks





s

j

ij

s

j

ij pMMpMM
1

*

1

* ˆˆ d

Optimal 

makespan for 

tasks s+1,…,m
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Case II: resulting schedule exceeds deadline

task 1 task s

Makespan no 

longer feasible

…

M̂ 



s

j

ijpM
1

ˆ

tasks s+1, …, 

m

Deadline for 

all tasks

*M

Optimal 

makespan for all 

tasks





s

j

ij

s

j

ij pMMdpMdM
1

*

1

* ˆˆ  and  

d

Optimal 

makespan for 

tasks s+1,…,m
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min

subject to 1, all 

Benders cuts 

relaxation of subproblem

{0,1}

ij

i

ij

L

x j

x







= 1 if task j is assigned to resource i

Master problem:  Assign tasks to resources

Min Number of Late Tasks
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iL

ixLLL

ixLLL
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ijhihihi

Jj

ijhihihi
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 all   ,0ˆ

 all   ),1(1ˆ

 all   ),1(ˆ

ˆ

1

0

**

**



















Min # late tasks on resource i

(solution of subproblem)

Lower bound on # late 

tasks on resource i

Benders cuts

Min Number of Late Tasks
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iL

ixLLL

ixLLL

LL

hi

Jj

ijhihihi

Jj

ijhihihi

i

hi

hi

hi

 all   ,0ˆ

 all   ),1(1ˆ

 all   ),1(ˆ
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1

0

**

**



















Min # late tasks on resource i

(solution of subproblem)

Lower bound on # late 

tasks on resource i

subset of Jhi for which min 

# late tasks is still Lhi*

(found by heuristic that 

repeatedly solves 

subproblem on resource i )

Benders cuts

Min Number of Late Tasks



81

iL

ixLLL
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LL

hi

Jj
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Jj
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 all   ),1(1ˆ
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1
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

















Min # late tasks on resource i

(solution of subproblem)

To reduce # late tasks, 

must remove one of the 

tasks in        from 

resource i.

0

hiJ

Benders cuts

Min Number of Late Tasks
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iL

ixLLL

ixLLL

LL
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ijhihihi

Jj
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 all   ,0ˆ

 all   ),1(1ˆ
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1
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

















Min # late tasks on resource i

(solution of subproblem)

subset of Jhi for which min 

# late tasks is still Lhi*

(found by heuristic that 

repeatedly solves 

subproblem on resource i

)

Smaller subset of Jhi for which 

min # late tasks is Lhi*  1

(found while running same 

heuristic)

Benders cuts

Min Number of Late Tasks
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

















Min # late tasks on resource i

(solution of subproblem)

To reduce # late tasks by 

more than 1, must remove 

one of the tasks in

from resource i.

1

hiJ

Benders cuts

Min Number of Late Tasks
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
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













These Benders cuts are added to the master problem 

in each iteration h.

Benders cuts

Min Number of Late Tasks
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dJk
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 all  ,

}{max

1

)(

)(















Lower bound on # late 

tasks on resource i

Relaxation of subproblem

Min Number of Late Tasks
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
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Lower bound on # late 

tasks on resource i

Ci

task

1
task 2 task 3

jd

Set of tasks assigned to resource i with 

deadline at or before dj

Relaxation of subproblem

Min Number of Late Tasks



87

j
p

dxpc
C

L

LL

ik
dJk

dJk

jikikik

i

i

i

i

j

j
 all  ,

}{max

1

)(

)(















Lower bound on # late 

tasks on resource i
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task

1
task 2 task 3

jd

Set of tasks assigned to resource i with 

deadline at or before dj

Energy = pi1ci1

Relaxation of subproblem

Min Number of Late Tasks
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Relaxation of subproblem

Min Number of Late Tasks
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Min Number of Late Tasks
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Min # of late jobs on resource i

