
Scheduling Home Hospice Care with

Logic-Based Benders Decomposition

John Hooker

Carnegie Mellon University

Joint work with

Aliza Heching Ryo Kimura

Compassionate CMU
Care Hospice

Lehigh University

October 2016

• Logic-based Benders tutorial

– The algorithm

– Inference duality

– Machine scheduling

– Other applications

– Logical inference and SAT

• Home health care

– The problem

– Logic-based Benders model

– Computational results

– Alternate relaxations

– LBBD References

Outline

• Decomposition breaks a large problem into

subproblems that can be solved separately.

– But with some kind of communication among the

subproblems.

– Decomposition is an essential strategy for solving

today’s ever larger and more interconnected models.

3

Decomposition

• Benders decomposition is a classical strategy

that does not sacrifice overall optimality.

– Separates the problem into a master problem and

multiple subproblems.

– Variables are partitioned

between master and

subproblems.

– Exploits the fact that the

problem may radically

simplify when the master

problem variables are fixed

to a set of values.

4

Benders Decomposition

Master problem

Subproblems

• But classical Benders decomposition has

a serious limitation.

– The subproblems must be linear programming

problems.

– Or continuous nonlinear programming problems.

– The linear programming dual provides the

Benders cuts.

5

Benders Decomposition

Benders 1962

• Logic-based Benders decomposition attempts

to overcome this limitation.

– The subproblems can, in principle, be any kind of

optimization problem.

– The Benders cuts are obtained from an

inference dual.

– Speedup over state of the art can be several orders

of magnitude.

– Yet the Benders cuts must be designed specifically

for every class of problems.

6

Logic-Based Benders

JH 1996, 2000

JH & Ottosson 2003

7

Number of Articles that Mention Benders Decomposition

Source: Google Scholar

Logic-Based Benders

Logic-based Benders

introduced

• Logic-based Benders decomposition solves a

problem of the form

– Where the problem simplifies when x is fixed to a

specific value.

8

min (,)

(,)

,x y

f x y

x y S

x D y D



 

Logic-Based Benders

• Decompose problem into master and subproblem.

– Subproblem is obtained by fixing x to solution value in

master problem.

min

() (Benders cuts)k

x

z

z g x

x D





min (,)

(,)

f x y

x y S

Minimize cost z subject to

bounds given by Benders

cuts, obtained from values

of x attempted in previous

iterations k.

Obtain proof of optimality

(solution of inference dual).

Use same proof to deduce

cost bounds for other

assignments, yielding

Benders cut.

Trial value x

that solves

master

Benders cut

z  gk(x)

Master problem Subproblem

x

9

Logic-Based Benders

• Iterate until master problem value equals best

subproblem value so far.

– This yields optimal solution.

min

() (Benders cuts)k

x

z

z g x

x D





min (,)

(,)

f x y

x y S

Minimize cost z subject to

bounds given by Benders

cuts, obtained from values

of x attempted in previous

iterations k.

Obtain proof of optimality

(solution of inference dual).

Use same proof to deduce

cost bounds for other

assignments, yielding

Benders cut.

Trial value x

that solves

master

Benders cut

z  gk(x)

Master problem Subproblem

x

10

Logic-Based Benders

Logic-Based Benders

• Fundamental concept: inference duality

min ()f x

x S

max

()
P

v

x S f x v

P

  

P
Find best feasible

solution by

searching over

values of x.
Find a proof of optimal value v*

by searching over proofs P.

Primal problem:

optimization

Dual problem:

Inference

11

In classical LP, the proof is a tuple of dual multipliers

• The proof that solves the dual in iteration k gives a

bound gk() on the optimal value.

• The same proof gives a bound gk(x) for other values of x.

min

() (Benders cuts)k

x

z

z g x

x D





min (,)

(,)

f x y

x y S

Minimize cost z subject to

bounds given by Benders

cuts, obtained from values

of x attempted in previous

iterations k.

Obtain proof of optimality

(solution of inference dual).

Use same proof to deduce

cost bounds for other

assignments, yielding

Benders cut.

Trial value x

that solves

master

Benders cut

z  gk(x)

Master problem Subproblem

x

12

Logic-Based Benders

x

Logic-Based Benders

• Popular optimization duals are special cases of the

inference dual.

– Result from different choices of inference method.

– For example....

– Linear programming dual (gives classical Benders cuts)

– Lagrangean dual

– Surrogate dual

– Subadditive dual

13

• Assign tasks to machines.

• Then schedule tasks assigned to each machine.

– Subject to time windows.

