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• Decomposition breaks a large problem into 

subproblems that can be solved separately.

– But with some kind of communication among the 

subproblems.

– Decomposition is an essential strategy for solving 

today’s ever larger and more interconnected models.
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Decomposition



• Benders decomposition is a classical strategy 

that does not sacrifice overall optimality.

– Separates the problem into a master problem and 

multiple subproblems.

– Variables are partitioned 

between master and 

subproblems.

– Exploits the fact that the 

problem may radically 

simplify when the master 

problem variables are fixed 

to a set of values.
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Benders Decomposition

Master problem

Subproblems



• But classical Benders decomposition has 

a serious limitation.

– The subproblems must be linear programming 

problems.

– Or continuous nonlinear programming problems.

– The linear programming dual provides the 

Benders cuts.
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Benders Decomposition

Benders 1962



• Logic-based Benders decomposition attempts 

to overcome this limitation.

– The subproblems can, in principle, be any kind of 

optimization problem.

– The Benders cuts are obtained from an 

inference dual.

– Speedup over state of the art can be several orders 

of magnitude.

– Yet the Benders cuts must be designed specifically 

for every class of problems.
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Logic-Based Benders

JH 1996, 2000

JH & Ottosson 2003 
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Number of Articles that Mention Benders Decomposition

Source: Google Scholar

Logic-Based Benders

Logic-based Benders 

introduced



• Logic-based Benders decomposition solves a 

problem of the form

– Where the problem simplifies when x is fixed to a 

specific value.
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• Decompose problem into master and subproblem.

– Subproblem is obtained by fixing x to solution value in 

master problem.

min

( )   (Benders cuts)k

x

z

z g x

x D





min ( , )

( , )

f x y

x y S

Minimize cost z subject to 

bounds given by Benders 

cuts, obtained from values 

of x attempted in previous 

iterations k.

Obtain proof of optimality 

(solution of inference dual).

Use same proof to deduce 

cost bounds for other 

assignments, yielding 

Benders cut.

Trial value x

that solves 

master

Benders cut

z  gk(x)

Master problem Subproblem

x
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Logic-Based Benders



• Iterate until master problem value equals best 

subproblem value so far.

– This yields optimal solution.

min

( )   (Benders cuts)k

x

z

z g x

x D





min ( , )

( , )

f x y

x y S

Minimize cost z subject to 

bounds given by Benders 

cuts, obtained from values 

of x attempted in previous 

iterations k.

Obtain proof of optimality 

(solution of inference dual).

Use same proof to deduce 

cost bounds for other 

assignments, yielding 

Benders cut.

Trial value x

that solves 

master

Benders cut

z  gk(x)

Master problem Subproblem

x
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Logic-Based Benders

• Fundamental concept: inference duality

min ( )f x

x S

max

( )
P

v

x S f x v

P

  

P
Find best feasible 

solution by 

searching over 

values of x.
Find a proof of optimal value v* 

by searching over proofs P.

Primal problem:

optimization

Dual problem:

Inference
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In classical LP, the proof is a tuple of dual multipliers



• The proof that solves the dual in iteration k gives a 

bound gk(  ) on the optimal value.

• The same proof gives a bound gk(x) for other values of x.

min

( )   (Benders cuts)k

x

z

z g x

x D





min ( , )

( , )

f x y

x y S

Minimize cost z subject to 

bounds given by Benders 

cuts, obtained from values 

of x attempted in previous 

iterations k.

Obtain proof of optimality 

(solution of inference dual).

Use same proof to deduce 

cost bounds for other 

assignments, yielding 

Benders cut.

Trial value x

that solves 

master

Benders cut

z  gk(x)

Master problem Subproblem

x
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Logic-Based Benders

• Popular optimization duals are special cases of the 

inference dual.

– Result from different choices of inference method.

– For example....

– Linear programming dual (gives classical Benders cuts)

– Lagrangean dual

– Surrogate dual

– Subadditive dual
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• Assign tasks to machines.

• Then schedule tasks assigned to each machine.

– Subject to time windows.