Relaxation of subproblem

Min Number of Late Tasks

This relaxation is added to the master problem at the outset.
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min

subject to 1, all 

Benders cuts 

relaxation I of subproblem

relaxation II of subproblem

{0,1}

ij

i

ij

L

x j

x







= 1 if task j is assigned to resource i

Master problem: assign tasks to resources

Min Tardiness Cumulative Scheduling
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Min Tardiness Cumulative Scheduling
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Benders cuts

Min Tardiness Cumulative Scheduling
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Benders cuts

Min Tardiness Cumulative Scheduling
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Min Tardiness Cumulative Scheduling
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hiT

Benders cuts

Min Tardiness Cumulative Scheduling
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These Benders cuts are added to the master problem 

in each iteration h

Min Tardiness Cumulative Scheduling
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Lower bound on total tardiness for resource i

Subproblem relaxation I
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Subproblem relaxation I
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Lemma.  Consider a min tardiness problem that schedules tasks 

1, …, n on resource i, where d1    dn.  The min tardiness T* is 

bounded below by





n

k

kTT
1

where

















 

k

j

kjiji

i

k dcp
C

T
ii

1

)()(

1


and  is a permutation of 1, …, n such that

)()()1()1( nn iiii
cpcp  

Subproblem relaxation II
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Example of Lemma

j dj pij cij pijcij

1 3 2 3 6

2 4 4 2 8

3 5 5 1 5
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d1 d2 d3
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3/45)865(
3

1
)(

1

04)65(
3

1
)(

1

03)5(
3

1
)(

1

32211333

211332

1331






































































dcpcpcp
C

T

dcpcp
C

T

dcp
C

T

iiiiii

i

iiii

i

ii

i

    23/4 sson tardine boundLower 321  TTT
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Idea of proof

Let 0(1), …, 0(n) be order of jobs in any optimal solution, so that                                              

and min tardiness is T*)()1( 00 ntt  

Consider bubble sort on 0(1), …, 0(n) to obtain 1,…,n.  Let 

0,…, S  be resulting sequence of permutations, so that s, s+1

differ by a swap and s(j) = j.

For a permutation  of 1,…,n let 



n

k

kTT
1
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Now we have

TTTTTT Sss   )()()()(* 10  

since   )(
11

0

1 1

)()()(

1 1

)()()(

1

)()()(

*

0000000
 Tdcp

C
dcp

C
dptT

n

j

k

j

jjiji

i

n

j

k

j

jjiji

i

n

j

jjij ii
































 



 





  



























n

kj

sjsksk

k

j

sjs

n

kj

sjsksk

k

j

sjs

TTTTT

TTTTT

2

111

1

1

1

2

1

1

1

)()()()()(

)()()()()(





swap k and k+1
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From the lemma, we can write the relaxation 
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
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Computational Results

• Random problems on 2, 3, 4 resources.

• Facilities run at different speeds.

• All release times = 0.  

• Min cost and makespan problems: deadlines 

same/different.

• Tardiness problems: random due date parameters set so 

that a few tasks tend to be late.

• No precedence or other side constraints.

• Makes problem harder.

• Implement with OPL Studio

•
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Min makespan, 2 resources
Average of 5 instances shown

+ At least one problem in the 5 exceeded 7200 sec (2 hours)

Jobs MILP CP Benders

10 3.4 0.8 0.24

12 12 4.0 0.31

14 2572+ 299 5.0

16 5974+ 3737 36

18 7200+ 233

20 1268
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Min makespan, 3 resources
Average of 5 instances shown

+ At least one problem in the 5 exceeded 7200 sec (2 hours)

Jobs MILP CP Benders

10 3.9 0.9 0.23

12 12 7.5 0.38

14 524 981 1.4

16 1716+ 4414 7.6

18 4619+ 7200+ 30

20 8.7

22 2012+
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Min makespan, 4 resources

Average of 5 instances shown

+ At least one problem in the 5 exceeded 7200 sec (2 hours)