– Cumulative scheduling: several tasks can run simultaneously,

subject to resource limits.

– Scheduling problem decouples into a separate problem for

each machine.

14

Machine Scheduling

Jain & Grossmann 2001

• Assign tasks in master, schedule in subproblem.

– Combine mixed integer programming and constraint

programming

Assign tasks to resources

to minimize cost.

Solve by mixed integer

programming.

Schedule jobs on each

machine, subject to time

windows.

Constraint programming

obtains proof of optimality

(dual solution).

Use same proof to deduce

cost for some other

assignments, yielding

Benders cut.

Trial

assignment

Benders cut

z  gk(x)

Master problem Subproblem

x

15

Machine Scheduling

• Objective function

– Cost is based on task assignment only.

– So cost appears only in the master problem.

– Scheduling subproblem is a feasibility problem.

16

cost , 1 if task assigned to resource ij ij ij

ij

c x x j i 

Machine Scheduling

• Objective function

– Cost is based on task assignment only.

– So cost appears only in the master problem.

– Scheduling subproblem is a feasibility problem.

• Benders cuts

– They have the form

– where Ji is a set of tasks that create infeasibility when

assigned to resource i.

17

cost , 1 if task assigned to resource ij ij ij

ij

c x x j i 

(1) 1, all
i

ij

j J

x i


 

Machine Scheduling

• Resulting Benders decomposition:

Schedule jobs on each

resource.

Constraint programming

may obtain proof of

infeasibility on some resources

(dual solution).

Use same proof to deduce

infeasibility for some other

assignments, yielding

Benders cut.

Trial

assignment

Benders cuts

for infeasible

resources i

Master problem Subproblem

x

18

min

Benders cuts

ij ij

ij

z

z c x

(1) 1,
i

ij

j J

x


 

Machine Scheduling

0

5

10

15

20

25

30

35

40

45

50

0.01 0.1 1 10 100 1000 10000

N
u

m
b

e
r

o
f

n
s

ta
n

c
e

s
 s

o
lv

e
d

Computation time (sec)

Relax + strong cuts

Relax + weak cuts

MIP (CPLEX)

Performance

profile

50 problem instances

19

Cire, Coban & JH 2013

• Planning and scheduling:

– Machine allocation and scheduling

– Steel production scheduling

– Chemical batch processing (BASF, etc.)

– Auto assembly line management (Peugeot-Citroën)

– Allocation and scheduling of multicore processors

(IBM, Toshiba, Sony)

– Worker assignment

in a queuing

environment

20

Logic-Based Benders Applications

• Other scheduling

– Lock scheduling

– Shift scheduling

– Permutation flow

shop scheduling

with time lags

– Resource-constrained

scheduling

– Hospital scheduling

– Optimal control of

dynamical systems

– Sports scheduling

21

Logic-Based Benders Applications

• Routing and scheduling

– Vehicle routing

– Home health care

– Food distribution

– Automated guided

vehicles in flexible

manufacturing

– Traffic diversion

around blocked

routes

– Concrete delivery

22

Logic-Based Benders Applications

• Location and Design

– Wireless local area

network design

– Facility location-allocation

– Stochastic facility location

and fleet management

– Capacity and distance-

constrained plant location

– Queuing design and control

23

Logic-Based Benders Applications

• Other

– Logical inference

– Logic circuit verification

– Bicycle sharing

– Service restoration

in a network

– Inventory

management

– Supply chain

management

– Space packing

24

Logic-Based Benders Applications

25

Logical Inference

• A fundamental problem in the information age.

– Can use SAT solvers or logic-based Benders to

deduce facts from a knowledge base.

– SAT solvers are a special case of Benders!

26

• Draw inferences from a clause set

– Infer everything we can about propositions x1, x2, x3

We can deduce





1 2

1 3

x x

x x

This is a projection

onto x1, x2, x3

Logical Inference

JH 2015

27

• Benders decomposition computes the projection.

– Benders cuts describe projection onto master problem

variables.

1 2x x

Current

Master problem

Benders cut

from previous

iteration

Logical Inference

28

• Benders decomposition computes the projection.

– Benders cuts describe projection onto master problem

variables.

1 2x x solution of master

(x1,x2,x3) = (F,T,F)

Current

Master problem
Resulting

subproblem

Logical Inference

29

• Benders decomposition computes the projection.

– Benders cuts describe projection onto master problem

variables.

1 2x x solution of master

(x1,x2,x3) = (F,T,F)

Current

Master problem
Resulting

subproblem

Subproblem is

infeasible.