– Cumulative scheduling: several tasks can run simultaneously, 

subject to resource limits.

– Scheduling problem decouples into a separate problem for 

each machine.
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Machine Scheduling

Jain & Grossmann 2001



• Assign tasks in master, schedule in subproblem.

– Combine mixed integer programming and constraint 

programming

Assign tasks to resources 

to minimize cost.

Solve by mixed integer 

programming.

Schedule jobs on each 

machine, subject to time 

windows.

Constraint programming 

obtains proof of optimality 

(dual solution).

Use same proof to deduce 

cost for some other 

assignments, yielding 

Benders cut.

Trial 

assignment

Benders cut

z  gk(x)

Master problem Subproblem

x
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Machine Scheduling



• Objective function 

– Cost is based on task assignment only.

– So cost appears only in the master problem.

– Scheduling subproblem is a feasibility problem.

16

cost ,    1  if task  assigned to resource ij ij ij

ij

c x x j i 

Machine Scheduling



• Objective function 

– Cost is based on task assignment only.

– So cost appears only in the master problem.

– Scheduling subproblem is a feasibility problem.

• Benders cuts

– They have the form

– where Ji is a set of tasks that create infeasibility when 

assigned to resource i.
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• Resulting Benders decomposition:

Schedule jobs on each 

resource.

Constraint programming 

may obtain proof of 

infeasibility on some resources 

(dual solution).

Use same proof to deduce 

infeasibility for some other 

assignments, yielding 

Benders cut.

Trial 

assignment

Benders cuts

for infeasible 

resources i

Master problem Subproblem

x
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• Planning and scheduling:

– Machine allocation and scheduling

– Steel production scheduling

– Chemical batch processing (BASF, etc.)

– Auto assembly line management (Peugeot-Citroën)

– Allocation and scheduling of multicore processors 

(IBM, Toshiba, Sony)

– Worker assignment 

in a queuing 

environment
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Logic-Based Benders Applications



• Other scheduling

– Lock scheduling

– Shift scheduling

– Permutation flow 

shop scheduling 

with time lags

– Resource-constrained 

scheduling

– Hospital scheduling

– Optimal control of 

dynamical systems

– Sports scheduling
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• Routing and scheduling

– Vehicle routing

– Home health care

– Food distribution

– Automated guided 

vehicles in flexible 

manufacturing

– Traffic diversion 

around blocked 

routes

– Concrete delivery
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• Location and Design

– Wireless local area 

network design

– Facility location-allocation

– Stochastic facility location 

and fleet management

– Capacity and distance-

constrained plant location

– Queuing design and control
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• Other

– Logical inference

– Logic circuit verification

– Bicycle sharing

– Service restoration 

in a network

– Inventory 

management

– Supply chain 

management

– Space packing
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Logic-Based Benders Applications
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Logical Inference

• A fundamental problem in the information age.

– Can use SAT solvers or logic-based Benders to 

deduce facts from a knowledge base.

– SAT solvers are a special case of Benders!
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• Draw inferences from a clause set

– Infer everything we can about propositions x1, x2, x3

We can deduce  





1 2

1 3

x x

x x

This is a projection 

onto x1, x2, x3

Logical Inference

JH 2015
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• Benders decomposition computes the projection.

– Benders cuts describe projection onto master problem 

variables.

1 2x x

Current 

Master problem

Benders cut 

from previous 

iteration

Logical Inference
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• Benders decomposition computes the projection.

– Benders cuts describe projection onto master problem 

variables.

1 2x x solution of master

(x1,x2,x3) = (F,T,F) 

Current 

Master problem
Resulting

subproblem

Logical Inference
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• Benders decomposition computes the projection.

– Benders cuts describe projection onto master problem 

variables.

1 2x x solution of master

(x1,x2,x3) = (F,T,F) 

Current 

Master problem
Resulting

subproblem

Subproblem is 

infeasible.

(x1,x3)=(F,F) 

creates infeasibility 

Logical Inference
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• Benders decomposition computes the projection.

– Benders cuts describe projection onto master problem 

variables.