Jobs MILP CP Benders

10 1.0 0.07 0.19

12 5.0 1.9 0.43

14 24 524 0.82

16 35 3898 1.0

18 3931+ 7200+ 6.4

20 4.4

22 28

24 945
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Min makespan, 3 resources

Different deadlines

Average of 5 instances shown

+ At least one problem in the 5 exceeded 7200 sec (2 hours)

Jobs MILP CP Benders

14 223 7.1 4.4

16 853 1620+ 5.1

18 350 1928+ 2.9

20 7200+ 7200+      1449+

22 7200+ 388

24 7200+ 132
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Min # late 

tasks

3 resources

Smaller problems

Tasks Time (sec)

CP MILP   Benders

Min # late

tasks

14 1092 5.8 0.5 1

382 8.0 0.7 1

265 3.2 0.7 2

85 2.6 1.3 2

5228 1315 665 3

16 304 2.7 0.5 0

? 31 0.2 1

310 22 0.4 1

4925 29 2.7 2

19 5.7 24 4

18 >7200 2.0 0.1 0

? 8.0 0.2 1

>7200 867 8.5 1

>7200 6.3 1.4 2

>7200 577 3.4 2



2

Tasks Time (sec)

MILP Benders

Best solution

MILP     Benders

20 97 0.4 0 0

>7200 2.3 (1) 1

219 5.0 1 1

>7200 11 (2) 2

843 166 3 3

22 16 1.3 0 0

>7200 3.7 (1) 1

>7200 49 (3) 2

>7200 3453 (5) 2

>7200 >7200 (6) (6)

24 25 0.8 0 0

>7200 18 (1) 0

>7200 62 (2) 0

>7200 124 (3) 1

>7200 234 (2) 1

Min # late 

tasks

3 resources

Larger problems

( ) =

optimality

not

proved



3

Tasks Time (sec)

with relax without relax

16 0.5 2.6

0.4 1.5

0.2 1.3

2.7 4.2

24 18

18 0.1 1.1

0.2 0.7

3.4 3.3

1.4 15

8.5 11

20 0.4 88

2.3 9.7

5.0 63

11 19

166 226

Effect of 

subproblem

relaxation

3 resources

Min # late tasks
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Min total 

tardiness

3 resources

Smaller problems

Tasks Time (sec)

CP MILP Benders

Min 

tardiness

14 838 7.0 6.1 1

7159 34 3.7 2

1783 45 19 15

>7200 73 40 19

>7200 >7200 3269 26

16 >7200 2 0.1 0

>7200 8 0.2 3

>7200 867 8.5 5

>7200 6 1.4 11

>7200 577 3.4 31

18 187 2.8 0

15 5.3 3

46 49 5

256 47 11

>7200 1203 14
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Tasks Time (sec)

MILP Benders

Best solution

MILP     Benders

20 105 18 0 0

4141 23 1 1

39 29 4 4

1442 332 8 8

>7200 >7200 (75) (37)

22 6 19 0 0

584 37 2 2

>7200 >7200 (120) (40)

>7200 >7200 (162) (46)

>7200 >7200 (375) (141)

24 10 324 0 0

>7200 94 (20) 0

>7200 110 (57) 0

>7200 >7200 (20) (5)

>7200 >7200 (25) (7)

Min total 

tardiness

3 resources

Larger problems

( ) =

optimality

not

proved
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Tasks Time (sec)

with relax without relax

16 1.4 4.4

2.1 6.5

4.2 30

156 199

765 763

18 2.8 10

5.3 17

47 120

49 354

1203 5102

20 18 151

23 1898

29 55

332 764

>7200 >7200

Effect of 

subproblem

relaxation

3 resources

Min total

tardiness



Single-Resource Scheduling

• Apply logic-based Benders to single-resource 

scheduling with long time horizons and many jobs.

• Decompose the problem by assigning jobs to segments 

of time horizon.