(x1,x3)=(F,F)

creates infeasibility

Logical Inference

30

• Benders decomposition computes the projection.

– Benders cuts describe projection onto master problem

variables.

1 2x x solution of master

(x1,x2,x3) = (F,T,F)

Current

Master problem

Subproblem is

infeasible.

(x1,x3)=(F,F)

creates infeasibility

Benders cut

(nogood)

1 3x x

Resulting

subproblem

Logical Inference

31

• Benders decomposition computes the projection.

– Benders cuts describe projection onto master problem

variables.

1 2x x solution of master

(x1,x2,x3) = (F,T,T)

Current

Master problem
Resulting

subproblem

1 3x x

Logical Inference

32

• Benders decomposition computes the projection.

– Benders cuts describe projection onto master problem

variables.

1 2x x solution of master

(x1,x2,x3) = (F,T,T)

Current

Master problem
Resulting

subproblem

1 3x x

Subproblem is

feasible

Logical Inference

33

• Benders decomposition computes the projection.

– Benders cuts describe projection onto master problem

variables.

1 2x x solution of master

(x1,x2,x3) = (F,T,T)

Current

Master problem
Resulting

subproblem

Enumerative

Benders cut

1 3x x

Subproblem is

feasible

 1 2 3x x x

Logical Inference

34

• Benders decomposition computes the projection.

– Benders cuts describe projection onto master problem

variables.

1 2x x solution of master

(x1,x2,x3) = (F,T,T)

Current

Master problem
Resulting

subproblem

Enumerative

Benders cut

1 3x x

Continue until master

is infeasible.

Black Benders cuts

describe projection.

 1 2 3x x x

Logical Inference

• Satisfiability methods solve the problem by

generating Benders cuts!

– Conflict clauses = Benders cuts

Logical Inference

36

Start branching on variables in depth-first fashion.

At each node of the branching tree, check if a clause is

violated

Setting x1, x5 = F causes the violation

(based on analysis of an implication graph)

So we add the conflict clause x1  x5

to avoid this assignment in the future

Violation

Logical Inference

x1 = F

x2 = F

37

Start branching on variables in depth-first fashion.

At each node of the branching tree, check if a clause is

violated

Here we have a conflict clause x1  x5

Resolve with x1  x2 to get x1  x2

Violation

Logical Inference

x1 = F

x2 = F

x5 = T

38

Start branching on variables in depth-first fashion.

At each node of the branching tree, check if a clause is

violated

Conflict clauses prevent branching here

Violation

Logical Inference

x1 = F

x2 = F

x5 = T

39

Start branching on variables in depth-first fashion.

At each node of the branching tree, check if a clause is

violated

Additional conflict clauses

Logical Inference

x2 = T

40

• Benders cuts = conflict clauses in a SAT algorithm

– Branch on x1, x2, x3 first.

Conflict

clauses

Logical Inference

41

• Benders cuts = conflict clauses in a SAT algorithm

– Branch on x1, x2, x3 first.

Conflict

clauses

Backtrack to x3 at

feasible leaf nodes

Logical Inference

42

• Benders cuts = conflict clauses in a SAT algorithm

– Branch on x1, x2, x3 first.

Conflict clauses containing

x1, x2, x3 describe projection

Logical Inference

• General home health care problem.

– Assign aides to homebound patients.

• …subject to constraints on aide qualifications

and patent preferences.

• One patient may require a team

of aides.

– Route each aide through assigned

patients, observing time windows.

• …subject to constraints on

hours, breaks, etc.

Home Health Care

• A large industry, and rapidly growing.

– Roughly as large as all courier and delivery services.

Home Health Care

2014 2018

U.S. revenues, $ billions 75 150

World revenues, $ billions 196 306

Projected Growth

of Home Health Care Industry

Increase in U.S. Employment, 2010-2020

Home health care industry 70%

Entire economy 14%

• Advantages of home health care

– Lower cost

• Hospital & nursing home care is very expensive.

– No hospital-acquired infections

• Less exposure to superbugs.

– Preferred by patients

• Comfortable, familiar surroundings of home.

• Sense of control over one’s life.

– Supported by new equipment & technology

• IT integration with hospital systems.

• Online consulting with specialists.

Home Health Care

• Critical factor to realize cost savings:

– Aides must be efficiently scheduled.

• This is our task.

– Focus on home hospice care.

Home Health Care

• Distinguishing characteristics of hospice care

– Personal & household services

– Regular weekly schedule

• For example, Mon-Wed-Fri at 9 am.