1 2x x solution of master

(x1,x2,x3) = (F,T,F) 

Current 

Master problem

Subproblem is 

infeasible.

(x1,x3)=(F,F) 

creates infeasibility 

Benders cut

(nogood)

1 3x x

Resulting

subproblem

Logical Inference
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• Benders decomposition computes the projection.

– Benders cuts describe projection onto master problem 

variables.

1 2x x solution of master

(x1,x2,x3) = (F,T,T) 

Current 

Master problem
Resulting

subproblem

1 3x x

Logical Inference
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• Benders decomposition computes the projection.

– Benders cuts describe projection onto master problem 

variables.

1 2x x solution of master

(x1,x2,x3) = (F,T,T) 

Current 

Master problem
Resulting

subproblem

1 3x x

Subproblem is

feasible

Logical Inference
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• Benders decomposition computes the projection.

– Benders cuts describe projection onto master problem 

variables.

1 2x x solution of master

(x1,x2,x3) = (F,T,T) 

Current 

Master problem
Resulting

subproblem

Enumerative

Benders cut

1 3x x

Subproblem is

feasible

 1 2 3x x x

Logical Inference
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• Benders decomposition computes the projection.

– Benders cuts describe projection onto master problem 

variables.

1 2x x solution of master

(x1,x2,x3) = (F,T,T) 

Current 

Master problem
Resulting

subproblem

Enumerative

Benders cut

1 3x x

Continue until master 

is infeasible.

Black Benders cuts 

describe projection.

 1 2 3x x x

Logical Inference



• Satisfiability methods solve the problem by 

generating Benders cuts!

– Conflict clauses = Benders cuts

Logical Inference
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Start branching on variables in depth-first fashion.

At each node of the branching tree, check if a clause is 

violated 

Setting x1, x5 = F causes the violation

(based on analysis of an implication graph)

So we add the conflict clause x1  x5

to avoid this assignment in the future

Violation

Logical Inference

x1 = F

x2 = F
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Start branching on variables in depth-first fashion.

At each node of the branching tree, check if a clause is 

violated 

Here we have a conflict clause x1  x5

Resolve with x1  x2 to get x1  x2

Violation

Logical Inference

x1 = F

x2 = F

x5 = T



38

Start branching on variables in depth-first fashion.

At each node of the branching tree, check if a clause is 

violated 

Conflict clauses prevent branching here

Violation

Logical Inference

x1 = F

x2 = F

x5 = T
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Start branching on variables in depth-first fashion.

At each node of the branching tree, check if a clause is 

violated 

Additional conflict clauses

Logical Inference

x2 = T
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• Benders cuts = conflict clauses in a SAT algorithm

– Branch on x1, x2, x3 first.

Conflict 

clauses

Logical Inference
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• Benders cuts = conflict clauses in a SAT algorithm

– Branch on x1, x2, x3 first.

Conflict 

clauses

Backtrack to x3 at 

feasible leaf nodes

Logical Inference
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• Benders cuts = conflict clauses in a SAT algorithm

– Branch on x1, x2, x3 first.

Conflict clauses containing 

x1, x2, x3 describe projection

Logical Inference



• General home health care problem.

– Assign aides to homebound patients.

• …subject to constraints on aide qualifications

and patent preferences.

• One patient may require a team 

of aides.

– Route each aide through assigned 

patients, observing time windows.

• …subject to constraints on 

hours, breaks, etc.

Home Health Care



• A large industry, and rapidly growing.

– Roughly as large as all courier and delivery services.

Home Health Care

2014 2018

U.S. revenues, $ billions 75 150

World revenues, $ billions 196 306

Projected Growth 

of Home Health Care Industry

Increase in U.S. Employment, 2010-2020

Home health care industry 70%

Entire economy 14%



• Advantages of home health care

– Lower cost

• Hospital & nursing home care is very expensive.

– No hospital-acquired infections

• Less exposure to superbugs.

– Preferred by patients

• Comfortable, familiar surroundings of home.

• Sense of control over one’s life.

– Supported by new equipment & technology

• IT integration with hospital systems.

• Online consulting with specialists.