– Segmented problem – Jobs cannot cross segment 

boundaries (e.g., weekends).

– Unsegmented problem – Jobs can cross segment 

boundaries.



Segmented problem

• Benders approach is very similar to that for the planning 

and scheduling problem.

• Assign jobs to time segments rather than processors.

• Benders cuts are the same.

segment
Jobs do not overlap 

segment boundaries
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Segmented problem

Feasibility – Wide time windows (individual instances)
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Segmented problem

Feasibility – Tight time windows (individual instances)
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Segmented problem

Min makespan – Wide time windows (individual instances)
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Segmented problem

Min makespan – Tight time windows (individual instances)
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Segmented problem

Min tardiness – Wide time windows (individual instances)
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Segmented problem

Min tardiness – Tight time windows (individual instances)



Unsegmented problem

• Master problem is more complicated.

• Jobs can overlap two or more segments.

• Master problem variables must keep track of this.

• Benders cuts more sophisticated.

segment
Jobs can overlap 

segment boundaries



Unsegmented problem

• Master problem:

yijk variables keep 

track of whether job 

j starts, finishes, or 

runs entirely in 

segment i.

xijk variables keep 

track of how long a 

partial job j runs in 

segment i.



Unsegmented problem

Feasibility -- individual instances



Unsegmented problem

Min makespan – individual instances



• Segmented problems: 

• Benders is much faster for min cost and min makespan

problems.

• Benders is somewhat faster for min tardiness problem.

Single-resource scheduling



• Segmented problems: 

• Benders is much faster for min cost and min makespan

problems.

• Benders is somewhat faster for min tardiness problem.

• Unsegmented problems:

• Benders and CP can work together.

• Let CP run for 1 second.

• If it fails to solve the problem, it will probably blow up.  Switch 

to Benders for reasonably fast solution.

Single-resource scheduling



• Assign aides to patients.

– Schedule and route patient visits for each aide

• Subject to time windows for aides and visits

• Subject to aide qualification requirements

– Weekly schedule

• Number of visits per week specified for each patient

• Must be same aide and time for each visit

Home Hospice Care



• Solve with Benders 

decomposition.

– Assign aides to patients 

in master problem.

• Maximize number of

patients served by a

given set of aides.

Home Hospice Care

Master Problem

Solve with MIP

Subproblem

Solve with CP

Benders 

cut

Patient, day 

assignments



• Solve with Benders 

decomposition.

– Assign aides to patients 

in master problem.

• Maximize number of

patients served by a

given set of aides.

– Schedule home visits in

subproblem.

• Cyclic weekly schedule.

• No visits on weekends.

Master Problem

Solve with MIP

Subproblem

Solve with CP

Benders 

cut

Home Hospice Care

Patient, day 

assignments



• Solve with Benders 

decomposition.

– Assign aides to patients 

in master problem.

• Maximize number of

patients served by a

given set of aides.

– Schedule home visits in

subproblem.

• Cyclic weekly schedule.

• No visits on weekends.

– Subproblem decouples

into a scheduling problem 

for each aide and each day of the week.

Master Problem

Solve with MIP

Subproblem

Solve with CP

Benders 

cut

Home Hospice Care

Patient, day 

assignments



= 1 if patient j scheduled
= 1 if patient j

assigned to aide i

= 1 if patient j

assigned to aide i

on day k

Required number 

of visits per week

Home Hospice Care

Master problem



• For a rolling schedule:

– Schedule new patients, drop departing patients from 

schedule.

• Provide continuity for remaining patients as follows:

– Old patients served by same aide on same days.

• Fix yijk = 1 for the relevant aides, patients, and days.

Home Hospice Care



• For a rolling schedule:

– Schedule new patients, drop departing patients from 

schedule.

• Provide continuity for remaining patients as follows:

– Old patients served by same aide on same days.

• Fix yijk = 1 for the relevant aides, patients, and days.