– Same aide each visit

– Long planning horizon

• Several weeks

– Rolling schedule

• Update schedule as patient population evolves.

Home Hospice Care

Home Hospice Care

5-8%

weekly

turnover

• Solve with Benders

decomposition.

– Assign aides to patients

in master problem.

• Maximize number of

patients served by a

given set of aides.

Home Hospice Care

Master Problem

Solve with MIP

Subproblem

Solve with CP

Solution ҧ𝑥
of master

Benders

cut

Heching & JH 2016

• Solve with Benders

decomposition.

– Assign aides to patients

in master problem.

• Maximize number of

patients served by a

given set of aides.

– Schedule home visits in

subproblem.

• Cyclic weekly schedule.

• No visits on weekends.

Home Hospice Care

Master Problem

Solve with MIP

Subproblem

Solve with CP

Solution ҧ𝑥
of master

Benders

cut

• Solve with Benders

decomposition.

– Assign aides to patients

in master problem.

• Maximize number of

patients served by a

given set of aides.

– Schedule home visits in

subproblem.

• Cyclic weekly schedule.

• No visits on weekends.

– Subproblem decouples

into a scheduling problem

for each aide and each day of the week.

Home Hospice Care

Master Problem

Solve with MIP

Subproblem

Solve with CP

Solution ҧ𝑥
of master

Benders

cut

Master Problem

= 1 if patient j scheduled
= 1 if patient j

assigned to aide i

= 1 if patient j

assigned to aide i

on day k

Required number

of visits per week

Master Problem

• For a rolling schedule:

– Schedule new patients, drop departing patients from

schedule.

• Provide continuity for remaining patients as follows:

– Old patients served by same aide on same days.

• Fix yijk = 1 for the relevant aides, patients, and days.

Master Problem

• For a rolling schedule:

– Schedule new patients, drop departing patients from

schedule.

• Provide continuity for remaining patients as follows:

– Old patients served by same aide on same days.

• Fix yijk = 1 for the relevant aides, patients, and days.

– Alternative: Also served at same time.

• Fix time windows to enforce their current schedule.

– Alternative: served only by same aide.

• Fix xij = 1 for the relevant aides, patients.

Subproblem

nth patient in sequence

start time

Set of patients

assigned to

aide i, day k

Visit duration Travel time

Scheduling problem for aide i, day k

Modeled with interval variables in CP solver.

Benders Cuts

• Generate a cut for each infeasible scheduling problem.

– Solution of subproblem inference dual is a proof of infeasibility.

• The proof may show other patient assignments to be

infeasible.

• Generate nogood cut that rules out these assignments.

Benders Cuts

• Generate a cut for each infeasible scheduling problem.

– Solution of subproblem inference dual is a proof of infeasibility.

• The proof may show other patient assignments to be

infeasible.

• Generate nogood cut that rules out these assignments.

– Unfortunately, we don’t have access to infeasibility proof in

CP solver.

Benders Cuts

• So, strengthen the nogood cuts heuristically.

– Find a smaller set of patients that create infeasibility…

• …by re-solving the each infeasible scheduling problem

repeatedly.

Reduced set of patients whose

assignment to aide i on day k

creates infeasibility

Benders Cuts

• Auxiliary cuts based on symmetries.

– A cut for valid for aide i, day k is also valid for aide i on

other days.

• This gives rise to a large number of cuts.

– The auxiliary cuts can be summed without sacrificing optimality.

• Original cut ensures convergence to optimum.

• This yields 2 cuts per aide:

Subproblem Relaxation

• Include relaxation of subproblem in the master problem.

– Necessary for good performance.

– Use time window relaxation for each scheduling problem.

– Simplest relaxation for aide i and day k:

Set of patients whose time window

fits in interval [a, b].

Can use several intervals.

Subproblem Relaxation

• This relaxation is very weak.

– Doesn’t take into account travel times.

Subproblem Relaxation

• This relaxation is very weak.

– Doesn’t take into account travel times.

• Improved relaxation.

– Basic idea: Augment visit duration pj with travel time

to (or from) location j from closest patient or aide home base.

Subproblem Relaxation

• This relaxation is very weak.

– Doesn’t take into account travel times.

• Improved relaxation.

– Basic idea: Augment visit duration pj with travel time

to (or from) location j from closest patient or aide home base.

– This is weak unless most assignments are fixed.

• As in rolling schedule.

Subproblem Relaxation

• This relaxation is very weak.

– Doesn’t take into account travel times.

• Improved relaxation.

– Basic idea: Augment visit duration pj with travel time

to (or from) location j from closest patient or aide home base.