Home Health Care



• Critical factor to realize cost savings:

– Aides must be efficiently scheduled.

• This is our task.

– Focus on home hospice care.

Home Health Care



• Distinguishing characteristics of hospice care

– Personal & household services

– Regular weekly schedule

• For example, Mon-Wed-Fri at 9 am.

– Same aide each visit

– Long planning horizon

• Several weeks

– Rolling schedule

• Update schedule as patient population evolves.

Home Hospice Care



Home Hospice Care

5-8% 

weekly

turnover



• Solve with Benders 

decomposition.

– Assign aides to patients 

in master problem.

• Maximize number of

patients served by a

given set of aides.

Home Hospice Care

Master Problem

Solve with MIP

Subproblem

Solve with CP

Solution ҧ𝑥
of master

Benders 

cut

Heching & JH 2016



• Solve with Benders 

decomposition.

– Assign aides to patients 

in master problem.

• Maximize number of

patients served by a

given set of aides.

– Schedule home visits in

subproblem.

• Cyclic weekly schedule.

• No visits on weekends.

Home Hospice Care

Master Problem

Solve with MIP

Subproblem

Solve with CP

Solution ҧ𝑥
of master

Benders 

cut



• Solve with Benders 

decomposition.

– Assign aides to patients 

in master problem.

• Maximize number of

patients served by a

given set of aides.

– Schedule home visits in

subproblem.

• Cyclic weekly schedule.

• No visits on weekends.

– Subproblem decouples

into a scheduling problem 

for each aide and each day of the week.

Home Hospice Care

Master Problem

Solve with MIP

Subproblem

Solve with CP

Solution ҧ𝑥
of master

Benders 

cut



Master Problem

= 1 if patient j scheduled
= 1 if patient j

assigned to aide i

= 1 if patient j

assigned to aide i

on day k

Required number 

of visits per week



Master Problem

• For a rolling schedule:

– Schedule new patients, drop departing patients from 

schedule.

• Provide continuity for remaining patients as follows:

– Old patients served by same aide on same days.

• Fix yijk = 1 for the relevant aides, patients, and days.



Master Problem

• For a rolling schedule:

– Schedule new patients, drop departing patients from 

schedule.

• Provide continuity for remaining patients as follows:

– Old patients served by same aide on same days.

• Fix yijk = 1 for the relevant aides, patients, and days.

– Alternative:  Also served at same time.

• Fix time windows to enforce their current schedule.

– Alternative:  served only by same aide.

• Fix xij = 1 for the relevant aides, patients.



Subproblem

nth patient in sequence

start time

Set of patients 

assigned to 

aide i, day k

Visit duration Travel time

Scheduling problem for aide i, day k

Modeled with interval variables in CP solver.



Benders Cuts

• Generate a cut for each infeasible scheduling problem.

– Solution of subproblem inference dual is a proof of infeasibility.

• The proof may show other patient assignments to be 

infeasible.

• Generate nogood cut that rules out these assignments.



Benders Cuts

• Generate a cut for each infeasible scheduling problem.

– Solution of subproblem inference dual is a proof of infeasibility.

• The proof may show other patient assignments to be 

infeasible.

• Generate nogood cut that rules out these assignments.

– Unfortunately, we don’t have access to infeasibility proof in 

CP solver.



Benders Cuts

• So, strengthen the nogood cuts heuristically.

– Find a smaller set of patients that create infeasibility…

• …by re-solving the each infeasible scheduling problem 

repeatedly.

Reduced set of patients whose 

assignment to aide i on day k

creates infeasibility



Benders Cuts

• Auxiliary cuts based on symmetries.

– A cut for valid for aide i, day k is also valid for aide i on 

other days.

• This gives rise to a large number of cuts.

– The auxiliary cuts can be summed without sacrificing optimality.

• Original cut ensures convergence to optimum.

• This yields 2 cuts per aide:



Subproblem Relaxation

• Include relaxation of subproblem in the master problem.

– Necessary for good performance.

– Use time window relaxation for each scheduling problem.