– Alternative:  Also served at same time.

• Fix time windows to enforce their current schedule.

– Alternative:  served only by same aide.

• Fix xij = 1 for the relevant aides, patients.

Home Hospice Care



• Use strengthened nogood cuts

– Find a smaller set of patients that create infeasibility…

• …by re-solving the each infeasible scheduling problem 

repeatedly.

Reduced set of patients whose 

assignment to aide i on day k

creates infeasibility

Benders cuts

Home Hospice Care



Home Hospice Care

• Auxiliary cuts based on symmetries.

– A cut for valid for aide i, day k is also valid for aide i on 

other days.

• This gives rise to a large number of cuts.

– The auxiliary cuts can be summed without sacrificing optimality.

• Original cut ensures convergence to optimum.

• This yields 2 cuts per aide:



• Include relaxation of subproblem in the master problem.

– Necessary for good performance.

– Use time window relaxation for each scheduling problem.

– Simplest relaxation for aide i and day k:

Set of patients whose time window 

fits in interval [a, b].

Can use several intervals.

Subproblem relaxation

Home Hospice Care



• This relaxation is very weak.

– Doesn’t take into account travel times.

• Improved relaxation.

– Basic idea:  Augment visit duration pj with travel time 

to (or from) location j from closest patient or aide home base.

– This is weak unless most assignments are fixed.

• As in rolling schedule.

– We partition day into 2 intervals.

• Morning and afternoon.

• Simplifies handling of aide time windows and home bases.

• All patient time windows are in morning or afternoon.

Home Hospice Care



Time window relaxation for aide i, day k

using intervals [a,b], [b,c]

and where Qik = {patients unassigned or assigned to aide i, day k}

Home Hospice Care



• Instance generation

– Start with (suboptimal) solution for the 60 patients

• Fix this schedule for first n patients.

• Schedule remaining 60  n patients

– Use 8 of the 18 aides to cover new patients

• As well as the old patients they already cover.

• This puts us near the phase transition.

Home Hospice Care



Home Hospice Care



Home Hospice Care



Home Hospice Care



150

Branch and check

• Generate Benders cuts at certain nodes of a 

branching tree

– Variables fixed so far are search variables.

– Unfixed variables go into subproblem.

• Not the same as branch and cut.

– In branch and cut, the cuts contain unfixed variables.

– In branch and check, the cuts contain fixed variables.

• When to use?

– When master problem is the bottleneck.

– Master is solved only once, with growing constraint set.
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Inference as Projection

• Project onto propositional variables of interest

– Suppose we wish to infer from these clauses 

everything we can about propositions x1, x2, x3
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Inference as Projection

• Project onto propositional variables of interest

– Suppose we wish to infer from these clauses 

everything we can about propositions x1, x2, x3

We can deduce  





1 2

1 3

x x

x x

This is a projection 

onto x1, x2, x3
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Inference as Projection

• Benders decomposition computes a projection

– Benders cuts describe projection onto master problem 

variables.

1 2x x

Current 

Master problem

Benders cut 

from 

previous 

iteration
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Inference as Projection

• Benders decomposition computes a projection

– Benders cuts describe projection onto master problem 

variables.

1 2x x solution of master

(x1,x2,x3) = (0,1,0) 

Current 

Master problem
Resulting

subproblem
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Inference as Projection

• Benders decomposition computes a projection

– Benders cuts describe projection onto master problem 

variables.

1 2x x solution of master

(x1,x2,x3) = (0,1,0) 

Current 

Master problem
Resulting

subproblem

Subproblem is 

infeasible.

(x1,x3)=(0,0) 

creates infeasibility 
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Inference as Projection

• Benders decomposition computes a projection

– Benders cuts describe projection onto master problem 

variables.

1 2x x solution of master

(x1,x2,x3) = (0,1,0) 

Current 

Master problem

Subproblem is 

infeasible.