– This is weak unless most assignments are fixed.

• As in rolling schedule.

– We partition day into 2 intervals.

• Morning and afternoon.

• Simplifies handling of aide time windows and home bases.

• All patient time windows are in morning or afternoon.

Subproblem Relaxation

Time window relaxation for aide i, day k

using intervals [a,b], [b,c]

and where Qik = {patients unassigned or assigned to aide i, day k}

Computational Tests

• Dataset

– 60 home hospice patients

• 2, 3 or 5 visits per week (not on weekends)

– 18 health care aides with time windows

– Actual travel distances

• Solver

– LBBD: IBM OPL Optimization Studio 12.6.2

• CPLEX + CP Optimizer + user-supplied script

– MIP: CPLEX in OPL Studio

• Modified multicommodity flow model of VRPTW

• Computer

– Laptop with Intel Core i7

• 7.75 GB RAM

Computational Tests

• Instance generation

– Start with (suboptimal) solution for the 60 patients

• Fix this schedule for first n patients.

• Schedule remaining 60  n patients

– Use 8 of the 18 aides to cover new patients

• As well as the old patients they already cover.

• This puts us near the phase transition.

Computational Tests

Computational Tests

• Practical implications

– MIP or LBBD will work for smaller instances

– LBBD scales up to realistic size

• One month advance planning in 60 patient population

• Assuming 5-8% weekly turnover

– Advantage of exact solution method

• We know for sure whether existing staff will cover

projected demand.

Computational Tests

Computational Tests

Computational Tests

• Other relaxations

– Multicommodity flow relaxation

• Master problem too large, solves slowly

• n2 flow variables, where n = number of patients

• Master must be re-solved in each iteration

• Relaxation useless until many variables are fixed in B&B

Computational Tests

• Other relaxations

– Multicommodity flow relaxation

• Master problem too large, solves slowly

• n2 flow variables, where n = number of patients

• Master must be re-solved in each iteration

• Relaxation useless until many variables are fixed in B&B

– Assignment relaxation

• Master problem still too large, solves slowly.

• Relaxation very weak without separating TSP cuts.

Branch & Check

• Idea: use stronger relaxation with branch & check

– Branch & check solves master problem once with search tree.

– At feasible nodes, solve subproblem to obtain Benders cut.

– Not the same as branch & bound.

• Large multicommodity or assignment relaxation is only

solved once.

JH 2000

Thorsteinsson 2003

Branch & Check

• Idea: use stronger relaxation with branch & check

– Branch & check solves master problem once with search tree.

– At feasible nodes, solve subproblem to obtain Benders cut.

– Not the same as branch & bound.

• Large multicommodity or assignment relaxation is only

solved once.

• However, performance is worse…

JH 2000

Thorsteinsson 2003

Branch & Check

0

500

1000

1500

2000

2500

3000

3500

8 13 18 23 28

T
o
ta

l
ti
m

e
 (

s
)

Number of New Patients

Total Solve Time vs Relaxation

B&C

Multicommodity

flow relaxation

B&C

Assignment

relaxation

B&C

Time window

relaxation

LBBD

time window

relaxation

Kimura 2016

Branch & check

• What is going on?

– Because of superior relaxation, fewer feasible leaf nodes.

– So fewer Benders cuts.

• Less information obtained from subproblem.er

Kimura 2016

Branch & check

• What is going on?

– Because of superior relaxation, fewer feasible leaf nodes.

– So fewer Benders cuts.

• Less information obtained from subproblem.er

• Good news…

– This reimplementation of LBBD is substantially faster than OPL

implementation.

• Uses C++, SCIP, and Gecode.

Kimura 2016

Conclusions

• LBBD can scale up despite sequence-dependent

costs…

– …when computing a rolling schedule

• Time window relaxation is tight enough

Conclusions

• LBBD can scale up despite sequence-dependent

costs…

– …when computing a rolling schedule

• Time window relaxation is tight enough

• Relaxation is key

– Relaxation that grows quadratically is too large

• Such as multicommodity flow and assignment relaxations

– Relaxation must grow only linearly

• Such as time window relaxation

Conclusions

• LBBD can scale up despite sequence-dependent

costs…

– …when computing a rolling schedule

• Time window relaxation is tight enough

• Relaxation is key

– Relaxation that grows quadratically is too large

• Such as multicommodity flow and assignment relaxations

– Relaxation must grow only linearly

• Such as time window relaxation

• LBBD superior to branch & check

References
Applications of Logic-Based Benders Decomposition

82