– Simplest relaxation for aide i and day k:

Set of patients whose time window 

fits in interval [a, b].

Can use several intervals.



Subproblem Relaxation

• This relaxation is very weak.

– Doesn’t take into account travel times.
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Subproblem Relaxation

• This relaxation is very weak.

– Doesn’t take into account travel times.

• Improved relaxation.

– Basic idea:  Augment visit duration pj with travel time 

to (or from) location j from closest patient or aide home base.

– This is weak unless most assignments are fixed.

• As in rolling schedule.

– We partition day into 2 intervals.

• Morning and afternoon.

• Simplifies handling of aide time windows and home bases.

• All patient time windows are in morning or afternoon.



Subproblem Relaxation

Time window relaxation for aide i, day k

using intervals [a,b], [b,c]

and where Qik = {patients unassigned or assigned to aide i, day k}



Computational Tests

• Dataset

– 60 home hospice patients

• 2, 3 or 5 visits per week (not on weekends)

– 18 health care aides with time windows

– Actual travel distances

• Solver

– LBBD:  IBM OPL Optimization Studio 12.6.2

• CPLEX + CP Optimizer + user-supplied script

– MIP:  CPLEX in OPL Studio

• Modified multicommodity flow model of VRPTW

• Computer

– Laptop with Intel Core i7

• 7.75 GB RAM



Computational Tests

• Instance generation

– Start with (suboptimal) solution for the 60 patients

• Fix this schedule for first n patients.

• Schedule remaining 60  n patients

– Use 8 of the 18 aides to cover new patients

• As well as the old patients they already cover.

• This puts us near the phase transition.



Computational Tests



Computational Tests

• Practical implications

– MIP or LBBD will work for smaller instances

– LBBD scales up to realistic size

• One month advance planning in 60 patient population

• Assuming 5-8% weekly turnover

– Advantage of exact solution method

• We know for sure whether existing staff will cover 

projected demand.



Computational Tests



Computational Tests



Computational Tests

• Other relaxations

– Multicommodity flow relaxation

• Master problem too large, solves slowly

• n2 flow variables, where n = number of patients

• Master must be re-solved in each iteration

• Relaxation useless until many variables are fixed in B&B



Computational Tests

• Other relaxations

– Multicommodity flow relaxation

• Master problem too large, solves slowly

• n2 flow variables, where n = number of patients

• Master must be re-solved in each iteration

• Relaxation useless until many variables are fixed in B&B

– Assignment relaxation 

• Master problem still too large, solves slowly.

• Relaxation very weak without separating TSP cuts.



Branch & Check

• Idea: use stronger relaxation with branch & check

– Branch & check solves master problem once with search tree.

– At feasible nodes, solve subproblem to obtain Benders cut.

– Not the same as branch & bound.

• Large multicommodity or assignment relaxation is only 

solved once.

JH 2000

Thorsteinsson 2003



Branch & Check

• Idea: use stronger relaxation with branch & check

– Branch & check solves master problem once with search tree.

– At feasible nodes, solve subproblem to obtain Benders cut.

– Not the same as branch & bound.

• Large multicommodity or assignment relaxation is only 

solved once.

• However, performance is worse…

JH 2000

Thorsteinsson 2003



Branch & Check
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Branch & check

• What is going on?

– Because of superior relaxation, fewer feasible leaf nodes.

– So fewer Benders cuts.

• Less information obtained from subproblem.er 

Kimura 2016



Branch & check

• What is going on?

– Because of superior relaxation, fewer feasible leaf nodes.

– So fewer Benders cuts.

• Less information obtained from subproblem.er 

• Good news…

– This reimplementation of LBBD is substantially faster than OPL 

implementation.

• Uses C++, SCIP, and Gecode.

Kimura 2016
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Conclusions

• LBBD can scale up despite sequence-dependent 

costs…

– …when computing a rolling schedule

• Time window relaxation is tight enough

• Relaxation is key

– Relaxation that grows quadratically is too large

• Such as multicommodity flow and assignment relaxations

– Relaxation must grow only linearly

• Such as time window relaxation

• LBBD superior to branch & check
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