(x1,x3)=(0,0) 

creates infeasibility 

Benders cut

(nogood)

1 3x x

Resulting

subproblem
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Inference as Projection

• Benders decomposition computes a projection

– Benders cuts describe projection onto master problem 

variables.

1 2x x solution of master

(x1,x2,x3) = (0,1,1) 

Current 

Master problem
Resulting

subproblem

1 3x x
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Inference as Projection

• Benders decomposition computes a projection

– Benders cuts describe projection onto master problem 

variables.

1 2x x solution of master

(x1,x2,x3) = (0,1,1) 

Current 

Master problem
Resulting

subproblem

1 3x x

Subproblem is

feasible
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Inference as Projection

• Benders decomposition computes a projection

– Benders cuts describe projection onto master problem 

variables.

1 2x x solution of master

(x1,x2,x3) = (0,1,1) 

Current 

Master problem
Resulting

subproblem

Enumerative

Benders cut

1 3x x

Subproblem is

feasible

 1 2 3x x x
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Inference as Projection

• Benders decomposition computes a projection

– Logic-based Benders cuts describe projection onto master 

problem variables.

1 2x x solution of master

(x1,x2,x3) = (0,1,1) 

Current 

Master problem
Resulting

subproblem

Enumerative

Benders cut

1 3x x

Continue until 

master is 

infeasible.

Black Benders cuts 

describe projection.

 1 2 3x x x

JH and Yan (1995)

JH (2012)
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Inference as Projection

• Benders cuts = conflict clauses in a SAT algorithm

– Branch on x1, x2, x3 first.
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Inference as Projection

• Benders cuts = conflict clauses in a SAT algorithm

– Branch on x1, x2, x3 first.

Conflict 

clauses
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Inference as Projection

• Benders cuts = conflict clauses in a SAT algorithm

– Branch on x1, x2, x3 first.

Conflict 

clauses

Backtrack to x3 at 

feasible leaf nodes
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Inference as Projection

• Benders cuts = conflict clauses in a SAT algorithm

– Branch on x1, x2, x3 first.

Conflict clauses 

containing x1, x2, x3

describe projection



1

Benders decomposition [7] was introduced in 1962 to solve applications that become linear program-
ming (LP) problems when certain search variables are fixed. “Generalized” Benders decomposition, pro-
posed by Geoffrion in 1972 [25], extended the method to nonlinear programming subproblems.

Logic-based Benders decomposition (LBBD) allows the subproblem to be any optimization problem.
LBBD was introduced in [32], formally developed in 2000 [33], and tested computationally in [39]. Branch
and check is introduced in [33] and tested computationally in [69]. Combinatorial Benders cuts for mixed
integer programming are proposed in [18].

One of the first applications [43] was a planning and scheduling problem. Updated experiments [17]
show that LBBD is orders of magnitude faster than state-of-the-art MIP, with the advantage over CP even
greater). Similar results have been obtained for various planning and scheduling problems [15, 21, 30, 34,
35, 37, 71].

Other successful applications of LBBD include steel production scheduling [29], inventory management
[74], concrete delivery [44], shop scheduling [3, 13, 27, 28, 59], hospital scheduling [57], batch scheduling
in chemical plants [49, 70], computer processor scheduling [8, 9, 12, 22, 31, 46, 47, 48, 58, 62], logic
circuit verification [40], shift scheduling [5, 60], lock scheduling [73], facility location [23, 66], space
packing [20, 50], vehicle routing [19, 51, 53, 56, 61, 75], bicycle sharing [45], network design [24, 52, 63,
65], home health care [16], service restoration [26], supply chain management [68], food distribution [64],
queuing design and control [67], optimal control of dynamical systems [11], propositional satisfiability [1],
quadratic programming [2, 41, 42], chordal completion [10], and sports scheduling [14, 54, 55, 72]. LBBD
is compared with branch and check in [6]. It is implemented in the general-purpose solver SIMPL [76].
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